|

n — 30 STACKPOINTER 1-1986

Datortoreningen STACKEN

Datorféreningen STACKEN ar en karforening med omkring 200 medlem-
mar. Foreningen har funnits sedan 1978.

Genom féreningen skall man kunna f3 utlopp f6r sitt intresse fér datorer.
Den skall ocksa verka for erfarenhetsutbyte mellan medlemmarna och vara
ett gemensamt forum.

Vilka aktiviteter vi har beror pd vad medlemmarna hittar pa. Vi gor
studiebesok hos olika leverantorer och installationer. Vi har utbyte med an-
dra datorforeningar i Norden. Vi hittar forelasare, som delar med sig av
sina erfarenheter. Vi odnar filmvisning. Vi har en DEC-10-dator, som vi har
installerat och satt igdng.

Den forsta helgfria torsdagen varje manad, klockan 19, traffas vi i lokalen
vid datorn. Kom p3d ett méte, om du ar intresserad. Vi tar garna emot
fler medlemmar. Medlemsskap i STACKEN kan beviljas efter ansékan till
foreningens styrelse. Medlemsavgiften ar 86 kronor for 1986.

Adress: €/o NADA
KTH
100 44 STOCKHOLM
Besoksadress: Brinellvigen 32 (pd gaveln mot Lill-Jansskogen)
Postgiro: 433 01 15-9
Bankgiro: 344-3595

STACKPOINTER

STACKPOINTER ar organ for Datorféreningen STACKEN. STACK-
POINTER utkommer nir material i tillracklig mangd finns, forhoppningsvis
5-6 ganger per ar. Atergivande av delar av innehdllet ar tilldtet om kallan
anges.

Ansvarig utgivare: Mats O Jansson

Redaktor: Hans Nordstrém
I redaktionen: Jan Michael Rynning, Mats O Jansson och Stellan
Lagerstrom

Fardigstalld: 1986-01-14

STACKPOINTER 1-1986

n—29

Laserskrivaren som bade

kan skriva och rakna

Apples laserskrivare har en inbyggd interpretator for ett FORTH-liknande
sprik, som heter PostScript. Om man vill skriva ut ndgonting pd den skickar

man 6ver det som ett PostScript-program, som den fir exekvera.

Jan Michael Rynning

% PostScript-program f8r framsidan pd StackPointer 1-1986.
% Jan Michael Rynning, 1986-01-05.

% Placera origo mitt pa pappret.
320 370 translate

% Definiera storlek pA bokstHverna och v#lj typsnitt.
/large-size 35 def
/Helvetica-Bold findfont large-size scalefont setfont

% Definiera tva funktioner f¥r att skriva ut roterande text.
/rotate-page 84 ¥ Anrop: stréng rotate-page string
165 -15 O ‘#rotate-lined for
& def ’
/rotate-line & X Anrop: string vinkel rotate-line str#ng
gsave
rotate dup stringwidth pop -2 div large-size -0.35 mul moveto
gsave 1 setgray dup show grestore
gsave dup false charpath 0.5 setlinewidth stroke grestore
grestore
4 def

% Skriv ut roterande "StackPointer 1-1986".
(StackPointer 1-1986) rotate-page pop

% Mata ut sidan.
showpage

n—28 _ STACKPOINTER 1-1986

Kallelse till varmote

Hirmed kallas till v&rmote i Datorféreningen STACKEN. Motet kommer
att hillas i B30, STACKENs lokal pd Brinellvigen 30, Kungliga Tekniska
Hogskolan, med borjan klockan 1900 torsdagen 1986-02-06.

Forslag till dagordning:

§1.
§2.
§3.
84,
§5.
§6.
§7.
§8.
§0.

§10.
§11.
§12.
§13.
§14.
§15.
§16.
§17.
§18.
§19.

Motets 6ppnande.

Val av justeringsmén.

Val av motesordférande.

Val av métessekreterare.
Tillkinnagivande av uppgjord réstlangd.
Friga om métet ar stadgeenligt utlyst.
Friga om dagordningens godkiannande.
Verksamhetsberittelse.
Revisionsberattelse.

Balansrakning.

Ansvarsfrihet fér avgdende styrelse.
Ev. val av styrelsemedlemmar.

Ev. faststillande av firmatecknare.

Ev. val av revisorer.

Ev. val av valberedning.

Motesdagar under 1986.

Motioner.

Ovriga fragor.

Motets avslutande. »
For styrelsen, Mats O Jansson

Motion angiende hedersmedlemskap.

Jag anser att STACKEN skall ge JMR hedersmedlemskap {6r sina insatser
som ordférande under tva ar.

Stockholm 860107 1530, Peter Lothberg

Rebus

~ 3141592653589.793

STACKPOINTER 1-1986 n—27

Losning pa aldersproblem

Den mest ovintade ldsningen pd dldersproblemet i STACKPOINTER 6-
1985 kommer fran Lennart Borjesson, Undervisningsdatorn Linje E. Han
har anvint METAFONT for att 16sa ekvationerna. METAFONT ar ett pro-
gramsprak, som har tagits fram av Professor Donald E Knuth p& Stanford-
universitetet och ar frimst avsett for att konstruera typsnitt. Knuth har
bl a anvant det for att géra Computer Modern-typsnitten, som vi anvinder
i STACKPOINTER. Nir man definierar hur ett tecken i ett typsnitt ska se
ut, med hjilp av ett antal relationer, s8 ar det enklast om man kan skriva.
dem i vilken ordning som helst, och inte nédvandigtvis i den ordning datorn
raknar ut dem. Knuth har darfor forsett METAFONT med formigan att 16sa
linjdra ekvationssystem, vilket kom vil till pass har.

Jan Michael Rynning

Elmer>MF
This is METAFONT, Version 0.81 for Vax/VMS (no base preloaded)

*A+B+C+D+E=150;
*A=C+D;
*B=C+E;
*C=D+E;
*D=B/2;
*E=D/2;
! Redundant equation.
{to be read again>
9

<*> E=D/2;

2
*A+D=B+C;
! Redundant equation.
{to be read again>
’

<*> A+D=B+C;

?
*show A;
>> 50
*show B;
>> 4o
*show C;
>> 30
*show D;
>> 20
*show E;
>> 10
*end;
Transcript written on ELMER1:ALENNARTBAMFPUT.LIS;2.
Elmer>

n — 26

STACKPOINTER 1-1986

AMIS pa Katia

Fyra dagar efter Peter hade fatt
igdng TOPS-10 pa Katia nere i
CCCC, si tyckte jag det var dags
att forsoka f& en fungerande AMIS
till henne. STACKENs egen editor
pé STACKENS egen dator ...

Eftersom jag visste att det
skulle krivas en del indringar i
AMIS, s& skickade jag ett KOM-
brev till Johnny och bad honom
kopiera 6ver killkoden fran Oden
till Kicki. Akte hem och sov. Vak-
nade, 3kte tillbaka till CCCC. In-
gen killkod.

Jag hade ingen lust att vanta,
s3 jag bestimde mig for att ga
den hirda vigen — patcha direkt
i maskinkoden. Dessutom s3g jag
det som en rolig utmaning att fa
igdng AMIS p3 det sattet.

Tre olika typer av problem
viantade mig:

Katia har en KA10-process-
or, som inte klarar av alla de
maskininstruktioner som finns pa
de modernare KI10-, KL10- och
KS10-processorerna. Det problem-
et hade jag redan 16st, genom att
skriva en emulator for DMOVE
och DMOVEM — de tva mest
anvinda av de instruktioner som
inte finns pd KA10.

Minneshanteringen p3d KAI10
skiljer sig fr&n den pa de an-
dra processorerna. KA10 delar
in anvindarprogrammets adress-
rymd i tv8 segment: ldgsegmentet,

som borjar pad adress 0Og, och
hogsegmentet, som borjar mitt i
adressrymden, pa adress 400000s.
For vart och ett av segmenten finns
ett bas- och ett langdregister. Bas-
registren pekar ut var i det fy-
siska minnet segmenten borjar och
langdregistren ar till for att hindra
anvindarprogrammet fran att ldsa
och skriva i minnesadresser utanfor
segmenten.

P34 de modernare processor-
erna bestir den logiska adress-
rymden av 512 sidor a 512 ord.
Oversittningen fran logiska till fy-
siska adresser gérs med hjilp av en
tabell, som anger var i det fysiska
minnet de olika sidorna boérjar.
TOPS-10 simulerar indelningen i
l8g- och hogsegment genom att
ligga in lampliga virden i tabellen,
men hogsegmentet behover inte
borja pa 400000s.

AMIS hogsegment borjar pd
6000003, for att man ska kunna ha
ett storre 1dgsegment och dirmed
kunna editera stérre filer. For
att kunna kora AMIS pi Ka-
tia var jag tvungen att flytta
ner hogsegmentet till 400000g.
Det gjorde jag genom att skriva
ett litet PASCAL-program, som
gick igenom AMIS.EXE ord fér
ord, kollade om vidrdet i hoger
halvord kunde vara en adress i
hogsegmentet och isafall subtra-
herade 200000g frdn den. Jag
kunde inte vara siker pa att

STACKPOINTER 1-1986 n—25

allt jag andrade var adresser —
det kunde ju vara texter eller
nigonting annat — men det
var vart ett foérsék. Till sist
patchade jag EXE-filsdirectoryt
med FILDDT, s& monitorn skulle
ladda in hogsegmentet pa ritt
adress.

Dags att provkora. ”7?Illegal
memory reference”. En tabell med
adresser i vanster halvord visade
sig vara boven. Fixade till den med
FILDDT. Nu gick den patchade
AMIS-versionen pa Kicki — fast en
del texter hade fitt stryk. Det stod
”Fuldamental” i st f ”Fundamen-
tal” pd modraden, t ex.

Aterstod att flytta Sver AMIS
till Katia och 6vervinna det tredje
hindret. Den modernaste version
av TOPS-10 som gir att kora pa
KA10 ir 6.03A. I senare version-

PROGRAM kaanmis;

TYPE

word = PACKED RECORD
rh, 1h : 0..777777B;
END;

VAR
i, o : FILE OF WORD;
w : WORD;

BEGIN
WHILE NOT eof(i) DO
BEGIN

read(i, w);

w.rh := w.rh-200000B;
write(o, w);

clo;e(i); close(o);

er av operativsystemet har det till-
kommit en del saker, bl a nigra ter-
minalparametrar som AMIS for-
sGker lisa av.

Forsta fors6ket resulterade i att
AMIS skrev ut att dittan-dattan
terminalparameter inte gick att
ldsa av och gjorde EXIT. Grrr!
Morrr! Frisss! Fel som man inte
kan gora ndgonting it och som inte
har ndgon betydelse ska man ig-
norera! I synnerhet som det som
ar fel 4r ratt i aldre versioner av
operativsystemet. Felkontrollerna
forsvann, en efter en, tills AMIS
gav med sig och it sig koras pa
Katia.

Och 4n i dag kors denna ver-
sion av AMIS p& Katia, fast Hazze
Sléberg har andrat tillbaka till

” Fundamental”.
Jan Michael Rynning

reset(i, 'PUB:AMIS.EXE'); rewrite(o, 'AMIS.EXE');

IF (w.rh >= 600000B) AND (w.rh <= 670777B) THEN

AMIS (Fuldamental) Main: DSKB:KAAMIS.PASK10,302,EMPTYA<055>

n—24

STACKPOINTER 1-1986

DATE-86

Early this year a message ap-
peared on ARPANET-BBOARDS
commemorating the ten-year an-
niversary of DATE-75. A some-
what more ominous anniversary
will occur in four weeks, on 9 Jan-
uary 1986. Users of the TOPS-10
operating system should beware of
software failures beginning on that
date.

DATE-75 is the name of a set
of program modifications applied
to the TOPS-10 operating system,
running on DEC PDP-10 comput-
ers. Before the modifications, the
TOPS-10 system could only repre-
sent dates between 1 January 1964
and 4 January 1975. The DATE-
75 modifications added three more
bits to the representation of dates,
so that dates up to 1 February 2052
could be represented. To maximize
compatibility with existing soft-
ware, the three extra bits were
taken from several unused posi-
tions in existing data structures.
The change was announced in mid-
1974, and several tens of person-
years went into updating software
to recognize the new dates.

Unfortunately, reassembling
these bits into an integer represent-
ing the date was somewhat tricky.
Also, some programs had already
used the spare bits for other pur-
poses. There were a large num-
ber of bugs that surfaced on 5
January 1975, the first day whose

CHKD75:

representation required the DATE-
75 modification. Many programs
ignored or cleared the new bits,
and thought that the date was 1
January 1964. Other programs in-
terpreted the new bits incorrectly,
and reported dates in 1986 or later.
Date-related program bugs were
frequent well into the Spring of
1975.

On 9 January 1986, the sec-
ond bit of the DATE-75 exten-
sion will come into use. Users of
software developed in the 60’s and
early 70’s on the TOPS-10 operat-
ing system should beware of prob-
lems with testing and manipula-
tion of dates. Beware especially of
programs that were patched after
manifesting bugs in 1975, for in
the rush to fix the bugs it is possi-
ble that some programs were mod-
ified to assume that the date was
between 1975 and 1986. Any date
that is off by a multiple of eleven
years and four days is probably
caused by this type of bug.

Dan Hoey

;SEE IF /DATE7S
;NO--IF 1,

S.DT75##
4.1

SKIPG
CAIE
SKIPA

MOVEI T4,0

;UNLESS JUST DATE LGSAGE.
3 GO RETURN

T4, 1
CHKLMX
T4.,0
T1,CCDATI

CAIE
JRST
MOVEIL
HLRZ
CAIL
CAIN
MOVEIL

;GET CREATION DATE
;IF BEFORE 1-JAN-67
; OR = 5-JAN-75
; INDICATE DATE7S

T1,115103
T1,122661
T4,1

;GET ACCESS DATE
; IF BEFORE 1-JAN-67
;i OR = 5-JAN-75
: INDICATE DATE7S

HLRZ
CAIL
CAIN
MOVEL

T1,CADATI
T1,115103
T1,122661
4.1

;ELSE
;IF NOT /DATET7S AND LOST, SET O

;POSSIBLE DATE75, SET FOR FAILURE

STACKPOINTER 1-1986 n—23

DECTAPES (DTA:)

BIT 35 OF

— WORD 0
—— WORD 1
—|—]— worp 2
WORD 3
* HIGH-ORDER BITS FOR FILE 1

WORD 19
WORD 20

FILE 3
FILE 2
FILE 1

HIGH-ORDER BITS FOR FILE 2

—— WORD 21

(WORD 22
?—» WORD 23

>— —— WORD 24

\f

WORD 41
— WORD 42

\f

HIGH-ORDER BITS FOR FILE 22

FILE 21

FILE 22

WORD 63
N— WORDG&4

— WORD 65 MR-5-717-80

Figure 15-6 High-Order Three Bits of Creation Date

15.4.1.4 File Creation Dates - The low-order 12 bits of the creation
date for each file 1is in bits 24 through 35 of the same word
containing the extension for the file. The high-order 3 bits of the
creation dates are stored in the last bit of words 0 through 82 of the
directory (see Figure 15-6).

n—22

STACKPOINTER 1-1986

Sa gora vi nar vi
laga varan KA

Onsdagen 13 Dec skulle det vara
hdrdvarukurs pid Katia. Problem-
et var att hon inte ville. Vissa
instruktioner fick processorn att
hinga sig. N3gon hindig person
trodde att det skulle nog fixa sig
om man ruskade pd CPU-sképet.
Darefter gick ingenting.

Sen stod Katia tills 1 helgen.

Vi borjar med att titta pa lam-
porna och trycka pd knapparna.
Alla bitar i vinster halva av in-
struktionsregistret (IR) &r satta,
vilken instruktion vi &n fGrsdker
exekvera. Adressberikningen fun-
gerar dock.

Vi tittar i kopplingsschemat.
Konstiga symboler. Vi laser KA10
Maintenance Manual. Linst bak
fanns en appendix om hur man
liste schemorna. Mhmmm, jaha,
pa s& satt... ar det det de dar
konstiga krumelurerna ir! Konstig
djivla maskin; ingen mikro-PC,
bara timing-pulser som springer
omkring i logiken, dvs, om de
férsvinner ngn stans, sd hénger sig
Processorn. . .

I schemat 6ver IR finns en led-
ning som heter IR LT CLR. Det
borde betyda IR Left Clear enligt
boken. Den har hand om just de
bitar det galler. Kanske férsvinner
den signalen ngn stans?

Vi stinger av strémmen och
satter pd den igen. Nu &4r bara
nagra bitar satta. Det visar sig att
s3 fort en bit blivit satt, s& ir den

alltid det sen.

Vi satte frontpanelen pa att
repetera en instruktion och letade
efter signalen i bakplanet. IR LT
CLR, ska finnas pd kort 2J12 (skip
2 rad J kort 12) pinne L. Inte ett
spar av signal. Hmmm. Ska komma
frdn 1M40 pinne D. Jaha, dar finns
den! I skdp 1. Det kanske ar kabeln
mellan skdpen?

woas!
| 27251
| | 8212
| | £D £o 277 PN Fu
gl ¢ 120 " I “rer
L & v
{ >
7}
I8 o7 cot Qe = =
£
o ous @ By A M BUS L =HTN
; £ |763 243
TR LTEN () 2708 ®| 2708
Woig Zrie oo T T 1 [SwmE T
§ 12,
A

Vi tittar i schemat "inter-bay
cables”. Dar gir den! Mellan 1142
och 2J03. Vi tar ut kabeln och tit-
tar pd den (Efter att ha stangt
av strommen!) Ser ok ut. Mater
igenom alla trddarna med ohmme-
ter; alla ar hela. Fan! Fast kon-
takterna den satt i ser ju lite
trotta ut. .. Pillar pd kontaktfjad-
rarna med skruvmejsel och sitter i
kabeln igen. Nu gdr den! Nistan.

STACKPOINTER 1-1986 n—21

Det forsta felet kvarstir, vissa
instruktioner hinger sig. Men
vilka, och vad har de gemensamt?
Efter en timmes testande av olika
instruktioner och funderande hit-
tar vi det i ”Basic instruction
flow”. Dar star vilka vilka vagar
som signalerna gar for alla instruk-
tioner. Alla konstiga instr satter
flaggan E LONG i bérjan. Vad
gér den di? I flodes-schemat Gver
?Execute and store” syns att da
den &ir satt s3 har vi en "lang”
instruktion, och timing-pulsen gar
en omvag. Det mdste vara hir
nigonstans den dor ut.

~(€ CONGVSTINN] - RO RBFEN CCR
70 AP ENCR
#O Ry 3G ClR ¢
@0 B¢ ENTET

(ere

@0 Be-EN CLR
- AD-1LH CLR
STEBLT RO CCR
SEE INST FLOW
KEY PROQ STO® v KEY SING INST KEY RUNCL.
PIRESTORE: PIOK CLR PIN

TO INST FLOWS

aras

~(& LONGVST INH)

AD CRY INS CLR

€ IMST Fows

AR EM PC (JXETD):
Exlcecr

MCRSTO)
[A1 mecp: Plov cir, PICYC CLR]
. FMENA-SAC TN I Fat <3d R@T)
arwem) = = SAC INNA-MC M EN:MC FM W £O
Azerse (84TTE T Sr1 ST

(SAC INNVMC FMEN)
A-(sherarVsAcs) SAC I VarC ruen)
&)

(:
A-(scCevrcE As, A~(5aevBRVIACS)
A &xor syacis) A-(Scevece pse)
RN AEr oL svnCw

i
—
MCILLEG)

o235

ST1A —{ Frre ciE |

=

Rai

%———Lsx TRAO CoMD N\ AR A2 PC(IETS): EX USTR CLR)

Ecovg

3
L]
8
A
L]
3
§
§
3

Raskt over till kopplingssche-
mat. Satter panelen pd repetition
av konstig inmstruktion och fram
med scopet. 1T27 pinne L, jaha,
dar ar den. Ska komma ut pd N,
det gor den. Vidare till ET1 (den
heter s). Den finns. Men inte ET2.
In pd 1T29 L , ut pd N, ndhi,
dar foérsvinner den, dd har vi hit-
tat boven!

B311 heter modultypen, nén
sorts fordréjningslina. Ar det kon-
takterna igen, eller sjilva modul-
en? Vi hittar en likadan i ett av de
skrotade minnesskdpen, och byter.
Nu gér den! Niastan.

n —20

Det gar att boota, men en del av
minnet ar konstigt. Vi fyller hela
minnet med testord frin frontpan-
elen (Repeat+Deposit Next) och
liser tillbaka (Repeat+Examine
Next).

I 8kord av minnet ar alla bitar
i vinster halvord 0. Varje skdp ar
pa 64kord. 8 grupper om 8kordx19
bitar i varje halva. Ett kort,
s3ledes. Men vilket? Det ir 4 kort
i varje 8k grupp. Ett ar sjilva
kirnminnet, de 6vriga drivkretsar
etc.

Det var ingen brist pa re-
servkort pga en viss lastbilstrans-
port, s& vi byter allihopa i den
gruppen. Nu gér det! Allting!

STACKPOINTER 1-1986

Men vi vill veta vilket kort det
var, kan inte kassera alla 4! Byter
tillbaka ett i taget tills ett ar kvar.
Minnet gar fortfarande. Kan Sher-
lock Holmes, si...

Tittar p4 det. En elektrolyt-
konding har exploderat och kort-
slutit ninting. Vi ligger kortet
i 14dan for undervisningsmaterial,
bootar maskinen och skriver raskt
ett KOMinlagg om hur duktiga vi
varit (JMR, Thord och jag).

Stellan L

GRaasw
o \‘\N

- ITS
FLA

FLAP:

.UDISMT

STACKPOINTER 1-1986 n—19

flap a micro-tape

‘arg 1 Micro-tape number (typically 1-4).

The directory for the micro-tape is written back onto

the tape if it is currently in core; the tape is then
physically dismounted by running the tape back onto

the original reel (thereby making the tape go flap, flap,
flap ...). Micro-tapes should not be manually dismounted,
for this will cause the directories to get out of phase,
messing up the dismounted tape and also the next one to
use the drive. The FLAP will fail if any files are still
open on the specified drive, or if any one else has the
drive assigned to him.

See also the .UDISMT uuo.

ac, micro-tape dismount
;skip if successful

The specified accumulator should contain a micro-tape
drive number. If the uuo succeeds, the directory

is written back onto the micro-tape and excised from
the system's memory. The micro-tape is then physically
dismounted (this is known as "flapping" the tape, since
when it runs off the reel it goes flap, flap).
Micro-tapes should not be manually dismounted, for this
will cause the directories to get out of phase, messing
up that micro-tape and the next one to use that drive.
The .UDISMT will fail if any files are still

open on the micro-tape, or if someone else has the
drive assigned to him.

DDT makes this available via its command :FLAP.

See also the FLAP symbolic system call.

STACKPOINTER 1-1986

Redaktorens ruta

BA10
DC10

DF10

DK10
KA10
MF10
PC09C
RH10

RMO03
RPO2

RP10C

TM10B

TU10
TU20
TUS5

STACKPOINTER 1-1986 n—17

Katias olika delar

Kontrollenhet for radskrivare, plotter, kortlisare och -stans.

Terminalscanner. Innehdller logiken foér terminallinjerna. Man
kan ha 3 olika hastigheter p3 terminallinjerna, men det gir inte
att stilla om med programvara, utan byglas pa varje kort. Det
finns ingen statussignalering for modemkontroll i var DC10.

Datakanal for de enheter (skivminnen och bandstationer) som
gor overforingar via kanalbussen med hég hastighet till och frin
minnet.

Realtidsklocka, som #r kopplad till I/O-bussen.
Centralenhet.

Minnesskdp med 64 Kord kirnminne per skip.
Halremsldsare och stans, som dr kopplad till I/O-bussen.

Kontrollenhet fér massbussenheter (skivminnen och bandsta-
tioner), t ex RP04, RP06, RM03, RM05 och TM78. Kan styra
upp till 8 sddana enheter. Far kommandon via I/O-bussen och
skickar data till och frdn minnet via kanalbussen och DF10.

Skivminne som rymmer 15 Mord. Styrs av en RH10.
Skivminne som rymmer 5 Mord. Styrs av en RP10 eller RP10C.

Skivminne som rymmer 20 Mord. Styrs av en RH10.

Kontrollenhet f6r RP02- och RP03-skivminnen. Kan styra upp
till 4 sddana skivminnen. Fér kommandon via I/O-bussen och
skickar data till och fran minnet via kanalbussen och DF10.

Kontrollenhet for bandstationer. Kan styra upp till 8
bandstationer. '

9-kanals bandstation. Styrs av en TM10A eller TM10B.
9-kanals bandstation. Samma som TU10, fast av annat fabrikat.

]jECtape-bandstation. Styrs av en TD10 (om vi hade en).

n—16

STACKPOINTER 1-1986

MF10

MF10 MF10

MF10

KA10 L

TU55
PC0SC

{I

v

Minnesbuss
I/0-buss
Kanalbuss
Tapebuss
Diskbuss
Massbuss
Bussavslutning

CLLLEL RE)

STACKPOINTER 1-1986 n—15

rII-II-II-II-.I-II-II-II‘

1
3A10 DC10 DF10 TM10B RP10C TU20 RH10

S O T ———————

DK10

HH HS . HiH | L | o
: YEpsEEEEER® t---d-----*n-----..!l .lllll|lT’ .Illll-lrlllllllllfT. :
ez] \------11------- -‘l H i O

sefennanransansnnsansnnsnnsnnnsnsnnsannannansnasnas fasnnnnnnnnnnanfeanansansnanannns

v v

TU10

PAL R L DL R R T LT

RP02 RP02 RM03 RMO03 RMO03 RP04

L — N S L WS T

L TR TR R TR TRR RRE _TRR PP TPI Y

i ¥

n—14 STACKPOINTER 1-1986 -

ZORK

A COMPUTERIZED
FANTRSY SIMULRTION GAME

BY P. DAVID LEBLING
MARC S. BLANK
TIMOTHY A. ANDERSON

MIT LABORATORY FOR COMPUTER SCIENCE

STACKPOINTER 1-1986 n—13

Welcome to Zork.
This version created December 8.
West of House
You are in an open field west of a big white house with a
boarded front door.
There is a small mailbox here.
> GO NORTH
North of House
You are facing the north side of a white house. There is
no door here, and all the windows are barred.
> EAST
Behind House
You are behind the white house. In one corner of the
house there is a small window which is slightly ajar.
> OPEN THE WINDOW
With great effort, you open the window far enough to
allow entry.
> GO IN
Kitchen
You are in the kitchen of the white house. A table
seems to have been used recently for the preparation of
food. A passage leads to the west, and a dark staircase
can be seen leading upward. To the east is a small
window which is open.
On the table is an elongated brown sack, smelling of
hot peppers.
A bottle is sitting on the table.
The glass bottle contains:

A quantity of water

Beyond this nondescript kitchen, above and below the surface
of the earth, lie scores of rooms, some containing traps, some
containing puzzles. Hundreds of objects are scattered through-
out this maze, some valuable treasures, some magical tools.
The little white house in the forest clearing is the entrance to
Zork, a game developed by the authors. Zork is one example

n—12 STACKPOINTER 1-1986

of a new type of game: the Computerized Fantasy Simulation
game.

In this type of game, the player interacts conversationally
with an omniscient “Master of the Dungeon,” who rules on
each proposed action and relates the consequences. If the
player says “Go north,” he may move north, or the dungeon
master may say “There is no way to go in that direction.”
If the player says “Open the window,” the dungeon master
may respond “The window is locked.” The results depend
on the design of the game, its architecture and furnishings,
so to speak: in one game picking a sword might be fatal; in
another it might confer magical powers. The design and im-
plementation of such games is as much an exercise in creative
writing as in programming.

The interest in playing Zork (or any other CFS game) is two-
fold. First, the object of the game is usually to collect treasure,
and this may be done only by solving problems; in the above
the player would gamer 10 points by being clever enough to
open the window and enter the house.(Zork itself has more
than two dozen distinct problems to solve, some presented
in several stages.) Second, a great deal of the enjoyment of
such games is derived by probing their responses in a sort of
informal Turing test: *“I wonder what it will say if I do this?”
The players (and designers) delight in clever (or unexpected)
responses to otherwise useless actions.

Overview: Simulating the Universe

The heart of any CFS game is its ability to mimic omniscience.
By this we mean that the game should simulate the real world
sufficiently well so that the player is able to spend most of
his time solving the problems rather than solving the program.
If, for example, the vocabulary is too small, the player must
always wonder if his problem is only that he hasn’t yet found
the right word to use. Similarly, it is annoying for a possible
solution to a problem to be ignored by the game. In other
words, the program must simulate the real world.

STACKPOINTER 1-1986 n—11

Obviously, no small computer program can éncompass the
entire universe. What it can do, however, is simulate enough
of the universe to appear to be more intelligent than it really
is. This is a successful strategy only because CFS games are
goal-directed. As a consequence, most players try to do only
a small subset of the things they might choose to do with an
object if they really had one in their possession.

Zork “simulates the universe” in an environment containing
191 different “rooms” (places to be) and 211 “objects.”
The vocabulary includes 908 words, of which 71 are distinct
“actions” it handles. By contrast, a person’s conversational
vocabulary is a factor of two (or more) larger. How, then, does
a limited program make a creditable showing in the conversa-
tional interaction that characterizes Zork?

The technique Zork uses for simulating the universe is that of
universal methods modified for particular situations. For ex-
ample, when a player tries to take some object, he expects
to end up carrying it. There are, as in the real world, excep-
tions: some objects are “nailed down,” and one’s carrying
capacity is limited. These restrictions are included in the gen-
eral TAKE function. However, the designer might want a
special action in addition to, or instead of, the general TAKE:
a knife might give off a blinding light when taken;an attempt
to take anything in a temple might be fatal. These exceptions
would not appear in the general TAKE function, but in func-
tions associated with the knife and the temple.

The details of this method of exceptions will be taken up
later. The effect of it is that “the expected thing” usually
happens when the player tries to (for example) take something.
If the object he is trying to take is not special, and the situa-
tion is not special, then “it works,” and he gets the object.
In Zork, there are quite a few of these basic verbs. They
include “take,” “drop,” “throw,” “attack,” “burn,” “break,”
and others. These basic verbs are set up to do reasonable things
to every object the player will encounter in the game. In many

n—10 STACKPOINTER 1-1986

cases, objects have properties indicating that a certain verb is
meaningful when applied to them (weapons have a “weapon”
property, for example, that is checked by the verb “attack”).
Applying a verb to an object lacking the necessary property
often results in a sarcastic retort. (“Attacking a troll with a
newspaper is foolhardy.”) But the point is that it does some-
thing meaningful, something the player might have expected.

Another way in which the game tries to be real is by the judi-
cious use of assumptions in the dungeon master’s command
parser. Suppose the player says “Attack.” Assuming that he
has a weapon and there is an enemy to attack, this should
work, and it does. Assumptions are implemented by the exist-
ence of verb frames (stereotypes) and memory in the parser.
In the example, the parser picks up the verb frames for the
verb ‘“attack.” They indicate that “Attack ‘villain’ with
‘weapon’” is the expected form of the phrase. Now, “villain”
means another denizen of the dungeon, so the parser looks
for one that is presently accessible, a “villain” in the same
room as the player Similarly, the player must have a “weapon”
in his possession. Assuming only one “villain” is in the room
and the player has only one “weapon,” they are placed in the
empty slots of the frame and the fight is on.

Suppose that there is only one villain available, the troll, but
the player has two weapons: a knife and sword. In that case,
the dungeon master can’t decide for him which to use, so it
gives up, saying “Attack troll with what?” However, it re-
members the last input, as augmented by the defaults (“Attack
troll”’). Thus, if the user replies “With sword,” or even
“Sword,” it is merged with the leftover input and again the
fight is on. This memory can last for several tums: for ex-
ample, “Attack”; “Attack troll with what?”; “With knife”;
“Which knife?”’; “Rusty knife”; and so on.

Data Structure and Control Structure

The underlying structure of Zork consists of the data base

STACKPOINTER 1-1986 n—9

(known as “the dungeon”) and the control structure. The
data base is a richly interconnected pointer structure joining
instances of four major data types: “rooms,” locations in the
dungeon; “objects,” things that may be referenced; “‘actions,”
verbs and their frame structures; and “actors,” agents of
action. Each instance of these data types may contain a
function which is the specializing element of that instance.
The control structure of Zork is, at one level, a specification of
which of these functions is allowed to process an input sen-
tence and in what order.

In the simplest sense, Zork runs in a loop in which three
different operations are performed: command input and pars-
ing, command execution, and background processing. (Figure
1 is a flowchart of the Zork program.)

The command input phase of the loop is relatively straight-
forward. It is intended to let the user type in his command,
edit it if he needs to, and terminate it with a carriage return.

The purpose of the Zork parser is to reduce the user’s input
specification (command) to a small structure containing an
“action” and up to two “objects” where necessary.

The parser begins by verifying that all the words in the input
sentence are in its vocabulary. Then, it must determine which
action and objects, if any, were specified. For an object to be
referenced in a sentence, it must be ‘“available”—that is, it
must be in the player’s possession, in the room the player is
in, or within an object that is itself available. Objects not
meeting these criteria may still be referenced if they are
“global objects,” which are of two types: those that are always
available (such as parts of the player’s body), and those that
are available in a restricted set of rooms (such as a forest or
a house). Adjectives supplied within the sentence are used
to distinguish objects of the same generic type (such as knives
and buttons) but are otherwise ignored. If an object remains
ambiguous, the parser asks which of the ambiguous objects
was meant (for example, “Which button should I push?”).

STACKPOINTER 1-

1986

©

INPUT

DIAGNOSIS

SUCCEED

HANDLED

NOT HANDLED
* %
VEHICLE,
OBJECTS
HANDLED *k |
INDIRECT | __4
|
]
+ NOT HANDLED VERE
HANDLED *%%) NoT HANDLED ! FAILED
< DIRECT > 1 -
SUCCEEDED
\
ROOM
o
DEMONS
* Called if actor is not player VEHICLE,

* % Called if player is in vehicle.
% % % Called if object was given

Figure 1. Zork fl

I

owchart.

STACKPOINTER 1-1986 n—7

Next is syntax checking, whereby the correct *“‘action” is
used for any verb. Syntax checking makes use of any supplied
prepositions, differentiating between, for example, “look at”
and “look under,” which imply different actions. Finally,
having determined the appropriate syntax for a given sentence,
the parser ensures that all required objects for a given action
were specified. The parser may, for example, decide that
the correct syntax for the sentence “Give X is “Give X to
Y.” An attempt is then made to supply an appropriate “Y”
to complete the sentence. This is made possible by the defini-
tions of the actions themselves, which include the attributes
of the objects to be acted upon. In the present example,
the action for “Give” defines the indirect object (“Y”) to be
another denizen of the dungeon; the parser attempts to com-
ply by seeing if one is available. If so, the indirect object is
found, and the parse is successful. If not, the player is asked
to supply the indirect object himself. (“Give X to whom?”)
Once this phase is completed, the parse is finished and the
parser’s output is returned.

The adjectives and prepositions that were in the user’s input
are used only to determine the “‘action” and the “objects,”
and are not part of the parser’s output. In addition, all articles
are ignored, though users may add them to increase the clarity
(to themselves) of what they input. For example, an input of
“Knock down the thief with the rusty knife” reduces to some-
thing like '

[<action STRIKE> <object THIEF>
<object RUSTY -KNIFE>]

If, however, the input were “Knock on the thief,” the parser
would reduce that to

[<action RAP> <object THIEF>]

recognizing that the “action” to be performed depends, for
the word “knock,” on the syntax of the input sentence:

n—=6 STACKPOINTER 1-1986

“knock down” turns into “strike,” while “knock on” turns
into “rap.”

Once parsing has been completed, processing of the command
is started. The functional element (if any) of each of the
objects in the parsed input may be invoked. Additionally,
some objects not specifically referenced, but which define
the situation, are part of the processing sequence. The order
in which these functions are invoked is determined by a
strategy of allowing the exceptions an opportunity to handle
the input before performing the action associated with the
most general case. The processing order is as follows::

® The actor performing the command, if any. This allows
for example, a robot with a limited range of actions.

® The vehicle the actor is in, if any. This allows the vehicle
to restrict movement. For example, inside a freely drifting
balloon the normal movement commands (such as “Run
north””) might be meaningless or even fatal.

® The verb, or “action.” _
(a) The indirect object of the sentence, if any.
(b) The direct object of the sentence, if any.

® The vehicle again, if any. The vehicle is called a second time
to enable it to act based on changes in the state resulting
from the action.

® The room the player is in.

Each of these functions is invoked in turn and given the op-
tion of handling the command. If it decides to handle the
command, processing terminates at that point, and the re-
maining functions are not invoked. Otherwise, the sequence
continues. Note that a function may do something (such as
print a message) without completely handling the input. The
invocation of an object’s function is under the control of the
verb; it may, after suitable checks, determine that the player’s
request is not reasonable. (“Your load is too heavy. You will
have to leave something behind.”) This limits flexibility
slightly, but it has the advantage that it localizes the tests for
a reasonable state.

’

STACKPOINTER 1-1986 n—>5

Presumably, one of the functions will handle the command
and print an appropriate response. Should that not happen,
the response “Nothing happens” is printed by default. How-
ever, care has been taken to ensure that most input commands
produce some reasonable response. Indeed, much of the enjoy-
ment of the game is in being allowed to try ridiculous things,
and the surprise of having the game understand them.

The functions described so far are invoked in direct response
to what the user typed. Background processes, or “demons,”
are invoked after each input, regardless of its nature. They
allow the program to do things independently of the player’s
actions. '

Currently, there are four demons. The first is the “fighting”
demon. The residents of the dungeon are frequently hostile;
this demon allows them to assault the player unprovoked, and
to keep fighting him even if he ignores them.

Next is the driving process behind the “thief,” described as a
“seedy looking gentleman carrying a large bag.” The thief’s
purpose is to make life difficult for the player by absconding
with treasures or other randomly selected objects. In many
ways he acts like another, rather hostile and powerful, player
in the dungeon.

The third demon is used to wam the player of the presence
of hostile forces by causing his sword (if he has it) to glow
if there are enemies nearby. It looks at the player’s vicinity
and prints an appropriate message if the “state of alert”
changes; since the thief moves on his own, it is not sufficient
to look for hostiles when the player moves.

Last is the “clock” demon. It is the mechanism by which the
concept of future time is introduced into the game; arbitrary
events can be scheduled for arbitary future times. For ex-
ample, the lamp can burn out after being on for some number
of moves, and wounds inflicted in a fight will eventually heal.

n—4 STACKPOINTER 1-1986

Out of consideration for poor typists, the clock does not tick
after unparsed input.

The History of Zork

The existence of Zork is a direct consequence of the exist-
ence of two excellent games: Dungeons and Dragons, a fan-
tasy simulation game (not computer based) invented by Dave
Arneson and Gary Gygax, and Adventure, a computerized
fantasy simulation game originally written by Wil Crowther
and later extensively expanded by Don Woods.

Adventure itself was inspired by D&D (as it is familiarly
known), in particular a D&D variation then being played out
at Bolt, Beranek, and Newman, a Cambridge, Massachusetts,
computer firm. It eventually was released to the public, and
it became one of the most popular computer games in recent
memory.

One laboratory that acquired a copy of Adventure was MIT’s
Laboratory for Computer Science, with which the designers
of Zork (the authors and Bruce K. Daniels) were all then af-
filiated. In the process of “solving” Adventure, however, the
game’s deficiencies and the competitive spirit that often
animates computer “researchers kindled the desire of the
authors to write a successor game.

Our natural choice of language was MDL, which is one of the
languages in use at LCS. MDL recommended itself for other
reasons, however. It is a .descendent of LISP and is func-
tionally extensible. It also permits user-defined data types,
which is important in a game of “rooms,” “objects,” “verbs,”
and “actors.” Finally, MDL makes it easy to imbed implicit
functional invocations in data structures to tailor the game as
described above. The initial version of the game was designed
and implemented in about two weeks.

The first version of Zork appeared in June 1977, Interestingly
enough, it was never “announced” or “installed” for use, and

STACKPOINTER 1-1986 n—3

the name was chosen because it was a widely used nonsense
word, like “foobar.”

The original version of -the game was much smaller, both
geographically and in its capabilities. Various new sections
have prompted corresponding expansions in the amount of
the universe simulated. For example, the need to navigate a
newly added river prompted the invention of vehicles (speci-
fically, a boat). Similarly, the addition of a robot prompted
the invention of other actors than the player himself: beings
that could affect their surroundings, and so on. Fighting was
added to provide a little more randomness in a fairly determi-
nisfic game. :

The Future of Computer Fantasy Slmulatlon Games

Zork itself has nearly reached the practical limit of size
imposed by MDL and the PDP-10’s address space. Thus the
game is unlikely to expand (much?) further. However, the sub-
strate of the game (the data types, parser, and basic verbs)
is sufficiently independent that it would not be too difficult
to use it as the bams for a CFS language.

There are several ways in which future computerized fantasy
simulation games could evolve. The most obvious is just to
write new puzzles in the same substrate as the old games.
Some of the additions to Zork were exactly this, in that they
required little or no expansion of the simulation universe. A
sufficiently imaginative person or persons could probably do
this indefinitely.

Another similar direction would be to change the milicu of
the game. Zork, Adventure, and Haunt (the CFS games known
to the authors) all flow back to D&D and the literary tradition
of fantasy exemplified by J.R. R. Tolkien, Robert E. Howard,
and Fritz Leiber. There are, however, other milieus; science
fiction is one that comes to mind quickly, but there are un-
doubtedly others.

n—2 STACKPOINTER 1-1986

A slightly different approach to the future would be to expand
the simulation universe portrayed in the game. For example,
in Zork the concept of “wearing something” is absent: with it
there could be magic rings, helmets, boots, etc. Additionally,
the player’s body itself might be added. For example, a player
could be wounded in his sword arm, reducing his fighting
effectiveness, or in his leg, reducing his ability to travel.

The preceding are essentially trivial expansions to the game.
A more interesting one might be the introduction of magic
spells. To give some idea of the kinds of problems new con-
cepts introduce to the game, consider this brief summary of

problems that would have to be faced: If magic exists, how do
players learn spells? How are they invoked? Do they come in
different strengths? If so, how does a player qualify for a
stronger version of a spell than he has? What will spells be used
for (are they like the magic words in Adventure, for example)?
How does a player retain his magic abilities over several ses-
sions of a game? '

As can be seen, what at first seems to be a fairly straight-
forward addition to a game that already has magical elements
raises many questions. One of the lessons learned from Zork,
in fact, is one that should be well known to all in the com-
puting field: “There is no such thing as a small change!”

A still more ambitious direction for future CFS games is that
of multiple-player games. The simplest possible such game
introduces major problems, even ignoring the mechanism
used to accomplish communication or sharing. For example,
there are impressive problems related to the various aspects of
simultaneity and synchronization. How do players communi-
cate with each other? How do they coordinate actions, such as
attacking some enemy in concert?

Putting aside implementation problems, a multiple-player
game would need to have (we believe) fundamentally dif-
ferent types of problems to be interesting. If the game were

STACKPOINTER 1-1986 =l

cooperative (as are most D&D scenarios), then problems
requiring several players’ aid in solving them would need to be
devised. If the game were competitive and like the current
Zork, the first player to acquire the (only) correct tool for a
job would have an enormous advantage, to give just one ex-
ample. Other issues are raised by the statistic that the average
player takes weeks and many distinct sessions to finish the
game; what happens to him during the time he is not playing
and others are? '

We believe there is a great future for this type of game, both
for the players and for the implementers and designers of more
complex, more sophisticated, and—in short—more real simula-
tion games.

Zork Distribution

Zork object code is available from two sources. Complete
Zotk source listings are not distributed. The MDL substrate
of the game, including the parser, data-type definitions, and
so on (not the specific dungeon implemented) are available.

Write to: P. David Lebling, Room 205, 545 Technology
Square, Cambridge, MA 02139. Versions exist for the ITS,
Tenex, and Tops-20 operating systems of the DEC PDP-10.
To obtain one of these versions or the MDL “substrate”
sources, you must enclose a magnetic tape and return postage,
specify the operating system on which the program will be
run, and what tape formats you can handle. They can make
9-track tapes at 800 or 1600 bpi, using the Tops-20 DUMPER
program.

Executable object code of a version of Zork translated from
MDL into FORTRAN is available to members of Decus, the
Digital Equipment Computer Users Society, One Iron Way,
Marlboro, MA 01752. Versions exist for most PDP-11 and
VAX operating systems. Order numbers are 11-370B (for
RT-11), 11-370C (for RSX11M), or 11-370D (for IAS/VMS).

n STACKPOINTER 1-1986

The MDL Primer and Manual is available from the MIT Lab-
oratory for Computer Science, Publications, 545 Technology
Square, Cambridge, MA 02139. Write for a catalog and price
list of LCS publications. O

Bibliography

S.W. Galley and Greg Pfister, MDL Primer and Manual, MIT Laboratory
for Computer Science, 1977.

P. David Lebling, The MDL Programming Environment, MIT Labora-
tory for Computer Science, 1979.

Gary Gygax and Dave Arneson, ‘‘Dungeons and Dragons,” TSR Hob-
bies, Inc., Lake Geneva, WI.

The authors of this article have a variety of interests and skills
in addition to their fascination with Zork. P. David Lebling
is a staff member of MIT Laboratory for Computer Science;
Marc S. Blank is a medical student at the Albert Einstein
College of Medicine; Timothy A. Anderson is a member of
the research staff at Computer Corporation of America,
Cambridge, MA.

Happy Zorking!!

