RSTS/E RMS-11

Macro Programmer’s Guide
Order No. AA-P507A-TC

March 1983

This document is a reference manual describing the macros and
symbols that make up the interface between a MACRO-11 program
and the operation routines of Record Management Services for
PDP-11 operating systems (RMS-11).

SUPERSESSION/UPDATE INFORMATION: This revised document
supersedes the RMS-11
MACRO-11 Reference
Manual (Order No.
AA-HB83A-TC) for
RSTS/E users.

OPERATING SYSTEM AND VERSION: RSTS/E Version 8.0

SOFTWARE VERSION: RMS-11 Version 2.0

digital equipment corporation - maynard, massachusetts

First Printing, March 1983

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright () 1983 by Digital Equipment Corporation
All Rights Reserved.

i i
R N

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMS Edusystem UNIBUS
DEC/MMS IAS VAX
DECnet MASSBUS VMS
DECsystem-10 PDP vT
DECSYSTEM-20 PDT

pECUS RS dlilgliltlall
DECwriter

ZK2167

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)
in New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd
940 Belfast Road
In Canada call 613-234-7726 (Ottawa-Hutll) Ottawa, Ontario K1G 4C2
800-267-6146 (all other Canadian) Atin: A&SG Business Manager

DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digital Equipment Corporation

P.0. Box CS2008 A&SG Business Manager

Nashua, New Hampshire 03061 c/o Digital's local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

4/83-15

CONTENTS
PREFACE xi
SUMMARY OF TECHNICAL CHANGES Xv

CHAPTER 1 INTRODUCTION TO RMS-11 WITH MACRO-11

ADVANTAGES OF USING RMS-11 MACROS T
RMS-11 MACROS AND SYMBOLS . « « &« & « o o « « o« o 1-1
1 Operations ,, ..i. . . . e R 4
2 Control Blocks and Flelds D &
.3 POOLS v v v « s o o o o o s o o o« s o o & + o« « 1-3
4 Facilities . ¢ &« ¢ ¢« ¢ ¢« o & o o o o o « o « « & 1-3
5 Macros That Declare Symbols and Other Macros . . 1-3

CHAPTER

N

RMS-11 PROGRAMMING

DECLARING RMS-11 MACROS AND SYMBOLS . . « « « « =«
DECLARING RMS-11 FACILITIES . . ¢ ¢ ¢ o o o o o o
DECLARING AND USING POOL SPACE
Internal FAB and Index Descriptor Block Pool . .
Internal RAB POOl . . ¢ o o « o o o o o o o o
Key Buffer Pool . . ¢« ¢« ¢ ¢ ¢ o o ¢ o« o o o o »
1/0 Buffer Pool . . . e e o o e o o o o s
Buffer Descriptor Block Pool e s s e e e e e e
DECLARING AND INITIALIZING CONTROL BLOCKS
USING RMS-11 OPERATIONS . . . e e e 2 e s s .
Setting Up Control Block Flelds e e e e e e e
SSTORE MaAcCYO . + + + o o o o ¢ o o o o o o o
SSET MACLO « « o o o o o o s o o o o o o o o =
SOFF Macro . . « + & e e o e e e e o e o o
Chaining Control Blocks e e e s e e e e s e
Chaining a NAM Block to a FAB . . . « « « « . 2-12
Chaining XABs to a FAB e s s e e s . 2-12
Chaining a FAB to a RAB (CONNECT Operation) . 2-13
Calling Operation Routines+ « « « « « o 2=13
1 Call with Macro Arguments . « . « « o « « « o« 2-13
.2 Call with Arguments in Memory 2=14
Handling RetUINS . + o o o &+ o = « o o o« « » o« 2-14
Examining Returned Values « « « « « « 2-15
1 SFETCH MACIO « o« o o « « s o o o o o o o« o « «» 2-15
.2 SCOMPARE MaCYO « « o o s o o o o o o o o o o » 2=16
3 STESTBITS MAGCrO =+ o« « o o o s o o o o o o o« « 2=17
WRITING COMPLETION HANDLERS . ¢ « ¢ & o o « » o 2=17
USING GET-SPACE ROUTINES . ¢ « + o« « o o« o o « » 2-18

]
QOWOOAANUCITUNEDNN

* e 0
Y
Ul s W N

MRNNNNDNONDNON
I

- * L]
. .
(NN
()
=

-

. .
wn -

.« v e
. .
DN

I
N
(SRR

e« o o o 0

s o o e o 8 o @
" .
wN -

OO WWWNNOMNNE - -

.1 Specifying Get-Space Routines 2-18
.7.2 Writing a Get-Space Routine 2-19
.7.2.1 Get-Space Routine Interface - . 2-19

2,2 Pool Free-Space Lists « « « & « « « o 2-19

WO OOV WWWWWWN -

ASSEMBLING THE PROGRAM e e o o o o o 2=20
Assembling with the RMSMAC Macro Library . . . 2-20
Assembly-Time Errors from RMS-11 Macros . . . 2-20

RN NNNONNNDNNNONNRODNNDRODRODNDNDODNDNDNDNDNNDNODNDON
. o

o =
N

iii

CONTENTS

CHAPTER 3 PROCESSING DIRECTORIES AND FILES

DEVICE CHARACTERISTICS . « v « « o o o o «
LOGICAL CHANNELS . . &+ v v & « « & ¢ e e e« .
FILE SPECIFICATIONS AND IDENTIFIERS e e e e
PRIVATE BUFFER POOLS . . . ¢ « ¢« ¢ « o o o o
COMPLETION STATUS &+ & 4 & o o o o o o « o & o 4
DIRECTORY OPERATIONS . . .+ & v o o o o o & o
RENAME O0peration « « « ¢ o o ¢ « o « o o o o o
PARSE Operation . . & . ¢ 4 ¢ ¢« ¢ ¢ v v v o o .
FILE OPERATIONS & v & 4 ¢ o o o o o o o o o o o
CREATE Operation . . . ¢ v ¢ ¢ v v v v v v o o
OPEN Operation . « « « & ¢ & o 4 o v o o o o o
DISPLAY Operation & o v ¢ ¢ o« o o o o &
ERASE Operation . ¢ . & & & 4 & o 4 o o o o o
EXTEND Operation .« .+ ¢ ¢ ¢ o « o o o « o « o« o
CLOSE Operation . . «
WRITING WILDCARD LOOPS . .
Introduction to Wlldcardlng .
In1t1allzlng for Wildcarding
Finding the_ Next Matching F11e
Operating on\tKe Found File . . o . & v o . . .
Ending Wlldcardlng .o . o« o . .
Nonselective ERASE or RENAME Wlldcard Operatlons
Selective Wildcard Operations

WWWwWwWwwwwWwwwwwwwwwwwww
. s s s e
WCOWOVOOOINNNNNI~JAAANU > WN
.
I |

.
.
[SV]
|

. .
.« .
|

.
1
QLU0 I~INOOONOAAUTUTUTUL AR BRNDNH

[
AU W N
i

v e s
.« .
. 0
> W=
« o o
.
.
.
.
.
e o o o
.
.
| DL

WWWWwWwwwwwuwwuwwwwwwwwwww
]

w
|
Lol

..

. . N

WN -
.

CHAPTER

=~

PROCESSING RECORDS AND BLOCKS

COMPLETION STATUS © s s e e s s e s s e o s e s =
STREAMS . . . © s e e s e s e e o s s s e o s
RECORD PROCESSING e e s+ s e s e s e s e o o s e »
Record Streams . . .« o ¢ & 4 o o o o« o o o o o
Record Context . . v ¢« v ¢ 4 ¢« o ¢ o o o o o o
Record Access ModeS .+ + v ¢ o 4 o o o o « o o«
Sequential ACCESS . 4 4 4 4 4 4 4 e e e e e . .
Key ACCESS v & o o & o o o o o o o o o o o« o o &
RFA ACCESS « v o v & o o o o o s o o o o s o o o
Record Buffers . . . ¢ ¢ ¢ 4 ¢ 4 ¢ ¢ o o o o o &
Locate Mode . . . & ¢ 4 ¢ ¢ & & o o o o o o «
Stream Operations . . « v v &« ¢ ¢ 4 o « v o . .
CONNECT Operation . . ¢ v ¢« v o « « o« o o o o
FLUSH Operation . . +v & ¢ 4 ¢ ¢ ¢ o o o o o »
FREE Operation . . « ¢ v v 4 v ¢ ¢ ¢ o o o o o
REWIND Operation . . « & &« & 4 ¢« ¢ o o o « o o
DISCONNECT Operation « « v &+ o « s o o s o o o
Record OperationsS . o 4 & o o o o o o o o o o

« s e v e

« & s e e
P
w N

.
.
.

.
[OOSR

T
Wl B BB R BB RRWWWWWWWWWWWWWWWwWwwwWwwWwwwwN —
. .

.
NNNNNNNOOOO AN B WW W W
*

I . = T S o ST A~ Tt S S N A A -

Lol el ol o U F Y Y NN N NN SN N Y Y IR Y N NN SN RN N N R T BN |
COO0OO0OWVWYOWWYWOWOVOVOVNNNNOAAANUNBWWNDNNNDEHH

B I e Ll T Sl Y =G ST T Nt SV Nt -t Nt -l Y SO Y Gt . N SO QT g

.1 FIND Operation « o ¢ o« « o o o o o o o o o o o«
.3.7.2 GET Operation . . & & & v ¢ ¢ o ¢ « o o o o« «
.3.7.3 PUT Operation .« ¢ v & v ¢ ¢ o ¢« o o o o o o o o
.3.7.4 DELETE Operation . . ¢« v ¢ ¢« v ¢ v o« o o o o« o &
.3.7.5 UPDATE Operation . . ¢ &4 v ¢ & o« o o o o o o o
.3.7.6 TRUNCATE Operation . . v 4o ¢ & o ¢« « o o o o« o 4
. BLOCK PROCESSING &+ ¢ 4 ¢ o o o o o o o o o o o o 4-
4.1 Block Streams . . . ¢ ¢ ¢ 4 4 ¢ e 4 o o « o . 4-
.4.2 Block Context . . ¢ 4 v ¢ ¢ 4 ¢ 4« ¢ ¢ o o o o 4-
.4.3 Block Access ModeS . . v & v « o v o o o« « « . 4-11
.4.3.1 Sequential ACCESS . & &+ ¢ 4 ¢ ¢ 4 ¢ o o o o . 4=11
.4.3.2 VBN ACCESS & & « o o o o s o o o o o o o o o o 4A=11
.4.4 Block Buffers ¢« ¢« ¢ ¢ v v v ¢ o o« « . 4-11
.4.5 Stream Operations . . ¢ v v v v 4 ¢ 4 o o .+ . 4-12
.4.5.1 CONNECT Operation .+ v +v o o« o o« o o o o o o« o 4=12
.4.5.2 FREE Operation . . . ¢ v v v ¢ ¢ o o o« « « o «» 4-12
.4.5.3 DISCONNECT Operation . . & ¢« & ¢ & + & o o « o 4-12
.4.6 Block Operations . . . + v ¢« &+ ¢ o & « o o« « o 4-12
.4.6,1 READ Operation ¢« + ¢« « « « « « « o « 4-12

iv

CHAPTER

CHAPTER

4.4.6.2

wm
« s

.

.
YOO U & WN -

o

. * e
(]

Lot ouodg
.

.
el
[~ NS I]

5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29

[+)}

[oa e I ey

L] e 8 ® 8 & & ° a

DWW W W WWWWWWNNNNNNR R HEE
. .« v e e e e e

HWoo~TAU & WwN -

(=]

.
n Wb

. .
= O O DU WM

o

AN NAAANANAANAANARAHINN AR
» e .
P

CONTENTS
WRITE Operation . . « « « .+ =

OPERATION MACRO DESCRIPTIONS

SCLOSE MACRO <« « ¢ & ¢ o o o o =
SCONNECT MACRO .« & o & o o o o @
SCREATE MACRO . « + o &+ o o o
SDELETE MACRO . . ¢ &+ « « o =«
SDISCONNECT MACRO . .+ « « « «
SDISPLAY MACRO . « + & « o o o
SERASE MACRO . . &+ « ¢ o o+ o = o
$EXTEND MACRO
SFIND MACRO (SEQUENTIAL ACCESS)

SFIND MACRO (KEY ACCESS)
SFIND MACRO (RFA ACCESS)
SFLUSH MACRO . « « « &« & o & « =
SFREE MACRO
SGET MACRO (SEQUENTIAL ACCESS) .
SGET MACRO (KEY ACCESS) e e s e
$GET MACRO (REA ACCESS) o« e e e
SOPEN MACRO .. %% « o « o o o &
SPARSE MACRO . . v . « o . .
SPUT MACRO (SEQUENTIAL ACCESS) .
$PUT MACRO (KEY ACCESS) o e e e
SREAD MACRO (SEQUENTIAL ACCESS)

SREAD MACRO (VBN ACCESS) . . . =«
SRENAME MACRO . ¢ + o o o o ¢
SREWIND MACRO . « &« & o o o o &
SSEARCH MACRO . « & « o o o o o
STRUNCATE MACRO . .« ¢« « « o« o
SUPDATE MACRO . ¢ « « ¢ o o« o &
SWRITE MACRO (SEQUENTIAL ACCESS)
SWRITE MACRO (VBN ACCESS) . e e

CONTROL BLOCK FIELDS

ALL BLOCK SUMMARY e o e o o e
AID Field in ALL Block
ALN Field in ALL Block (XBSLBN
ALQ Field in ALL Block
AOP Field in ALL Block (XBSCTG
BKZ Field in ALL Block
BLN Field in ALL Block (XBSLAL
COD Field in ALL Block (XBSALL
DEQ Field in ALL Block
LOC Field in ALL Block
NXT Field in ALL Block

DAT BLOCK SUMMARY e o o o s e =
BLN Field in DAT Block (XBSDTL
CDT Field in DAT Block
COD Field in DAT Block (XBSDAT
NXT Field in DAT Block
RDT Field in DAT Block

FAB SUMMARY e e e a s e s e e =
ALQ Field in FAB . . « « =+ «
BID Field in FAB (FBSBID Code)
BKS Field in FAB .« « « « o o =«
BLN Field in FAB (FBSBLN Code)
BLS Field in FAB « + o ¢ « o =«
BPA Field in FAB ¢« « ¢ « « o
BPS Field in FAB « « &« ¢ o o
CTX Field in FAB ¢ « « ¢ o o
DEQ Field in FAB . . . « « « &
DEV Field in FAB . . .+ « + « =«

.
I A AR

[I |
HOWONOUIWN

g

AN ANTAADNASNANN
|
[
[e)

e e e u e * & e @
e s & e 6 e » » s s

DA RN
.
WWWWwwwwwwwwwwww

BB WWWWWWWWWWRWRNNRORORNNNNNRN H e e
HOWONOURWNHOWOWO-JAUBWNHREOWOO-JO Vb WN

* e s s e ® & e 8 s & e s e s+ e ¢ v e @
® 8 & & s & s s e e ° T 2 e 6 e & s e . e s 8 = * 0

RNNNNNOMNPEPRRFRFRFEEFEPRRERFRFREFEOOIO U WN -

M WNHOWOWRNOAU B WO

« o e * o o
e e ¢ & o

AR AN ANNTNANTANNTANANRTTAANNATRARNANNRN NN
. .

OO OUIUITOTUL R b s D B D Db b DD DD DB BB PRLWwWWWWWWWWWwwwwwww

O ~JOULE WM

CONTENTS

DNA Field in FAB . .+ ¢« & v &+ v v o o o o o o « 6-32
DNS Field in FAB . &+ v v v 4 o o o o o o o o & 6-33
FAC Field in FAB ¢ +v v + 4 o o o o o o o o o « 6-34
FNA Field in FAB . ¢ v + & o e o o o o o o « 6-35
FNS Field in FAB . . . 4 « « « o « o « o « « + 6-36
FOP Field in FAB (FBSCTG Mask) . ¢ ¢ ¢« & o . . 6-37
FOP Field in FAB (FBSDFW Mask) . «. + « . . . 6-38
FOP Field in FAB (FBSFID Mask) ¢ & ¢ ¢ « o o 6-39
FOP Field in FAB (FBS$MKD Mask) 6-40
FOP Field in FAB (FBSNEF Mask) . « &« « « « . . 6-41
FOP Field in FAB (FBSPOS Mask) .+ « v « v o o & 6-42
FOP Field in FAB (FBSRWC Mask) . +« « &« o o o o 6-43
FOP Field in FAB (FBSRWO Mask) . + + « « o . . 6-44
FOP Field in FAB (FBS$SUP Mask) . ¢« ¢ o« o o o 6-45
FOP Field in FAB (FBSTMP Mask) . + « &« « o o« o 6-46
FSZ Field in FAB . . ¢ &t v v 4 o o o o o o o 6-47
IFI Field in FAB . . . & ¢ &4 o 4 o o o o o « . 6-48
LCH Field in FAB . . +© v v v o ¢ o o o o o o« » 6-49
LRL Field in FAB « « ¢ v ¢« « « o « + . 6-50
MRN Field in FAB . . & & 4 v o o o s o o o o 6-51
MRS Field in.FAB . . . « . + ¢ « ¢« v « « « . . 6-52
NAM Field in FAE . e e e e e e e e 4 4 e e . 6=53
ORG Field in FAB . . .+ v ¢« 4 o « o o o o o o « 6-54
RAT Field in FAB . . +. ¢ v 4 ¢« « « « « o« o« « + 6=55
RAT Field in FAB (FBSBLK Mask) . v 4 ¢ o o o 6-56
RFM Field in FAB . . & +v v v v 4 « ¢« « « « « . 6=57
RTV Field in FAB . . « s e e o s s s & e e = 6-58
SHR Field in FAB . v &t v 4 4 o o o o o o o « 6~-59
STS Field in FAB ¢ v v v ¢ o o o o o o o o o & 6-60
STV Field in FAB . . v v v v o« & « o & . e e 6-61
XAB Field in FAB . . & v ¢ v ¢ o v o o o o o« o+ 6-62
KEY BLOCK SUMMARY e« o o 5 e e e s e s e o e o o 6-63
BLN Field in KEY Block (XBSKYL Code) 6-65
COD Field in KEY Block (XBSKEY Code) . . « . . 6-66
DAN Field in KEY Block .+ & & v v v 4 o o o o « 6-67
DBS Field in KEY Block +. v & &« 4 ¢« &4 4 ¢« o« « « 6-68
DFL Field in KEY BlocCk . +v v v o o o o o o @ . 6-69
DTP Field in KEY BloCK &+ v v +v 4 o o o o o o« o« 6=70
DVB Field in KEY BIoCK &+ v v v & v 4 « o o o« « 6=71
FLG Field in KEY Block (XBSCHG Mask) 6=72
FLG Field in KEY Block (XBSDUP Mask) 6-73
FLG Field in KEY Block (XBSNUL Mask) 6-74
IAN Field in KEY BloCK « o v v 4 v « o « « « o 6=175
IBS Field in KEY BloCk v +¢ « v &« &« & o« o o « . 6-76
IFL Field in KEY B1OoCK &« « v &« & o v o o o o « 6=77
KNM Field in KEY Block +. +« « « & & « 4 o « « o 6-78
LAN Field in KEY Block « v ¢ &« 4 4 &« o o o + o 6=79
LVL Field in KEY Block . « + « &+ & ¢« & « « + . 6-80
MRL Field in KEY BloCK « « v « « &« « o o« « » + 6=81
NSG Field in KEY Block « « v 4 « v o 2 & o « o 6-82
NUL Field in KEY Block . « & + &« « « « &« & o . 6-83
NXT Field in KEY Block « + & « v ¢ « « « « « . 6-84
POS Field in KEY Block « . . « . . « s+ o « « 6-85
REF Field in KEY Block . . &+ « 4 v &« o« &« « « + 6-86
RVB Field in KEY Block « «v v & &+ & & v o o o« + 6-87
SIZ Field in KEY Block . . +v v ¢« & « & « « + - 6-88
TKS Field in KEY Block « v v &« +v & o« & « o« + o 6=-89
NAM BLOCK SUMMARY e o ¢ o s e e o v s e e s e 6-90
DVI Field in NAM Block . . v &« v &« & o« o o « . 6-91
ESA Field in NAM Block .« . v v v 4 4 v o o « o« 6-92
ESL Field in NAM Block . . + & &« 2 4« o« & o« o« o 6-93
ESS Field in NAM Block . & & « « o &+ &« « « « « 6-94
FID Field in NAM Block . v &+ &« « « « + « « o« o 6-95
FNB Field in NAM Block .« &+ « &« ¢ « « « « o« « o« 6-96
FNB Field in NAM Block (NBSWCH Mask) 6-97
RSA Field in NAM Block e e ¢ + e« s« « 6-98

vi

RSL
RSS
wCC
WDI

D
o)
DO

A~ ~NdN~NNNgNooo o,

BLN
CcoD
NXT
PRG
PRJ
PRO

. s s .
L ¢ = 8
YU W H

s e

BID
BKT
BLN
CTX
FAB
ISI
KBF
KRF
KSZ
MBC
MBF
RAC
RBF
RFA
RHB
ROP
ROP
ROP
ROP
ROP
ROP
ROP
ROP
RSZ
STS
STV
UBF
Usz

" s
" e e »

NN AN ANAANANANNN DN

« e e o s

s o s e e o & 8 ° s o+ 0
NN NN
e e o 9 o e o s = .
PO UT N
OOV WNNFRFOWD~JAU_WNHO

NNNONNNONNNEREFEE

00000000~ ~3~J~J~J~J~~J~J~I~~3~
« o e)

BLN
COD
NOA
NOK
NXT
PVN

« .

U W

CHAPTER 7

7.1 PARSE - $PARSE TEST
7.2 SEARCH - $SEARCH TEST
7.3 ERASE - SERASE TEST
7.4

7.5

RENAME -

Field
Field
Field
Field

Field
Field
Field
Field
Field
Field

RAB SUMMARY

Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field

Field
Field
Field
Field
Field
Field

in
in
in
in

in
in
in
in
in
in
in
in
in
in
in
in
in
in

in,

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

in
in
in
in
in
in

CONTENTS

NAM
NAM
NAM
NAM

PRO BLOCK SUMMARY

PRO
PRO
PRO
PRO
PRO
PRO
RAB
RAB
RAB
RAB
RAB
RAB
RAB
RAB

. RAB
‘RAB

RAB
RAB
RAB
RAB
RAB
RAB
RAB
RAB
RAB
RAB
RAB
RAB
RAB
RAB
RAB
RAB
RAB
RAB

SUM BLOCK SUMMARY

SUM
SUM
SUM
SUM
SUM
SUM

EXAMPLE PROGRAMS

SRENAME TEST
GSA -- CORE SPACE ALLOC

Block
Block
Block
Block

Block (XBSPRL
Block (XBSPRO

Block .
Block
Block
Block

ERBSB D
(RBSBLN

. .

(RBSEOF
(RBSFDL
(RBSKGE
(RBSKGT
(RBSLOA
(RBSLOC
(RBSMAS
(RBSUIF

.
s s+ & s e

Block (XBS$SSM
Block (XBSSU

Block .
Block .

vii

ATOR . .

Code)

Code)

¢ o ® o ® s & o ®© s s

Z e o o o

- .
. . .
. .
- .
. . .

o o .

« e & & & s o e o e @

COMPLETION CODES AND FATAL ERROR CODES

s & e o o o &

v e & o o

1 COMPLETIONS RETURNED IN STS AND STV FIELDS
2 FATAL ERROR COMPLETIONS .

e * o & & s o

s & s % e * &

y e ® 8 & e © & @ & s & s o

¢ s % & * o

« ¢ e o

6-99
6-100
6-101
6-102
6-103
6-104
6-105
6-106
6-107
6-108
6-109
6-110
6-111
6-112
6-113
6-114
6-115
6-116
6-117
6-118
6-119
6-120
6-121
6-122
6-123
6-124
6-125
6-126
6-127
6-128
6-129
6~-130
6-131

6-132

6-133
6-134
6-135
6-136
6-137
6-138
6-139
6-140
6-141
6-142
6-143
6-144
6-145

. 7-6
7-10
7-14
7-18

. A-1
A-15

APPENDIX B

APPENDIX C

APPENDIX D

INDEX

EXAMPLE

TABLE

OO0OUoODOoOODOUUOoO

e e e e

WWWN H
w -

.
N~

L T I |]
HHEHEFHFWO~IOWU B WN -
N O

LELECEL R RN ET NN RO R R RS
I 1

=

= W

5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31

CONTENTS

ASSEMBLY-TIME MESSAGES

MACROS THAT DECLARE SYMBOLS AND OTHER MACROS

RMS-11 WITH DIFFERENT OPERATING SYSTEMS

PRO/RMS-11 VERSUS RSTS/E RMS-11 « e e s
Different Behaviors . . . o e e
Features Not Supported on RSTS/E e o s
Features Not Supported on P/O0S

PRO/RMS-11 VERSUS RSX-11M/M-PLUS RMS-11 .

RSTS/E RMS-11 VERSUS RSX-11M/M-PLUS RMS-11
Different Behaviors s e .
Features Not Supported on RSTS/E e e e

“EXAMPLES

PARSE - SPARSE TeSt . . 4 v v o ¢ o o« o &
SEARCH - $SEARCH Test * e s s e s e s o
ERASE - SERASE Test " e e e s e e e s+ e
RENAME - SRENAME TeSt ¢ ©+ v v o o « o o
GSA - Core Space Allocator . . . o« o + o

TABLES

CLOSE Input Fields . . ¢ v v v ¢ & o o o .
CLOSE Output Fields “ s e e s e e e & o
CONNECT Input Fields . . v v v v o o o o &
CONNECT Output Fields v o + o« .
CREATE Input Fields . . . ¢« v v v & + o« &
CREATE Output FieldS « v + ¢ v v &« o o« o &
DELETE Input Fields . . ¢ v v o« v o o o &
DELETE Output Fields +. ¢ « + « .
DISCONNECT Input Fields+« « « o .
DISCONNECT Output Fields . « . v « « o o .
DISPLAY Input Fields . . + ¢« « ¢ ¢ o « « &
DISPLAY Output FieldS . « & o o o o « o &
ERASE Input Fields . + v v ¢ ¢ o o« o o o &
ERASE Output Fields . . . + ¢ ¢ ¢ v o « &
EXTEND Input Fields . . . ¢« ¢« & v o + o .
EXTEND Output Fields . et e e e e 4 s .
FIND (Sequential Access) Input Fields . .
FIND (Sequential Access) Output Fields . .
FIND (Key Access) Input Fields
FIND (Key Access) Output Fields
FIND (RFA Access) Input Fields
FIND (RFA Access) Output Fields
FLUSH Input Fields v v & v o o o .
FLUSH Output Fields e e e s s e s+ e o o
FREE Input FieldS . ¢ ¢ v v & & v o & o
FREE Output Fields v v ¢« ¢ « o« .
GET (Sequential Access) Input Fields . . .
GET (Sequential Access) Output Fields . .
GET (Key Access) Input Fields
GET (Key Access) Output Fields
GET (RFA Access) Input Fields

viii

SouUug ? vl]
BWWWNN

NN~
[}
RN

O WU~ W

5-32
5-33
5-34
5-35
5-36
5-37

5-38

5-39
5-40
5-41
5-42
5-43
5-44
5-45
5-46
5-47
5-48
5-49
5-50
5-51
5-52
5-53
5-54
5-55

w v an

| I I B |
Hwvurun
0 ~J Oy

QOSSN
|
oo~ U WN

CONTENTS

GET (RFA Access) Output Fields
OPEN Input Fields . . <« + « ¢ « « « =
OPEN Output Fields . . . + « « « « « &
PARSE Input Fields . . « « « « « - + &
PARSE Output Fields . . . « ¢« « « o &
PUT (Sequential Access) Input Fields .
PUT (Sequential Access) Output Fields
PUT (Key Access) Input Fields
PUT (Key Access) Output Fields
READ (Sequential Access) Input Fields
READ (Sequential Access) Output Fields
READ (VBN Access) Input Fields
READ (VBN Access) Output Fields . . .
RENAME Input Fields . . « ¢ « « « «
RENAME Output Fields . . . + « « .« o« &
REWIND Input Fields . « « ¢ « « o o =«
REWIND Output Fields« « « « .+ &
SEARCH Input Fields . . . « ¢ « « + &
SEARCH Output Fields . + « .« + « « « &
TRUNCATE Input Fields .« « « &« « & o &
TRUNCATE Output Fields « « . .
UPDATE Input FieldsS v v o o o o o o« »
UPDATE Output Fields . « « « « « o + &«
WRITE (Sequential Access)} Input Fields
WRITE (Sequential Access) Output Fields
WRITE (VBN Access) Input Fields . . .
WRITE (VBN Access) Output Fields . . .
ALL Block Summary =« o« + o s s s o o
DAT Block Summary . « « « o« o o o o =
FAB SUMMAYY « o o o o o o o o o s o
KEY Block Summary . o« « o o o o o o o
NAM Block Summary . « « « o o o o = =
PRO Block Summary « « e« o« o o o o o =
RAB SUMMAYyY =« « o+ o o o o ¢ o o ¢ o o
SUM Block Summary

Macros That Declare Symbols and Other Macros

ix

5-61
5-72
5-73
5-79
5-79
5-83
5-83
5-86
5-86
5-88
5-88
5-90
5-90
5-95
5-96
5-98
5-98
5-101
5-102
5-104
5-104
5-106
5-106
5-108
5-108
5-110
5-110
. 6-2
6-13
6-19
6-63
6-90
6-103
6-110
6-139
. C-1

PREFACE

MANUAL OBJECTIVES

This manual is a guide to the use of RMS-11 in programs written in
MACRO-11. It contains information necessary to writing MACRO-11
programs and subprograms that use RMS-11 operations.

INTENDED AUDIENCE

This manual is intended for bothfthe MACRO-11 programmer who wants to
use RMS-11 operations and the-high-level language programmer who wants
to use RMS-11 operations in a MACRO-11 subprogram.

STRUCTURE OF THIS DOCUMENT

e Chapter 1, Introduction to RMS-11 with MACRO-11, introduces
RMS-11 macros and symbols that are the interface between a
MACRO-11 program and RMS-11 operation routines.

e Chapter 2, RMS-11 Programming in MACRO-11, shows how to use
RMS-11 macros and symbols in a MACRO-11 program.

e Chapter 3, Processing Directories and Files, shows how to use
directory and file operations to process directories and
files.

e Chapter 4, Processing Records and Blocks, shows how to wuse
stream operations and either record or block operations to
process records or blocks.

e Chapter 5, Operation Macro Descriptions, describes in detail
each RMS-11 operation macro, the control blocks it uses, the
options you can specify in each control block field, and the
values returned in control block fields.

e Chapter 6, Control Block Fields, summarizes the use of each
control block, field, value, and mask.

e Chapter 7, Example Programs, contains programs and program

segments that illustrate the uses of some major RMS-11
features.

x1i

PREFACE

® Appendix A, Completion Codes and Fatal Error Codes, 1lists
RMS-11 completion symbols, values, and meanings.

® Appendix B, Assembly-Time Messages, lists the messages that
RMS-11 macros can generate at assembly time.

® Appendix C, Macros That Declare Symbols and Other Macros,
describes RMS-11 macros that declare other RMS-11 macros and
define RMS-11 symbols.

® Appendix D, RMS-11 with Different Operating Systems,
describes the differences among the behaviors of RMS-11 with
various operating systems.

® The index includes a major entry for each RMS-11 macro,
control block field mnemonic, keyword macro argument, and
symbol family.

ASSOCIATED DOCUMENTS ;g %

RSTS/E RMS-11: An Introduction ?introduces the major concepts of
RMS-11, introduces the RMS—1i1 operations, and defines key terms
required for understanding RMS-11 capabilities and functions. You
should read the introduction before proceeding to other manuals in the
RMS-11 documentation set.

The RSTS/E RMS-1l1 User's Guide provides detailed information for both
MACRO-11 and high-level language programmers on file and task design
using RMS-11.

The RSTS/E RMS-11 Utilities manual is both a user and a reference
document for all users, both programmers and nonprogrammers. It
describes the RMS-11 utilities that are available for creating and
maintaining RMS-11 files.

In addition, the RSTS/E Quick Reference Guide is an easy-reference
guide for wusers who are familiar with RMS—11 and its documentation.
It summarizes the RMS-11 utilities and error codes.

CONVENTIONS USED IN THIS DOCUMENT

The following conventions are used in statement formats in this
document:

UPPERCASE Uppercase characters within a string indicate
characters that you must include in’ the string; you
can type the characters in uppercase or lowercase.

lowercase Lowercase characters within a string indicate a
user-selected variable; text following the
statement format defines the syntax of the variable.

[1 Square brackets indicate that the enclosed string is
optional user input.

e A horizontal ellipsis indicates that the immediately

preceding optional string (enclosed in square
brackets) may be repeated.

xii

From: DES.TMP

other

PREFACE

In examples of commands you enter and system
responses, all output lines and prompting characters
that the system prints or displays are shown in
black letters. All the lines you type are shown in
red letters.

A nonalphabetic character (except a square bracket
or a period that is part of an ellipsis) indicates a
character that you must include in the string.

Numbers in this manual that give the values of RMS-11 symbols are in
octal radix (base 8) unless otherwise indicated; all other numbers in
this manual are in decimal radix (base 10).

xiii

SUMMARY OF TECHNICAL CHANGES

This revision contains the following technical changes:

The new operation macros S$PARSE, SRENAME, and S$SEARCH are
documented, along with the related NAM block fields FNB, RSA,
RSL, and RSS.

The new facility for wildcard file specification is
documented.

The problems associated’
been corrected. L

N

with non-write-shared access have

Random access to a sequential file with fixed-length records
(similar to random access to a relative file) is documented.

The new print-format record-output handling is documented,
along with the related symbol FBSPRN for the RAT field of the
FAB.

The new sequential block access is documented; the previous
block access (formerly called block I/0) is now called VBN
access (virtual block number access).

Block access can now be used to copy RMS-11 files without the
need to modify the file's attributes manually.

The addition of the success handler facility for file
operation macros ($SCLOSE, SCREATE, S$DISPLAY, SERASE, SEXTEND,
and SOPEN) is documented.

Increased device transparency for record access copy
operations 1is supported. VFC and stream record formats are
supported on unit-record devices. Relative and indexed files
can be created for record access on nondisk devices, although
they will appear as and be processed as sequential files
there.,

The obsolete RMS-11 initialization macros $INIT and S$INITIF
are no longer documented. These macros are now defined as
no-ops in the RMS-11 macro library RMSMAC.MLB; their
previous functions are no longer needed because RMS-11 is now
self-initializing. However, programs that use the $INIT and
SINITIF macros in their previous senses remain valid under
RMS-11 Version 2.0.

Xv

SUMMARY OF TECHNICAL CHANGES

Each XAB type now has a distinct name; the following are the
new names:

ALL block Area allocation XAB
DAT block File date XAB

KEY block File key XAB

PRO block File protection XAB
SUM block File summary XAB

The following symbol declaration macros are documented:

FABSBT Declare FAB value and mask symbols
NAMSBT Declare NAM block value and mask symbols
RABSBT Declare RAB value and mask symbols
XABSBT Declare XAB value and mask symbols
XBAOFS$ Declare ALL block symbols

XBDOFS$ Declare DAT block symbols

XBKOFS Declare KEY block symbols

XBPOF$ Declare- PRO block symbols

XBSOFS Declare SUM block symbols

The description of eééhﬁbperation macro includes the use and
meaning of each associated control block field.

The value of each RMS-11 user symbol is documented.

The structure of each RMS-11 user control block is
documented.

The FAB has a new LRL (longest record length) field for
sequential files (corresponding to the VAX-11 RMS XAB LRL
field).

The date/time XABs have changed in size from 36 to 46 octal
bytes.

For ANSI magtape, RMS-11 allows fixed-format records to be
less than 18 bytes.

<CTRL/Z> and <ESC> are no longer recognized as record
terminators for stream files; and <CTRL/Z> is no longer

. recognized as a file terminator for stream files.

RMS-11 now pads stream files with null characters to the high
block of the file (not just to the end of the current block).
This means that RMS-ll-created stream files can be read by
programs that do not recognize the EOF value from the file
header.

xvi

CHAPTER 1

INTRODUCTION TO RMS-11 WITH MACRO-11

RMS-11 macros and symbols provide access to RMS-11 operations from a
MACRO-11 program.

1.1 ADVANTAGES OF USING RMS-11 MACROS
When you use RMS-11 operations from a high-level language, the
language restricts your options for some operations. If you cannot

accept these restrictions, you can write your program (or some of its
modules) in MACRO-11; this allows you full access to RMS-11 options.

1.2 RMS-11 MACROS AND SYMBOLS

RMS-11 macros and symbols define the interface between a MACRO-11
program and RMS-11 operation routines. Definitions for these macros
and symbols are in the RMS-11 macro library, RMSMAC.MLB.

RMS-11 macros allow your program to:

e Call RMS-11 operations

e Declare and manipulate control blocks, through which your
program communicates with RMS-11 operation routines

e Declare and manipulate space pools
e Declare needed RMS-11 facilities

e Extract (from the macro library BRMSMAC.MLB) definitions for
RMS-11 macros and symbols

The following sections introduce RMS-11 macros and symbols.

INTRODUCTION TO RMS-11 WITH MACRO-11

1.2.1 Operations

An RMS-11 operation macro calls a routine that performs an RMS-11
operation. The name of an operation macro 1is the name of the
corresponding operation, with a prefixed dollar sign (3). The
following are the RMS-11 operation macros:

Directory File Stream Record Block
Operation Operation Operation Operation Operation
Macros Macros Macros Macros Macros
SPARSE SCLOSE SCONNECT SDELETE SREAD
SRENAME SCREATE SDISCONNECT SFIND SWRITE
$SEARCH SDISPLAY SFLUSH SGET

SERASE SFREE SPUT

SEXTEND SREWIND $TRUNCATE

SOPEN SUPDATE

An RMS-11 operation returns a value called a completion code that
indicates either a successful operation or an error. RMS-~-11
completion symbols give names to .these completion codes.

When your program uses an RMS-11 operation macro to call an operation
routine, it can specify completion handlers (one for a successful
completion, one for an error completion) that RMS-11 calls when the
operation completes. The RMS-11 completion-return macro ($RETURN)
generates a proper return from a completion handler to the calling
point in your program.

1.2.2 Control Blocks and Fields

Your program and RMS-11 operation routines communicate by passing data
in blocks called control blocks. Each control block is divided into
fields; each field has a 3-letter mnemonic name.

An RMS-11 block-declaration macro allocates space for a control block
and initializes fields containing the block length and block
identifier. There is a block-declaration macro for each kind of
control block.

An RMS-11 field-initialization macro sets an initial wvalue for a
control Dblock field at assembly time. There are field-initialization
macros for most control block fields (those that you might reasonably
want to initialize).

An RMS-11 field-access macro manipulates the value of a control block
field during program execution. There are field-access macros for
copying values to and from fields ($STORE and S$FETCH), for comparing
field values with other values ($COMPARE), and for setting, clearing,
and testing bits in fields ($SET, SOFF, and S$TESTBITS).

RMS-11 code and mask symbols give names to the codes and bit masks
used in many fields. This allows your program to determine the
details of an RMS-11 operation without using the numeric values
associated with those details.

RMS-11 field-offset symbols give names to the 1locations of fields
within their control blocks. Because RMS-11 field-initialization and
field-access macros are based on field names, your program need not
use field-offset symbols.

INTRODUCTION TO RMS-11 WITH MACRO-11

RMS-11 control blocks and their general uses are as follows:

e ALL (area allocation) block - contains information about a
file area.

e DAT (file date) block - contains file dates and the file
revision number.

e FAB (file access block) -~ contains general information about a
file and how a program will access 1it.

e KEY (file key) block - contains information about a file index
and its key.

e NAM (file name) block - contains special information about the
device, directory, and specification for the file, along with
wildcarding information.

e PRO (file protection) block - contains file owner and
protection information.

® RAB (record access blodk) - contains general information about
a stream and a record or block, and how the program accesses
the record or Dblock.

e SUM (file summary) block - contains the number of areas and
indexes in the file, and a version number indicating the
internal structure level of the file.

1.2.3 Pools

RMS-11 conserves space by dynamically allocating and deallocating
space set aside in pools. RMS-11 pool-declaration macros allocate
space for pools.

An RMS-11 routine called the get-space routine handles pooled space.
You can substitute your own get-space routine for the RMS-11 routine;
you can use RMS-1l1 get-space-address macros to initialize the address
of the get-space routine at assembly time (GSAS), to change the
address to that of a different routine during program execution
($SETGSA), and to return the address of the current routine during
program execution ($GETGSA).

1.2.4 PFacilities

The RMS-11 facilities-declaration macro (ORGS) assists RMS-11 in
determining exactly which routines your program needs during program
execution.

1.2.5 Macros That Declare Symbols and Other Macros

To extract the definition of an RMS-11 macro from the macro library,
your program must declare the macro in a .MCALL assembler directive.

Many RMS-11 macros declare related macros and define related symbols;
some RMS-11 macros have the sole purpose of declaring related macros
and defining related symbols. Using these macros simplifies the Job
of declaring macros and defining symbols in your program.

INTRODUCTION TO RMS-11 WITH MACRO-11

For example, the FAB-declaration macro FABSB declares FAB
field-initialization macros and FAB offset, code, and mask symbols;
the S$FBCAL macro declares all directory and file operation mMacros;
the $RMSTAT macro declares all completion symbols.

To use

CHAPTER 2

RMS-11 PROGRAMMING

RMS-11 operations in a MACRO-11 program, your program must:
Declare RMS-11 macros and symbols

Before your program refers to an RMS-11 macro or symbol, it
must extract its definttion from the RMS-11 macro library.
Section 2.1 shows how to declare macros and symbols.

Declare RMS-11 facilities

To help RMS-11 decide which RMS-11 program modules are needed
for your program, your program must declare some of the RMS-11
operations that it uses. Section 2.2 shows how to declare
RMS-11 facilities.

Declare and use pool space

RMS-11 dynamically allocates and deallocates space for some of
its requirements; this space is separated into five pools.
Using RMS-11 pool-declaration macros, you specify the size of
each pool. Section 2.3 shows how to declare pool space.

Declare and initialize control blocks

Your program and RMS-11 operation routines communicate by
passing data back and forth in control block fields. Using
RMS-11 block-declaration and field-initialization macros, your
program allocates space for control blocks and (optionally)
assigns initial values for fields. Section 2.4 shows how to
declare and initialize control blocks.

Use RMS-11 operations

Your program uses RMS-11 operation routines to perform record
management services; the routines return values that show the
results of the operations. Your program uses RMS-11 operation
macros to call these operation routines. Section 2.5 shows
how to call RMS-11 operation routines and how to handle
returns from the routines.

Your program may also:

Include completion handlers

An RMS-11 operation routine returns either a success
completion code or an error completion code. Your program can
include special routines (called success handlers and error
handlers) that operation routines call automatically when
operations complete. Section 2.6 shows how to write
completion handlers.

RMS-11 PROGRAMMING

® Use its own get-space routines

RMS-11 uses a routine (called a get~space routine) to allocate
and deallocate space. RMS-11 has a get-space routine, but you
can also supply others of your own. Section 2.7 shows how to
use get-space routines and how to write a get-space routine.

Finally, you must:
® Assemble the program

When you assemble your program, it needs macro and symbol
definitions from RMS-11; these are in a macro library, which
your assembler command line must reference. RMS-11 macros
detect some kinds of errors during assembly, and print
messages that identify the errors. Section 2.8 shows how to
assemble your program.

e Build the task

When you build your tagk, you must do one of the following:

§

- Use an RMS-11 residéhtilibrary.

- Define an overlay structure for the task. RMS-11 offers
several overlay definition (ODL) files from which you can
select; you can also write your own ODL files.

-~ Include RMS-11 code in the task.

2.1 DECLARING RMS-11 MACROS AND SYMBOLS

Before your program refers to an RMS-11l macro or symbol, it must
extract its definition from the RMS-11 macro library.

Your program can use the .MCALL assembler directive to extract the
definition of any RMS-11 macro (but not a symbol) from the macro
library. For example, to extract the definition of the macro SCLOSE,
use the .MCALL directive in the format:

.MCALL $CLOSE ;Declare RMS-11 $CLOSE macro

Your program can use RMS-11 macros to extract definitions for RMS-11
symbols, and for some groups of other RMS-11 macros. Appendix C lists
RMS-11 macros (with their arguments) that declare symbols and other
macros.

2.2 DECLARING RMS-11 FACILITIES

To help RMS-1l decide which RMS-11 program modules your program needs,
your program declares some of the operations that it uses. To do
this, it uses the facilities-declaration macro ORG$ in the format:

.MCALL ORGS ;Declare ORGS macro
ORGS$ fileorg[,<operation(,operation]...>]

where fileorg is a keyword indicating a file organization and each
operation 1is a keyword indicating an operation that your program uses
for a file of that organization.

RMS-11 PROGRAMMING

A separate ORGS$ macro is required for each different file organization
that your program processes, except that no ORGS macro is required for
an organization that will be processed using only directory operations
and block access.

The fileorg keyword argument to the ORGS macro is one of the
following:

IDX Indexed file organization
REL Relative file organization
SEQ Sequential file organization

Each operation argument to an ORGS macro 1is one of the following:

CRE CREATE operation

DEL DELETE operation

FIN FIND operation

GET GET operation

PUT PUT operation

UPD UPDATE operation
These are the only operations that your program explicitly declares
with the ORGS$ macro; support for other operations is handled
automatically.

For example, suppose that your program:
e Creates both sequential and indexed files

e Uses FIND, GET, PUT, and UPDATE operations for sequential
files

e Uses FIND, GET, PUT, and DELETE operations for indexed files

Then the proper ORG$ macros are:

ORGS SEQ,<FIN,GET,PUT,UPD> ;Declare FIND, GET, PUT, and UPDATE
; operations for seguential files

ORGS IDX,<FIN,GET,PUT,DEL> ;Declare FIND, GET, PUT, and DELETE
; operations for indexed files

The results of ORGS macros are additive. For example, if one portion
of your program specifies

ORGS SEQ,<GET,PUT>
and another specifies
ORGS SEQ,<GET,UPD>
then the effect is the same as specifying
ORGS SEQ,<GET,PUT,UPD>
Note also that all ORGS macros must occur in modules that are
contained in the root segment of your task (not overlaid). Use of

ORGS macros is optional in tasks linked with an RMS-11 memory-resident
library.

RMS-11 PROGRAMMING

2.3 DECLARING AND USING POOL SPACE

RMS-11 dynamically allocates and deallocates space for some of its
requirements; this space is separated into five pools:

¢ Internal FAB and index descriptor block (IFAB/IDB) pool
° Iﬁternal RAB (IRAB) pool

¢ Key buffer pool

e I/0 buffer pool

e Buffer descriptor block (BDB) pool

RMS-11 has a get-space routine that manages these pools, and that
allocates and deallocates space to meet the needs of RMS-11
operations; however, you can supply other get-space routines and
direct RMS-11 to use a different routine (and, optionally, different
pools) instead of its own. :

If you use only the RMS-11 get:%pﬁce routine, declare pool space using
the pool-declaration macros described below. If you use your own
get-space routine, read Section 2.7; it shows how to write the
routine, and how to manage the pools.

To declare space for pools, use pool-declaration macros in the format:

POOLSB ;Begin pool declarations

PSFAB fabcount ;jSpace for IFABs in IFAB/IDB pool
P$SIDX indexcount ;Space for IDBs in IFAB/IDB pool
PSRAB rabcount ;Space for IRABs for sequential

and relative files and for

block~accessed indexed files

in IRAB pool

PSRABX rabxcount,keysize,keychanges ;Space for IRABs for

;i record-accessed indexed

files in IRAB pool, and
space for key buffers in
key buffer pool

Space for I/0 buffers in 1/0
buffer pool

P$BDB bdbcount ;jSpace for BDBs in BDB pool

POOLSE ;End pool declarations

~e wo we

PSBUF bufcount

~e e wme we we

If your program uses multiple pool declarations, the results are
cumulative.

The following sections show how to compute the values of arguments to
the pool-declaration macros.

RMS-11 PROGRAMMING

2.3.1 Internal FAB and Index Descriptor Block Pool

Internal FABs (IFABs) and index descriptor blocks (IDBs) are the same
size and so share a pool (the IFAB/IDB pool). The total size of the
pool is the sum of the following:

e The largest number of IFABs that your program uses at the same
time, times 48 bytes. Specify this largest number of IFABs
(not multiplied by 48) as the fabcount argument to the PSFAB
macro.

A directory operatioh uses one IFAB, which is returned to the
pool before the operation completes.

A CREATE or OPEN operation uses one IFAB, which is committed
while the file is open; a CLOSE operation releases the IFAB.
A DISPLAY or EXTEND operation uses no new IFABS; it uses the
IFAB already committed to the open file. An ERASE operation
uses one IFAB, which | is released before the operation
completes. .

e The largest number of ‘IDBs that your program uses at the same
time, times 48 Dbytes. Specify this largest number of IDBs
(not multiplied by 48) as the indexcount argument to the PSIDX
macro.

Your program uses one IDB for each index of each indexed file
opened for record access (rather than block access). The IDBs
for an indexed file are committed when the file is opened (by
a CREATE or OPEN operation) and are released when the file is
closed (by a CLOSE operation).

2.3.2 Internal RAB Pool

Internal record access blocks (IRABs) have a separate pool. The size
of the 1IRAB pool is the largest number of streams that your program
will have connected at the same time, times the size of an IRAB (32
bytes) .

Specify the largest number of streams connected to sequential files,
relative files, and block-access indexed files (not multiplied by 32)
as the rabcount argument to the P$SRAB macro. Specify the largest
number of streams connected to record-access indexed files as the
rabxcount argument to the P$SRABX macro.

If the sum of the rabcount and rabxcount arguments is larger than the
largest number of streams that will ever be connected simultaneously,
you may deduct the excess from the rabcount argument that you specify.

An IRAB is committed when a stream is connected and is released when
the stream is disconnected or the file is closed (using the associated
FAB) .

RMS-11 PROGRAMMING

2.3.3 FKey Buffer Pool

Key buffers have a separate pool. (These key buffers are different
from those specified by the KBF and KSZ fields of the RAB.)

Each time a stream 1is connected to an indexed file (for record
access), the CONNECT operation requests space from the key buffer
pool; the space is released when the stream is disconnected or the
file is closed.

Compute the size (in bytes) of the request that the CONNECT operation
makes as follows:

1. Begin with the size of the largest key for the file.
2. Multiply by 2.

3. Add the number of alternate keys for the file that are
allowed to change during. updating.

4. Add 1. %k
5. Round up (if necessary) to a multiple of 4.

If your program performs complex sequences of CONNECT and DISCONNECT
{or CLOSE) operations for record-access indexed files with different
key sizes, the key buffer pool may become fragmented (and therefore
contain wunusable space). In this case, the total size of the key
buffer pool should be larger than the sum of the requirements for each
connected stream.

Each P$SRABX macro that your program uses (in the format PSRABX
rabxcount,keysize,keychanges) allocates a number of bytes for the key
buffer pool that is equal to

(rabxcount) x ((keysize * 2) + keychanges + 1)

The expression ((keysize * 2) + keychanges + 1) is rounded up (if
necessary) to a multiple of 4.

You can use PSRABX macros to precisely tailor the size of the key
buffer pool, or to provide extra space against possible fragmentation
problems. A good compromise is to choose the arguments to the P$RABX
macro as follows:

e Choose rabxcount as the largest number of streams that will be
connected to record-access indexed files.

e Choose keysize as the largest key in any file that will be
processed.

® Choose keychanges as the maximum number of changeable keys in
any file that will be processed.

2.3.4 1/0 Buffer Pool

The I/O0 buffers for RMS-11 operations come either from the central
buffer pool or from a private buffer pool. (These are RMS-11 internal
I/0 buffers, and are different from the I/0 buffers specified in the
RBF, RSZ, UBF, and USZ fields of the RAB.)

RMS-11 PROGRAMMING

Your program can specify a private buffer pool for a directory or file
operation (except CLOSE, DISPLAY, oOr EXTEND). If your program does
not specify a private buffer pool, these operations use the central
buffer pool.

All other operations that require I/0 buffers use the same pool as the
CREATE or OPEN operation that opened the file.

The minimum size of the central I/0 buffer pool is the sum of the
sizes of the 1I/0 buffers that your program will need from it at the
same time (ignoring I/O buffers supplied from private buffer pools).
Specify the size (in bytes) of the central Dbuffer pool as the
iopoolsize argument to the P$BUF macro.

Specify the size (in bytes) of a private buffer pool for an operation
in the 1l-word BPS field of the FAB and the address in the l-word BPA
field of the FAB. If your program specifies a private buffer pool for
a CREATE or OPEN operation, the entire pool is reserved for and
managed by that file until the file is closed.

Your program needs space fromﬁb@ffer pools for the following:

e One 512-byte I/0 buffer for any directory or file operation
(except CLOSE, DISPLAY, or EXTEND). This space 1s released
before the operation completes.

e One 512-byte I1/0 buffer for a DISPLAY or EXTEND operation for
a record-access relative or indexed file; the space is
returned when the operation completes.

e I/0 buffers for a CONNECT operations:

- One I/0 buffer for a record-access stream connected to a
sequential disk file. The I/O buffer uses 512 bytes times
the multiblock count for the stream.

- One 1/0 buffer for a record-access stream connected to a
sequential magtape file. The number of bytes in the I/0
buffer is the block size for the file, rounded up (if
necessary) to a multiple of 4 bytes.

- One 1/0 buffer for a record-access stream connected to a
file on a unit-record device. The number of bytes in the
I1/0 buffer is equal to the default block size for the
device, rounded up (if necessary) to a multiple of 4 bytes.

- One or more 1/0 buffers for a stream connected to a
relative file. Each 1I/0 buffer uses 512 bytes times the
bucket size for the file. If you use the multibuffer count
to specify additional buffers, the requirement increases
accordingly.

- Two or more I/0 buffers for a stream connected to an
indexed file. Each I/0 buffer uses 512 bytes times the
bucket size for the file. If you use the multibuffer count
to specify additional buffers, the requirement increases
accordingly.

1/0 buffers for a connected stream are retained until the
stream is disconnected by a DISCONNECT or CLOSE operation.

RMS-11 PROGRAMMING

If your program uses the I/0 buffer pool for complex sequences of
operations that wuse 1I/0 buffers for different files, the pool may
become fragmented. In that case, you may want to either allocate
extra space in the I/O buffer pool, or limit fragmentation through the
judicious use of private buffer pools.

2.3.5 Buffer Descriptor Block Pool

Your program requires one 20-byte buffer descriptor block (BDB) for
each I/0 buffer (whether from the central or a private pool) that it
uses at the same time; these BDBs are allorated and returned at the
same time as their associated I/0 buffers. (I/0 buffer requirements
are described in the previous section.)

In addition, a block-access stream (for any file) or a record-access
Stream that will write to a relative file requires an additional BDB;
a record-access stream that will write to an indexed file requires two
additional BDBs. These BDBs ' are returned when the stream is
disconnected (or the file is c;os?d).

An EXTEND operation for a record-access relative or indexed file also
requires an additional BDPB, which 1is returned when the operation
completes.

Therefore the size of the BDB pool 1is the largest number of BDBs
required at any one time, times 20 bytes. Specify this largest number

of BDBs (not multiplied by 20) as the bdbcount argument to the P$BDB
macro.

2.4 DECLARING AND INITIALIZING CONTROL BLOCKS

Your program and RMS-11 operation routines communicate by passing data
back and forth in control block fields. Using RMS-11
block-declaration and field-initialization macros, you allocate space
for control blocks and (optionally) assign initial values for fields.

To declare a control block and initialize its fields, use
block-declaration and field-initialization macros as follows:

1. Make sure the control block is word-aligned by using the
.EVEN directive:

.EVEN ;Word-align block

2. Specify a label so that your program can refer symbolically
to the address of the control block.

label:

3. Begin the block declaration with one of the following macros:

FABSB ;Begin FAB declaration

NAMSB ;Begin NAM block declaration
RABSB ;Begin RAB declaration

XABSB XBSALL ;Begin ALL block declaration
XABSB XBSDAT ;Begin DAT block declaration
XABSB XBSKEY ;Begin KEY block declaration
XABSB XBSPRO ;iBegin PRO block declaration
XABSB XBSSUM ;Begin SUM block declaration

RMS-11 PROGRAMMING

4. 1Initialize (optionally) fields with field-initialization
macros of one of the forms:

FS$fld arg ;Initialize FAB field
N$fld arg ;Initialize NAM block field
R$fld arg ;Initialize RAB field
X$fld arg ;Initialize XAB field

In each of these forms, fld is the mnemonic for a field in
the control block; arg is an argument suitable for the value
of the field. Chapter 6 describes field-initialization
macros and their arguments.

5. End the block declaration with one of the following macros:

FABSE ;End FAB declaration
NAMSE :End NAM block declaration
RABSE ;End RAB declaration
XABSE - ;End XAB declaration

2.5 USING RMS-11 OPERATIONS

Your program uses RMS-11 operation routines to perform record
management services. Using RMS-11 operation macros, you call these
operation routines. The routines return values in control Dblock
fields that show the results of the operations.

To use RMS-11 operation routines, your program must:
® Set up control block fields

The values that your program places in control block fields
specify the details of the service you want from the RMS-11
operation routine. Section 2.5.1 shows how to set up control
block fields.

e Chain control blocks

Some RMS-11 operation routines (stream, record, and block

- operation routines) read only RAB fields; others (directory
and file operation routines) read FAB fields and, if your
program supplies them, fields in NAM blocks and XABs. Your
program chains these blocks (using address pointers) so that
the operation routine can find them. Section 2.5.2 shows how
to chain control blocks.

e Call operation routines

You use RMS-11 operation macros to call RMS-11 operation
routines. Section 2.5.3 shows how to call operation routines.

e Handle returns

Section 2.5.4 shows how to handle returns from operation
routines.

e Examine returned values

When an RMS-11 operation routine completes its execution, it
has placed values in control block fields that show the
results of the operation. Your program should examine these
values to determine the results. Section 2.5.5 shows how to
examine returned values.

RMS-11 PROGRAMMING

2.5.1 Setting Up Control Block Fields

The values that your program places into control block fields specify
the details of the service you want from the RMS~11 operation routine.
The description of each operation macro in Chapter 5 discusses the
control block fields that are read by that operation.

Three RMS~11 field-access macros help you place values into control
block fields:

® §STORE places a specified value into a field.
® SSET sets bits in a field.

® SOFF clears bits in a field.

2.5.1.1 $STORE Macro - Use the $STORE macro to copy a value from a
specified location to a control block field. The format for the
SSTORE macro is: Y

$STORE src,fld,reg

where src is a an address in memory; £fld is a field mnemonic; and
reg is a general purpose register (RO through R5) containing the
address of the control block.

The $STORE macro looks up the size of the destination field, so that
it can copy the correct number of bytes or words., If the source is a
register and the destination is a l-byte field, then the low byte of
the register is copied; if the source 1is a register and the
destination is a multiword field, then the contents of the specified
register and following registers are copied.

The $STORE macro generates an error during assembly if you wuse an
illegal address mode for the source. For multiword fields, illegal
address modes are autoincrement deferred, autodecrement deferred, and
indexed deferred.

It is also illegal to specify the program counter (PC) as the source
or to specify a register as source in such a way that the source
overlaps the register that contains the control block address.

At execution time, the $STORE macro copies the contents of the
specified location to the control block field. The number of bytes or
words copied is the same as the field size for the mnemonic. Chapter
6 gives the size of each control block field.

For example, suppose that you want to specify indexed file
organization 1in the FAB for a file, and suppose that the address of
that FAB is stored in register R2. Then the proper macro is:

$STORE #FBSIDX,0RG,R2 ;Indexed file organization

Suppose that you want to chain a NAM block whose label is NAMBLK to
the same FAB. Then the proper macro is:

$STORE #NAMBLK,NAM, R2 ;Chain NAM block

RMS-~-11 PROGRAMMING

Suppose that you want to set the allocation quantity (ALQ field) of
the same FAB to the value stored in a location labeled ALQVAL. Then
the proper macro is:

SSTORE ALQVAL,ALQ,R2 ;Load allocation gquantity

and (because ALQ is a 2-word field) two words are copied from ALQVAL
to the ALQ field.

2.5.1.2 SSET Macro - Use the $SET macro to set bits in a 1l-byte or
1-word control block field. The $SET macro logically ORs a given mask
into the control block field. Therefore for each bit set in the mask,
the S$SET macro sets the corresponding bit in the field; the other
bits are not changed.

Note that you use the $SET macro only if you want to leave some bits
in a field undisturbed; 1if you want to set specified bits and clear
all others, use the S$STORE macro.

The format for the S$SET macroaisﬁ
SSET mask,fld,reg

where mask is an address in memory containing bits to be set; flda is
the mnemonic for a control block field; and reg is a general purpose
register (RO through R5) containing the address of the control block.

If the field is not a l-byte or l-word field, the $SET macro generates
an error during assembly.

RMS-11 has symbols for masks for each bit-oriented control block
field. Therefore vyour program can use these symbols instead of
numerical values.

For example, suppose you want to specify rewind-on-close in the FAB
for a file, but do not want to disturb other bits in the FOP field of
the FAB; suppose also that the address of the FAB is in register R2.

Then the proper macro is:
SSET #FBSRWC,FOP,R2 ;Rewind-on-close

As another example, suppose you want to specify key-duplicates-allowed
and key-changes-allowed for an index, but do not want to disturb other
bits in the FLG field of the KEY block; suppose also that the address
of the KEY block is in register R4. Then the proper macro is:

SSET #XBSDUP!XBSCHG,FLG,R4 ;Allow key duplicates and changes

2.5.1.3 SOFF Macro - Use the $OFF macro to clear bits in a l-byte or
l1-word control block field. The S$OFF macro logically ANDs the 1's
complement of a given mask into the control block field. Therefore
for each bit set in the mask, it clears the corresponding bit in the
field; the other bits are not changed.

Note that you use the S$OFF macro only if you want to leave some bits
in a field undisturbed; if you want to clear the entire field, use
the S$STORE macro (with a source value of #0).

RMS-11 PROGRAMMING

The format for the S$OFF macro is:
$OFF mask,fld,reg

where mask is an address in memory containing bits to be cleared; f1l4
is the mnemonic for a control block field; and reg is a general
purpose register (RO through RS) containing the address of the control
block.

If the field is not a l-byte or l-word field, the SOFF macro generates
an error during assembly.

RMS-11 has symbols for masks for each bit-oriented control block
field. Therefore your program can use these symbols instead of
numerical values.

For example, suppose you want to specify no-rewind-on-close in the FAB
for a file, but do not want to disturb other bits in the FOP field of
the FAB; suppose also that the address of the FAB is in register R2.
Then the proper macro is: ;

SOFF #FBSRWC,FOP,R2 {i % ;No rewind-on-close

As another example, suppose you want to specify
no-key-duplicates-allowed and no-key-changes-allowed for an index, but
do not want to disturb other bits in the FLG field of the KEY block;
suppose also that the address of the KEY block is in register R4.
Then the proper macro is:

SOFF #XBSDUP!XBSCHG,FLG, R4 ;No key duplicates or changes

2.5.2 Chaining Control Blocks

An RMS-11 directory operation or file operation uses at least one FAB;
you specify FABs 1in the operation macros that call the operation
routines.

For some directory operations, a NAM block is required; it is
optional for other directory operations and for file operations. You
specify a NAM block and XABs for an operation by chaining them to the
FAB for the operation.

2,5.2.1 Chaining a NAM Block to a FAB - Specify the NAM block
associated with a FAB by placing its address in the l-word NAM field
of the FAB.

2.5.2.2 Chaining XABs to a FAB - Specify the XABs associated with a
FAB by placing the address of the first XAB in the l-word XAB field of
the FAB; 1in each XAB, specify the address of the next XAB in the
chain in the 1l-word NXT field of the XAB; in the last XAB in the
chain, specify 0 in the NXT field.

Follow these rules in ordering XABs in a chain:

® Place ALL blocks together in the chain. Each ALL block is
"numbered" by the value in the l-byte AID field of the ALL

block; chain ALL blocks so that these numbers are in
ascending order. For the CREATE operation, begin with 0 and
do not skip numbers in the ascending sequence; for other

operations, you can skip numbers in the sequence.

2-12

RMS-11 PROGRAMMING

e Place no more than one DAT block in the chain.

e Place KEY blocks together in the chain. Each KEY block is
"numbered" by the value in the l-byte REF field of the KEY

block; chain KEY blocks so that these numbers are in
ascending order. For the CREATE operation, begin with 0 and
do not skip numbers in the ascending sequence; for other

operations, you can skip numbers in the sequence.
e Place no more than one PRO block in the chain.

e Dlace no more than one SUM block in the chain.

2.5.2.3 Chaining a FAB to a RAB (CONNECT Operation) - The CONNECT
operation creates a stream for a file. A FAB specifies the file; a
RAB specifies the stream. Specify the address of the FAB for the file
in the l-word FAB field of the RAB for the stream.

2.5.3 Calling Operation Routinésb

Use RMS-11 operation macros to «call operation routines. You can
specify arguments for the operation routine either by giving them as
arguments to the operation macro, or by placing them in an argument
block in memory.

2.5.3.1 Call with Macro Arguments - Call an operation routine (except
RENAME) using an operation macro with arguments in the format:

Smacroname blkaddr [, [erraddr] [,sucaddr]]
where Smacroname is the name of an operation macro (except $RENAME);
blkaddr is the address of a FAB (for a directory or file operation) or
a RAB (for a stream, record, or block operation); erraddr 1is the
address of an error handler for the operation; and sucaddr is the
address of a success handler for the operation.
For example, if you want to open a file using a FAB at address INFAB
and want to use a success handler at address SUCCES, the macro call
would be:

SOPEN #INFAB, ,#SUCCES

Call the RENAME operation using the $RENAME operation macro with
arguments in the format:

SRENAME oldfabaddr,[erraddr],[sucaddr],newfabaddr

where oldfabaddr is the address of a FAB for the old file

specification; erraddr is the address of an error handler for the
operation; sucaddr is the address of a success handler for the
operation; and newfabaddr is the address of a FAB for the new file

specification.

RMS-11 PROGRAMMING

2.5.3.2 Call with Arguments in Memory - To call an operation routine
using an operation macro with arguments in an argument block in
memory, omit the arguments tec the macro, store the address of the
argument block in register R5, and store the argument block in memory
as follows:

1 0 ARGUMENT COUNT 0
ADDRESS OF FAB OR RAB 2

ADDRESS OF ERROR HANDLER (OPTIONAL) 4
ADDRESS OF SUCCESS HANDLER (OPTIONAL) 6
ADDRESS OF NEW FAB (RENAME ONLY) 10

ZK-1097-82

The argument count is 4 for a RENAME operation; otherwise it 1is one
of the following:

®¢ 1 - no completion handlers
¢ 2 - error handler, but no success handler
e 3 - success handler

If the operation has no error handler, but either has a success
handler or the operation is RENAME, specify -1 as the address of the
error handler; if the operation has no success handler, but the
operation is RENAME, specify -1 as the address of the success handler.

2.5.4 Handling Returns

An RMS-11 file or directory operation returns a completion status code
in the 1l-word STS field of the FAB and, for some completions, a
completion status value in the l-word STV field of the FAB.

An RMS-11 stream, record, or block operation returns a completion
status code in the 1-word STS field of the RAB and, for some
completions, a completion status value in the l-word STV field of the
RAB.

Appendix A lists completion codes.

Your program should examine the STS field contents to determine
whether the operation was successful; even if the operation returned
an error completion, your program may be able to handle the error and
recover.,

The program can handle the return (based on the completion code)
either in the code that immediately follows the operation macro, or in
special routines (called completion handlers) that the operation can
call. Section 2.6 shows how to write completion handlers.

RMS-11 PROGRAMMING

There are two kinds of fatal RMS-11 errors:

e 1If the FAB or RAB address you specify is not the address of a
valid and idle FAB or RAB, or if the argument block you
provide is invalid, RMS-11 cannot return values, even in the
sTs field. RMS-11 issues a BPT instruction, leaving status
information in the following registers:

RO: RMS-11 fatal error code

Rl: Stack pointer (at time of entry to RMS-11 routine)
R2: Program counter (entry return same as @R1)

R3: Address of system impure area

e If RMS-11 detects the corruption of memory-resident data
structures, or if it detects inconsistent internal states, it
cannot proceed with its operations. In these cases, RMS-~-11
halts execution with a BPT instruction; if it can identify
the error, RMS-11 leaves an error completion in RO,

Appendix A lists the symbols and values for RMS-11 fatal error codes.

v

2.5.5 Examining Returned Values

When an RMS-11 operation routine completes its execution, it has
placed values in control block fields that show the results of the
operation. Your program should examine these values to determine the
results. The description of each operation macro in Chapter 6
discusses the control block fields that return values for that
operation.

Three RMS-11 field-access macros help you examine values 1in control
block fields:

e SFETCH copies a value from a field to a specified location.
e SCOMPARE compares a field value to a specified value.

e STESTBITS determines whether specified bits in a field are
set.

2.5.5.1 SFETCH Macro - Use the $FETCH macro to copy a value from a
control block field to a specified location. The format for the
SFETCH macro is:

SFETCH dst,fld,reg

where dst is an address in memory; fld is the mnemonic for a control
block field; and reg is a general purpose register (RO through R5)
containing the address of the control block.

The S$FETCH macro looks up the size of the source field, so that it can
copy the correct number of bytes or words. If the destination is a
register and the source is a l-byte field, then the byte is copied to
the low byte of the register and the high byte is cleared. 1if the
destination is a register and the source is a multiword field, then
the multiword field is copied to the specified register and following
registers.

RMS-11 PROGRAMMING

The $FETCH macro generates an error during assembly if vyou use an
illegal address mode for the destination. For multiword fields,
illegal address modes are autoincrement deferred, autodecrement
deferred, and indexed deferred. Immediate mode is illegal for SFETCH,
regardless of field size.

It is also illegal to use the program counter (PC) as the destination
or to specify a register for the destination in such a way that the
destination overlaps the register that contains the control block
address.

At execution time, the $FETCH macro copies the contents of the control
block field to the specified location. The number of bytes or words
copied is the same as the field size for the mnemonic. Chapter 6
gives the size of each control block field.

As an example of the use of the S$FETCH macro, suppose that you want to
fetch the allocation quantity (ALQ field) from a FAB to a location
labeled ALQSAV, and suppose also .that the address of the FAB is in
register R3. Then the proper macro is:

$FETCH ALQSAV,ALQ,R3 ~* - ;Save allocation quantity

and two words are copied from the ALQ field to memory beginning at
ALQSAV.

2,5.5.2 SCOMPARE Macro - Use the $COMPARE macro to compare the
contents of a 1-byte or l-word control block field with a specified
value. The format for the $COMPARE macro is:

SCOMPARE src,fld,reg
where src is an address in memory; fld is the mnemonic for a control
block field; and reg is a general purpose register (RO through R5)

containing the address of the control block.

If the given field is not a l-byte or l-word field, the SCOMPARE macro
generates an error during assembly.

At execution time, the SCOMPARE macro executes a machine instruction
that compares the source value and the field contents. The
instruction executed depends on the size of the specified field and on
the specified source:

e TSTB for a l-byte field and the source #0

e TST for a l-word field and the source #0

¢ CMPB for a l-byte field and a source other than #0

¢ CMP for a l-word field and a source other than $0
Chapter 6 gives the size of each control block field.
For example, suppose that you want to compare the value in the RSZ
field of a RAB with a value stored in a location labeled RSZSAV, and
suppose also that the address of the RAB is stored in register R2,.

Then the proper macro is:

SCOMPARE RSZSAV,RSZ,R2 ;Compare record size

RMS-11 PROGRAMMING

Suppose that you want to compare the same RSZ field to the value of a
symbol, RECSIZ. Then the proper macro is:

SCOMPARE #RECSIZ,RSZ,R2 ;Compare record size

2.5.5.3 STESTPITS Macro - Use the STESTBITS macro to test the values
of bits in a l-byte or l-word control block field. Chapter 6 gives
the size of each control block field. The format for the STESTBITS
macro is:

STESTBITS mask,fld,reg

where mask is an address in memory containing bits to be tested; fld
is the mnemonic for a control block field; and reg is a general
purpose register (R0 through R35) containing the address of the control
block.

If the given field is not a l—byie or 1l-word field, the STESTBITS
macro generates an error during\§ssembly.

At execution time, the STESTBITS macro executes a machine instruction
that tests the bits specified in the mask. The instruction executed
depends on the size of the specified field:

e BITB for a l-byte field
e BIT for a l-word field

For example, suppose you want to determine whether the terminal device
is set in the DEV field of a FAB, and suppose that the address of the
FAB is in register R3 Then the proper macro is:

$TESTBITS #FBSTRM,DEV,R3 ;Terminal device?

As another example, suppose that you want to determine whether either
the contiguous-area or the hard-location bit is set in the AOP field
of an ALL block, and suppose that the address of the ALL block 1is in
register R2. Then the proper macro is:

STESTBITS #XBSCTG!XBSHRD,AOP,R2 ;Contiguous or hard location?

2.6 WRITING COMPLETION HANDLERS

Recall that when you use an RMS-11 operation macro, you can specify
the addresses of completion handlers for the operation; if you do so,
the operation automatically calls the error handler (for a nonfatal
error completion) or the success handler (for a success completion)
when the operation completes, before control returns to your program.

When execution control passes to your completion handler, it finds the
following situation:

e Register R5 contains the address of the argument block for the
operation,

e The second word of the argument block contains the address of
the FAB or RAB for the operation. (Recall that the STS and
STV fields of the FAB or RAB contain the completion code and
completion value for the operation.)

RMS-~11 PROGRAMMING

e If the operation was RENAME, the fifth word of the argument
block contains the address of a second FAB for the operation.

e Other blocks are chained as they were when you wused the
operation macro that called the operation routine.

A completion handler cannot determine from these values which RMS-11
operation was executed, or what part of your program called the
operation routine. You can, however, use the l-word CTX field of the
FAB or the l-word CTX field of the RAB to indicate the context of the
operation; RMS-11 does not disturb values in CTX fields.

The completion handler must preserve the stack pointer (SP), and must
end with the RMS-11 completion-return macro in the format:

SRETURN ;End of completion handler

2.7 USING GET-SPACE ROUTINES

Your program can provide and use get-space routines other than the one
provided with RMS-11. It can - set an initial get-space routine at
assembly time, and it can change +to other routines during program
execution. Section 2.7.1 shows how to specify get-space routines, and
how to obtain the address of the current get-space routine. Section
2.7.2 shows how to write a get-space routine.

2,7.1 Specifying Get-Space Routines

To specify a get-space routine at assembly time, use the GSAS macro in
the format:

GSAS address ;Initialize get-space routine
; address

where address is the get-space routine entry address. If you specify
0 as the address, or if you do not use the GSAS$ macro, the initial
get-space routine for the program is the RMS-11 routine.

For example, to specify a routine that begins at the label MYSPAC, you
would use:

GSAS MYSPAC

To change the get-space routine during program execution, use the
$SETGSA macro in the format:

$SETGSA pointer ;Change get-space routine
where pointer is the address of a location that contains the get-space
routine entry address. If you specify the entry-point address as 0,

the new get-space routine established is the RMS-11 routine.

For example, to specify a routine that begins at the label NEWSPC, you
could use:

$SETGSA #NEWSPC

Alternatively, if the location GSATMP contains the value NEWSPC, vyou
could use:

SSETGSA GSATMP

RMS-11 PROGRAMMING

To obtain the address (in R0O) of the current get-space routine during
program execution, use the SGETGSA macro in the format:

SGETGSA ;Get-space routine address into RO

1f the address returned in RO is 0, the current get-space routine is
the RMS-11l routine.

2.7.2 Writing a Get-Space Routine

A get-space routine handles space in contiguous blocks. For a request
for space, it allocates a contiguous block of space (or denies the
request); for a release of space, it accepts a contiguous Dblock of

space.

A get-space routine must have a proper interface to calling routines,
and it should handle unallocated space properly.

>

2.7.2.1 Get-Space Routine Interface - When RMS-11 calls a get-space
routine, it either requests or releases a block of space. For a
request for space, registers RO through R2 contain the following
values:

RO Address of pool free-space list (see next section)
R1 Size (in bytes) of requested block
R2 0

If the get-space routine fills the request, it must clear the C bit
and return the address of the first word of the allocated block in RO;
if it does not fill the request, it must set the C bit. In either
case, the routine must preserve the stack and registers R3 through R6.

For a release of a block of space, registers RO through R2 contain the
following values:

RO Address of pool free-space list (see next section)
R1 Size (in bytes) of released block
R2 Address of first word being released

For a release-space operation, the get-space routine returns no
values; however, it must preserve the stack and registers R3 through
R6.

2.7.2.2 Pool Free-Space Lists - When RMS-11 calls vyour get-space
routine, the address of a pool free-space list is in register RO.
This free-space list specifies free space in one of the five pools
described in Section 2.3; you can use this pool (which may or may not
have adequate free space), or you can use a pool of your own.

The free-space list chains free contiguous blocks of the pool. The
first word of each block contains the address of the next block; if
the first word of a block is 0, it is the last block in the list.

Blocks in the list are ordered by ascending virtual addresses; their
addresses are word-aligned; their sizes are multiples of 4 bytes
(allocations and deallocations must be rounded up to a multiple of 4,
if necessary).

RMS-11 PROGRAMMING

The second word of each block contains the size {in bytes) of the
block, including the 4-byte header; the first "block" in the list
contains 0 in its second word, since it is the header block for the
list.

Your get-space routine can use the specified pool list to get space
for RMS-11; 1if it does this, it must properly maintain the 1list, and
must (if possible) merge blocks back into the pool.

The system routines S$RQCB and $RLCB are suitable for handling pool
free~space lists. These routines have interfaces that meet the
requirements for your get-space routine; therefore your program can
jump te $RQCB (for a space request) or SRLCB {(for a space release).

2.8 ASSEMBLING THE PROGRAM

When you assemble your program, ybu must cause the assembler to get
RMS-11 macro and symbol definitions from a library, and you may have
to correct errors indicated by-megsages from BRMS-11 macros.

2.8.1 Assembling with the RMSMAC Macro Library

When you assemble your program, the assembler needs definitions for
the RMS-11 macros and symbols that your program uses; these are in
the RMS-11 macro library, RMSMAC.MLB. Include the following reference
to the RMS-11 macro library in your assembler command string:

LB:RMSMAC.MLB/ML

2,8.2 Assembly-Time Errors from RMS-1l1 Macros

RMS-11 macros detect some errors during assembly. For each such
error, a macro issues a .PRINT or .ERROR assembler directive with a
message. Appendix B describes RMS-11 macro-generated messages and
their meanings.

CHAPTER 3

PROCESSING DIRECTORIES AND FILES

This chapter discusses use of RMS-11 directory and file operations.
The next sections discuss information and usage common to several
directory and file operations:

® Device characteristics -
e Logical channels

e File specifications and identifiers
e Private buffer pools

e Completion status

The sections after those provide an overview of the operations
themselves (see Chapter 5 for detailed discussions):

e Directory operations (except SEARCH): RENAME and PARSE

¢ File operations: CREATE, OPEN, DISPLAY, ERASE, EXTEND, and
CLOSE

Finally, the last sections discuss:
e SEARCH operation

e Writing wildcard loops

3.1 DEVICE CHARACTERISTICS

A directory or file operation (except CLOSE, DISPLAY, or EXTEND)
returns device characteristics. These characteristics are returned as
masks in the l-byte DEV field of the FAB. The device characteristics
are:

e Printer or terminal (indicated by the set FB$CCL mask 1in the
l-byte DEV field of the FAB and the set FBSREC mask in the
l-byte DEV field of the FAB; for a terminal, the FBSTRM mask
in the 1l-byte DEV field of the FAB is also set); RMS-11
treats a printer or terminal as a unit-record device.

e Disk, DECtape, or DECTAPE II (indicated by the set FB$MDI mask
in the 1l-byte DEV field of the FAB); RMS-11 treats a disk,
DECtape, or DECTAPE II as a disk device.

® Unit-record device (indicated by the set FBSREC mask 1in the
l-byte DEV field of the FAB).

PROCESSING DIRECTORIES AND FILES

® Non-ANSI magtape or cassette tape (indicated by the set FBS$SDI
mask in the 1l-byte DEV field of the FAB and the set FBSREC
mask in the l-byte DEV field of the FAB); RMS-11 treats a
non-ANSI magtape or a cassette tape as a unit-record device.

e ANSI-format magtape (indicated by the set FBS$SQD mask in the
l-byte DEV field of the FABR).

3.2 LOGICAL CHANNELS

An RMS-11 directory or £file operation (except CLOSE, DISPLAY, or
EXTEND) requires a logical channel; this channel is a path from the
program to a specified device.

When your program executes a CREATE or OPEN operation on the channel,
the path is extended to the target file; wuntil the file is closed,
the channel is reserved for the qpecified FAB.

Your program specifies the logical channel for a directory operation
or for a CREATE, ERASE, or OPEN:operation in the l-byte LCH field of
the FAB; the channel must not already be in use by the task.

You can specify the initial device assignment for a logical channel in
a Task Builder command file., The Task Builder also provides default
initial device assignments for certain channels. Other logical
channels are unassigned when your task begins executing.

During task execution, channel assignments are made or changed by use
of the ALUN$ system directive. For example, RMS-11 uses the ALUNS
directive to assign a logical channel for a directory operation or for
a CREATE, ERASE, or OPEN operation; if the FAB and NAM block specify
a device or device identifier, RMS-11 assigns the channel to that
device; if the FAB and NAM block do not specify a device or device
identifier, RMS-11 retains the device-channel assignment (if any), or
assigns the channel to the device SY:.

3.3 FILE SPECIFICATIONS AND IDENTIFIERS

A file specification consists of the following elements (in the order
given):

® Device specification - the device where the file resides

e Directory specification - the directory on the device through
which the file can be found

e File name - the name by which the file 1is known in the
directory

e File type -~ the type by which the file 1is known 1in the
directory

RMS5-11 operations construct and use file specification strings and
file identifiers to specify files. These strings and identifiers
include:

e User-provided file specification strings

e Expanded file specification strings

PROCESSING DIRECTORIES AND FILES

e Resultant file specification strings
e File and device identifiers

This section discusses these strings and identifiers as they are wused
for nonwildcard operations; wildcard use is described in Section 3.8.

For a CREATE, ERASE, OPEN, PARSE, or RENAME operation, your program
specifies two strings to be used 1in generating a full file
specification:

e A file specification string, called the file string (your
program specifies the address of the file string in the l-word
FNA field of the FAB and the 1length of the string in the
l-byte FNS field of the FAB)

e A default file specification string, called the default string
(your program specifies the address of the default string in
the l-word DNA field of the FAB and the length of the string
in the l-byte DNS field of the FAB)

The operation routine uses théée’}two strings to form an internal
merged file specification string, called the merged string. The
operation initially forms the merged string as follows:

e It begins by taking available elements from the file string.

e It then supplies missing elements from the default string (if
they are available there). The operation (when it completes)
returns masks describing the results of this merge in the
1-word FNB field of the NAM block (if you supplied a NAM block
for the operation).

If elements are still missing from the merged string, the operation
next adds the following elements:

e Device - If the logical channel specified in the LCH field of
the FAB is already assigned to a device, that device is used;
otherwise the device SY: is used.

e Directory - The task's current directory is used.
e File name and type - Nulls are used.

If the operation 1is +the PARSE operation, the merged string 1is
complete. If you provided a NAM block, the PARSE operation returns
the device identifier in the 2-word DVI field of the NAM block; if
you provided an expanded string buffer, the PARSE operation returns
the expanded string in the expanded string buffer (whose address is in
the 1l-word ESA field of the NAM block). (Note that the device
specification in an expanded string has usually been translated to the
specification for a physical device:)

An operation other than PARSE continues by examining the FBSFID mask
in the FOP field of the FAB. If the FBS$FID mask is set, the operation
adds the following elements:

® Device - If a device identifier is given 1in the NAM block,
that device overrides the device in the merged string and the
device specification is deleted from the merged string.

e File identifier - If a file identifier is given 1in the NAM
block and if the operation 1is ERASE or OPEN, that file
overrides the file name and type in the merged string and the
specifications for those elements are deleted from the merged
string.

PROCESSING DIRECTORIES AND FILES

The merged string is then copied to the expanded string buffer (if you
supplied one) as described for the PARSE operation above. The merged
string plus applicable identifiers are called the fully qualified file
specification, and define the file upon which the operation will be
performed.

The device and file identifiers for the file are returned in the NAM
block (if you supplied one). If the operation is SEARCH, the file
identifier will be returned only if the FBSFID mask is set.

Note that a complete file specification is relevant only to a disk
file. The directory specification is not relevant for ANSI magtape
files; only the device specification is relevant for a file on a
unit-record device. Irrelevant elements are not processed, and appear
in the expanded string only if your program provides them in the file
string or default string.

3.4 PRIVATE BUFFER POOLS

Many RMS-11 operations require ‘spice from a buffer pool. A directory
or file operation (except CLOSE, DISPLAY, or EXTEND) allows your
program to specify a private buffer pool. Your program specifies the
address of the pool in the l-word BPA field of the FAB; it specifies
the size (in bytes) of the pool in the l-word BPS field of the FAB.

The CLOSE operation returns (in the BPA and BPS fields) the address
and size of the private buffer pool (if any) specified for the CREATE
or OPEN operation that opened the file; until the file is closed, the
pool is dedicated to the open file and must not be used for other
purposes.

If your program does not specify a private buffer pool, the operation
uses the central buffer pool (which your program declares using
pool-declaration macros); if your program specifies a private Dbuffer
pool, the operation uses that pool.

The CLOSE, DISPLAY, and EXTEND operations, and all stream, record, and

block operations use the pool specified by the CREATE or OPEN
operation that opened the file.

3.5 COMPLETION STATUS
A directory or file operation returns a completion status code in the

l-word STS field of the FAB, and a completion status value in the
l-word STV field of the FAB.

3.6 DIRECTORY OPERATIONS

RMS-11 directory operations affect only directory entries (not the
contents of files). The directory operations are:

e RENAME: replace a directory entry
¢ PARSE: analyze a file specification
® SEARCH: search directories

The next sections provide an overview of the directory operations
(except for the SEARCH operation, which is discussed in Section 3.8).

PROCESSING DIRECTORIES AND FILES

3.6.1 RENAME Operation

Your program can replace the directory entry for a file by using the
RENAME operation. The fully qualified file specification for the new
directory entry must not specify a new device or directory for the
file, but it can specify different file name and file extension
elements.

If you do not specify a device, the device associated with the old
file specification is used.

For both the 0ld and new direétory entries, the RENAME operation uses
the device and directory elements of the fully qualified file
specification to determine the target directory; it uses the file

name and type elements of the fully qualified file specification to
identify the entry to be removed or created.

3.6.2 PARSE Operation
Your program can use the PARSE operation to analyze a file
specification, or to prepare for a series of wildcard operations

(described in Section 3.8). The results of the PARSE operation are
described in detail in Section 3.3.

3.7 FILE OPERATIONS

RMS-11 file operations affect files as whole entities (but not
individual records or blocks in files). The file operations are:

e CREATE: create a file (and a corresponding directory entry)
and open the file for processing :

e OPEN: open an existing file for processing
e DISPLAY: write file information to control blocks

@ ERASE: delete file contents (records or blocks) and remove
directory entry

e EXTEND: increase the allocation for a file
e CLOSE: close an open file

The next sections discuss file operations.

3.7.1 CREATE Operation

The CREATE operation creates a new file and opens it for processing;
unless the file is specified as a temporary file, the CREATE operation
also creates a directory entry for the file.

The CREATE operation uses the device and directory elements of the
fully qualified file specification to determine the target directory;
it then uses the file name and type of the fully qualified file
specification to form the entry in that directory.

PROCESSING DIRECTORIES AND FILES

3.7.2 OPEN Operation

Your program can establish an access path to a file by using the OPEN
operation. This makes file information available to your program, and
enables your program to use the following operations for the file:

e DISPLAY operation (to make more file information available to
your program).

e EXTEND operation (to allocate more space for the file).

o CONNECT operation (to establish a path to file records or
blocks) . The CONNECT operation enables your program to use
other stream operations and either record operations or block
operations.

® CLOSE operation (to release resources committed to the open

file). The CLOSE operation terminates the access path
established by the CREATE or OPEN operation that opened the
file. :

3.7.3 DISPLAY Operation

If your program uses the OPEN operation to open a file, but does not
provide control blocks and buffers for all the information that the
OPEN operation can return, you may want to use the DISPLAY operation
to obtain additional information while the file is open.

3.7.4 ERASE Operation

Your program can erase the contents of a file by using the ERASE
operation, and remove its directory entry.

The ERASE operation uses the fully qualified file specification to
determine the target file. It uses the device and directory elements
of the fully qualified file specification to determine the target
directory, and the file name and type elements to determine the entry
to be removed.

3.7.5 EXTEND Operation

Your program can increase the allocation for an open file by using the
EXTEND operation. Note that RMS-11 automatically extends the file
allocation when it needs more space; you can use the EXTEND operation
to make large extensions (avoiding repeated automatic extensions) or
exact extensions (avoiding wasteful automatic extensions).

3.7.6 CLOSE Operation

Your program can close an open file by wusing the CLOSE operation.
This releases task and system resources (other than the file itself)
and makes those resources available for other uses.

PROCESSING _.RECTORIES AND FILES

3.8 WRITING WILDCARD LOOPS

You can include wildcard characters in an RMS-11 file specification
and use the PARSE and SEARCH operations to identify files that match
the wildcard specification. This allows you to program a wildcard
loop that successively (and selectively, if you wish) processes files
matching the wildcard specification.

An advantage of RMS-11 wildcarding over system wildcard commands is
that your processing can be selective. For example, if you use a
system wildcard command to rename a group of files, the entire group
is renamed; if you use a wildcard loop in a program, the program can
fully examine information about each file and even the contents of
each file to decide whether to rename it.

The next three sections show:

e The structure of a wildcard loop and the behavior of directory
and file operations in the loop

e How to write a wildcard 'loop that nonselectively wuses the
ERASE or RENAME operatfom:on successive matching files

e How to write a wildcard 1loop that selectively performs
directory and file operations on successive matching files

3.8.1 Introduction to Wildcarding

This discussion assumes that you want to write a program loop that
uses a wildcard input file specification, and that you want to use the
same control blocks (FAB and NAM block) for all operations associated
with the wildcard loop.

A series of wildcard operations can be viewed as having four steps:
1. 1Initializing for wildcarding
2. Finding the next matching file
3. Operating on the found file
4. Ending wildcarding

The next sections discuss these steps.

3.8.1.1 1Initializing for Wildcarding - The PARSE operation
initializes control blocks (FAB and NAM block) for wildcard
operations. Place the S$PARSE macro before the wildcard loop in your
program.

The PARSE operation sets the NBSWCH mask in the l-word FNB field of
the NAM block to show that wildcard operations are in progress. (Your
program must clear the NBSWCH mask if it will not perform SEARCH
operations after a PARSE operation.)

The PARSE operation also forms a match-pattern in the expanded string
buffer (whose address 1is in the l-word ESA field of the NAM block);
this match-pattern is used by subsequent wildcard SEARCH operations.

PROCESSING DIRECTORIES AND FILES

A series of SEARCH operations requires a NAM block that specifies both
expanded string and resultant string buffers. (The resultant string
buffer is specified in the l-word RSA field of the NAM block.) Your
program must not alter the expanded string, the resultant string, or
other NAM block contents between the PARSE operation and the end of
the subsequent series of SEARCH operations.

3.8.1.2 Finding the Next Matching File -~ The SEARCH operation finds
the next file (if any) that matches the wildcard input file
specification. (If the SEARCH operation cannot find another matching
file, wildcarding ends; see Section 3.8.1.4.)

The SEARCH operation returns a fully qualified file specification in
the resultant string buffer, along with the device identifier for the
found file, The file identifier is returned also if the FBSFID mask
in the l-word FOP field of the FAB is set.

The SEARCH operation in your wildcard 1loop can either be explicit
(your loop contains the SSEARCH macro) or, for some operations,
implicit (RMS-11 automatically’ performs the SEARCH operation). If you
use the explicit SEARCH operation, place the $SEARCH macro inside the
loop but before other operation macros.

If you use an ERASE or RENAME (old FAB) operation in the loop with the
FBSFID mask in the 1l-word FOP field of the FAB cleared, RMS-11
implicitly performs a SEARCH operation (to find the next matching
file) before performing the ERASE or RENAME operation. This allows
your wildcard loop to omit the $SEARCH macro. (If the implicit SEARCH
operation cannot find another matching file, wildcarding ends; see
Section 3.8.1.4.)

3.8.1.3 Operating on the Found File - A number of directory and file
operations are wildcard-transparent 1in the sense that they preserve
both wildcard context information and information about the last-found
file. This means that your program can use the operations within a
wildcard loop without changing the wildcard context; the series of
wildcard operations is continuable.

These wildcard-transparent operations are: CLOSE, DISPLAY, and
EXTEND, and (if the FBSFID mask in the l-word FOP field of the FAB is
set) ERASE, OPEN, and RENAME (old FAB).

3.8.1.4 Ending Wildcarding - A series of wildcard operations (using a
specific FAB and NAM block) ends when a directory or file operation
discards wildcard context information or when your program clears the
NBSWCH mask in the l-word FNB field of the NAM block.

Typically, the operation that ends wildcarding is a SEARCH operation
that cannot find another matching file. It returns the ERSNMF
completion status code and clears the NBSWCH mask in the 1l-word FNB
field of the NAM block.

If your program exits from a wildcard loop before the SEARCH operation
fails to find a matching file, the NBSWCH mask in the l-word FNB field
of the NAM block is still set, and your program must clear it.

Executing the PARSE operation during a wildcard series ends that
series and initializes control blocks for a new series.

PROCESSING DIRECTORIES AND FILES

Executing a CREATE operation or executing an OPEN operation with the
FBSFID mask in the 1l-word FOP field of the FAB cleared, ends the
wildcard series for that FAB.

3.8.2 Nonselective ERASE or RENAME Wildcard Operations

You can write a wildcard loop that performs nonselective ERASE or
RENAME operations on successive matching files, where RMS-11
implicitly performs a SEARCH operation before each ERASE or RENAME
operation.

To do this, do the following:

1. Use the PARSE operation to initialize control block fields
for wildcarding.

2. Clear the FBSFID mask in the l-word FOP field of the FAB (for
the RENAME operation, the old FAB). This causes the ERASE or
RENAME operation to perform an implicit SEARCH operation
before performing its own processing.

3. Use the ERASE or RENAME operation to operate on the next
matching file.

4. Examine the STS field of the FAB. 1If it contains the ERSNMF
completion status code, there was not another matching filej;
in that case, go to step 7.

5. perform other in-loop processing (such as reporting the file
specification of the erased, removed, or renamed file).

6. Go to step 2.

7. The wildcard series 1is finished; continue with other
processing.

The following program segment illustrates this procedure, performing
the ERASE operation. In the program segment, FABADR is a label giving
the address of the FAB for the operations, and RO is used (for the
$STORE and S$COMPARE macros) to contain the address of the FAB.

SPARSE #FABADR :Set up for wildcarding
LOOP: MOV #FABADR,RO ;FAB address to RO

SOFF #FBSFID,FOP,R0 ;Use implicit search

; (FBSFID off)

SERASE #FABADR ;Try to erase next file

SCOMPARE #ER$NMF,STS,R0 ;Was there a matching file?

BEQ DONE ;No more matching files

. e ;O0ther in-loop processing

BR LOOP ;On to next matching file
DONE: P ;Continue with other

;s processing

PROCESSING DIRECTORIES AND FILES

3.8.3 Selective Wildcard Operations

You can write a wildcard loop that performs directory and file
operations on selected matching files, where your program explicitly
performs a SEARCH operation at the beginning of each iteration of the
loop. To do this, do the following:

1. Use the PARSE operation to initialize control block fields
for wildcarding.

2. Use the SEARCH operation to obtain information about the next
file that matches the wildcard specification.

3. Examine the STS field of the FAB. If it contains the ERSNMF
completion status code, there was not another matching file;
in that case, go to step 6.

4. Perform directory and file operations on the found file. If
ERASE, OPEN, or RENAME operations are included, be sure the
FBSFID mask in the l-word FOP field of the FAB (for the
RENAME operation, the old FAB) is set.

Do not perform CREATE or }ARSE operations, or OPEN operations
with the FBSFID mask cleared; these operations end
wildcarding.

Do not perform ERASE or RENAME operations with the FBSFID
mask cleared; these operations perform an implicit SEARCH
operation, advancing to the next matching file.

5. Go to step 2.

6. The wildcard series 1is finished; continue with other
processing.

The following program segment illustrates the procedure, performing
the ERASE operation on selected files. 1In the program segment, FABADR
is a label giving the address of the FAB for the operations, and RO is
used (for the $COMPARE macro) to contain the address of the FAB.

SPARSE #FABADR ;Set up for wildcarding
LOOP: SSEARCH #FABADR ;Find next matching file

MOV #FABADR, RO ;FAB address to RO

SCOMPARE #ERSNMF,STS,R0 ;Any more matching files?

BEQ DONE ;No more matching files

« e ;Decide whether to delete

; file (if so, Z-bit on)

BNE NOOP ;Don't delete file

MOV #FABADR, RO ;FAB address to RO

SSET #FBSFID,FOP,R0 ;Explicit SEARCH already done

SERASE #FABADR ;Erase file contents
NOOP: . . ;Other in-loop processing

BR LOOP ;On to next matching file
DONE: . e ;Continue with other

; DProcessing

CHAPTER 4

PROCESSING RECORDS AND BLOCKS

This chapter describes use of RMS-11 stream, record, and block
operations; 1its major sections are:

e Completion status
e Streams B
e Record processing

e Block processing

4.1 COMPLETION STATUS

A stream, record, or block operation returns a completion status code
in the l-word STS field of the RAB; it may also return a completion
status value in the l-word STV field of the RAB.

4.2 STREAMS

A stream is a path from your program to the data in a file, The
CONNECT operation establishes a stream; for the CREATE or OPEN
operation that opened the file, your program specified either record
access or block access.

If it specified record access, the stream is a record stream and
supports only stream operations and record operations; if it
specified block access, the stream is a block stream and supports only
stream operations and block operations.

For the CONNECT operation, your program specifies the FAB for the file
(in the 1l-word FAB field of the RAB), and the CONNECT operation
returns an internal stream identifier (in the l-word ISI field of the
RAB) . all stream, block, and record operations (except CONNECT)
identify the file using the internal stream identifier; the
DISCONNECT operation terminates the stream, and clears the internal
stream identifier.

PROCESSING RECORDS AND BLOCKS

4.3 RECORD PROCESSING

This section describes use of BRMS-11 record processing. Its
subsections are:

® Record streams: the paths from your program to file records
e Record context: the "current location" of a stream in a file
® Record access modes: the ways your program can access records

® Record buffers: the locations of records in your program's
space

® Locate mode: a way of speeding record processing
® Stream operations: stream operations for a record stream

® Record operations: operations that access records

4.3.1 Record Streams

A record stream is a path from your program to the records in a file.
Your program establishes a record stream when it uses the CONNECT
operation to connect a stream to a file (opened for record access by
an earlier CREATE or OPEN operation). A record stream supports stream
operations and record operations, but not block operations.

If the target file for a stream is a relative or indexed file, vyour
program can establish more than one stream for the file; 1if, in

addition, your program specifies access sharing, more than one task
can establish streams for the file.

4.3.2 Record Context

A record stream has a record context, which consists of a

current-record context and a next-record context. Some record
operations use the current record or next record as the target for the
operation; some Stream and record operations change the

current-record context, the next-record context, or both.

The notion of "following record" 1is important to record context
because the next-record context is often established as the record
"following" the current record. The precise meaning of "following

record" depends on the file organization:

e In a sequential file, the record following a given record is
the one immediately following it in physical sequence.

® In a relative file, the record following a given record is the
one in the first higher-numbered csll that contains a record.

® In an indexed file, a record follows another only with respect
to an index; each index imposes an order on the file records.
The record following a given record (under a given index) is
the record whose record key is the smallest in the file that
is greater than the record key of the given record; among
records having identical record keys, a record written later
follows a record written earlier.

PROCESSING RECORDS AND BLOCKS

Note that although an operation may establish the next-record context,
that context 1is not evaluated until another operation uses it. For
example, if your program connects a stream to a relative file that
contains records only in cells 5 and 10, a sequential access GET
operation returns the record in cell 5 and establishes both
current-record and next-record context; if another stream or task
then inserts a record in cell 7 before your program executes a second
sequential access GET operation, that GET operation returns the new
record (cell 7), even though the record did not exist when the
next-record context was established.

4.3.3 Record Access Modes

The record operations FIND, GET, and PUT allow your program to specify
a record access mode (in the l-byte RAC field of the RAB); the record
access mode determines the target record for the operation. The
record access modes are: :

e Sequential access
® Key access
e RFA access

The next sections discuss these access modes.

4,3.3.1 Sequential Access - Your program specifies sequential access
by setting the RB$SEQ code in the l-byte RAC field of the RAB. A
sequential access FIND or GET operation has as its target the next
record. (Exception: a sequential access GET operation that
immediately follows any FIND operation has as its target the current
record, which is the record found by the FIND operation.)

The target of a sequential access PUT operation depends on the file
organization, as follows:

e For a sequential file, a series of sequential access put
operations must begin with the next-record context at the
end-of~-file. The series of PUT operations adds new records at
the end-of-file.

e For a relative file, a series of sequential access PUT
operations must begin with the next-record context set such
that the first cell examined is empty (unless the RBSUIF mask
in the l-word ROP field of the RAB is set). The series of PUT
operations adds new records in successive cells; if a
nonempty cell 1is encountered, the PUT operation returns the
ERSREX completion (unless the RB$UIF mask 1is set, in which
case the existing record is overwritten).

e For an indexed file, a series of sequential access PUT
operations does not depend on the next-record context;
however, a PUT operation in the series returns the ERSSEQ
completion if the value of the record primary key for the
operation is less than the value of the record primary key for
the preceding PUT operation.

PROCESSING RECORDS AND BLOCKS

A sequential access FIND or GET operation sets the current-record
context to the target record, and sets the next-record context to the
record following the target record. Sequential access PUT operations
leave both the current-record and next-record contexts undefined.

This targeting and context setting means, generally speaking, that a
series of sequential access operations operates on successive records.
Specifically, series of sequential access operations result as
follows:

® A series of sequential access FIND operations sets the stream
context to successive records.

® A series of sequential access GET operations reads successive
records.

® A series of sequential access PUT operations writes successive
records (for an indexed file, possibly interspersed with
existing records). :

¢ A series of paired seguéential access FIND and sequential
access GET operations reads successive records.

4.3.3.2 Key Access - Your program specifies key access by setting the
RBSKEY code in the l-byte RAC field of the RAB. A key access FIND,
GET, or PUT operation has as its target the record that your program
specifies by specifying the key. For a relative file or for a
sequential disk file with fixed-length records, your program specifies
the key as a relative record number. Specify the relative record
number in the l-word KBF field of the RAB and the key size as 0 or 4
in the l-byte KSZ field of the RAB.

For a FIND or GET operation for an indexed file, your program
specifies the 1index of reference and a key buffer that contains the
record key. Specify the index of reference in the l-byte KRF field of
the RAB, the address of the key buffer in the l-word KBF field of the
RAB, and the key size in the l-byte KSZ field of the RAB.

A key access FIND or GET operation sets the current-record context to
the record that is the target of the operation; a key access PUT
operation leaves the current-record context undefined.

A key access FIND or PUT operation does not affect the next-record
context; a key access GET operation sets the next-record context to
the record following the target record.

The target of a key access FIND, GET, or PUT operation depends on the
operation and on the file organization:

® For a relative file or for a sequential disk file with
fixed-length records, the key 1is a positive integer and
specifies the position of the record in the file. This key is
the relative record number (RRN) for the record; RRN 1
specifies the first record, and so forth.

If your program sets the RBSKGT mask in the l-word ROP field
of the RAB, a FIND or GET operation searches for a record
whose RRN is greater than the given RRN; if it sets the
RBSKGE mask in the l-word ROP field of the RAB, the operation
searches for a record whose RRN is greater than or equal to
the given RRN; if it sets neither of these masks, the
operation searches for a record with the given RRN.

PROCESSING RECORDS AND BLOCKS

Note that a FIND, GET, or PUT operation to a relative file or
to a sequential disk file with fixed length records returns
the RRN for the target record in the 2-word BKT field of the
RAB.

e For a FIND or GET operation to an indexed file, the key
specifies a record in the file whose record key matches the
given key. Your program specifies both the key to be matched
and the file index; the key data type must agree with the key
data type for the index (string, packed decimal, binary, or
signed integer).

For a string key, your preogram specifies the portion of the
key that must be matched. If the value in the l-byte KSZ
field of the RAB is nonzero but is smaller than the record
key, then only that smaller initial portion of the key must
match.

If your program sets the RB$KGT mask in the l-word ROP field
of the RAB, a FIND or GET operation searches for a record
whose key is greater than' the given Kkey; if it sets the
RBSKGE mask in the l-word ROP field of the RAB, the operation
searches for a record whose key is greater than or equal to
the given key; if it sets neither of these masks, the
operation searches for a record whose key exactly matches the
given key.

e For a PUT operation to an indexed file, the key (for each
index) is 1in the record. The operation has no true target;
the record is inserted at the proper place and each index is
updated.

This targeting and context setting means that although the target of
the key access operation is a random (selected) record, the record
context allows subsequent sequential access processing. Therefore
your program can use Kkey access to "Jump" to a selected point in a
file, then use sequential access to process successive records.

4.3.3.3 RFA Access - Your program specifies RFA access by setting the
RBSRFA code in the l-byte RAC field of the RAB. An RFA access FIND or
GET operation has as its target the record that your program specifies
by RFA (record file address). (The FIND, GET, and PUT operations
return the RFA for the target record; if your program saves the RFA,
it can use RFA access for the record in subsequent FIND and GET
operations.) Specify the RFA in the 3-word RFA field of the RAB.

An RFA access FIND or GET operation sets the current-record context to
the record that is the target of the operation. An RFA access FIND
operation does not affect the next-record context; an RFA access GET
operation set the next-record context to the record following the
target record.

This targeting and context setting means that although the target of
the RFA access operation is a random (selected) record, the record
context allows subsequent sequential access processing. Therefore
your program can use RFA access to "Jump” to a selected point in a
file, then use sequential access to process successive records.

PROCESSING RECORDS AND BLOCKS

4.3.4 Record Buffers

A PUT or UPDATE operation transfers a record from a record buffer (in
your program's space) to a file; for a VFC record, the operation also
transfers the fixed-length portion of the record from a separate
record header buffer. Your program specifies the address of the
record buffer in the l-word RBF field of the RAB and the size of the
record in the 1l-word RSZ field of the RAB; for a VFC record, your
program also specifies the address of the record header buffer in the
l-word RHB field of the RAB.

A GET operation transfers a record from a file to an RMS-1l1 internal
I/0 buffer and to a user buffer in your program's space. Your program
specifies the address of the user buffer in the l-word UBF field of
the RAB and its size in the l-word USZ field of the RAB. Along with
the record, the GET operation returns the address of the record in the
l-word RBF field of the RAB and its size in the l-word RSZ field of
the RAB.

For a VFC record, a GET operation also transfers the fixed-length
portion of the record to a. separate record header buffer in your
program's space. Your program gpecifies the address of the record
header buffer in the l-word RHB field of the RAB.

Exception: 1if your program specifies locate mode for a GET operation,
RMS-11 may not transfer the record to the user buffer; see the next
section for a discussion of locate mode.

4.3.5 Locate Mode

The GET and PUT operations normally use RMS-11l internal I/0 buffers as
intermediate storage between your program's buffers (record or user
buffers) and the file. By specifying locate mode for a GET or PUT
operation, your program requests RMS-11 to transfer records only
between its I/O buffers and the file, thus saving time. Your program
specifies 1locate mode by setting the RBSLOC mask in the l-word ROP
field of the RAB,

If your program specifies locate mode for a GET operation, RMS-11 may
transfer the record only to its internal I/0 buffer (but not to the
user buffer). The GET operation routine decides whether to honor the
locate-mode reguest or to transfer the record to the user buffer
anyway; the operation returns the address and size of the retrieved
record (informing your program of the record's location -- the user
buffer or the I/0 buffer).

If your program specifies locate mode for a PUT operation, RMS-11
recognizes that the record may already be in its I/0 buffer and if so
transfers it to the file from there.

Your program has (in the l-word RBF field of the RAB) the address of a
location (in the I/0 buffer if possible, otherwise in the user buffer)
that is suitable for building the next record; this address 1is
returned either by a previous locate-mode PUT operation or by an
initial locate-mode CONNECT operation. Therefore, if you wuse the
CONNECT operation for a stream that will use locate-mode PUT
operations, your program must specify locate mode for the CONNECT
operation, and must specify a user buffer ({the address in the l-word
UBF field of the RAB and the size in the 1l-word USZ field of the RAB).

Note that specifying locate mode for a PUT operation has no effect
unless the file is sequential, the access mode is sequential, and the
record format is other than stream record format.

PROCESSING RECORDS AND BLOCKS

4,3.6 Stream Cperations

Stream operations affect stream context and 1/0 buffers (but not file
records). The stream operations for a record stream are:

e CONNECT: establish a record stream

e TFLUSH: write unwritten buffers for a stream

e FREE: free locked bucket for a stream

e REWIND: set stream context to beginning of current file
e DISCONNECT: terminate a record stream

The next sections discuss these operations.

4.3.6.1 CONNECT Operation - Your program uses the CONNECT operation
to establish a record stream:: (The stream is a record stream because
your program specified record acdess for the CREATE or OPEN operation
for the file.)

The current-record context after a CONNECT operation is undefined;
the next-record context is (by default) the first record in the file.

For an indexed file, your program must specify an initial index of
reference so that the record context is initialized properly.

For a sequential file, your program can specify that the initial
record context is to be at the end-of-file (instead of the beginning
of the file); in that case, the next-record context after the
operation is the end-of-file.

For a sequential disk file, your program specifies the number of
blocks in the 1I/0 buffer for the stream; for a relative or indexed
file, your program specifies the number of 1/0 buffers for the stream.

1f the stream will use locate-mode PUT operations, your program must
also specify 1locate mode and supply a user buffer. The CONNECT
operation returns the address of a location suitable for building the
first record to be output; see Section 4.3.5.

4.3.6.2 FLUSH Operation - Your program can use the FLUSH operation to
write any unwritten buffers for a stream (for example, to increase
data integrity by ensuring that all changes have been written to the
file); the FLUSH operation does not affect record context, except
that the current-record context is undefined for a following TRUNCATE
or UPDATE operation to a sequential file.

Note one special case: if the file was opened for deferred writing,
but not for write sharing, then the buffer may be controlled by
another record stream and will not be written by the FLUSH operation.

4.3.6.3 FREE Operation - Your program can use the FREE operation to
free a locked bucket for a stream; the FREE operation does not affect
stream context, except that the current-record context is undefined
for a following DELETE, TRUNCATE, or UPDATE operation.

PROCESSING RECORDS AND BLOCKS

4.3.6.4 REWIND Operation - Your program can use the REWIND operation
to reset the context for a stream to the beginning-of-file (the file
must not be on a magtape device).

The current-record context after the operation is undefined; the
next-record context 1is the first record in the file; for an indexed
file, your program specifies the index of reference for the operation
so that the stream context is initialized properly.

4.3.6.5 DISCONNECT Operation - Your program can use the DISCONNECT
operation to terminate a record stream, thus recovering the resources
committed for the stream (primarily pool space). The DISCONNECT
operation also discards record context and the internal stream
identifier.

4.3.7 Record Operations

Record operations affect streamt:context, buffers (I/0, user, and
record), and file records. The record operations are:

e FIND: transfer a record from a file to an I/O buffer

® GET: transfer a record from a file to an I/0 buffer and to a
user buffer

® PUT: transfer a record from a user buffer to a file
® DELETE: remove a record from a file
e UPDATE: replace a record in a file

e TRUNCATE: remove the current record and all following records
from a sequential file

The next sections discuss these operations.

4.3.7.1 FIND Operation - Your program can use the FIND operation to
transfer a record (or part of a record) from a file to an I/0 buffer;
the FIND operation does not transfer the record to a. user buffer.

Your program specifies an access mode (sequential, key, or RFA) for
the FIND operation; Section 4.3.3 describes the target record and
context-setting for the FIND operation (Section 4.3.3.1 for sequential
access, 4.3.3.2 for key access, and 4.3.3.3 for RFA access) .

For a relative file or for a sequential disk file with fixed-length
records, the FIND operation returns the relative record number (RRN)
and the record file address (RFA) for the found record; for other
files, the FIND operation returns only the RFA for the found record.

4.3.7.2 GET Operation - Your program can use the GET operation to
transfer a record from a file to an I/0 buffer and to a user buffer
(which your program specifies),

PROCESSING RECORDS AND BLOCKS

Your program specifies an access mode (sequential, key, or RFA) for
the GET operation; Section 4.3.3 describes the target record and
context-setting for the GET operation (Section 4.3.3.1 for sequential
access, 4.3.3.2 for key access, and 4,.3.3.3 for RFA access).

The GET operation returns the address and size of the retrieved
record, along with its RFA; for a relative file or for a sequential
disk file with fixed-length records, the GET operation also returns
the RRN for the retrieved record.

If your program specifies locate mode for the GET operation, it must
also specify a user buffer; see Section 4.3.5.

4.3.7.3 PUT Operation - Your program can use the PUT operation to
transfer a record from a user buffer to an I/0 buffer and to a file.

Your program specifies an access: mode (sequential or key) for the PUT
operation; Section 4.3.3 describes the target record and
context-setting for the PUT operation (Section 4.3.3.1 for sequential
access, 4.3.3.2 for key access).’

Your program can specify that RMS-11 must honor bucket fill numbers.

For an indexed file, your program can specify that each PUT operation
in a series 1is part of a mass insertion; for a relative file, your
program can specify that the PUT operation should overwrite the target
record (if any).

The PUT operaticn returns the RFA for the inserted record; for a
relative file or for a sequential disk file with fixed-lentgh records,
the PUT operation also returns the RRN for the inserted record.

If your program specifies locate mode for the PUT operation, it must
also specify a user buffer. The PUT operation returns the address of
a location suitable for building the next output record; see Section
4.3,5.

4.3.7.4 DELETE Operation - Your program can use the DELETE operation
to remove a record from a relative or indexed file. The target of a
DELETE operation is the current record.

The current-record context after a DELETE operation is undefined; the
next-record context is unchanged.

For an indexed file, your program can specify that RMS-11 must use the
fast-deletion procedure. However, this procedure is faster because it
deletes only those alternate index pointers that it must; future
retrieval operations may be slowed by the presence of undeleted
alternate index pointers.

4.3.7.5 UPDATE Operation - Your program can use the UPDATE operation
to transfer a record from a user buffer to a file {overwriting the
existing record). The target of the UPDATE operation is the current
record, which is overwritten.

PROCESSING RECORDS AND BLOCKS

The current-record context after an UPDATE operation 1is undefined;
the next-record context is unchanged.

Your program specifies the record buffer for the record to be inserted
(and, for a VFC record, the VFC-header buffer).

4.3.7.6 TRUNCATE Operation - Your program can use the TRUNCATE
operation to remove the current record and all following records
{through the end-of-file) from a sequential file. The current-record
context after a TRUNCATE operation 1is undefined; the next-record
context is the new end-of-file.

4.4 BLOCK PROCESSING

This section describes use of RMS-11 block processing. Its
subsections are: '

® Block streams: the paihé'from your program to file blocks
e Block context: the "current location" of a stream in a file
® Block access modes: the ways your program can access blocks

® Block buffers: the locations of blocks in your program's
space

® Stream operations: stream operations for a block stream

® Block operations: operations that access blocks

4.4.1 Block Streams

A block stream is a path from your program to the blocks in a file.
Your program establishes a block stream when it uses the CONNECT
operation to connect a stream to a file (opened for block access by an
earlier CREATE or OPEN operation). A block stream supports stream
operations and block operations, but not record operations.

4.4.2 Block Context

A block stream has a block context, which consists of a readable-block
context and a writable-block context. The READ operation uses the
readable-block as its target block; the WRITE operation uses the
writable-block as its target block; block operations change both the
readable-block and the writable-block contexts.

For a disk file, your program can use the READ or WRITE operation to
read or write multiple blocks in a single operation. In that case,
reading or writing begins at the readable block or the writable block
(respectively), and continues through the number of blocks requested.

PROCESSING RECORDS AND BLOCKS

4.4.3 Block Access Modes

The block operations READ and WRITE allow your program to specify a
block access mode (in the 2-word BKT field of the RAB); the block
access mode determines the target block for the operation. The block
access modes are:

® Sequential access
e VBN access

For a magtape file, your program can use either sequential block
access or VBN access; however, the program must access one block at a
time, and in sequential order.

The next sections discuss these access modes.

4.4.3.1 Sequential Access - Your program specifies sequential Dblock
access by giving the value 0 in the 2-word BKT field of the RAB. A
sequential access READ operation’has as its target the readable block;
it sets the readable-block context to the next-following unread block,
and sets the writable-block context to the target block (first block
read for that READ operation).

A sequential access WRITE operation has as its target the writable
block; it sets both the readable-block and writable-block contexts to
the next-following unwritten block.

This targeting and context setting has the following results:

e A series of sequential access READ operations reads successive
blocks.

e A series of sequential access WRITE operations writes
successive blocks.

e A series of paired READ and WRITE operations updates
successive blocks.

4.4.3.2 VBN Access - A VBN access READ or WRITE operation reads oOr
writes Dblocks beginning with a virtual block that your program
specifies. Specify the virtual block number in the 2-worxrd BKT field
of the RAB.

Note that your program can use VBN access to move to a random position
in a disk file, and then use sequential block access to process blocks
sequentially from that point.

4.4.4 Block Buffers

Your program specifies a user buffer for the READ operation; the
operation returns the address of the first-read byte and the number of
bytes read. Specify the address of the user buffer in the l-word UBF
field of the RAB and its size in the l-word USZ field of the RAB; the
READ operation returns the address of the first-read byte in the
1_word RBF field of the RAB and the number of bytes read in the l-word
RSZ field of the RAB.

PROCESSING RECORDS AND BLOCKS

Your program specifies the buffer containing the writable data for the
WRITE operation. Specify the buffer address in the l1-word RBF field
of the RAB and its size in the l-word RSZ field of the RAB.

4.4.5 Stream Operations

Stream operations affect stream context and I/0 buffers (but not file
blocks). The stream operations for a block stream are:

® CONNECT: establish a block stream
® FREE: free a locked block for a stream
® DISCONNECT: terminate a block stream

The next sections discuss these operations.

4.4.5.1 CONNECT Operation - Your program uses the CONNECT operation
to establish a block stream. (The stream is a block stream because
your program specified block access for the CREATE or OPEN operation
for the file.)

After a CONNECT operation, both the readable-block and writable-block
contexts are the first block in the file.

4.4.5.2 FREE Operation - Your program can use the FREE operation to
free a locked block for a stream; the FREE operation does not affect
stream context.

4.4.5.3 DISCONNECT Operation - Your program can use the DISCONNECT
operation to terminate a block stream, thus recovering the resources
committed for the stream. The DISCONNECT operation also discards
block context and the internal stream identifier.

4.4.6 Block Operations

Block operations affect stream context, block buffers, and file
blocks. The block operations are:

® READ: transfer blocks from a file to a block buffer
e WRITE: transfer blocks from a block buffer to a file

The next sections discuss these operations.

4.4.6.1 READ Operation - Your program can use the READ operation to
transfer blocks from a file to a block buffer. Your program specifies
an access mode (sequential or VBN) for the READ operation; Section
4.4.3.1 describes sequential access; Section 4.4.3.2 describes VBN
access.

PROCESSING RECORDS AND BLOCKS

4.4.6.2 WRITE Operation - Your program can use the WRITE operation to
transfer blocks from a block buffer to a file. Your program specifies
an access mode (sequential or VBN) for the WRITE operation; Section
4.4.3.1 describes sequential access; Section 4.4.3.2 describes VBN
access.

Note that because the WRITE operation always writes to the file
immediately, the FLUSH operation has no use for block access.

CHAPTER 5

OPERATION MACRO DESCRIPTIONS

This chapter describes RMS-11 operation macros and the operation
routines they call. Each section of the chapter describes an
operation macro and its corresponding operation. (For the SFIND,
$GET, $PUT, SREAD, and SWRITE macros, there is a separate description
for each access method.) -

i TR
Each description is divided i&io%the following patrts:

e FORMAT - the format for the macro and its parameters

e CONTROL BLOCKS - the required and optional control blocks for
the operation

e OPTIONS - the options that you can select for the operation,
and the control Dblock fields and values that control the
options

e STREAM CONTEXT - the current-record and next-record contexts
(for a record stream) or the readable-block and writable-block
contexts (for a block stream) after the operation completes

e RETURNED VALUES - the values that the operation routine
returns in control block fields and buffers

e CHECKLISTS - a list of the control block fields that you
supply to specify options, and a list of the control block
fields that contain returned values

The operation macros are:

e SCLOSE - Close an open file

e SCONNECT - Connect a record stream to an open file

e SCREATE - Create a new file and open it for processing

e SDELETE - Remove a record from a file

e SDISCONNECT - Disconnect a record stream

e SDISPLAY - Write file data into control block fields

e SERASE - Erase an existing file

e SEXTEND -~ Extend the allocation for an open file

e SFIND - Set the stream context to a record in a file

e SFLUSH - Write any unwritten buffers for a stream

OPERATION MACRO DESCRIPTIONS

® SFREE - Unlock a bucket locked by a stream

® SGET - Retrieve a record from a file

® SOPEN - Open an existing file

® GSPARSE - Write file data into a NAM block

® SPUT - Insert a record into a file

® SREAD - Read blocks from a file

e SRENAME - Rename an existing file

® SREWIND - Set stream context to beginning-of-file

® S$SEARCH - Search directories for a file specification
e STRUNCATE - Remove all following records from a file

® SUPDATE - Replace a reégr@:in a file

. ¥

® SWRITE - Write blocks into.a file

OPERATION MACRO DESCRIPTIONS
$CLOSE MACRO

5.1 S$CLOSE MACRO

The $CLOSE macro calls the CLOSE operation routine to close an open
file.

FORMAT
The format for the SCLOSE is:
SCLOSE fabaddr[,[erraddr] [,sucaddr]]

where fabaddr is the address of the FAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a FAB for thééC@QSE operation.

To supply XABs (ALL, DAT, KEY, BRO, and SUM blocks) for the CLOSE
operation, specify the address of the first XAB in the l-word XAB
field of the FAB; specify the address of the next XAB (if any) in the
1-word NXT field of each XAB; specify 0 in the NXT field of the last
XAB.

All KEY blocks must be together in the chain of XABs, and must be in
ascending order (by the index reference number in the l-byte REF field
of the KEY Dblock); the index reference numbers need not be
consecutive.

All ALL blocks must be together in the chain of XABs, and must be in
ascending order (by the area identifier in the l-byte AID field of the
ALL block); the area identifiers need not be consecutive.

Multiple DAT, PRO, or SUM XABs are illegal.
OPTIONS

Internal File Identifier

The CLOSE operation reads the internal file identifier for the file
from the l-word IFI field of the FAB. This identifier was written by
the CREATE or OPEN operation when the file was opened.

Rewinding Magtape

For a magtape file, if you want the magtape rewound when the file is
closed, set the FBSRWC mask in the l1-word FOP field of the FAB. Note
that if the FBSRWC mask was set when the file was opened (by the
CREATE or OPEN operation), setting the mask has no effect for the
CLOSE operation.

STREAM CONTEXT

The CLOSE operation destroys stream context for any streams connected
by the closing file (after writing any unwritten buffers for those
streams) .

OPERATION MACRO DESCRIPTIONS
SCLOSE MACRO

RETUORNED VALUES

Private Buffer Pool

The CLOSE operation writes the address of the private buffer pool (if
any) for the file in the l-word BPA field of the FAB; if the CLOSE
operation clears the BPA field, the file had no private buffer pool.

If the file had a private buffer pool, the CLOSE operation writes the
size (in bytes) of the pool in the l-word BPS field of the FAB, or
clears this field if the file did not use a private buffer pool.

Internal File Identifier

The CLOSE operation clears the l-word IFI field of the FAB.
Completion Status and Value . *g

The CLOSE operation returns complétion status in the l-word STS field
of the FAB and returns a completion value in the l-word STV field of

the FAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-1 lists control block fields that are input to the CLOSE
operation. Table 5-2 1lists control block fields that are output by
the CLOSE operation.

Table 5-1: CLOSE Input Fields

Block Field Description

ALL AID Area number

ALL NXT Next XAB address

DAT . NXT Next XAB address

FAB FOP File processing option mask

FBSRWC Rewind magtape after closing file

FAB IFI Internal file identifier
FAB XAB XAB address

KEY REF Index reference number
KEY NXT Next XAB address

PRO NXT Next XAB address

SUM NXT Next XAB address

Table 5-2: CLOSE Output Fields

Block Field Description

FAB BPA Private buffer pool address

FAB BPS Private buffer pool size (bytes)
FAB IF1I Internal file identifier

FAB STS Completion status code

FAB STV Completion status value

OPERATION MACRO DESCRIPTIONS
SCONNECT MACRO

5.2 S$CONNECT MACRO

The SCONNECT macro calls the CONNECT operation routine to connect a
record stream to an open file, and initialize the stream context.

FORMAT
The format for the SCONNECT is:
SCONNECT rabaddr [, [erraddr] [,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the@C@@NECT operation.

N ¥

You must supply a FAB for the CONNECT operation.
OPTIONS

File Identification

Specify the address of the FAB in the l-word FAB field of the RAB.
The CONNECT operation reads the internal file identifier for the file
from the l-word IFI field of the FAB.

1/0 Buffers

For a sequential disk file, specify the size (in blocks) of the RMS-11
I/0 buffer for the stream in the l-byte MBC field of the RAB; the
largest legal value is 63. If you specify 0, the CONNECT operation
uses a buffer of one block. For a relative file, an indexed file, or
a sequential nondisk file, the CONNECT operation ignores the MBC
field.

For a relative or indexed file, specify the number of 1/0 buffers for
the stream in the l-byte MBF field of the RAB. For a sequential file,
specify 0 in the MBF field. If you specify 0, the CONNECT operation
uses the minimum number of buffers: one for a seguential or relative
file, or two for an indexed file.

User Buffer (Locate Mode for Sequential File)

If you are connecting to a sequential file, and if you intend to
execute PUT operations in locate mode for the connected stream, then:

e Specify the address of the user buffer in the l-word UBF field
of the RAB.

e Specify the size (in bytes) of the user buffer in the 1l-word
UsZz field of the RAB.

e Set the RBSLOC mask in the 1l-word ROP field of the RAB.

OPERATION MACRO DESCRIPTIONS
SCONNECT MACRO

This assures proper handling of the first PUT operation for the
stream.

Rey of Reference (Indexed File)

For an indexed file, specify the key of reference in the l-byte KRF
field of the RAB. This value specifies the index to be used in
establishing initial record context: 0 for the primary index, 1 for
the first alternate index, and so forth.

Initial Stream Context (Sequential File)

If you want to initialize the next-record context of a sequential file
to the end-of-file, set the RBSEOF mask in the l-word ROP field of the
RAB; 1if you do not set this mask, the CONNECT operation initializes
the next-record context to the first record in the file (or to the
end-of-file if the file is empty).
B

B ¥

STREAM CONTEXT

For a record-access file, the current-record context after a CONNECT
operation 1is undefined; the next-record context is the first record
in the file (under the specified index for an indexed file), or the
end-of-file, if the file is empty.

For a block-access file, both the readable-block and writable-block
contexts after a CONNECT operation are the first block in the file.

RETURNED VALUES

Internal Stream Identifier

The CONNECT operation writes an internal stream identifier in the
l-word 1ISI field of the RAB. Do not destroy this identifier; all
other stream, record, and block operation routines read it.

Record Buffer

The CONNECT operation copies the value from the UBF field into the
l-word RBF field of the RAB (the record address); this prepares the
record buffer for your use in case the first record operation for the
stream is a locate-mode PUT operation to a sequential file.

RFA

For block access, the CONNECT operation returns the logical
end-of-file value 1in the 3-word RFA field of the RAB. The first two
words of this field are the VBN in which the logical end-of-file
occurs, and the third word is the offset of the first byte beyond the
logical end-of-file within that block. This logical end-of-file value
is meaningful only for disk files.

OPERATION MACRO DESCRIPTIONS
S$CONNECT MACRO

Completion Status and Value

The CONNECT operation returns completion status in the 1l-word STS
field of the RAB and returns a completion value in the 1l-word STV
field of the RAB. Appendix A lists completion status symbols and
values.

CHECKLISTS

Table 5-3 lists control block fields that are input to the CONNECT

operation, Table 5-4 lists control block fields that are output by
the CONNECT operation.

Table 5-3: CONNECT Input Fields

Block Field Description 3

wd

R g
FAB IFI Internal file ‘identifier
RAB FAB FAB address N
RAB KRF Key of reference
RAB MBC Multiblock count
RAB MBF Multibuffer count
RAB ROP Record processing option mask

RBSEOF position to end-of-file
RBSLOC Locate mode

RAB UBF User buffer address
RAB Usz User buffer size (bytes)

Table 5-4: CONNECT Output Fields

Block Field Description

RAB ISI Internal stream identifier
RAB RBF Record buffer address

RAB RFA End-of-file address

RAB STS Completion status code

RAB STV Completion status value

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

5.3 S$CREATE MACRO

The $CREATE macro calls the CREATE operation routine to create a new
file and open it for processing.

FORMAT
The format for the SCREATE is:
SCREATE fabaddr [, [erraddr] [,sucaddr]]

where fabaddr is the address of the FAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS 3
N
You must supply a FAB for the CREATE operation.

If you supply a NAM block, the CREATE operation reads 1its fields to
obtain the expanded string buffer, and writes identifiers in its
fields.

To supply a NAM block for the CREATE operation, specify the address of
the NAM block in the l-word NAM field of the FAB.

Each ALL block that you supply defines one area in the created file,
and (for area 0) you can place the area at a specific location. If
you supply no ALL blocks, the file has one area; you define this area
in the FAB, but you cannot place the area at a specific location. You
cannot supply more than one ALL block for a sequential or relative
file.

Each KEY block that you supply defines one index for the created file.
You must supply at 1least one KEY block for an indexed file; you
cannot supply KEY blocks for a relative or sequential file.

If you supply a PRO block, the CREATE operation reads its fields to
obtain the protection for the file.

To supply XABs (ALL, DAT, KEY, PRO, and SUM blocks) for the CREATE
operation, specify the address of the first XAB in the l-word XAB
field of the FAB; specify the address of the next XAB (if any) in the
l-word NXT field of each XAB; specify 0 in the NXT field of the last
XAB.

All KEY blocks must be together in the chain of XABs, and must be 1in
ascending order (by the index reference number in the l-byte REF field
of the KEY block); the index reference numbers must be consecutive
beginning with 0.

All ALL blocks must be together in the chain of XABs, and must be in
ascending order (by the area identifier in the l-byte AID field of the
ALL block); the area identifiers must be consecutive beginning with
0.

Multiple DAT, PRO, or SUM XABs are illegal.

Note that if the LAN field of a KEY XAB is 0, RMS-11 will use the area
specified in the IAN field for the lowest level index for that index.

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

OPTIONS

File Specification

The CREATE operation constructs the full file specification from the
file string, the default string (which contributes only elements not
present in the file string), and RMS-11 defaults (which contribute
elements not present in either the file string or the default string).

RMS-11 defaults are:
® Device -- The device to which the specified logical channel is

assigned, or SY: if the specified logical channel is not
assigned to any device.

e Directory -- The current directory for the task.
e Name, type, -- Defaulted;to null.
i T

By ¥
The file string and the default sString must not contain wildcards.

Specify the address of the file string in the l-word FNA field of the
FAB. Specify the size (in bytes) of the file string in the l-byte FNS
field of the FAB; if you specify 0 in the FNS field, the CREATE
operation uses no file string.

Specify the address of the default string in the l-word DNA field of
the FAB. Specify the size (in bytes) of the default string in the
l-byte DNS field of the FAB; if you specify 0 in the DNS field, the
CREATE operation uses no default string.

If you set the FBSFID mask in the l-word FOP field of the FAB and
supply a NAM block, the CREATE operation reads the device identifier
from the 2-word DVI field of the NAM block; if this value is nonzero,
the specified device overrides the device in the merged string.

Expanded String Buffer

If you want the CREATE operation to teturn the expanded string for the
created file, provide a buffer for the string. Specify the address of
the expanded string buffer in the l-word ESA field of the NAM Dblock
and 1its size (in bytes) in the l-byte ESS field of the NAM block; if
you specify 0 in the ESS field, the CREATE operation does not return
the expanded string.

Supersession of Existing File

If you want to create a file that supersedes an existing file with the
same specification, set the FB$SUP mask in the l-word FOP field of the
FAB; if you do not set the FB$SUP mask, and you specify a file that
already exists, the CREATE operation returns an error completion and
does not create the new file.

Temporary or Marked-for-Delete File
If you want the created file to be a temporary file (one that will Dbe

deleted as part of the logout procedure), set the FBSTMP mask in the
l-word FOP field of the FAB.

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

Regardless of any name you may specify, the temporary file will be
created with the name TEMPnn.TMP, where nn is the job number.

Note that when you use several temporary files, there will be only one
visible temporary file. Fach temporary file created will supersede
any existing temporary file of the same name, and such superseded
files will be marked for deletion (and deleted when closed).

If you want the created file to be deleted when it is closed, set the
FBSMKD mask in the 1l-word FOP field of the FAB; this causes the
operating system to delete the file when it has no accessing programs.
If you do not set the FBSMKD mask, the created file is not marked for
deletion.

If you want the created file to be a temporary file that is marked for
deletion, set the FBSTMD mask in the l-word FOP field of the FAB; the
FBSTMD mask includes the bits for both the FBS$TMP and the FBSMKD
masks. ;

File Protection ° ¥

Specify the protection for the created file in the l-word PRO field of
the PRO block; if you supply no PRO block, the operating system uses
its default file protection.

Protection codes are 1 byte long and range from 0 to 255:

® A word value between 0 and 255 will explicitly set the
protection code.

¢ A word value of -1 will set the code as the user's default,
unless a protection specification 1is included in the file
specification (this code will override the user's default).

® A word value of -2 will override the protection code set in
the file specification and set the code as the user's default,
ignoring any protection specification that may have been
included in the file specification.

File Organization

Specify a file organization code in the l-byte ORG field of the FAB.
The symbols for file organization codes are:

FBSIDX Indexed file organization
FBSREL Relative file organization
FBSSEQ Sequential file organization

Record Format

Specify the record format code in the l-byte RFM field of the FAB.
The symbols for record format codes are:

FBSFIX Fixed-length record format
FBSSTM Stream record format

FB$SUDF Undefined record format
FBSVAR Variable-length record format
FBSVFC VFC record format

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

If you specify VFC record format (FBSVFC code in the RFM field),
specify the size (in bytes) of the VFC header field in the l-byte FSZ
field of the FAB; if you specify 0, the CREATE operation uses the
value 2.

Blocked Records

If you are creating a sequential disk file, and if you want the file
to contain blocked records (records that cannot span block
boundaries), set the FBSBLK mask in the l-byte RAT field of the FAB;
if you do not set the FBSBLK mask, records can span block boundaries.

If you are creating a relative or indexed file, the FBSBLK mask has no
effect on storage of records in the file. However, this mask will be
preserved and returned on OPEN operations. The FB$BLK mask is ignored
for files on unit-record devices.

Note that records are always blo?ked in a magtape file, regardless of
the FBS$BLK setting. T

Record-Output Handling

Specify a record-output mask in the l-byte RAT field of the FAB. This
record-output attribute controls the handling of records that are
output to a unit-record device:

e FORTRAN-style record-output specifies FORTRAN-style
carriage-control handling.

e Carriage-return record-output specifies that a prefixed
linefeed and a suffixed carriage-return must be added to each
record on output to a print device.

@ Print-format record-output specifies that the file is in print
format. This format is allowed only for files with VFC
records for which the fixed header size for each record 1is 0
or 2 bytes. (RMS-11 treats a header size of 0 as if you had
specified 2.)

When records from the file are written directly to a
unit-record device, RMS-11 interprets the first byte of the
VFC header as a prefix for the record and the second byte of
the header as a suffix for the record. RMS~11 further
interprets the prefix/suffix control bytes as follows:

If the top bit of the control byte is clear, the entire byte
is used as a count of the number of carriage return/line feed
pairs with which to prefix or suffix the record.

If the top bit of the control byte is set, the low 5 bits of
the byte are used as the prefix or suffix character.

If you specify none of these attributes, records are output to
unit-record devices without special handling.

If you are creating a file on a device other than a unit-record
device, the record output mask has no effect on storage of records in
the file. However, this mask will be preserved and returned on OPEN
operations.

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

The symbols for record-output masks are:

FBSCR Add CRLF to print record (LF-record-CR)
FBSFTN FORTRAN-style carriage-control character in record
FBSPRN VFC print record handling

Record Size

Specify the record size (in bytes) in the l-word MRS field of the FAB
(unless you have specified undefined record format). For fixed-length
records, the CREATE operation uses this value as the record size: Ffor
variable-length records, the CREATE operation uses this value as the
maximum record size; for VFC records, the CREATE operation uses this
value as the maximum size of the variable portion of each record.

If you specify a nonzero value in the MRS field, RMS-11 checks the
size of each record written to-the file against the MRS-field value,
and returns an error completion if the record size 1is inappropriate;
if you specify 0 in the MRS fieI&, RMS-11 does not check record sizes

against the MRS-field value. :

Maximum Record Number

If you specify relative file organization (FBSREL value in the ORG
field), specify the maximum record number in the 2-word MRN field of
the FAB. If you specify a nonzero value in the MRN field, RMS-11
checks the record number of each record written to the file against
the MRN-field value, and returns an error completion if the record
number is too large; 1f you specify 0 in the MRN field, RMS-11 does
not check record numbers against the MRN-field value.

Cluster Size

Specify the cluster size (in blocks) for the file in the 1l-byte RTV
field of the FAB. If you specify 0, the CREATE operation uses the
Cluster size for the volume; 1if you specify -1, the CREATE operation
uses the value 256; 1if you specify any other value, the value must be
a power of 2, and must be at least as 1large as the volume cluster
size.

Private Buffer Pool

If you want the CREATE operation to use a private buffer pool instead
of the central buffer pool, specify the address of the (word-aligned)
private buffer pool in the l-word BPA field of the FAB, and its size
(in bytes) in the l-word BPS field of the FAB; this size must be a
multiple of 4.

If you specify 0 in either the BPA field or the BPS field, the CREATE
operation uses the central buffer pool.

The pool that the CREATE operation uses is also used by the DISPLAY
and EXTEND operations, and by stream and record operations while the
file is open.

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

Logical Channel

Specify the logical channel for the CREATE operation in the l-byte LCH
field of the FAB. The logical channel number must not be the same as
the logical channel number for any already-open file, and must not be
0.

The logical channel that the CREATE operation uses 1s also used by the
DISPLAY and EXTEND operations, and by stream and record or block
operations while the file is open.

Requested Access

Specify one or more requested-access masks in the l-byte FAC field of
the FAB. This mask determines the access that the creating program
has while the file is open. Regardless of what you specify, the
CREATE operation 1includes the . mask FBSPUT (for record access) or
FBSWRT (for block access). The jsymbols for requested-access masks
are: B

FBSDEL Request find/get/delete access

FBS$GET Request find/get access

FBSPUT Request put access

FBSREA Request block read access

FBSTRN Request find/get/truncate access

FBSUPD Request find/get/update access

FBSWRT Request block write access

Note that FBSREA and FBS$WRT override any record access requested.

Access Sharing

Specify the kinds of access that your program is willing to share with
other programs by setting an access-sharing mask in the l-byte SHR
field of the FAB. The symbols for access-sharing masks are:

FBSGET Share find/get access
FBSNIL No access sharing
FBSWRI Share find/get/put/update/delete access

The kinds of access sharing are:
e Shared read access

Your program is willing to allow other programs to read the
file, but not to write it.

Even if your program specifies shared read access, other
programs will be wunable to read (or write) the file if your
program requests any form of write access (which is always the
case for CREATE).

e Shared write access

Your program is willing to allow other programs to both read
and write the file. Shared write access is not allowed for a
sequential file unless the file has wundefined record format
and your program opens the file for block access; shared
write access is also not allowed for a relative or indexed
file that your program opens for block access. In such cases,
RMS-11 automatically converts the shared write access
specification to a shared read access specification
internally.

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

e No shared access

Your program is not willing to allow other programs to either
read or write the file. RMS-11 does, however, allow other
programs to read the file unless your program also requests
some form of write access (which 1is always the case for
CREATE) .

Deferred Writing

If you want deferred buffer writing for the open file, set the FBSDEW
mask in the l-word FOP field of the FAB; This means that RMS-11 does
not necessarily write its buffers during a write-type operation
(DELETE, PUT, or UPDATE), but instead writes buffers only when it
needs them for other operations (or when your program executes the
FLUSH operation for the stream).

If you do not set the FBSDFW- mask, the DELETE, PUT, and UPDATE
operations write buffers to thé%fi;e immediately.

Note that record operations always® use a form of deferred buffer
writing for sequential files, and that block operations never use
deferred buffer writing. Therefore you need only decide whether to
use deferred writing for a record stream to a relative or indexed
file.

Magtape Block Size

If you are creating a magtape file, specify the block size (in
characters) for the file in the l-word BLS field of the FAB. 1If you
specify 0, RMS-11 uses the default block size for the device.

Magtape Positioning

You can position a magtape file on its magtape. To position the file
at the Dbeginning of the magtape (overwriting all files on the tape),
set the FBSRWO mask in the l-word FOP field of the FAB. To position
the file 'at the end of the last-closed file (overwriting any following
files), set the FB$POS mask in the l-word FOP field of the FAB,. 1f
you set neither of these masks, the CREATE operation positions the
file at the end of the last file on the magtape (overwriting nothing).

Rewinding Magtape on Close

If you want the magtape rewound when the created file is closed, set
the FBSRWC mask in the l-word FOP field of the FAB. 1If you do not set
this mask, the magtape will not be rewound on close unless you set the
FBSRWC mask for the CLOSE operation. Note, however, that if you set
the FBSRWC mask for the CREATE operation, the magtape will be rewound
even if you do not set the FBSRWC mask for the CLOSE operation.

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

Single-Area Unlocated File

If you want the created file to have only one area, and if you do not
want to place the area at a specific location on disk, then you supply
no ALL blocks for the CREATE operation, but rather specify the
following file attributes in FAB fields (as described in sections
below) :

e File allocation size
e Default file extension size
® File bucket size

e File contiguity

Multiarea or Located File L

If you want to place the creatag flle at a specific location on disk,
or if you want a created indexed ¥ile to have more than one area, then
you supply ALL blocks for the CREATE operation and you specify the
following area attributes in ALL block fields (as described in
sections below):

® Area allocation size

e Default area extension size
® Area bucket size

e Area contiguity

e Area alignment

e Area location

Specify the area number for each area in the l-byte AID field of the
ALL block for the area.

Sequential and relative files are permitted to have only a single
area: area 0. Thus, for these files, the information in the (single)
ALL block describes the file as a whole, overriding any corresponding
information in the FAB.

Similarly, block-accessed indexed files are treated without regard for
their internal (logical) structure. In this case, only a single ALL
block is permitted, and its contents describe the file as a whole,
overriding any corresponding information in the FAB.

Symmetric treatment of ALL blocks by the OPEN operation facilitates
block-access COPY operations, which are independent of file
organization.

Allocation Size

For a single-area unlocated file, specify the file allocation size (in
blocks) in the 2-word ALQ field of the FAB. For a multiarea or
located file, specify the area allocation size (in blocks) in the
2-word ALQ field of the ALL block for each area.

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

Default Extension Size

For a single-area unlocated file, specify the default extension size
(in Dblocks) for the file in the l-word DEQ field of the FAB. For a
multiarea or located file, specify the default extension size (in
blocks) for each area in the l1-word DEQ field of the ALL block for the
area,

Bucket Size (Relative or Indexed File)

For a single-area unlocated file, specify the bucket size (in blocks)
for the file in the l-byte BKS field of the FAB, For a multiarea or
located file, specify the bucket size (in blocks) for each area in the
l-byte BKZ field of the ALL block for the area.

The largest allowed bucket size is 15 blocks; the smallest is 0, If
you specify a Dbucket size off 0, the CREATE operation uses 1l-block
buckets for the file or area. . .

’{%
&

B

Area Location

If you want to place area 0 at a particular cluster on disk, specify
the XBSLBN mask in the l-byte ALN field of the ALL block for area 0.
If you do not specify this mask, the CREATE operation places area 0 at
any convenient location.

Specify the number of the cluster in the 2-word LOC field of the ALL
block for area 0.

The CREATE operation creates areas by extending the file if either of
the following is true:

® You specify placement for areas other than area 0 (in which
case the CREATE operation ignores the FB$CTG mask).

e You specify contiguity in one or more ALL blocks, but not in
the FAB for the file.

Otherwise the CREATE operation creates the entire file as a single
operation, and, if you specified contiguity in the FAB, creates the
entire file as a single contiguous extent.

Contiguity

If you want a file to be contiguous, set the FBSCTG mask in the l-word
FOP field of the FAB and (for a multiarea file) do not specify disk
location for any area except (optionally) area O0; if the CREATE
operation cannot create a contiguous file, it returns an error
completion; if you do not set this mask, the CREATE operation does
not attempt to create a contiguous file.

If you want area 0 of a multiarea or located file to be contiguous,
set the XBSCTG mask in the l-byte AOP field of the ALL block for area
0. If you set this mask and the CREATE operation cannot create a
contiguous area 0, it returns an error completion; if you do not set
this mask, the CREATE operation dJdoes not attempt to create a
contiguous area.

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

Indexes

I1f you specify indexed file organization (FB$IDX value in the ORG
field), you must supply at least one KEY block for the CREATE
operation, unless you are using block access (in which case, any KEY
blocks are ignored). FEach KEY block you supply defines one index for
the created file.

Specify the reference number for each index in the l-byte REF field of
the KEY block for the index. Specify 0 for the primary index, 1 for
the first alternate index, and so forth. Chain KEY blocks so that the
reference numbers are in consecutive order, and so that there are no
intervening XABs of other types (ALL, DAT, PRO, or SUM blocks).

Key Name

If you want to define a key name for the index, place the key name
string in a 32-character buffer. Specify the address of this buffer
in the l-word KNM field of the, WEY block for the index. 1f you
specify 0 in the KNM field, the i%idex has no key name.

Index Key Data Type

Specify a key data type code in the l-byte DTP field of the KEY block
for each index. The symbols for key data type codes are:

XB$BN2 16-bit unsigned integer
XBSBN4 32-bit unsigned integer
XBSIN2 15-bit signed integer
XBSIN4 31-bit signed integer
XBSPAC Packed decimal number
XBSSTG String

Key Segments

Specify the size and position of each key segment in the 8-byte SIZ
field of the KEY block and the 8-word POS field of the KEY block for
the index. (Only a string key can have more than one segment.)

The first byte of the SI1Z field is for the size (in bytes) of the
first key segment, the second byte is for the second segment, and so
forth. 1If the key is to have fewer than eight segments, specify 0 in
the remaining bytes of the SIZ field. (The CREATE operation does not
check segment sizes after the first 0 it encounters in the SIZ field.)

The first word of the POS field is for the position of the first key
segment, the second word is for the seccnd segment, and so forth. If
the key has fewer than eight segments, the CREATE operation ignores
the remaining words of the POS field. (The first position in a record
is position 0.)

Key Changes

For an alternate index, if you want to allow the key to change during
update operations, set the XB$CHG mask in the l-byte FLG field of the
KEY block and the XBSDUP mask in the l-byte FLG field of the KEY block
for the index; 1if you do not set these masks, RMS-1l returns an error
if a program attempts to change the value of a record key during
updating.

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

Key Duplications

If you want to allow duplicate keys in an index, set the XBSDUP mask
in the l-byte FLG field of the KEY block for the index. If you do not
set this mask, RMS-11 returns an error if a program attempts to insert
or update a record that would create a duplicate record key. Note
that the XBSDUP mask must be set if record keys in the index are to be
changeable during update.

Null Keys

If you want to omit null keys from an alternate index, set the XBSNUL
mask in the l-byte FLG field of the KEY block for the index, and (for
a string key) specify the null character for the key in the l-byte NUL
field of the KEY block (the null value for a nonstring key is 0).

If you do not set the XBS$NUL mask; all keys are included in the index;
if you set the XBS$NUL mask, a nonstring key with a 0 value or a string
key with an all-null value willénq$ appear in that alternate index.

Index Areas
Specify areas for the data records and for the levels of the index:

e The area for data records in the l-byte DAN field of the KEY
block

e The area for the lowest index level in the l-byte LAN field of
the KEY block

e The area for higher index levels in the l-byte IAN field of
the KEY block

Note that the bucket sizes of the LAN and IAN areas of a given index
must be identical.

Bucket Fill Numbers

Bucket fill numbers guide the PUT and UPDATE operations in deciding
how many records to place in each bucket. A bucket fill number of 0
is usually appropriate, and specifies that buckets should be filled
completely.

A nonzero bucket fill number specifies the number of bytes that should
be filled in each bucket. If the specified bucket fill number is less
than half the bucket size, it is rounded up to half the bucket size;
if the specified number is more than the bucket size, it is rounded
down to the bucket size.

Specify the fill numbers for data buckets and index buckets: the fill
number for data buckets in the l-word DFL field of the KEY block, and
the fill number for index buckets in the l-word IFL field of the KEY
block.

Longest Record Length
If you specify block access for the created file, and you plan to copy

an existing file into the new file, you can specify the length of the
longest record in the new file in the l-word LRL field of the FAB.

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

RETURNED VALUES

Internal File Identifier

The CREATE operation writes an internal file identifier in the 1l-word
IFI field of the FAB. (The CLOSE operation clears the internal file
identifier.)

The CLOSE, CONNECT, DISPLAY, and EXTEND operations read the internal
file identifier; do not alter the IFI field while the file is open.

Device Characteristics

The CREATE operation returns device characteristics as masks in the
1-byte DEV field of the FAB. The device characteristics are:

e Printer or terminal (indicated by the set FBSCCL mask in the
l-byte DEV field of the FAB and the set FBSREC mask in the
l-byte DEV field of the. FAB; for a terminal, the FBSTRM mask
in the 1-byte DEV field of the FAB is also set); RMS-11l
treats a printer or terminal as a unit-record device.

e Disk, DECtape, or DECTAPE II (indicated by the set FBSMDI mask
in the 1l-byte DEV field of the FAB); RMS-1l1 treats a disk,
DECtape, or DECTAPE II as a disk device.

e Unit-record device (indicated by the set FBSREC mask in the
l-byte DEV field of the FAB).

e Non-ANSI magtape or cassette tape (indicated by the set FBSSDI
mask in the 1-byte DEV field of the FAB and the set FBSREC
mask in the l-byte DEV field of the FAB); RMS~11 treats a
non-ANSI magtape or a cassette tape as a unit-record device,

e ANSI-format magtape (indicated by the set FB$SQD mask in the
l-byte DEV field of the FAB).

Device and File Identifiers

If you supply a NAM block, the CREATE operation writes a device
identifier in the 2-word DVI field of the NAM block, and a file
identifier in the 3-word FID field of the NAM block.

Expanded String

If you specify a buffer for the expanded string for the file (ESA and
ESS fields in the NAM block), the CREATE operation writes the file
specification for the created file in this buffer, and writes the
length (in bytes) of the specification string in the l-byte ESL field
of the NAM block.

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

File Specification Characteristics

The CREATE operation sets masks in the l-word FNB field of the NAM
block to show which file specification elements were present in the
file string and default string. These masks and their meanings are:

NBSNOD Node in file string or default string

NBSDEV Device in file string or default string

NBSDIR Directory in file string or default string

NBSQUO Quoted string in file string or default string
NBSNAM File name in file string or default string

NBSTYP File type in file string or default string

NBSVER File version in file string or default string
NBSWDI Wildcard directory in file string or default string
NBSWNA Wildcard file name in file string or default string
NBSWTY Wildcard file type in file string or default string
NBSWVE Wildcard file version in file string or default string

Wildcarding - A

The CREATE operation clears the NBSWCH mask in the l-word FNB field of
the NAM block; this shows that no wildcard context exists after the
CREATE operation. It also clears the l-byte RSL field of the NAM
block to show that no resultant string was returned.

Extension Sizes

The CREATE operation returns the size (in blocks) of each allocation
it makes. If you created only area 0 using FAB fields, the CREATE
operation writes the size of the allocation in the 2-word ALQ field of
the FAB. 1If you created areas using ALL blocks, the CREATE operation
writes the size of each area allocation in the 2-word ALQ field of the
ALL block for the area.

Completion Status and Value

The CREATE operation returns completion status in the l-word STS field
of the FAB and returns a completion value in the l-word STV field of
the FAB. Appendix A lists completion status symbols and values.
CHECKLISTS

Table 5-5 lists control block fields that are input to the CREATE

operation. Table 5-6 1lists control block fields that are output by
the CREATE operation.

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

Table 5-5: CREATE Input Fields

Block Field Description

ALL AID Area number
ALL ALN Initial area alignment request

XBSLBN Cluster alignment

ALL ALQ Initial area allocation request size (blocks)
ALL AOP Area option mask

XBSCTG Contiguous area request

ALL BKZ Area bucket size (blocks)

ALL DEQ Area default extension size (blocks)

ALL LOC Initial area location request

ALL NXT Next XAB addreS%

DAT NXT Next XAB addr@sé;

FAB ALQ Initial file allbcation request size (blocks)
FAB BKS File bucket size* (blocks)

FAB BLS Magtape block size (characters)

FAB BPA Private buffer pool address

FAB BPS Private buffer pool size (bytes)

FAB DEQ Permanent file default extension size (blocks)
FAB DNA Default string address

FAB DNS Default string size (bytes)

FAB FAC Requested access mask

FBSDEL Request find/get/delete access
FBSGET Request find/get access

FBSPUT Request put access

FBSREA Request block read access

FBSTRN Request find/get/truncate access
FBSUPD Request find/get/update access
FBSWRT Request block write access

FAB FNA File string address
FAB FNS File string size (bytes)
FAB FOP File processing option mask

FBSCTG Contiguous file request

FBSDFW Defer writing

FBSFID Use information in NAM block

FBSMKD Mark file for deletion

FBSPOS Position magtape after last-closed file
FBSRWC Rewind magtape after closing file
FBSRWO Rewind magtape before creating file
FBSSUP Supersede existing file

FBSTMD Temporary file, mark for deletion
FBSTMP Temporary file

FAB FSZ Fixed control area size for VFC records (bytes)
FAB LCH Logical channel number

FAB LRL Longest record length

FAB MRN Maximum record number

FAB MRS Maximum record size (bytes)

{Continued on next page)

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

Table 5-5 (Cont.): CREATE Input Fields

Block Field Description

FAB NAM NAM block address
FAB ORG File organization code

FBSIDX Indexed file organization
FBSREL Relative file organization
FBSSEQ Sequential file organization

FAB RAT Record handling mask
FBSBLK Blocked records
FBSCR Add CRLF to print record (LF-record-CR)
FBSFTN FORTRAN-style carriage-control character in
record

FBS$SPRN VFC print record handling

FAB RFM Record format cod@“g
FBSFIX Fixed-length record format
FBSSTM Stream record format
FBSUDF Undefined record format
FBSVAR Variable-length record format
FBSVEC VFC record format

FAB RTV Cluster size (blocks)
FAB SHR Shared access mask

FBSGET Share find/get access
FBSNIL No access sharing
FBSWRI Share find/get/put/update/delete access

FAB XAB XAB address

KEY DAN Data area number

KEY DFL Data bucket fill factor
KEY DTP Key data type code

XBS$BN2 16-bit unsigned integer
XBS$SBN4 32-bit unsigned integer
XBSIN2 15-bit signed integer
XBSIN4 31-bit signed integer
XBSPAC Packed decimal number
XBS$SSTG String

KEY FLG Index option mask
XB$SDUP Duplicate record keys allowed

XBSCHG Record key changes allowed on update
XBSNUL Null record keys not indexed

KEY IAN Higher level index area number
KEY IFL Index bucket fill factor

KEY KNM Key name buffer address

KEY LAN Lowest index level area number
KEY NUL Null key character

KEY NXT Next XAB address

KEY POS Key segment positions

KEY REF Index reference number

KEY S1Z Key segment sizes (bytes)

{Continued on next page)

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

Table 5-5 (Cont.): CREATE Input Fields

Block Field Description

NAM ESA Expanded string buffer address

NAM DVI Device identifier

NAM ESS Expanded string buffer size (bytes)
PRO NXT Next XAB address

PRO PRO File protection code

SUM NXT Next XAB address

Table 5-6: CREATE Output Fields

Block Field Description

ALL ALQ Initial area allopation size (blocks)
FAB ALQ Initial file allopation size (blocks)
FAB DEV Device charactg;i§tic mask

FBSCCL Carriage=control device
FBSMDI Multidirectory device
FBSREC Record-oriented device
FBSSDI Single-directory device
FBSSQD Sequential device
FBSTRM Terminal device

FAB IFI Internal file identifier

FAB STS Completion status code

FAB STV Completion status value

NAM DVI Device identifier

NAM ESL Expanded string length (bytes)
NAM FID File identifier

NAM FNB File specification mask

NBSNOD Node in file string or default string

NBSDEV Device in file string or default string

NBSDIR Directory in file string or default string

NBSQUO Quoted string in file string or default
string

NBSNAM File name in file string or default string

NBSTYP File type in file string or default string

NBSVER File version in file string or default
string

NBSWDI Wildcard directory in file string or
default string

NBSWNA Wildcard file name in file string or
default string

NBSWTY Wildcard file type in file string or
default string

NBSWVE Wildcard file version in file string or
default string

NBSWCH Wildcard context established (cleared)

NAM RSL Resultant string length (bytes) (cleared)

OPERATION MACRO DESCRIPTIONS
SDELETE MACRO

5.4 SDELETE MACRO
The $DELETE macro calls the DELETE operation routine to remove a
record from a relative or indexed file. The target of the DELETE
operation is the current record. The current record must be locked;
it was automatically locked when the current-record context was set,
but you must not have unlocked it with a FREE operation.
If the stream has no current-record context, or if the current record
is not locked, the DELETE operation returns an error completion.
FORMAT
The format for the S$DELETE is:

SDELETE rabaddr{,[erraddr] [,sucaddr]]
where rabaddr is the address oﬁ‘ﬁﬁe RAB for the operation; erraddr is
the address of the error hanglgx for the operation; and sucaddr is
the address of the success handler’ for the operation.

CONTROL BLOCKS

You must supply a RAB for the DELETE operation.
OPTIONS

Internal Stream Identifier

The DELETE operation reads the internal stream identifier from the
l-word ISI field of the RAB.

Fast Deletion (Indexed File)

If the file is an indexed file, and if 1its alternate indexes allow
duplicate keys, then you can speed up the DELETE operation by using
the fast-deletion procedure. However, this procedure 1is faster
because it deletes only those alternate index pointers that it must;
future retrieval operations may be slowed by the presence of undeleted
alternate index pointers.

To use the fast-deletion procedure with the DELETE operation, set the
RBSFDL mask in the 1l-word ROP field of the RAB. If you do not set
this mask, the DELETE operation does not use the fast-deletion
procedure.

STREAM CONTEXT

The current-record context after a DELETE operation is undefined; the
next-record context is unchanged.

OPERATION MACRO DESCRIPTIORS
SDELETE MACRO

RETURNED VALUES

Completion Status and Value

The DELETE operation returns completion status in the l-word STS field
of the RAB and returns a completion value in the 1l-word STV field of
the RAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-7 lists control block fields that are input to the DELETE
operation. Table 5-8 lists control block fields that are output by
the DELETE operation.

Table 5-~7: -DELETE Input Fields

Block Field Description % 3

RAB ISI Internal stream identifier
RAB ROP Record processing option mask

RBSFDL Fast deletion

Table 5-8: DELETE Output Fields

Block Field Description

RAB STS Completion status code
RAB STV Completion status value

OPERATION MACRO DESCRIPTIONS
$DISCONNECT MACRO
5.5 SDISCONNECT MACRO
The SDISCONNECT macro calls the DISCONNECT operation routine to
terminate a stream and disconnect it, releasing the internal resources
it was using. The stream context is lost; you cannot reestablish the
same stream context by reconnecting the stream with the CONNECT
operation.
FORMAT
The format for the $DISCONNECT is:

$DISCONNECT rabaddr{,[erraddr][,sucaddr]]
where rabaddr is the address of the RAB for the operation; erraddr is

the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

ATy

CONTROL BLOCKS vl

You must supply a RAB for the DISCONNECT operation.
OPTIONS

Internal Stream Identifier

The DISCONNECT operation reads the internal stream identifier from the
l-word ISI field of the RAB,

STREAM CONTEXT

The DISCONNECT operation terminates the stream; therefore there is no
Stream context after the DISCONNECT operation.

RETURNED VALUES

Internal Stream Identifier (Cleared)

The DISCONNECT operation clears the internal stream identifier from
the 1-word ISI field of the RAB.

Completion Status and Value

The DISCONNECT operation returns completion status in the l-word STS
field of the RAB and returns a completion value in the l-word STV
field of the RAB. Appendix A 1lists completion status symbols and
values,

CHECKLISTS

Table 5-9 lists control block fields that are input to the DISCONNECT
operation. Table 5-10 lists control block fields that are output by
the DISCONNECT operation.

OPERATION MACRO DESCRIPTIONS
SDISCONNECT MACRO

Table 5-9: DISCONNECT Input Fields

Block Field

Description

RAB ISI

Internal stream identifier

Table 5-10: DISCONNECT Output Fields

Block Field

Description

RAB ISI
RAB STS
RAB STV

Internal stream identifier
Completion status code
Completion status value

OPERATION MACRO DESCRIPTIONS
$DISPLAY MACRO

5.6 SDISPLAY MACRO

The $DISPLAY macro calls the DISPLAY operation routine to write values
into control block fields. The DISPLAY operation does not alter the
file in any way.

When you use the OPEN operation to open a file, you might not know how
many areas or how many indexes the file has. 1If, however, you supply
a SUM block for the OPEN operation, the OPEN operation writes the
number of areas and number of keys (indexes) in its fields. You can
then supply ALL blocks and KEY blocks so that the DISPLAY operation
can fill their fields with values describing the file areas and
indexes.

FORMAT

The format for the $DISPLAY is:

SDISPLAY fabaddr[,[erraddgjE&sucaddr]]

where fabaddr is the address of the FAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS
You must supply a FAB for the DISPLAY operation.

If the file is an indexed file, for each ALL block that you supply,
the DISPLAY operation fills its fields with values describing the
corresponding area (if any) of the file. You need not supply an ALL
block for every area of the file. Note that if the file was opened
for block access, no information is returned in ALL blocks.

For each KEY block that you supply, the DISPLAY operation fills its
fields with values Jescribing the corresponding index (if any) for the
file. You need not supply a KEY block for every index of +the file,.
Note that if the file was opened for block access, no information is
returned .in KEY blocks,.

If you supply a SUM block for a relative or indexed file, the DISPLAY
operation fills its fields with values showing the number of areas and
indexes for the file, and with its prologue version number. (If you
are opening the file for block access, the DISPLAY operation returns
the number of areas and number of keys as 0, and does not return the
prologue version number.)

To supply XABs (ALL, DAT, KEY, PRO, and SUM blocks) for the DISPLAY
operation, specify the address of the first XAB in the l-word XAB
field of the FAB; specify the address of the next XAB (if any) in the
l-word NXT field of each XAB; specify 0 in the NXT field of the last
XAB.

All KEY blocks must be together in the chain of XABs, and must Dbe in
ascending order (by the index reference number in the l-byte REF field
of the KEY block); the 1index reference numbers need not be
consecutive.

All ALL blocks must be together in the chain of XABs, and must be in
ascending order (by the area identifier in the l-byte AID field of the
ALL block); the area identifiers need not be consecutive.

Multiple DAT, PRO, or SUM XABs are illegal.

5-28

OPERATION MACRO DESCRIPTIONS
SDISPLAY MACRO

OPTIONS

Internal File Identifier

The DISPLAY operation reads the internal file 1identifier from the
l-word IFI field of the FAB. This is the value that was written when
the file was opened by the CREATE or OPEN operation.

Key Name Buffer

If you want the key name string for an index returned to a buffer,
supply a KEY block for the index; specify the address of a 32-byte
puffer in the l-word KNM field of the KEY block. If you do not supply
a KEY block for an index, or if you specify 0 in its KNM field, the
DISPLAY operation does not return the key name string.

STREAM CONTEXT =i T

N ¥

The DISPLAY operation does not affect stream context.
RETURNED VALUES

Area Descriptions

For each ALL block that you supply, the DISPLAY operation writes a
description in its fields of the corresponding area of the file. Area
0 is described in the ALL block containing 0 in its AID field; area 1
is described in the ALL block containing 1 in its AID field; and so
forth.

The DISPLAY operation writes three sizes for a file area: the size
(in blocks) of the unused portion of the area in the 2-word ALQ field
of the ALL block, the default area extension size (in blocks) in the

l1-word DEQ field of the ALL block, and the area bucket size (in
blocks) in the l-byte BKZ field of the ALL block.

The DISPLAY operation clears the l-byte AOP field of the ALL block and
the l-byte ALN field of the ALL block.

Key Descriptions

For each KEY block that you supply, the DISPLAY operation writes a
description in its fields of the corresponding index of the file. The
primary index is described in the KEY block containing 0 in its REF
field; the first alternate index 1is described in the KEY block
containing 1 in its REF field; and so forth.

The DISPLAY operation writes the key data type code in the l-byte DTP
field of the KEY block. The symbols for key data type codes are:

XBSBN2 1l6-bit unsigned integer
XBS$BN4 32-bit unsigned integer
XBSIN2 15-bit signed integer
XBSIN4 31-bit signed integer
XBSPAC Packed decimal number
XBSSTG String

OPERATION MACRO DESCRIPTIONS
SDISPLAY MACRO

The DISPLAY operation writes key segment information for the index:
the number of key segments in the l-byte NSG field of the KEY block,
and the total key size (sum of segments, in bytes) in the l-byte TKS
field of the KEY block.

The DISPLAY operation writes the sizes of key segments in the 8-byte
SIZ field of the KEY block. The size (in bytes) of the first key
segment is in the first byte of the SIZz field, the size of the second
segment 1is in the second byte of the SI1%Z field, and so forth. If the
key has fewer than eight segments, the first byte containing 0
indicates the number of key segments.

The DISPLAY operation writes the positions of key segments in the
8~word POS field of the KEY block. The position (leftmost position is
0) of the first key segment is in the first word of the POS field, the
position of the second segment is in the second word of the POS field,
and so forth. 1If the key has fewer than eight segments, the remaining
words of the POS field contain unpredictable values.

The DISPLAY operation writes égkéy—characteristics mask in the 1l-byte
FLG field of the KEY block. The symbols for key-characteristics masks
are: e

XBSCHG Record key changes allowed on update
XBSDUP Duplicate record keys allowed
XBSINI No entries yet made in index
XBSNUL Null record keys not indexed

The DISPLAY operation writes the null-key character in the l-byte NUL
field of the KEY block. This character is meaningful only if the
XBSNUL mask in the l-byte FLG field of the KEY block is set and the
DISPLAY operation returns the XBS$STG code in the l-byte DTP field of
the KEY block (indicating a string key).

The DISPLAY operation writes area numbers for the index: the area for
the data level in the l-byte DAN field of the KEY block, the area for
the lowest index level in the l-byte LAN field of the KEY block, and
the area for higher index levels in the l-byte IAN field of the KEY
block.

The DISPLAY operation writes bucket fill numbers for the index areas:
the fill number for the data area in the l-word DFL field of the KEY
block, and the fill number for the index areas in the l-word IFL field
of the KEY block.

The DISPLAY operation writes bucket sizes for index areas: the data
area bucket size (in blocks) in the l-byte DBS field of the KEY block,
and the index area bucket size (in blocks) in the 1-byte IBS field of
the KEY block.

The DISPLAY operation writes virtual block numbers for the index
areas: the wvirtual Dblock number for the first data bucket in the
2-word DVB field of the KEY block, and the virtual block number of the
root index bucket in the 2-word RVB field of the XKEY block.

The DISPLAY operation writes the number of levels in the 1index (not
including the data level) in the l-byte LVL field of the KEY block.

The DISPLAY operation writes the minimum size (in bytes) of a record
that contains the key for the index in the l-word MRL field of the KEY
block.

OPERATION MACRO DESCRIPTIONS
S$DISPLAY MACRO

File Summary Information

if you supply a SUM block, the DISPLAY operation writes three values
in its fields: the number of file areas in the l-byte NOA field of
the SUM block, the number of file indexes in the l-byte NOK field of
the SUM block, and the prologue version number (for a relative or
indexed file) in the l-word PVN field of the SUM block.

Completion Status and Value

The DISPLAY operation returns completion status in the l-word STS
field of the FAB and returns a completion value in the l-word STV
field of the FAB. Appendix A lists completion status symbols and
values.

CHECKLISTS

Table 5-11 lists control bloék ﬁields that are input to the DISPLAY
operation. Table 5-12 lists control block fields that are output by
the DISPLAY operation. -

Table 5-11: DISPLAY Input Fields

Block Field Description

ALL AID Area number

ALL NXT Next XAB address

DAT NXT Next XAB address

FAB IFI Internal file identifier
FAB XAB XAB address

KEY NXT Next XAB address

KEY KNM Key name buffer address
KEY REF Index reference number
PRO NXT Next XAB address

SUM NXT Next XAB address

Table 5-12: DISPLAY Output Fields

Block Field Description

ALL ALN Area alignment mask (cleared)
ALL ALQ Unused area allocation size (blocks)
ALL AOP Area option mask

XBSCTG Contiquous area (cleared)

ALL BKZ Area bucket size (blocks)

ALL DEQ Area default extension size (blocks)
FAB STS Completion status code

FAB STV Completion status value

KEY DAN Data area number

KEY DBS Data area bucket size (blocks)

KEY DFL Data bucket fill factor

(Continued on next page)

OPERATION MACRO DESCRIPTIONS

SDISPLAY MACRO

Table 5-12 (Cont,): DISPLAY Output Fields

Block Field

Description

KEY

KEY
KEY

KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
SUM
SUM
SUM

DTP

DVB
FLG

IAN
IBS
IFL
LAN
LVL
MRL
NSG
NUL
POS
RVB
SIZ
TKS
NOA
NOK
PVN

Key data type code

XBS$SBN2 l6-bit unsigned integer
XBS$SBN4 32-bit unsigned integer
XB$SIN2 15-bit signed integer
XBSIN4 31-bit signed integer
XBSPAC Packed decimal number
XBSSTG String

First data bucket virtual block number
Index option mask

XBSCHG Record Key changes allowed on update
XBSDUP Duplicate record keys allowed

XBSINI No emiries yet made in index

XBSNUL Null record keys not indexed

Higher level index area number

Index area bucket size (blocks)

Index bucket fill factor

Lowest index level area number

Number of index levels (not including data level)
Minimum length of record containing key (bytes)
Key segment count

Null key character

Key segment positions

Root index bucket virtual block number

Key segment sizes (bytes)

Total key size (sum of key segment sizes) (bytes)
Number of areas

Number of indexes

Prologue version number

OPERATION MACRO DESCRIPTIONS
$SERASE MACRO

5.7 SERASE MACRO

The S$ERASE macro calls the ERASE operation routine to erase a file and
delete its directory entry. Note that erasing a file marks the file
for deletion, but does not necessarily erase the file immediately;
the file is erased when it has no accessing programs. The allocation
for the file is released for use in other files.

FORMAT
The format for the SERASE is:
SERASE fabaddr[,[erraddr][,sucaddr}]

where fabaddr is the address of the FAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS R
You must supply a FAB for the ERASE operation.

If you supply a NAM block and specify wildcarding, the ERASE operation
reads the address and length of the expanded string from NAM block
fields; if you supply a NAM block and specify erase by NAM block, the
ERASE operation reads NAM block fields to obtain identifiers for the
target file.

To supply a NAM block for the ERASE operation, specify the address of
the NAM block in the l-word NAM field of the FAB.

To supply XABs (ALL, DAT, KEY, PRO, and SUM Dblocks) for +the ERASE
operation, specify the address of the first XAB in the l-word XAB
field of the FAB; specify the address of the next XAB (if any) in the
1_word NXT field of each XAB; specify 0 in the NXT field of the last
XAB.

All KEY blocks must be together in the chain of XABs, and must be in
ascending order (by the index reference number in the l-byte REF field
of the KEY block); the 1index reference numbers need not be
consecutive.

All ALL blocks must be together in the chain of XABs, and must be in
ascending order (by the area identifier in the l-byte AID field of the
ALL block); the area identifiers need not be consecutive.

Multiple DAT, PRO, or SUM XABs are illegal.
OPTIONS

File Specification (Nonwildcard ERASE Operation)

The ERASE operation constructs the full file specification from the
file string, the default string (which contributes only elements not
present in the file string), and RMS—-11 defaults (which contribute
elements not present in either the file string or the default string).

OPERATION MACRO DESCRIPTIONS
SERASE MACRO

RMS-11 defaults are:

® Device -- The device to which the specified logical channel is
assigned, or SY: if the specified logical channel is not
assigned to any device.

® Directory -- The current directory for the task.
® Name, type, -- Defaulted to null.
The file string and the default string must not contain wildcards.

Specify the address of the file string in the l-word FNA field of the
FAB. Specify the size (in bytes) of the file string in the 1l-byte FNS
field of the FAB; if you specify 0 in the FNS field, the ERASE
operation uses no file string.

Specify the address of the default string in the l-word DNA field of
the FAB,. Specify the size (in bytes) of the default string in the
l-byte DNS field of the FAB; if ‘Rou specify 0 in the DNS field, the
ERASE operation uses no default:string.

If you set the FBS$FID mask in the l-word FOP field of +the FAB and
supply a NAM block, the ERASE operation reads the device identifier
from the 2-word DVI field of the NAM block; if this value is nonzero,
the specified device overrides the device in the merged string.

In the same circumstance, the ERASE operation reads the file
identifier from the 3-word FID field of the NAM block; if this value
is nonzero, the specified file overrides any directory, name, and type
elements previously obtained.

Erase by Wildcard Specification

You can use the ERASE operation in a wildcarding program loop. (The
NB$WCH mask in the l-word FNB field of the NAM block will already have
been set by an earlier PARSE operation.)

If you set the FBSFID mask in the l-word FOP field of the FAB, the
file found by a previous SEARCH operation and its directory entry are
deleted, but all fields relevant to wildcard context are preserved
(for possible subsequent SEARCH operations).

If you clear the FBSFID mask in the l-word FOP field of the FAB, the
ERASE operation first performs an implicit SEARCH operation. (The
input and output fields for the SEARCH operation are not described
here and are not included in the checklists at the end of this
section.)

If the SEARCH operation finds a file that matches the wildcard file
specification, the ERASE operation erases its contents and deletes its
directory entry; if not, the ERASE operation does not erase the file
contents or delete its directory entry, but instead passes control
block data from the SEARCH operation (in particular, the ERSNMF
completion status code and the cleared NBSWCH mask in the l-word FNB
field of the NAM block).

Expanded String Buffer
If you erase a file by its file specification, and if you want the
ERASE operation to return the expanded string for the erased file,

provide a buffer for the string. Specify the address of the expanded
string buffer 1in the l-word ESA field of the NAM block. Specify the

5-34

OPERATION MACRO DESCRIPTIONS
SERASE MACRO

size (in bytes) of the expanded string buffer in the l-byte ESS £field
of the NAM block; if you specify 0 in the ESS field, the ERASE
operation does not return the expanded string.

Private Buffer Pool

If you want the ERASE operation to use a private buffer pool instead
of the central buffer pool, specify the address of the (word-aligned)
private buffer pool in the l-word BPA field of the FAB, and 1its size
(in bytes) in the l-word BPS field of the FAB; this size must be a
multiple of 4.

If you specify 0 in either the BPA field or the BPS field, the ERASE
operation uses the central buffer pool.

Logical Channel

Specify the logical channel ﬁ@ré@he ERASE operation in the l-byte LCH
field of the FAB. The logical Thannel number must not be the same as
the logical channel number for any already-open file, and must not Dbe

0.
RETURNED VALUES

Expanded String

If you specify a buffer for the expanded string for the file (ESA and
ESS fields in the NAM block), the ERASE operation writes the expanded
string for the erased file in the buffer, and writes the length (in
bytes) of the string in the l-byte ESL field of the NAM block.

Device and File Identifiers

If you supply a NAM block, the ERASE operation writes a device
identifier in the 2-word DVI field of the NAM block, and a file
identifier in the 3-word FID field of the NAM block.

Device Characteristics

The ERASE operation returns device characteristics as masks in the
l-byte DEV field of the FAB. The device characteristics are:

e DPrinter or terminal (indicated by the set FBSCCL mask in the
1-byte DEV field of the FAB and the set FBSREC mask in the
l-byte DEV field of the FAB; for a terminal, the FBSTRM mask
in the 1l-byte DEV field of the FAB is also set); RMS-11
treats a printer or terminal as a unit-record device.

e Disk, DECtape, or DECTAPE II (indicated by the set FBSMDI mask
in the 1l-byte DEV field of the FAB); RMS-11 treats a disk,
DECtape, or DECTAPE II as a disk device.

e Unit-record device (indicated by the set FB$REC mask in the
l-byte DEV field of the FAB).

OPERATION MACRO DESCRIPTIONS
SERASE MACRO

®¢ Non-ANSI magtape or cassette tape (indicated by the set FBS$SDI
mask in the 1-byte DEV field of the FAB and the set FBSREC
mask in the l-byte DEV field of the FAB); RMS-11 treats a
non-ANSI magtape or a cassette tape as a unit-record device.

¢ ANSI-format magtape (indicated by the set FBS$SQD mask in the
l-byte DEV field of the FAB).

Wildcard Context

A nonwildcard ERASE operation clears the NBSWCH mask in the l-word FNB
field of the NAM block and the l-byte RSL field of the NAM block;
this shows that no wildcarding is in progress and that no resultant
string was returned.

File Specification Characteristics

The ERASE operation sets masks_jinithe l-word FNB field of the NAM
block to show which file spe¢ification elements were present in the
file string and default string. These masks and their meanings are:

NBSNOD Node in file string or default string

NBSDEV Device in file string or default string

NBSDIR Directory in file string or default string

NB$QUO Quoted string in file string or default string
NBSNAM File name in file string or default string

NBSTYP File type in file string or default string

NBSVER File version in file string or default string
NBSWDI Wildcard directory in file string or default string
NBSWNA Wildcard file name in file string or default string
NBSWTY Wildcard file type in file string or default string
NBSWVE Wildcard file version in file string or default string

Completion Status and Value

The ERASE operation returns completion status in the l-word STS field
of the FAB and returns a completion value in the l-word STV field of
the FAB. . Appendix A lists completion status symbols and values.
CHECKLISTS

Table 5-13 lists control block fields that are input to the ERASE

operation. Table 5-14 lists control block fields that are output by
the ERASE operation.

Table 5-13: ERASE Input Fields

Block Field Description

ALL NXT Next XAB address

DAT NXT Next XAB address

FAB BPA Private buffer pool address

FAB BPS Private buffer pool size (bytes)
FAB DNA Default string address

FAB DNS Default string size (bytes)

FAB FNA File string address

FAB FNS File string size (bytes)

(Continued on next page)

OPERATION MACRO DESCRIPTIONS
SERASE MACRO

Table 5-13 (Cont.): ERASE Input Fields

Block Field

Description

FAB

FAB
FAB
KEY
NAM
NAM
NAM
NAM
NAM
PRO
SUM

FOP

LCH
NAM
NXT
DVI
ESA
ESS
FID
FNB
NXT
NXT

File processing option mask
FBSFID Use information in NAM block

Logical channel number

NAM block address

Next XAB address

Device identifier

Expanded string buffer address
Expanded string buffer size (bytes)
File identifier

File specification mask

Next XAB address

Next XAB address

NBSWCH Wild@a%@ context established

Table 5-14: ERASE Output Fields

Block Field

Description

FAB

FAB
FAB
NAM
NAM

NAM

NAM

NAM

DEV

STS
STV
DVI
ESL
FID
FNB

RSL

Device characteristic mask

FBSCCL Carriage-control device
FBSMDI Multidirectory device
FBSREC Record-oriented device
FBSSDI Single-directory device
FBSSQD Sequential device
FBSTRM Terminal device

Completion status code
Completion status value
Device identifier

Expanded string length (bytes)
File identifier

File specification mask

NBSNOD Node in file string or default string

NBSDEV Device in file string or default string

NBSDIR Directory in file string or default string

NBSQUO Quoted string in file string or default
string

NBSNAM File name in file string or default string

NBSTYP File type in file string or default string

NBSVER File version in file string or default
string

NBSWDI Wildcard directory in file string or
default string

NB$SWNA Wildcard file name in file string or
default string

NBSWTY Wildcard file type in £file string or
default string

NBSWVE Wildcard file version in file string or
default string

NBSWCH Wildcard context established

Resultant string length (bytes)

OPERATION MACRO DESCRIPTIONS
SEXTEND MACRO

5.8 S$SEXTEND MACRO

The SEXTEND macro calls the EXTEND operation routine ¢to extend the
allocation for an open file.

FORMAT
The format for the SEXTEND is:
SEXTEND fabaddr [, [erraddr] [,sucaddr]]

where fabaddr is the address of the FAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a FAB for theKQXTﬁND operation.

For each ALL block that you supply, the EXTEND operation extends the
corresponding area as described in the ALL block. You need not supply
an ALL block for an area that you do not want to extend, but each
supplied ALL block must correspond to an area in the file; this means
that you can supply ALL blocks for areas other than area 0 only for an
indexed file opened for record access.

To supply XABs (ALL, DAT, KEY, PRO, and SUM blocks) for the EXTEND
operation, specify the address of the first XAB in the l-word XAB
field of the FAB; specify the address of the next XAB (if any) in the
l-word NXT field of each XAB; specify 0 in the NXT field of the last
XAB.

All KEY blocks must be together in the chain of XABs, and must be 1in
ascending order (by the index reference number in the l-byte REF field
of the KEY block); the index reference numbers need not be
consecutive.

All ALL blocks must be together in the chain of XABs, and must be in
ascending order (by the area identifier in the l-byte AID field of the
ALL block); the area identifiers need not be consecutive.

Multiple DAT, PRO, or SUM XABs are illegal.
OPTIONS

Internal File Identifier

The EXTEND operation reads the internal file identifier from the
l-word 1IFI field of the FAB. This is the value written by the CREATE
or OPEN operation that opened the file.

Area 0 Extended by FAB

If you supply no ALL blocks, specify the size (in blocks) of the
extension in the 2-word ALQ field of the FAB.

OPERATION MACRO DESCRIPTIONS
SEXTEND MACRO

Areas Extended by ALL Blocks

If you supply ALL blocks, the EXTEND operation ignores the ALQ field
of the FAB, and extends each area specified in an ALL block. Specify
each area to be extended by supplying an ALL block with the area
number in the l-byte AID field of the ALL block. Specify the size of
the extension (in blocks) for the area in the 2-word ALQ field of the
ALL block.

STREAM CONTEXT

The EXTEND operation does not affect stream context.

RETURNED VALUES

Extension Sizes e
,_,;‘ '*‘j\

The EXTEND operation returns the size (in blocks) of each extension it
makes. If you extended only area O using FAB fields, the EXTEND
operation writes the size of the extension in the 2-word ALQ field of
the FAB. If you extended areas using ALL blocks, the EXTEND operation
writes the size of each area extension in the 2-word ALQ field of the
ALL block for the area.

Completion Status and Value
The EXTEND operation returns completion status in the l-word STS field

of the FAB and returns a completion value in the l-word STV field of
the FAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-15 lists control block fields that are input to the EXTEND
operation. Table ©5-16 lists control block fields that are output by
the EXTEND operation.

Table 5-15: EXTEND Input Fields

Block Field Description

ALL AID Area number

ALL ALN Area extension alignment request

ALL ALQ Area allocation extension request size (blocks)
ALL NXT Next XAB address

DAT NXT Next XAB address

FAB ALQ File allocation extension request size (blocks)
FAB IFI Internal file identifier

FAB XAB XAB address

KEY NXT Next XAB address

PRO NXT Next XAB address

KEY REF Index reference number

SUM NXT Next XAB address

OPERATION MACRO DESCRIPTIONS

SEXTEND MACRO

Table 5-16: EXTEND Output Fields

Block Field

Description

ALL
FAB
FAB
FAB

ALQ
ALQ
STS
STV

Area allocation extension actual size (blocks)
File allocation extension actual size (blocks)
Completion status code
Completion status value

OPERATION MACRO DESCRIPTIONS

SFIND MACRO (SEQUENTIAL ACCESS)
5.9 S$FIND MACRO (SEQUENTIAL ACCESS)
The $FIND macro calls the FIND operation routine to transfer a record
{or part of a record) from a file to an I/0 buffer. The FIND
operation transfers the entire record if the file 1is relative or
indexed, or if it has blocked records; it may transfer only part of
the record if the record spans block boundaries. The FIND operation
does not transfer the record to a user buffer.
The target of a sequential-access FIND operation is the next record
(for an indexed file, the next record under the current index).
FORMAT
The format for the SFIND is:

SFIND rabaddr[,[erraddr][;aqpaddr]]

where rabaddr is the address d§:€be RAB for the operation; erraddr is
the address of the error handl®r for the operation; and sucaddr is
the address of the success handlex for the operation.

CONTROL BLOCKS

You must supply a RAB for the FIND operation.
OPTIONS

Internal Stream Identifier

The FIND operation reads the internal stream identifier from the
l-word ISI field of the RAB.

Sequential Access

Specify the RBSSEQ code in the l-byte RAC field of the RAB.

STREAM CONTEXT

The current-record context after a sequential access FIND operation is
the found record; the next-record context is the record following the
found record (for an indexed file, the next record under the current
index) . if the FIND operation returns an error completion, the
current-record context is undefined, and the next-record context is
unchanged.

RETURNED VALUES

RRN

For a relative file or for a sequential disk file with fixed-length
records, a sequential-access FIND operation returns the relative
record number (RRN) for the found record in the 2-word BKT field of
the RAB.

OPERATION MACRO DESCRIPTIONS
SFIND MACRO (SEQUENTIAL ACCESS)

RFA

The FIND operation returns the record file address (RFA) for the found
record in the 3-word RFA field of the RARB.

Completion Status and Value

The FIND operation returns completion status in the l-word STS field
of the RAB and returns a completion value in the l-word STV field of
the RAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-17 lists control block fields that are input to the FIND
operation. Table 5-18 lists control block fields that are output by
the FIND operation. U

"
Table 5-17: FIND (Seéheﬁtial Access) Input Fields

Block Field Description

RAB ISI Internal stream identifier
RAB RAC Record access code

RBSSEQ Sequential access

Table 5-18: FIND (Sequential Access) Output Fields

Block Field Description

RAB BKT Relative record number (RRN)
RAB RFA Record file address

RAB STS Completion status code

RAB STV Completion status value

OPERATION MACRO DESCRIPTIONS
$FIND MACRO (KEY ACCESS)

5.10 $FIND MACRO (KEY ACCESS)

The SFIND macro calls the FIND operation routine to transfer a record
(or part of a record) from a sequential disk file (with fixed-length
records), a relative file, or an indexed file to an I/0 Dbuffer. The
FIND operation transfers the entire record if the file is relative or
indexed, or if it has blocked records; it may transfer only part of
the record if the record spans block boundaries. The FIND operation
does not transfer the record to a user buffer.

The target of a key-access FIND operation is the record having the
specified key (under the specified match criterion). For a relative
file or for a sequential disk file with fixed-length records, the key
is a relative record number (RRN); for an indexed file, the key is an
index key under the specified index.

FORMAT R

The format for the $FIND is: -g f&
X ¥

SFIND rabaddr(,[erraddr] [,suesaddr]]
where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the FIND operation.
OPTIONS

Internal Stream Identifier

The FIND operation reads the 1internal stream identifier from the
l1-word 1ISI field of the RAB.

Key Access

Specify the RBSKEY code in the l-byte RAC field of the RAB.

Key of Reference (Indexed File)

Specify the key of reference in the l-byte KRF field of the RAB. The
key of reference is the reference number (REF field of KEY block) for
the index you want to use for the FIND operation.

Key

Specify a buffer containing the key for the record to be found:
specify the address of the key buffer in the l-word KBF field of the
RAB, and specify the size of the key in the 1l-byte KSZ field of the
RAB.,

For a relative file, or for a sequential file with fixed-length
records, specify a 4-byte binary relative record number (RRN) as the
key, and specify the key size as 0 or 4.

OPERATION MACRO DESCRIPTIONS
SFIND MACRO (KEY ACCESS)

For an indexed file, specify a key of the same type as the key for the
current index, and specify a key size no greater than the key size for
the current index. For a nonstring key, the specified key size must
be the key size defined for the index (or, equivalently, 0); for a
string key, if you specify a key size smaller than the key size for
the 1index, the FIND operation searches for a record whose key begins
with the specified partial key (under the specified key criterion).

Key Criterion

Specify a key-criterion mask in the l-word ROP field of the RAB, The
symbols for key-criterion masks are:

RBSKGE Greater-than-or-equal key criterion
RBSKGT Greater-than key criterion

If you specify the key-greater cxiterion, the FIND operation searches
for the first record whose key is greater than the key you specify;
if you specify the key-greatet-og-equal criterion, the FIND operation
searches for the first record*whose key is greater than or equal to
the key you specify; if you specify neither criterion, the FIND
operation searches for a record whose key exactly matches the key you
specify. (It is illegal to specify both criteria,)

STREAM CONTEXT
The current-record context after a key access FIND operation is the
found record; the next-record context 1is unchanged. 1If the FIND

operation returns an error completion, the current-record context is
undefined, and the next-record context is unchanged.

RETURNED VALUES

RFA

The FIND operation returns the record file address (RFA) for the found
record in the 3-word RFA field of the RAB.

RRN

For a relative file or for a sequential disk file with fixed-length
records, the FIND operation returns the RRN of the found record in the
2-word BKT field of the RAB.,

Completion Status and Value

The FIND operation returns completion status in the l-word 8TS field
of the RAB and returns a completion value in the l-word STV field of
the RAB. Appendix A lists completion status symbols and values.
CHECKLISTS

Table 5-19 lists control block fields that are input to the FIND

operation. Table 5-20 lists control block fields that are output by
the FIND operation,

OPERATION MACRO DESCRIPTIONS
SFIND MACRO (KEY ACCESS)

Table 5-19: FIND (Key Access) Input Fields

Block Field

Description

RAB
RAB
RAB
RAB
RAB

RAB

ISI
KBF
KRF
KSZ
RAC

ROP

Internal stream identifier
Key buffer address

Key of reference

Key size (bytes)

Record access code

RBSKEY Key access
Record processing option mask

RBSKGE Greater~than-or-equal key criterion
RBSKGT Greater-than key criterion

R S

4 Tn
Table 5-20: FIND (Ke§ Access) Output Fields

Block Field

Description

RAB
RAB
RAB
RAB

BKT
RFA
STS
STV

Relative record number (RRN)
Record file address
Completion status code
Completion status value

OPERATION MACRO DESCRIPTIONS
SFIND MACRO (RFA ACCESS)
5.11 SFIND MACRO (RFA ACCESS)
The SFIND macro calls the FIND operation routine to transfer a record
(or part of a record) from a file to an I/0 buffer. The FIND
operation transfers the entire file 1if the file 1is relative or
indexed, or 1f it has blocked records; it may transfer only part of
the record if the record spans block boundaries. The FIND operation
does not transfer the record to a user buffer.
The target of an RFA-access FIND operation is the record having the
record file address (RFA) you specify.
FORMAT
The format for the SFIND is:

SFIND rabaddr[,[erraddr][;sugaddr]]
where rabaddr is the address o£§£%e RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handlerx. for the operation.

CONTROL BLOCKS

You must supply a RAB for the FIND operation.
OPTIONS

Internal Stream Identifier

The FIND operation reads the internal stream identifier from the
l-word ISI field of the RAB.

RFA Access

Specify the RBSRFA code in the l-byte RAC field of the RAB,

RFA

Specify the RFA for the record to be found in the 3-word RFA field of
the RAB.

STREAM CONTEXT

The current-record context after an RFA access FIND operation 1is the
found record (for an indexed file, 1in the context of the primary
index); the next-record context is unchanged. If the FIND operation
returns an error completion, the current-record context is undefined,
and the next-record context is unchanged.

OPERATION MACRO DESCRIPTIONS
SFIND MACRO (RFA ACCESS)

RETURNED VALUES

RRN

For a relative file or for a sequential disk file with fixed-length
records, the FIND operation returns the RRN of the found record in the
2-word BKT field of the RAB.

Completion Status and Value

The FIND operation returns completion status in the l-word STS field
of the RAB and returns a completion value in the l-word STV field of
the RAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-21 lists control block%fi&lds that are 1input to the FIND
operation. Table 5-22 lists cofitrol block fields that are output by
the FIND operation. Y

Table 5-21: FIND (RFA Access) Input Fields

Block Field Description

RAB ISI Internal stream identifier
RAB RAC Record access code

RBSRFA RFA access

RAB RFA Record file address

Table 5-22: FIND (RFA Access) Output Fields

Block Field Description

RAB BKT Relative record number (RRN)
RAB STS Completion status code
RAB STV Completion status value

OPERATION MACRO DESCRIPTIONS
S$FLUSH MACRO

5.12 S$FLUSH MACRO
The SFLUSH macro calls the FLUSH operation routine to write any
unwritten buffers for a stream. The FLUSH operation does not affect
stream context, except that the current-record context 1is undefined
for a following TRUNCATE or UPDATE operation.
Note one special case: 1if a file was opened for deferred writing
(FBSDFW set 1in the FOP field of the FAB for the CREATE or OPEN
operation), and was not opened for write sharing (FBSWRI cleared in
the SHR field of the FAB), then a buffer may be controlled by a
different stream, and it will not be written by the FLUSH operation.
FORMAT
The format for the $FLUSH is:

SFLUSH rabaddr[,[erraddr]{,sﬁcaddr]]

-k . .
where rabaddr is the address ofxtﬁ% RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the FLUSH operation.
OPTIONS

Internal Stream Identifier

The FLUSH operation reads the internal stream identifier from the
l-word ISI field of the RAB.

STREAM CONTEXT

The FLUSH operation does not affect stream context, except that the

current-record context is undefined for a following TRUNCATE or UPDATE
operation.

RETURNED VALUES

Completion Status and Value

The FLUSH operation returns completion status in the l-word STS field
of the RAB and returns a completion value in the l-word STV field of
the RAB. Appendix A lists completion status symbols and values.

CHECKLISTS
Table 5-23 lists control block fields that are input to the FLUSH

operation. Table 5-24 lists control block fields that are output by
the FLUSH operation.

OPERATION MACRO DESCRIPTIONS

Table 5-23: FLUSH Input Fields

SFLUSH MACRO

Block Field

Description

RAB ISI

Internal stream identifier

Table 5-24: FLUSE Output Fields

Block Field

Description

RAB STS
RAB STV

Completion status code
Completion status value

OPERATION MACRO DESCRIPTIONS
SFREE MACRO
5.13 S$FREE MACRO
The S$FREE macro calls the FREE operation routine to free a locked
bucket for a stream. The FREE operation does not affect stream
context, except that the current-record context is undefined for a
following DELETE, TRUNCATE, or UPDATE operation.
FORMAT
The format for the SFREE is:
SFREE rabaddr|(, [erraddr] [,sucaddr]]
where rabaddr is the address of the RAB for the operation; erraddr is

the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

g

CONTROL BLOCKS

You must supply a RAB for the FREE;operation.
OPTIONS

Internal Stream Identifier

The FREE operation reads the internal stream identifier from the
l-word ISI field of the RAB,

STREAM CONTEXT

The FREE operation does not affect stream context, except that the

current-record context is undefined for a following DELETE, TRUNCATE,
or UPDATE operation.

RETURNED VALUES

Completion Status and Value

The FREE operation returns completion status in the l-word STS field
of the RAB and returns a completion value in the l-word STV field of
the RAB. Appendix A lists completion status symbols and values.

CHECKLISTS
Table 5-25 lists control block fields that are input to the FREE

operation. Table 5-26 lists control block fields that are output by
the FREE operation.

OPERATION MACRO DESCRIPTIONS

Table 5-25: FREE Input Fields

SFREE MACRO

Block Field

Description

RAB IS1

Internal stream identifier

Table 5-26: FREE Output Fields

Block Field

Description

RAB STS
RAB STV

Completion status code
Completion status value

S e

OPERATION MACRO DESCRIPTIONS
$GET MACRO (SEQUENTIAL ACCESS)
5.14 $GET MACRO (SEQUENTIAL ACCESS)

The $GET macro calls the GET operation routine to transfer a record
from a file to an 1I/0 buffer and to a user buffer.

The target of a sequential-access GET operation depends on whether the
previous operation was a FIND operation:

® If the previous operation was a successful FIND operation, the
target of a sequential-access GET operation is the current
record (or the first following record if the current record
was deleted or its key changed in the interim).
® If the previous operation was not a successful FIND operation,
the target of a sequential-access GET operation is the next
record (for an indexed file, the next record under the current
index) .
FORMAT T
The format for the $GET is:
SGET rabaddr(, [erraddr] [,sucaddr]]
where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the GET operation.
OPTIONS

Internal Stream Identifier

The GET operation reads the internal stream identifier from the l-word
ISI field of the RAB.

Sequential Access

Specify the RBS$SEQ code in the l-byte RAC field of the RAB.

User Buffer

Specify a user buffer for the GET operation. The GET operation copies
the retrieved record to this buffer if you do not specify locate mode
(see next section, Locate Mode); the GET operation may copy the
retrieved record to this buffer even if you specify locate mode.

Specify the address of the user buffer in the l-word UBF field of the
RAB, and specify the size (in bytes) of the user buffer in the l-word
USZ field of the RAB.

If the file is in VFC record format, specify the address of a buffer
for the fixed-length portion of the record in the l-word RHB field of
the RAB.

OPERATION MACRO DESCRIPTIONS
SGET MACRO (SEQUENTIAL ACCESS)

Locate Mode

I1f you want the GET operation to use locate mode (in which the record
may not be transferred to the user buffer), set the RBSLOC mask in the
1-word ROP field of the RAB; if you do not set this mask, the record
is transferred to the user buffer.

STREAM CONTEXT

The current-record context after a sequential access GET operation is
the retrieved record; the next-record context is the record following
the retrieved record.

1f the GET operation returns an error completion, the current-record
context is undefined, and the next-record context is unchanged.

RETURNED VALUES

Record

The GET operation returns the address and size of the retrieved record
in the 1l-word RBF field of the RAB, and the size (in bytes) of the
record in the l-word RSZ field of the RAB.

1f you did not specify locate mode for the GET operation, the record
address returned in the RBF field is the address you specified in the
UBF field; 1if you specified locate mode, the record address returned

in the RBF field is either the address you specified in the UBF field,
or the address of a location in an I/0 buffer.

1f the file 1is in VFC format, the GET operation writes the
fixed-length portion of the record in the buffer you specified in the
RHB field of the RAB.

RRN

For a relative file or for a sequential disk file with fixed-length
records, a sequential-access GET operation returns the relative record
number (RRN) for the retrieved record in the 2-word BKT field of the
RAB.

RFA

The GET operation returns the record file address (RFA) for the
retrieved record in the 3-word RFA field of the RAB,

Completion Status and Value

The GET operation returns completion status in the l-word STS field of
the RAB and returns a completion value in the l-word STV field of the
RAB. Appendix A lists completion status symbols and values.
CHECKLISTS

Table 5-27 lists control block fields that are input to the GET

operation. Table 5-28 lists control block fields that are output by
the GET operation.

OPERATION MACRO DESCRIPTIONS
SGET MACRO (SEQUENTIAL ACCESS)

Table 5-27: GET (Sequential Access) Input Fields

Block Field Description

RAB ISI Internal stream identifier
RARB RAC Record access code

RBSSEQ Sequential access

RAB RHB VEC control buffer address
RAB ROP Record processing option mask

RBSLOC Locate mode

RAB UBF User buffer address
RAB USz User buffer size (bytes)

e

Table 5-28: GET (Sequﬁmfial Access) Output Fields
[

Block Field Description

RAB BKT Relative record number (RRN)
RAB RBF Record buffer address

RAB RFA Record file address

RAB RSZ Record size (bytes)

RAB STS Completion status code

RAB STV Completion status value

OPERATION MACRO DESCRIPTIONS
SGET MACRO (KEY ACCESS)
5.15 SGET MACRO (KEY ACCESS)
The $GET macro calls the GET operation routine to transfer a record
from a sequential disk file (with fixed-length records), a relative
file, or an indexed file to an 1/0 buffer and to a user buffer.
The target of a key-access GET operation is the record having the
specified key (under the specified match criterion). For a relative
file or for a sequential disk file with fixed-length records, the key
is a relative record number (RRN); for an indexed file, the key is an
index key under the specified index.
FORMAT
The format for the $GET is:
SGET rabaddr[,[erraddr][,suc@ddr]]

where rabaddr is the address di t?e RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handlex for the operation.

CONTROL BLOCKS

You must supply a RAB for the GET operation.
OPTIONS

Internal Stream Identifier

The GET operation reads the internal stream identifier from the 1l-word
I1SI field of the RAB.

Key Access

Specify the RBSKEY code in the l-byte RAC field of the RAB.

Key of Reference (Indexed File)

Specify the key of reference in the l-byte KRF field of the RAB. The
key of reference is the reference number (REF field of KEY block) for
the index you want to use for the GET operation.

Key

Specify a buffer containing the key for the record to be retrieved:
specify the address of the key buffer in the l-word KBF field of the
RAB, and specify the size of the key in the 1l-byte KSZ field of the
RAB.

For a relative file or for a sequential file with fixed-length
records, specify a 4-byte binary relative record number (RRN) as the
key, and specify the key size as 0 or 4.

For an indexed file, specify a key of the same type as the key for the
current index, and specify a key size no greater than the key size for
the current index. For a nonstring key, the specified key size must
be the key size defined for the index (or, equivalently, 0); £for a

5-55

OPERATION MACRO DESCRIPTIONS
SGET MACRO (KEY ACCESS)

string key, if you specify a key size smaller than the key size for
the 1index, the GET operation searches for a record whose key begins
with the specified partial key (under the specified key criterion).

Key Criterion

Specify a key-criterion mask in the l-word ROP field of the RAB. The
symbols for key-criterion masks are:

RBSKGE Greater-than-or-equal key criterion
RBSKGT Greater-than key criterion

If you specify the key-greater criterion, the GET operation searches
for the first record whose key is greater than the key you specify;
if you specify the key-greater-or-equal criterion, the GET operation
searches for the first record whose key is greater than or equal to
the key you specify; if you specify neither <criterion, the GET
operation searches for a record whose key exactly matches the key you
specify. -4 vk

User Buffer

Specify a user buffer for the GET operation. The GET operation copies
the retrieved record to this buffer if you do not specify locate mode
(see next section, Locate Mode); the GET operation may copy the
retrieved record to this buffer even if you specify locate mode.

Specify the address of the user buffer in the l-word UBF field of the
RAB, and specify the size (in bytes) of the user buffer in the l-word
USZ field of the RAB.

If the file is in VFC record format, specify the address of a buffer
for the fixed-length portion of the record in the l-word RHB field of
the RAB.

Locate Mode

If you want the GET operation to use locate mode (in which the record
may not be transferred to the user buffer), set the RBSLOC mask in the
l-word ROP field of the RAB; if you do not set this mask, the record
is transferred to the user buffer.

STREAM CONTEXT

The current-record context after a key access GET operation is the
retrieved record; the next-record context is the record following the

retrieved record.

I1f the GET operation returns an error completion, the current-record
context is undefined, and the next-record context is unchanged.

RETURNED VALUES

Record

The GET operation returns the address and size of the retrieved record
in the 1-word RBF field of the RAB, and the size (in bytes) of the
record in the l-word RSZ field of the RAB.

OPERATION MACRO DESCRIPTIONS
SGET MACRO (KEY ACCESS)

If you did not specify locate mode for the GET operation, the record
address returned in the RBF field is the address you specified in the
UBF field. If you specified locate mode, the record address returned
in the RBF field is either the address you specified in the UBF field,
or the address of a location in an I/0 buffer.

1f the file 1is in VFC format, the GET operation writes the
fixed-length portion of the record in the buffer you specified in the
RHB field of the RAB.

RRN

For a relative file or for a sequential disk file with fixed-length
records, a key-access GET operation returns the relative record number
(RRN) for the retrieved record in the 2-word BKT field of the RAB.

RFA . 3

R
The GET operation returns the record file address (RFA) for the
retrieved record in the 3-word RFA field of the RAB.

Completion Status and Value

The GET operation returns completion status in the 1-word STS field of
the RAB and returns a completion value in the 1-word STV field of the
RAB. Appendix A lists completion status symbols and values.
CHECKLISTS

Table 5-29 lists control block fields that are input to the GET

operation. Table 5-30 lists control block fields that are output by
the GET operation.

Table 5-29: GET (Key Access) Input Fields

Block Field Description

RAB ISI Internal stream identifier
RAB KBF Key buffer address

RAB KRF Key of reference

RAB KS7Z Key size (bytes)

RAB RAC Record access code

RBSKEY Key access

RAB RHB VFC control buffer address
RAB ROP Record processing option mask

RBSKGE Greater-than-or-equal key criterion
RBSKGT Greater-than key criterion
RBSLOC Locate mode

RAB UBF User buffer address
RAB Usz User buffer size (bytes)

OPERATION MACRO DESCRIPTIONS
$GET MACRO (KEY ACCESS)

Table 5-30: GET (Key Access) Output Fields

Block Field Description

RAB BKT Relative record number (RRN)
RAB RBF Record buffer address

RAB RFA Record file address

RAB RSZ Record size (bytes)

RAB STS Completion status code

RAB STV Completion status value

OPERATION MACRO DESCRIPTIONS
SGET MACRO (RFA ACCESS)

5.16 SGET MACRO (RFA ACCESS)

The SGET macro calls the GET operation routine to transfer a record
from a file to an I/0 buffer and to a user buffer.

The targét of an RFA-access GET operation is the record having the
record file address (RFA) you specify.

FORMAT
The format for the S$GET is:
SGET rabaddr|[,{erraddr][,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

.
o i
oW L3

\ Y

CONTROL BLOCKS

. R

You must supply a RAB for the GET operation.
OPTIONS

Internal Stream Identifier

The GET operation reads the internal stream identifier from the l-word
1SI field of the RAB.

RFA Access

Specify the RBSRFA code in the l-byte RAC field of the RAB.

RFA

Specify the RFA for the record to be retrieved in the 3-word RFA field
of the RAB.

User Buffer

Specify a user buffer for the GET operation. The GET operation copies
the retrieved record to this buffer if you do not specify locate mode
(see next section, Locate Mode); the GET operation may copy the
retrieved record to this buffer even if you specify locate mode.

Specify the address of the user buffer in the l-word UBF field of the
RAB, and specify the size (in bytes) of the user buffer in the 1l-word
USz field of the RAB.

1f the file is in VFC record format, specify the address of a buffer
for the fixed-length portion of the record in the 1-word RHB field of
the RAB.

OPERATION MACRO DESCRIPTIONS
SGET MACRO (RFA ACCESS)

Locate Mode
If you want the GET operation to use locate mode {in which the record
may not be transferred to the user buffer), set the RBSLOC mask in the

l-word ROP field of the RAB; if you do not set this mask, the record
is transférred to the user buffer.

STREAM CONTEXT

The current-record context after an RFA access GET operation 1s the

retrieved record (for an indexed file, in the context of the primary
index); the next-record context is the record following the retrieved
record. If the GET operation returns an error completion, the

current-record context is undefined, and the next-record context is
unchanged.

RETURNED VALUES

Record

The GET operation returns the address and size of the retrieved record
in the 1l-word RBF field of the RAB, and the size (in bytes) of the
record in the l-word RSZ field of the RAB.

If you did not specify locate mode for the GET operation, the record
address returned in the RBF field is the address you specified in the
UBF field. If you specified locate mode, the record address returned
in the RBF field is either the address you specified in the UBF field,
or the address of a location in an I1/0 buffer.

If the file 1is in VFC format, the GET operation writes the
fixed-length portion of the record in the buffer you specified in the
RHB field of the RAB.

RRN

For a relative file or for a sequential disk file with fixed-length
records, an RFA-access GET operation returns the relative record
number (RRN) for the retrieved record in the 2-word BKT field of the
RAB.

Completion Status and Value

The GET operation returns completion status in the l-word STS field of
the RAB and returns a completion value in the l-word STV field of the
RAB. Appendix A lists completion status symbols and values.
CHECRKLISTS

Table 5-31 lists control block fields that are input to the GET

operation, Table 5-32 lists control block fields that are output by
the GET operation.

OPERATION MACRO DESCRIPTIONS
SGET MACRO (RFA ACCESS)

Table 5-31: GET (RFA Access) Input Fields

Block Field

Description

RAB
RAB

RAB
RAB
RAB

RAB
RAB

ISI

RAC

RFA
RHB
ROP

UBF
USZ

Internal stream identifier
Record access code

RBSRFA RFA access

Record file address

VFC control buffer address
Record processing option mask

RBSLOC Locate mode

User buffer address
User buffer sizeg (bytes)

g
e
Table 5-32: GET. (RFA Access) Output Fields

Block Field

Description

RAB
RAB
RAB
RAB
RAB

BKT
RBF
RSZ
STS
STV

Relative record number (RRN)
Record buffer address
Record size (bytes)
Completion status code
Completion status value

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

5.17 $SOPEN MACRO

The S$OPEN macro calls the OPEN operation routine to open a file for
processing by the calling task.

FORMAT
The format for the S$SOPEN is:
$OPEN fabaddr|[,[erraddr] [,sucaddr]]

where fabaddr is the address of the FAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a FAB for thelQP@N operation.

R 1

L
If you supply a NAM block and spegify open by NAM block, the OPEN
operation reads NAM block fields to obtain identifiers for the target
file.

To supply a NAM block for the OPEN operation, specify the address of
the NAM block in the l-word NAM field of the FAB.

For each ALL block that you supply, the OPEN operation fills its
fields with values describing the corresponding area (if any) of the
file. You need not supply an ALL block for every area of the file.
(If you are opening the file for block access, the OPEN operation
writes information describing the file as a whole in the all block for
area 0.)

For each KEY block that you supply, the OPEN operation fills its
fields with values describing the corresponding index (if any) for the
file. You need not supply a KEY block for every index of the file.
(If you are opening the file for block access, the OPEN operation does
not write in KEY blocks.)

If you supply a PRO block for a disk file, the OPEN operation fills
its fields with values showing the owner and protection for the file.

If you supply a DAT block for a disk file, the OPEN operation fills
its fields with values showing the creation date and revision date for
the file.

If you supply a SUM block for a relative or indexed file, the OPEN
operation fills its fields with values showing the number of areas and
indexes for the file, and with its prologue version number, (If you
are opening the file for block access, the OPEN operation returns the
number of areas and number of keys as 0, and does not return the
prologue version number.)

This information is especially useful if you do not know how many
areas or keys an indexed file has when you open it. If you supply a
SUM block for the OPEN operation, you can get the number of areas and
number of indexes from its fields, and then supply the correct number
of ALL blocks and KEY blocks for the DISPLAY operation.

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

To supply XABs (ALL, DAT, KEY, PRO, and SUM blocks) for the OPEN
operation, specify the address of the first XAB in the 1l-word XAB
field of the FAB; specify the address of the next XAB (if any) in the
1-word NXT field of each XAB; specify O in the NXT field of the last
XAB.

All KEY blocks must be together in the chain of XABs, and must be in
ascending order (by the index reference number in the l-byte REF field
of the KEY block); the index reference numbers need not be
consecutive,

All ALL blocks must be together in the chain of XABs, and must be in
ascending order (by the area identifier in the l-byte AID field of the
ALL block); the area jdentifiers need not be consecutive.

Multiple DAT, PRO, or SUM XABs are illegal.

OPTIONS k;,;
TR

Al 23

File Specification (Nonwildcard ®PEN Operation)

The OPEN operation constructs the full file specification from the
file string, the default string (which contributes only elements not
present in the file string), and RMS-11 defaults (which contribute
elements not present in either the file string or the default string).

RMS-11 defaults are:

e Device -~ The device to which the specified logical channel is
assigned, or SY: if the specified logical channel is not
assigned to any device.

e Directory -- The current directory for the task.
e Name, type, -- Defaulted to null.
The file string and the default string must not contain wildcards.

Specify the address of the file string in the l-word FNA field of the
FAB. Specify the size (in bytes) of the file string in the 1l-byte FNS
field of the FAB; if you specify 0 in the FNS field, the OPEN
operation uses no file string.

Specify the address of the default string in the l-word DNA field of
the FAB. Specify the size (in bytes) of the default string in the
1-byte DNS field of the FABj; if you specify 0 in the DNS field, the
OPEN operation uses no default string.

If you set the FBSFID mask in the 1-word FOP field of the FAB and
supply a NAM block, the OPEN operation reads the device identifier
from the 2-word DVI field of the NAM block; if this value is nonzero,
the specified device overrides the device in the merged string.

In the same circumstance, the OPEN operation reads the file identifier
from the 3-word FID field of the NAM block; if this value is zero,
the specified file overrides any directory, name, and type elements
previously obtained.

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

Open with Wildcard Context

If you want to open a file that was found by a wildcard SEARCH
operation (using the FAB and NAM block that the SEARCH operation
used), set the FBSFID mask in the l-word FOP field of the FAB; this
causes the OPEN operation to open the file without altering wildcard
context.

Expanded String Buffer

If you want the OPEN operation to return the expanded string for the
opened file, provide a buffer for the string. Specify the address of
the expanded string buffer in the l-word ESA field of the NAM block
and its size (in bytes) in the l-byte ESS field of the NAM block; if
you specify 0 in the ESS field, the OPEN operation does not return the
expanded string.

Key Name Buffer ;;‘?i

If you want the key name string fér an index returned to a buffer,
supply a KEY block for the index. Specify the index reference number
in the l-byte REF field of the KEY block, and specify the address of a
32-byte buffer in the l-word KNM field of the KEY block. If you do
not supply a KEY block for an index, or if you specify 0 in its KNM
field, the OPEN operation does not return the key name string.

While-Open Default Extension Sizes

If you want to override the default extension size for the file while
it is open, specify the while-open default file extension size (in
blocks) in the l-word DEQ field of the FAB. 1If you specify 0, the
OPEN operation does not establish a while-open default extension size
for the file; instead, it uses the permanent default extension size.

The while-open default extension size for a file remains in force
while the file 1is open, but does not change the file extension size
established when the file was created.

Private Buffer Pool

If you want the OPEN operation to use a private buffer pool instead of
the central buffer pool, specify the address of the (word-aligned)
private buffer pool in the l-word BPA field of the FAB, and its size
(in Dbytes) in the l-word BPS field of the FAB; this size must be a
multiple of 4,

If you specify 0 in either the BPA field or the BPS field, the OPEN
operation uses the central buffer pool.

The pocl that the OPEN operation uses is also used by the DISPLAY and
EXTEND operations, and by stream and record or block operations while
the file is open.

Logical Channel

Specify the logical channel for the OPEN operation in the l1-byte LCH
field of the FAB. The logical channel number must not be the same as
the logical channel number for any already-~open file, and must not be
0.

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

The logical channel that the OPEN operation uses is also used by the
DISPLAY and EXTEND operations, and by stream and record or block
operations while the file is open.

Requested-Access

Specify one or more requested-access masks in the l-byte FAC field of
the FAB. This mask determines the access that the opening program has
while the file is open. 1If you specify no requested-access mask,
find/get access is allowed (the OPEN operation uses the mask FBSGET).
The symbols for requested-access masks are:

FBSDEL Request find/get/delete access
FBSGET Request find/get access
FBSPUT Request put access
FBSREA Request block read access
FBSTRN Request find/get/truncate access
FBSUPD Request find/get/update access
FBSWRT Request block wr%ﬁegaccess

[

Note that FBSREA and FBSWRT overkide any record access requested.

Access Sharing

Specify the kinds of access that your program will share with other
programs by setting an access-sharing mask in the l-byte SHR field of
the FAB. The symbols for access-sharing masks are:

FBSGET Share find/get access
FBSNIL No access sharing
FBSWRI Share find/get/put/update/delete access

The kinds of access sharing are:
o Shared read access

Your program is willing to allow other programs to read the
file, but not to write it.

Even if your program specifies shared read access, other
programs will be unable to read (or write) the file if your
program requests any form of write access.

e Shared write access

Your program is willing to allow other programs to both read
and write the file. Shared write access is not allowed for a
sequential file unless the file has undefined record format
and your program opens the file for block access; shared
Wwrite access is also not allowed for a relative or indexed
file that your program opens for block access. In such cases,

RMS-11 automatically converts the shared write access
specification to a shared read access specification
internally.

e No shared access

Your program is not willing to allow other programs to either
read or write the file. RMS-1l does, however, allow other
programs to read the file unless your program also requests
some form of write access.

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

Deferred Writing

If you want deferred buffer writing for the open file, set the FBSDFW
mask in the l-word FOP field of the FAB; This means that RMS-11 does
not necessarily write its buffers during a write-type operation
(DELETE, PUT, or UPDATE), but instead writes buffers only when it
needs them for other operations (or when your program executes the
FLUSH operation for the stream).

If you do not set the FBSDFW mask, the DELETE, PUT, and UPDATE
operations write buffers to the file immediately.

Note that record operations always use a form of deferred buffer
writing for sequential files, and that block operations never use
deferred buffer writing. Therefore you need only decide whether to
use deferred writing for a record stream to a relative or indexed
file.

Magtape Beginning-of-File Positiching
\ ¥

If you have requested some form of write access, and if vyou want a
magtape file positioned to the beginning of the file when it is
opened, set the FBSNEF mask in the l-word FOP field of the FAB; if
you do not set this mask, and if you requested some form of write
access, the magtape is positioned to the end-of-file when the file is
opened.

Rewinding Magtape Before Open

If you want a magtape rewound before a magtape file is opened, set the
FBSRWO mask in the 1l-word FOP field of the FAB; 1if you do not set
this mask, the OPEN operation searches only from the current magtape
position to the end of the magtape.

Rewinding Magtape on Close

If you want the magtape rewound when the opened file 1is closed, set
the FB$RWC mask in the l-word FOP field of the FAB. If you do not set
this mask, the magtape will not be rewound on close unless you set the
FBSRWC mask for the CLOSE operation. Note, however, that if you set
the FBSRWC mask for the OPEN operation, the magtape will be rewound
even if you do not set the FBSRWC mask for the CLOSE operation.

RETURNED VALUES

Internal File Identifier

The OPEN operation writes an internal file identifier in the l-word
IFI field of the FAB. (The CLOSE operation clears the internal file
identifier,)

The CLOSE, CONNECT, DISPLAY, and EXTEND operations read the internal
file identifier; do not alter the IFI field while the file is open.

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

Device Characteristics

The OPEN operation returns device characteristics as masks in the
l1-byte DEV field of the FAB. The device characteristics are:

e Printer or terminal (indicated by the set FBSCCL mask in the
l-byte DEV field of the FAB and the set FBSREC mask in the
l-byte DEV field of the FAB; for a terminal, the FBSTRM mask
in the 1l-byte DEV field of the FAB is also set); RMS-11
treats a printer or terminal as a unit-record device.

e Disk, DECtape, or DECTAPE II (indicated by the set FBSMDI mask
in the 1l-byte DEV field of the FAB); RMS-11 treats a disk,
DECtape, or DECTAPE II as a disk device.

e Unit-record device (indicated by the set FBSREC mask in the
l1-byte DEV field of the FAB).

e Non-ANSI magtape or gaséette tape (indicated by the set FBSSDI
mask in the l-byte, BEV field of the FAB and the set FBSREC
mask in the l-byte DEV f£ield of the FAB); RMS-11 treats a
non-ANSI magtape or a cagsette tape as a unit-record device.

e ANSI-format magtape (indicated by the set FBS$SQD mask in the
1-byte DEV field of the FAB).

Device and File Identifiers

If you supply a NAM Dblock, the OPEN operation writes a device
identifier in the 2-word DVI field of the NAM block and a file
identifier in the 3-word FID field of the NAM block.

Expanded String

If you specify a buffer for the expanded string for the file (ESA and
ESS fields in the NAM block), the OPEN operation writes the expanded
string for the opened file in this buffer, and writes the 1length (in
bytes) of the string in the l-byte ESL field of the NAM block.

File Allocation, Bucket Size, and Contiguity

The OPEN operation writes the file allocation size (in blocks) in the
2-word ALQO field of the FAB, and the file bucket size or largest area
bucket size (in blocks) in the l-byte BKS field of the FAB. If the
file is contiguous, the OPEN operation sets the FBSCTG mask in the
l-word FOP field of the FAB.

Extension size

The OPEN operation writes the current default extension size for the
open file in the l-word DEQ field of the FAB.

File Organization

The OPEN operation writes the file organization code in the l-byte ORG
field of the FAB. The symbols for file organization codes are:

FBSIDX Indexed file organization

FBSREL Relative file organization
FBSSEQ Sequential file organization

5-67

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

Record Format

The OPEN operation writes the record format code in the l-byte RFM
field of the FAB. The symbols for record format codes are:

FBSFIX Fixed-length record format
FBSSTM Stream record format

FBSUDF Undefined record format
FBSVAR Variable-length record format
FBSVFC VFC record format

If the record format is VFC, the OPEN operation writes the size (in
bytes) of the VFC header field in the l-byte FSZ field of the FAB;
otherwise it writes 0 in the FSZ field.

Blocked Records (Sequential Disk File)

If the file was created specifyiné blocked records, the OPEN operation
sets the FBSBLK mask in theﬁg;§yte RAT field of the FAB. (The OPEN
operation sets the mask if it was%set when the file was created, even
if the file 1is not a sequential file; preservation of this mask
allows you to copy a sequential file to a file of a different
organization and back without losing the blocked-record
characteristic.)

Record-Output Handling

The OPEN operation writes the record-output mask in the 1-byte RAT
field of the FAB. The symbols for record-output masks are:

FBSCR Add CRLF to print record (LF-record-CR)

FBSFTN FORTRAN-style carriage-control character in record

FBSPRN VFC print record handling
Record Size
The OPEN operation writes the maximum permitted record size (in bytes)
in the l-word MRS field of the FAB.
Maximum Record Number
If the file is a relative file (FBSREL in the ORG field), the OPEN
operation writes the maximum record number in the 2-word MRN field of
the FAB (unless you are opening the file for block access) .
Cluster Size
The OPEN operation writes the cluster size (in blocks) for the file in
the l-byte RTV field of the FAB. A byte value of -1 implies a cluster
size of 256 blocks.

Magtape Block Size

For a magtape file, the OPEN operation writes the block size (in
characters) in the l-word BLS field of the FAB.

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

Longest Record Length

The OPEN operation writes the length of the longest record in the file
in the l-word LRL field of the FAB; this value is meaningful only for
sequential files.

Area Descriptions

For each ALL block that you supply, the OPEN operation writes a
description in its fields of the corresponding area of the file
{(unless you are opening the file for block access). Area 0 1is
described in the ALL block containing 0 in its AID field, area 1 is
described in the ALL block containing 1 in its AID field, and so
forth.

The OPEN operation writes three sizes for a file area: the size (in
blocks) of the unused portion.pf the area in the 2-word ALQ field of
the ALL block, the default area extension size (in blocks) in the
l-word DEQ field of the A@Dé block, and the area bucket size (in
blocks) in the l-byte BKZ field @f the ALL block. (If you are opening
the file for block access, only the ALL block for area 0 is written,
and the ALL block contains the current file allocation size, default
file extension size, and file bucket size.)

The OPEN operation clears the l-byte ALN field of the ALL block. If
you are opening a sequential or relative file for any access, Or an
indexed file for block access, the OPEN operation sets the XBSCTG mask
in the 1l-byte AOP field of the ALL block if the file is contiguous;
otherwise it clears the entire l-byte AOP field of the ALL block.

Key Descriptions

For each KEY block that you supply, the OPEN operation writes a
description in its fields of the corresponding index of the file.
(The OPEN operation does not write in KEY blocks if you are opening
the file for block access.)

The primary index is described in the KEY block containing 0 in its
REF field, the first alternate index is described in the KEY block
containing 1 in its REF field, and so forth.

The OPEN operation writes the key data type code in the 1l-byte DTP
field of the KEY block. The symbols for key data type codes are:

XBSBN2 16-bit unsigned integer
XB$BN4 32-bit unsigned integer
XBS$IN2 15-bit signed integer
XKB$IN4 31-bit signed integer
XBSPAC Packed decimal number
XB$STG String

The OPEN operation writes the sizes of key segments in the 8-byte SIZ
field of the KEY block. The size (in bytes) of the first key segment
is in the first byte of the SIZ field, the size of the second segment
is in the second byte of the SIZ field, and so forth. 1f the key has
fewer than eight segments, the first byte containing 0 establishes the
number of key segments.

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

The OPEN operation writes the positions of key segments in the 8-word
POS field of the KEY block. The position (leftmost position is 0) of
the first key segment is in the first word of the POS field, the
position of the second segment is in the second word of the POS field,
and so forth. 1If the key has fewer than eight segments, the remaining
words of the POS field contain unpredictable values.

The OPEN operation writes a key flags mask in the l-byte FLG field of
the KEY block. The symbols for key flags masks are:

XBSCHG Record key changes allowed on update
XBS$DUP Duplicate record keys allowed
XBSINI No entries yet made in index
XBSNUL Null record keys not indexed

The OPEN operation writes the null-key character in the l-byte NUL
field of the KEY block; this character is meaningful only if the
XBSNUL mask in the FLG field is .set and if the key is a string key
(XB$STG in the DTP field).

-4 Ok
The OPEN operation writes area wnukbers for the index: the area for
the data level in the 1l-byte DANfield of the KEY block, the area for
the lowest index level in the l-byte LAN field of the KEY block, and
the area for higher index levels in the l-byte IAN field of the KEY
block.

The OPEN operation writes bucket fill numbers for the index areas:
the fill number for the data area in the l-word DFL field of the KEY
block, and the fill number for the index areas in the l-word IFL field
of the KEY block.

The OPEN operation writes bucket sizes for index areas: the data area
bucket size (in blocks) in the l-byte DBS field of the KEY block, and
the index area bucket size (in blocks) in the l-byte IBS field of the
KEY block.

The OPEN ocperation writes virtual block numbers for the index areas:
the virtual block number for the first data bucket in the 2-word DVB
field of the KEY block, and the virtual block number of the root index
bucket in the 2-word RVB field of the KEY block.

The OPEN operation writes the number of levels 1in the index {not
including the data level) in the l-byte LVL field of the KEY block.

The OPEN operation writes the minimum size (in bytes) of a record that
contains the key for the index in the l-word MRL field of the KEY
block.

The OPEN operation writes key segment information for the index: the
number of key segments in the l-byte NSG field of the KEY block, and
the total key size (sum of segments, in bytes) in the l-byte TKS field
of the KEY block.

File Owner and Protection (Disk File)

If the file is a disk file, and if you supply a PRO block, the OPEN
operation writes the project (or group) portion of the file owner code
in the l-word PRJ field of the PRO block, the programmer (or member)
portion of the file owner code in the l-word PRG field of the PRO
block, and the file protection code in the l-word PRO field of the PRO
block.

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

File Dates

If you supply a DAT block for a disk file, the OPEN operation writes
two values in its fields: the creation date in the 4-word CDT field
of the DAT block and the revision date in the 4-word RDT field of the
DAT block.

The revision date has two possible meanings, depending upon the DSKINT
option specified by the system manager: 1) the date the file was last
opened or 2) the date the file was last accessed for writing.

File Summary Information

If you supply a SUM block and are opening an indexed file, the OPEN
operation writes three values in its fields: the number of file areas
in the l-byte NOA field of the SUM block, the number of file indexes
in the 1l-byte NOK field of the SUM block, and the prologue version
number (for a relative or indéxeg file) in the l-word PVN field of the
SUM block. (If you are opeénipg the file for block access, the OPEN
operation returns the number of dreas and the number of keys as 0, and
does not return the prologue version number.)

File Specification Characteristics

The OPEN operation sets masks in the l-word FNB field of the NAM block
to show which file specification elements were present in the file
string and default string. These masks and their meanings are:

NBSNOD Node in file string or default string

NBSDEV Device in file string or default string

NBSDIR Directory in file string or default string

NBSQUO Quoted string in file string or default string
NBSNAM File name in file string or default string

NBSTYP File type in file string or default string

NBSVER File version in file string or default string
NBSWD!I Wildcard directory in file string or default string
NBSWNA Wildcard file name in file string or default string
NBSWTY Wildcard file type in file string or default string
NBSWVE Wildcard file version in file string or default string

Wildcard Context Information

If you cleared the FB$FID mask, the OPEN operation clears the NB$WCH
mask in the l-word FNB field of the NAM block and the 1l-byte RSL field
of the NAM block; this shows that no wildcard context information
exists after the operation and that no resultant string was returned.
If you set the FBSFID mask, the OPEN operation does not alter the
NBSWCH mask, and (if the NBSWCH mask is set) does not alter the RSL
fiela.

Completion Status and Value

The OPEN operation returns completion status in the l-word STS field
of the FAB and returns a completion value in the l-word STV field of
the FAB. Appendix A lists completion status symbols and values.

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

CHECKLISTS

Table 5-33 lists control block fields that are input to the OPEN
operation.

the OPEN operation.

Table

5-34 lists control block fields that are output by

Table 5-33: OPEN Input Fields

Block Field

Description .

ALL
ALL
DAT
FAB
FAB
FAB
FAB
FAB
FAB

FAB
FAB
FAB

FAB
FAB
FAB

FAB
KEY
KEY
KEY
NAM
NAM
NAM
NAM
NAM

PRO
SUM

AID
NXT
NXT
BPA
BPS
DEQ
DNA
DNS
FAC

FNA
FNS
FOP

LCH

" NAM

SHR

XAB
KNM
NXT
REF
DVI
ESA
ESS
FID
FNB

NXT
NXT

Area number

Next XAB address

Next XAB address

Private buffer pool address

Private buffer pool size (bytes)

While-open file-default extension size (blocks)
Default string address

Default stringisize (bytes)

Requested access mask

FBSDEL Request find/get/delete access
FBSGET Request find/get access

FBSPUT Request put access

FBSREA Request block read access

FBSTRN Request find/get/truncate access
FBSUPD Request find/get/update access
FBSWRT Request block write access

File string address
File string size (bytes)
File processing option mask

FBSDFW Defer writing

FBSFID Use information in NAM block

FBSRWC Rewind magtape after closing file

FBSRWO Rewind magtape before searching for file

Logical channel number
NAM block address
Shared access mask

FBSGET Share find/get access
FBSNIL No access sharing

FBSWRI Share find/get/put/update/delete access
XAB address

Key name buffer address

Next XAB address

Index reference number

Device identifier

Expanded string buffer address
Expanded string buffer size (bytes)
File identifier

File specification mask

NBSWCH Wildcard context established

Next XAB address
Next XAB address

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

Table 5-34: OPEN Output Fields

Block Field

Description

ALL
ALL
ALL

ALL
ALL
DAT
DAT
FAB
FAB
FAB
FAB
FAB

FAB

FAB
FAB
FAB
FAB
FAB
FAB

FAB

FAB

ALN
ALQ
AQP

BKZ
DEQ
CcDT
RDT
ALQ
BKS
BLS
DEQ
DEV

FOP

FSZ
IFI
LRL
MRN
MRS
ORG

RAT

RFM

Area alignment mask
Unused area allocation size (blocks)
Area option mask

. XBSCTG Contiguous area

XBSHRD Hard area location (cleared)

Area bucket size (blocks)

Area default extension size (blocks)

File creation date

File revision date

Current file allocation (blocks)

File bucket sizei (blocks)

Magtape blockisi?e (characters)

Current file default extension size (blocks)
Device characterfstic mask

FBSCCL Carriage-control device
FBSMDI Multidirectory device
FBSREC Record-oriented device
FBS$SDI Single-directory device
FBSSQD Sequential device
FBSTRM Terminal device

File processing option mask
FBSCTG Contiguous file

Fixed control area size for VFC records (bytes)
Internal file identifier

Longest record length

Maximum record number

Maximum record size (bytes)

File organization code

FBSSEQ Sequential file organization
FBSREL Relative file organization
FBSIDX Indexed file organization

Record handling mask

FBSBLK Blocked records

FBSCR Add CRLF to print record (LF-record-CR)
FBSFTN FORTRAN-style carriage-control character in
record

FBSPRN VFC print record handling
Record format code

FBSUDF Undefined record format
FBSFIX Fixed-length record format
FBSVAR Variable-length record format
FBSVFC VFC record format

FBSSTM Stream record format

(Continued on next page)

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

Table 5-34 (Cont.): OPEN Output Fields

Block Field

Description

FAB
FAB
FAB
KEY
KEY
KEY
KEY

KEY
KEY

KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
NAM
NAM
NAM
NAM

RTV
STS
STV
DAN
DBS
DFL
DTP

DVB
FLG

IAN
IBS
IFL
LAN
LVL
MRL
NSG
NUL
POS
RVB
SI1Z
TKS
DVI
ESL
FID
FNB

Cluster size (blocks)
Completion status code
Completion status value

Data area number

Data area bucket size (blocks)
Data bucket f£ill factor

Key data type code

XBSBN2
XBSBN4
XBSIN2
XBSIN4
XBSPAC
XBSSTG

l16-bit unsigned integer
32-bit unsigned integer

15-bit signed integer
31-bit signed integer
Packed decimal number
String .3

First data buckgﬁévirtual block number
Index option mask?

XBSCHG
XBSDUP
XBSINI
XBSNUL

Record key changes allowed on update

Duplicate record keys

allowed

No entries yet made in index

Null record keys not

Higher level index area number
Index area bucket size (blocks
Index bucket f£ill factor
Lowest index level area number
Number of index levels (not including data level)
Minimum length of record containing key (bytes)
Key segment count
Null key character
Key segment positions
Root index bucket virtual block number
Key segment sizes (bytes)

Total key size

Device identifier

Expanded string length (bytes)
File identifier

File specification mask

NBSNOD
NBSDEV
NBSDIR
NBSQUO
NBSNAM
NBSTYP
NBSVER
NBSWDI
NBSWNA
NBSWTY
NBSWVE

NBSWCH

indexed

)

(sum of key segment sizes)

(bytes)

Node in file string or default string
Device in file string or default string
Directory in file string or default string
Quoted string in file string

string

or default

File name in file string or default string
File type in file string or default string
File version in file string

string

Wildcard directory
default string
Wildcard file name
default string
Wildcard file type
default string
Wildcard file version
default string

in file
in file
in file

in file

Wildcard context established

(Continued

or default

string or
string or
string or

string or

on next page)

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

Table 5-34 (Cont.): OPEN Output Fields

Block Field

Description

NAM
PRO
PRO
PRO
SUM
SUM
SUM

RSL
PRG
PRJ
PRO
NOA
NOK
PVN

Resultant string length (bytes) (cleared)
Programmer or member portion of file owner code
Project or group portion of file owner code
File protection code

Number of areas

Number of indexes

Prologue version number

OPERATION MACRO DESCRIPTIONS
$PARSE MACRO

5.18 $PARSE MACRO

The $PARSE macro calls the PARSE operation routine to analyze a file
specification.

FORMAT
The format for the SPARSE is:
SPARSE fabaddr|[,[erraddr][,sucaddr]]

where fabaddr is the address of the FAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation,

CONTROL BLOCKS 3
You must supply a FAB for the‘?ﬂﬁ%E operation.

If you supply a NAM block for the PARSE operation, the operation
routine writes file information in its fields. This information is
suitable as input to subsequent wildcard SEARCH operations.

To supply a NAM block for the PARSE operation, specify the address of
the NAM block in the l-word NAM field of the FAB.

To supply XABs (ALL, DAT, KEY, PRO, and SUM blocks) for the PARSE
operation, specify the address of the first XAB in the l-word XAB
field of the FAB; specify the address of the next XAB (if any) in the
l-word NXT field of each XAB; specify 0 in the NXT field of the last
XAB.

All KEY blocks must be together in the chain of XABs, and must be in
ascending order (by the index reference number in the l-byte REF field
of the KEY block); the 1index reference numbers need not be
consecutive.

All ALL blocks must be together in the chain of XABs, and must be in
ascending order (by the area identifier in the 1l-byte AID field of the
ALL block); the area identifiers need not be consecutive.

Multiple DAT, PRO, or SUM XABs are illegal.
OPTIONS

File Specification

The PARSE operation constructs the full file specification from the
file string, the default string (which contributes only elements not
present in the file string), and RMS-11 defaults (which contribute
elements not present in either the file string or the default string).

OPERATION MACRO DESCRIPTIONS
SPARSE MACRO

RMS-11 defaults are:

® Device -~ The device to which the specified logical channel is
assigned, or SY: if the specified logical channel is not
assigned to any device.

® Directory -- The current directory for the task.
e Name, type, -- Defaulted to null.

Specify the address of the file string in the l-word FNA field of the
FAB. Specify the size (in bytes) of the file string in the 1l-byte FNS
field of the FAB; 1if you specify 0 in the FNS field, the PARSE
operation uses no file string.

Specify the address of the default string in the l-word DNA field of
the FAB. Specify the size (in bytes) of the default string in the
l-byte DNS field of the FAB; if iyou specify 0 in the DNS field, the
PARSE operation uses no default %tring.

AR

% R

Expanded String Buffer

If you want the PARSE operation to return the expanded string for the
file, provide a buffer for the string. If you want subsequent
wildcard SEARCH operations to use the results of the PARSE operation,
you must provide an expanded string buffer.

Specify the address of the expanded string buffer in the 1l-word ESA
field of the NAM block. Specify the size (in bytes) of the expanded
string buffer in the l-byte ESS field of the NAM block; if vyou
specify 0 in the ESS field, the PARSE operation does not return the
expanded string.

Private Buffer Pool

If you want the PARSE operation to use a private buffer pool instead
of the central buffer pool, specify the address of the (word-aligned)
private buffer pool in the l-word BPA field of the FAB, and 1its size
(in bytes) in the l-word BPS field of the FAB; this size must be a
multiple of 4.

If you specify 0 in either the BPA field or the BPS field, the PARSE
operation uses the central buffer pool.

Logical Channel

Specify the logical channel for the PARSE operation in the l-byte LCH
field of the FAB. The logical channel number must not be the same as
the logical channel number for any already-open file, and must not be
0.

RETURNED VALUES

Wildcard Initialization

If you supplied a NAM block to be initialized for wildcard SEARCH
operations, the PARSE operation clears several fields: the l-byte RSL
field of the NAM block, the l-word WCC field of the NAM block, and the
l1-word WDI field of the NAM block. These cleared fields are part of
the initialization for subsequent SEARCH operations.

5-77

OPERATION MACRO DESCRIPTIONS
SPARSE MACRO

The PARSE operation writes a match-pattern (for subsequent wildcard
SEARCH operations) in the expanded string buffer, and writes the
length (in bytes) of the expanded string in the l-byte ESL field of
the NAM block.

The PARSE operation sets the NBSWCH mask in the l-word FNB field of
the NAM block, showing that wildcard information in the NAM block is
initialized.

Device Characteristics

The PARSE operation returns device characteristics as masks in the
l-byte DEV field of the FAB. The device characteristics are:

e Printer or terminal (indicated by the set FBS$CCL mask in the
l-byte DEV field of the FAB and the set FB$REC mask in the
l-byte DEV field of the FaB; for a terminal, the FB$TRM mask
in the 1l-byte DEV field of the FAB is also set); RMS-11
treats a printer or te¥mimal as a unit-record device.

Y, ¥

e Disk, DECtape, or DECTAPE;II (indicated by the set FBSMDI mask
in the 1l-byte DEV field of the FAB); RMS-11 treats a disk,
DECtape, or DECTAPE II as a disk device.

® Unit-record device (indicated by the set FBSREC mask 1in the
l-byte DEV field of the FAB).

e Non-ANSI magtape or cassette tape (indicated by the set FB$SDI
mask in the 1l-byte DEV field of the FAB and the set FBS$REC
mask in the l-byte DEV field of the FAB); RMS-11 treats a
non-ANSI magtape or a cassette tape as a unit-record device,

e ANSI-format magtape (indicated by the set FBS$SQD mask in the
l-byte DEV field of the FAB).

Device Identifier

If you supply a NAM block, the PARSE operation writes a device
identifier in the 2-word DVI field of the NAM block.

File Specification Characteristics

The PARSE operation sets masks in the l-word FNB field of the NAM
block to show which file specification elements were present in the
file string and default string. These masks and their meanings are:

NBSNOD Node in file string or default string

NBSDEV Device in file string or default string

NBSDIR Directory in file string or default string

NBSQUO Quoted string in file string or default string
NBSNAM File name in file string or default string

NBSTYP File type in file string or default string

NBSVER File version in file string or default string
NBSWDI Wildcard directory in file string or default string
NBSWNA Wildcard file name in file string or default string
NBSWTY Wildcard file type in file string or default string
NBSWVE Wildcard file version in file string or default string

OPERATION MACRO DESCRIPTIONS
SPARSE MACRO

Expanded String

If you supply a NAM block, and if the input file specification string
does not contain wildcard characters, the PARSE operation writes the
expanded string in the expanded string buffer; this string is a fully
qualified file specification except that the file version number (if
any) from the input file specification is unchanged.

Completion Status and Value

The PARSE operation returns completion status in the l-word STS field
of the FAB and returns a completion value in the l-word STV field of
the FAB. Appendix A lists completion status symbols and values.
CHECKLISTS

Table 5-35 lists control block fiélds that are input to the PARSE

operation. Table 5-36 listslgo&trol block fields that are output by
the PARSE operation, R

Table 5-35: PARSE Input Fields

Block Field Description

ALL NXT Next XAB address

DAT NXT Next XAB address

FAB BPA Private buffer pool address

FAB BPS Private buffer pool size (bytes)
FAB DNA Default string address

FAB DNS Default string size (bytes)

FAB FNA File string address

FAB FNS File string size (bytes)

FAB LCH Logical channel number

FAB NAM NAM block address

KEY NXT Next XAB address

NAM ESA Expanded string buffer address
NAM ESS Expanded string buffer size (bytes)
PRO -NXT Next XAB address

SUM NXT Next XAB address

Table 5-36: PARSE Output Fields

Block Field Description

FAB DEV Device characteristic mask

FBSCCL Carriage-control device
FBSMDI Multidirectory device
FBSREC Record-oriented device
FBSSDI Single-directory device
FBSSQD Sequential device
FBSTRM Terminal device

FAB STS Completion status code

FAB STV Completion status value

NAM DVI Device identifier

NAM ESL Expanded string length (bytes)

(Continued on next page)

OPERATION MACRO DESCRIPTIONS
SPARSE MACRO

Table 5-36

(Cont.): PARSE Output Fields

Block Field

Descripti

on

NAM

NAM
NAM
NAM

FNB

RSL
WCC
WDI

File spec
NBSNOD
NBSDEV
NBSDIR
NBSQUO
NBSNAM
NBSTYP
NBSVER

NBSWCH
NBSWDI

NBSWNA
NBSWTY

NBSWVE

ification mask

Node in file string or default string
Device in file string or default string
Directory in file string or default string
Quoted string in file string or default
string

File name in file string or default string
File type in file string or default string
File version 1in file string or default
string

Wildcard context established

Wildcard: directory in file string or
default string

Wildcagd) file name in file string or
defaulkt $tring

Wildcard = file type in file string or
default string

Wildcard file version 1in file string or
default string

Resultant string length (bytes) (cleared)

Wildcard
Wildcard

context (cleared)
directory context (cleared)

OPERATION MACRO DESCRIPTIONS
SPUT MACRO (SEQUENTIAL ACCESS)
5.19 S$PUT MACRO (SEQUENTIAL ACCESS)

The SPUT macro calls the PUT operation routine to transfer a record
from a user buffer to an I/0 buffer and to a file.

The target of a sequential-access PUT operation depends on the file
organization:

e For a sequential file, the target of a sequential-access PUT
operation is the end-of-file, and the next-record context must
be the end-of-file.

e For a relative file, the target of a sequential-access PUT
operation 1is the next cell (as determined by the next-record
context or by the context of an immediately preceding
sequential access PUT operation).

e For an indexed file, a sequential-access PUT operation has no
target; the PUT operation inserts the record and updates
indexes. If the immedﬁa%@ly preceding operation was also a
sequential access PUT apetration, the primary key value in your
record must be greater than or equal to the primary key value
of the preceding record.

FORMAT
The format for the S$SPUT is:

SPUT rabaddr|[, [erraddr][,sucaddr]]
where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the PUT operation.
OPTIONS

Internal Stream Identifier

The PUT operation reads the internal stream identifier from the l-word
ISI field of the RAB.

Sequential Access

Specify the RBSSEQ code in the l-byte RAC field of the RAB.

Record

Specify the address of the record to be transferred in the l-word RBF
field of the RAB, and the size (in bytes) of the record in the 1l-word
RSZ field of the RAB.

If the record is 1in VFC format, specify the address of the
fixed-length portion of the record in the l-word RHB field of the RAB.
If you specify 0 in this field, the record header will be null-filled.

OPERATION MACRO DESCRIPTIONS
SPUT MACRO (SEQUENTIAL ACCESS)

Locate Mode

For a sequential file, if you want the PUT operation to use locate
mode, specify the address of the user buffer in the l-word UBF field
of the RAB, specify the maximum size of the record for the next PUT
operation in the l-word USZ field of the RAB, and set the RBSLOC mask
in the l-word ROP field of the RAB.

The PUT operation returns (in the RBF field) the address of a location
where your program can build the next record for output. The maximum
next record size that you specify in the USZ field determines whether
the next record can fit into an I/0 buffer.

Bucket Fill Number Honoring

If you want the PUT operation to honor bucket £fill numbers for the
file and its areas, set the RBSLOA mask in the l-word ROP field of the
RAB. If you do not set this mask; the PUT operation fills buckets
without regard to bucket fill n@m?ers.

Update Existing Record (Relative File)

If you want to transfer the record to a cell in a relative file even
if the «cell contains a record, set the RBSUIF mask in the l-word ROP
field of the RAB. 1If you do not set this mask, and if the cell
already contains a record, the PUT operation returns an error
completion and does not transfer the record.

Mass Insertion (Indexed File)

For an indexed file, using mass-insertion mode for a series of PUT
operations speeds up the insertion of a series of records. To use
mass-insertion mode for a series of records, set the RBSMAS mask in
the l-word ROP field of the RAB for each PUT operation in the series.

STREAM CONTEXT

The current-record and next-record contexts after a sequential access
PUT operation are undefined.

RETURNED VALUES

Next Record Buffer

If you specified locate mode for the PUT operation, the PUT operation
returns the address of a location where your program can build the
next record for output in the l-word RBF field of the RAB. This
address gives a location in the 1I/0 buffer (if there is room for
another record there), or the location of your user buffer (if not).

RRN

For a relative file or for a sequential disk file with fixed-length
records, a sequential-access PUT operation returns the relative record
number (RRN) for the inserted record in the 2-word BKT field of the
RAB.

OPERATION MACRO DESCRIPTIONS
SPUT MACRO (SEQUENTIAL ACCESS)

RFA

The PUT operation returns the record file address (RFA) for the
inserted record in the 3-word RFA field of the RAB.

Completion Status and Value

The PUT operation returns completion status in the l-word STS field of
the RAB and returns a completion value in the l-word STV field of the
RAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-37 lists control block fields that are input to the PUT
operation. Table 5-38 lists control block fields that are output by
the PUT operation. ;

oo
Table 5-37: PUT (Sequéhtlal Access) Input Fields

Block Field Description

RAB ISI Internal stream identifier
RAB RAC Record access code

RBSSEQ Sequential access

RAB RBF Record buffer address
RAB RHB VFC control buffer address
RAB ROP Record processing option mask

RBSLOA Honor bucket fill numbers
RBSLOC Locate mode

RBSMAS Mass insert

RBSUIF Update if record exists

RAB RSZ Record size (bytes)
RAB ~ UBF User buffer address
RAB UsSz User buffer size (bytes)

Table 5-38: PUT (Sequential Access) Output Fields

Block Field Description

RAB BKT Relative record number (RRN)
RAB RFA Record file address

RAB RBF Record buffer address

RAB STS Completion status code

RAB STV Completion status value

OPERATION MACRO DESCRIPTIONS
$PUT MACRO (KEY ACCESS)

5.20 $PUT MACRO (KEY ACCESS)

The $PUT macro calls the PUT operation routine to transfer a record
from a user buffer to an I/0 buffer and to a sequential disk file
(with fixed-length records), a relative file, or an indexed file.

The target of a key-access PUT operation depends on the file
organization:

® TFor a sequential disk file (with fixed-length records) or a
relative file, the key is a relative record number (RRN) , and
the target of a key-access PUT operation is the cell specified
by the RRN.

® For an indexed file, a key-access PUT operation has no target;
the PUT operation inserts the record and updates indexes.

FORMAT ;
R
The format for the $PUT is: voF

SPUT rabaddr|[,[erraddr] [,sucaddr]]
where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the PUT operation.
OPTIONS

Internal Stream Identifier

The PUT operation reads the internal stream identifier from the l-word
ISI field of the RAB,

Key Access

Specify the RBSKEY code in the l-byte RAC field of the RAB.

Record

Specify the address of the record to be transferred in the l-word RBF
field of the RAB, and the size (in bytes) of the record in the l-word
RSZ field of the RAB.

If the record is 1in VFC format, specify the address of the
fixed-length portion of the record in the l-word RHB field of the RAB.
If you specify 0 in this field, the record header will be null-filled.

Record Buffer

Specify a record buffer for the PUT operation; specify the address of
the record buffer 1in the l-word UBF field of the RAB; specify the
size (in bytes) of the record buffer in the l-word US?Z field of the
RAB.

OPERATION MACRO DESCRIPTIONS
SPUT MACRO (KEY ACCESS)

Note that the value in the UBF field will be used (copied to the RBF
field) only if you specify locate mode. A request for locate mode is
otherwise ignored for a key access PUT operation.

RRN

For a relative file or for a sequential disk file with fixed-length
records, specify a 4-byte relative record number (RRN) in the l-word
KBF field of the RAB, and specify 0 or 4 in the l-byte K57 field of
the RAB.

Bucket Fill Number Honoring

If you want the PUT operation to honor bucket fill numbers for the
file and its areas, set the RBSLOA mask in the 1-word ROP field of the
RAB. If you do not set this mask, the PUT operation fills buckets
without regard to bucket fillanu@bers.

Ty

\ ¥

Update Existing Record (RelativeiFile)

If you want to transfer the record to a cell in a relative file even
if the cell contains a record, set the RBSUIF mask in the l-word ROP
field of the RAB. If you do not set this mask, and 1f the cell
already contains a record, the PUT operation returns an error
completion and does not transfer the record.

STREAM CONTEXT

The current-record context after a key access PUT operation is
undefined; the next-record context is unchanged.

RETURNED VALUES

RRN

For a relative file or for a sequential disk file with fixed-length
records, a key-access PUT operation returns the relative record number
(RRN) for the inserted record in the 2-word BKT field of the RAB.

RFA

The PUT operation returns the record file address (RFA) for the
inserted record in the 3-word RFA field of the RAB.

Completion Status and Value

The PUT operation returns completion status in the l-word STS field of
the RAB and returns a completion value in the l-word STV field of the
RAB. Appendix A lists completion status symbols and values.
CHECKLISTS

Table 5-39 lists control block fields that are input to the PUT

operation. Table 5-40 lists control block fields that are output by
the PUT operation.

OPERATION MACRO DESCRIPTIONS
SPUT MACRO (KEY ACCESS)

Table 5-39: PUT (Key Access) Input Fields

Block Field Description

RAB ISI Internal stream identifier
RAB KBF Key buffer address

RAB KSZ Key size (bytes)

RAB RAC Record access code

RBSKEY Key access

RAB RBF Record buffer address
RAB RHB VFC control buffer address
RAB ROP Record processing option mask

RBSLOA Honor bucket fill numbers
RBSLOC Locate mode
RBSUIF Update: if. record exists

4

SR
RAB RSZ Record size (bytes)
RAB UBF User buffer address
RAB Usz User buffer size (bytes)

Table 5-40: PUT (Key Access) Output Fields

Block Field Description

RAB BKT Relative record number (RRN)
RAB RBF Record buffer address

RAB RFA Record file address

RAB STS Completion status code

RAB STV Completion status value

OPERATION MACRO DESCRIPTIONS
SREAD MACRO (SEQUENTIAL ACCESS)

5.21 SREAD MACRO (SEQUENTIAL ACCESS)

The $READ macro calls the READ operation routine to transfer blocks
from a file to an I/0 buffer. The target of a sequential-access READ
operation is the readable block (and, for a multiblock READ operation,
following blocks).

FORMAT
The format for the $READ is:
SREAD rabaddr[,{erraddr] [,sucaddrl]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS ok

¥, 4

You must supply a RAB for the READ operation.
OPTIONS

Internal Stream Identifier

The READ operation reads the internal stream identifier from the
l-word ISI field of the RAB.

Block Specification

For a sequential-access READ operation, specify 0 in the 2-word BKT
field of the RAB.

User Buffer

Specify the address of the user buffer in the l-word UBF field of the
RAB, and specify the size (in bytes) of the user buffer in the l-word
UsZ field of the RAB.

For a magtape file, the READ operation reads at most one magtape block
into the buffer; for other files, the READ operation fills the buffer
(unless it reached the end-of-file before the buffer is filled).

STREAM CONTEXT

The readable-block context after a READ operation is the block
following the last-read block; the writable-block context is the
first-read block.

OPERATION MACRO DESCRIPTIONS
SREAD MACRO (SEQUENTIAL ACCESS)

RETURNED VALUES

Data Blocks

The READ operation returns the address and length of the data read
from the file. The value in the l-word RBF field of the RAB is the
address of the data read; the value in the l-word RSZ field of the
RAB is the length (in bytes) of the data read.

The READ operation normally will not read beyond the logical
end-of-file. For sequential files with undefined (UDF) record format,
however, the READ operation will respect the logical end-of-file
marker only 1if you have specified no write-sharing in the l-byte SHR
field of the FAB. If you specify write-sharing, RMS-11 will ignore
the 1logical end-of-file marker and will stop only at the physical
end-of-file on the disk.

Record File Address (RFA) :% ‘&
The READ operation returns the virtual block number of the first-read
block in the first two words of the 3-word RFA field of the RAB (it
clears the third word).

Completion Status and Value

The READ operation returns completion status in the l-word STS field
of the RAB and returns a completion value in the l-word STV field of
the RAB. Appendix A lists completion status symbols and values.
CHECKLISTS

Table 5-41 lists control block fields that are input to the READ

operation, Table 5-42 lists control block fields that are output by
the READ operation.

-Table 5-41: READ (Sequential Access) Input Fields

Block Field Description

RAB BKT Virtual block number (VBN)
RAB ISI Internal stream identifier
RAB UBF User buffer address

RAB USsS?Z User buffer size (bytes)

Table 5-42: READ (Sequential Access) Output Fields

Block Field Description

RAB RBF Record buffer address

RAB RFA Virtual block number (2 words)
RAB RSZ Record size (bytes)

RAB STS Completion status code

RAB STV Completion status value

OPERATION MACRO DESCRIPTIONS
SREAD MACRO (VBN ACCESS)

5.22 S$SREAD MACRO (VBN ACCESS)

The SREAD macro calls the READ operation routine to transfer Dblocks
from a file to an I/0 buffer. The target of a VBN-access READ
operation is a specified block (and, for a multiblock READ operation,
following blocks).

FORMAT
The format for the SREAD is:
SREAD rabaddr|, [erraddr] [,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

.

CONTROL BLOCKS R

A
vy
5 ’?

You must supply a RAB for the RﬁAD operation.
OPTIONS

Internal Stream Identifier

The READ operation reads the internal stream identifier from the
l-word I1ISI field of the RAB.

Biock Specification

Specify the virtual block number of the first block to be read in the
2-word BKT field of the RAB.

User Buffer

Specify the address of the user buffer in the l-word UBF field of the
RAB, and specify the size (in bytes) of the user buffer in the l-word
USZ field of the RAB.

For a magtape file, the READ operation reads at most one magtape block
into the buffer; for other files, the READ operation £ills the buffer
(unless it reached the end-of-file before the buffer is filled).
STREAM CONTEXT

The readable-block context after a READ operation is the block

following the last-read block; the writable-block context is the
first-read block.

OPERATION MACRO DESCRIPTIONS
SREAD MACRO (VBN ACCESS)

RETURNED VALUES

Data Blocks

The READ operation returns the address and length of the data read
from the file, The value in the l-word RBF field of the RAB is the
address of the data read; the value in the l-word RSZ field of the
RAB is the length (in bytes) of the data read.

The READ operation normally will not read beyond the logical
end-of-file. For sequential files with undefined (UDF) record format,
however, the READ operation will respect the logical end-of-file
marker only if you have specified no write-sharing in the l-byte SHR
field of the FAB. 1If you specify write-sharing, RMS-11 will ignore
the logical end-of-file marker and will stop only at the physical
end-of-file on the disk.

Record File Address (RFA) = Th
The READ operation returns the virtual block number of the first-read
block in the first two words of the 3-word RFA field of the RAB (it
clears the third word).

Completion Status and Value

The READ operation returns completion status in the l-word STS field

of the RAB and returns a completion value in the l-word STV field of
the RAB. Appendix A lists completion status symbols and values.

CHECRLISTS
Table 5-43 lists control block fields that are input to the READ

operation. Table 5-44 lists control block fields that are output by
the READ operation.

Table 5-43: READ (VBN Access) Input Fields

Block Field Description

RAB BKT Virtual block number (VBN)
RAB ISI Internal stream identifier
RAB UBF User buffer address

RAB USZ User buffer size (bytes)

Table 5-44: READ (VBN Access) Output Fields

Block Field Description

RAB RBF Record buffer address

RAB RFA Virtual block number (2 words)
RAB RS7Z Record size (bytes)

RAB STS Completion status code

RAB STV Completion status value

OPERATION MACRO DESCRIPTIONS
SRENAME MACRO

5.23 SRENAME MACRO

The $RENAME macro calls the RENAME operation routine to <change the
directory entry for a file.

The old and new entries (file specifications) must have the same
network node and device specifications.

FORMAT
The format for the SRENAME is:
$RENAME oldfabaddr, [erraddr], [sucaddr] ,newfabaddr

where oldfabaddr is the address of the FAB for the operation; erraddr
is the address of the error handler for the operation; sucaddr is the
address of the success handler for the operation; and newfabaddr is
the address of the FAB giving the new file specification.

R

CONTROL BLOCKS

You must supply two FABs for the RENAME operation: an "old" FAB
containing the «current specification for the file, and a "new" FAB
containing the new specification for the file.

If you supply a NAM block for the old FAB (old NAM block) and specify
either rename by NAM block or wildcarding, the RENAME operation reads
its fields to obtain identifiers for the old file specification. I1f
you supply a NAM block for the new FAB (new NAM block) and specify
rename by NAM block, the RENAME operation reads its fields to obtain
identifiers for the new file specification.

To supply a NAM block for the RENAME operation, specify the address of
the NAM block in the l-word NaM field of the FAB.

To supply XABs (ALL, DAT, KEY, PRO, and SUM blocks) for the RENAME
operation, specify the address of the first XAB in the l-word XAB
field of the FAB; specify the address of the next XAB (if any) in the
]-word NXT field of each XAB; specify 0 in the NXT field of the last
XAB.

All KEY blocks must be together in the chain of XABs, and must be in
ascending order (by the index reference number in the l-byte REF field
of the KEY Dblock); the index reference numbers need not be
consecutive.

All ALL blocks must be together in the chain of XABs, and must be in
ascending order (by the area identifier in the l-byte AID field of the
ALL block); the area identifiers need not be consecutive,

Multiple DAT, PRO, or SUM XABs are illegal.
OPTIONS

0l1d File Specification (Nonwildcard RENAME Operation)

The RENAME operation constructs the full file specification from the
file string, the default string (which contributes only elements not
present in the file string), and RMS-11 defaults (which contribute
elements not present in either the file string or the default string).

OPERATION MACRO DESCRIPTIONS
SRENAME MACRO

RMS-11 defaults are:

® Device -- The device to which the specified logical channel is
assigned, or SY: if the specified logical channel is not
assigned to any device.

® Directory -- The current directory for the task.
® Name, type, -- Defaulted to null.
The file string and the default string must not contain wildcards.

Specify the address of the file string in the l-word FNA field of the
FAB. Specify the size (in bytes) of the file string in the l-byte FNS
field of the FAB; 1if you specify 0 in the FNS field, the RENAME
operation uses no file string.

Specify the address of the default string in the l-word DNA field of
the FAB. Specify the size (in bytes) of the default string in the
l-byte DNS field of the FAB;/ﬁif§you specify 0 in the DNS field, the
RENAME operation uses no default3istring.

If you set the FBSFID mask in the l-word FOP field of the FAB and
supply a NAM block, the RENAME operation reads the device identifier
from the 2-word DVI field of the NAM block; if this value is nonzero,
the specified device overrides the device in the merged string.

0ld File Specification (Wildcard RENAME Operation)

You can use the RENAME operation in a wildcarding program loop. (The
NBSWCH mask in the l-word FNB field of the NAM block will already have
been set by an earlier PARSE operation.)

If you set the FBSFID mask in the l-word FOP field of the FAB, the
file found by a previous SEARCH operation is renamed without affecting
fields that are used as context for subsequent SEARCH operations.

If you clear the FBSFID mask in the l-word FOP field of the FAB, the
RENAME operation first performs an implicit SEARCH operation. (The
input and output fields for the SEARCH operation are not described
here and are not included in the «checklists at the end of this
section.)

If the SEARCH operation finds a file that matches the wildcard file
specification, the RENAME operation replaces its directory entry; if
not, the RENAME operation does not replace a directory entry, but
instead passes control block data from the SEARCH operation (in
particular, the ER$NMF completion status code and the cleared NBSWCH
mask in the l-word FNB field of the NAM block).

New File Specification
The RENAME operation constructs the full file specification from the
file string, the default string (which contributes only elements not
present in the file string), and RMS-11 defaults (which contribute
elements not present in either the file string or the default string).
RMS-11 defaults are:

® Device -- The device that was used for the old file

specification (The old FAB logical channel is used, and the
new FAB logical channel is ignored).

5-92

OPERATION MACRO DESCRIPTIONS
SRENAME MACRO

e Directory -- The current directory for the task.
e Name, type, -- Defaulted to null.
The file string and the default string must not contain wildcards.

Specify the address of the file string in the l-word FNA field of the
FAB. Specify the size (in bytes) of the file string in the 1l-byte FNS
field of the FAB; if you specify 0 in the FNS field, the RENAME
operation uses no file string.

Specify the address of the default string in the l-word DNA field of
the FAB. Specify the size (in bytes) of the default string in the
l1-byte DNS field of the FAB; 1if you specify 0 in the DNS field, the
RENAME operation uses no default string.

If you set the FBS$SFID mask in the 1-word FOP field of ‘*the FAB and
supply a NAM block, the RENAME operation reads the device identifier
from the 2-word DVI field of .the NAM block; if this value is nonzero,
the specified device overrides the device in the merged string.

Private Buffer Pool

If you want the RENAME operation to use a private buffer pool instead
of the central buffer pool, specify the address of the (word-aligned)
private buffer pool in the l-word BPA field of the FAB, and its size
(in bytes) in the l-word BPS field of the FAB; this size must be a
multiple of 4.

If you specify 0 in either the BPA field or the BPS field, the RENAME
operation uses the central buffer pool.

Logical Channel

Specify the logical channel for the RENAME operation in the l-byte LCH
field of the FAB. The logical channel number must not be the same as
the logical channel number for any already-open file, and must not be
0.

Expanded String Buffers

I1f you want the expanded string for the file given by a FAB returned
to a buffer, supply a NAM block for the FAB. Specify the address of
the buffer in the l-word ESA field of the NAM block, and the size (in
bytes) of the buffer in the l-byte ESS field of the NAM block. If you
do not supply a NAM block for a FAB, or if you specify 0 in the ESS
field, the RENAME operation does not return the expanded string.

OPERATION MACRO DESCRIPTIONS
SRENAME MACRO

RETURNED VALUES

Expanded Strings

If you specify a buffer for the expanded string for a FAB (ESA and ESS
fields in the NAM block), the RENAME operation writes the expanded
string in the buffer, and writes the length (in bytes) of the string
in the l-byte ESL field of the NAM block.

Device Characteristics

The RENAME operation returns device characteristics as masks in the
l-byte DEV field of the FAB. The device characteristics are:

® Printer or terminal (indicated by the set FBSCCL mask in the
l-byte DEV field of .the FAB and the set FBSREC mask in the
l-byte DEV field of the FAB; for a terminal, the FBSTRM mask
in the 1l-byte DEV .field of the FAB is also set); RMS-11
treats a printer or termifal as a unit-record device.

e Disk, DECtape, or DECTAPEuII (indicated by the set FBSMDI mask
in the 1-byte DEV field of the FAB); RMS-1l1 treats a disk,
DECtape, or DECTAPE II as a disk device.

¢ Unit-record device (indicated by the set FBSREC mask in the
l-byte DEV field of the FaAB).

® Non-ANSI magtape or cassette tape (indicated by the set FBSSDI
mask in the 1-byte DEV field of the FAB and the set FBSREC
mask in the l-byte DEV field of the FAB); RMS-11 treats a
non-ANSI magtape or a cassette tape as a unit-record device.

e ANSI-format magtape (indicated by the set FBSSQD mask in the
l1-byte DEV field of the FAB).

Device and File Identifiers

If you supply a NAM block, the RENAME operation writes a device
identifier in the 2-word DVI field of the NAM block and a file
identifier in the 3-word FID field of the NAM block.

File Specification Characteristics

The RENAME operation sets masks in the l-word FNB field of the NAM
block to show which file specification elements were present in the
file string and default string.

These masks and their meaning are:

NBSNOD Node in file string or default string

NBSDEV Device in file string or default string

NBSDIR Directory in file string or default string

NBSQUO Quoted string in file string or default string
NBSNAM File name in file string or default string

NBSTYP File type in file string or default string

NBSVER File version in file string or default string
NBSWDI Wildcard directory in file string or default string
NBSWNA Wildcard file name in file string or default string
NBSWTY Wildcard file type in file string or default string
NBSWVE Wildcard file version in file string or default string

OPERATION MACRO DESCRIPTIONS
SRENAME MACRO

Wildcarding

The RENAME operation clears the NB$WCH mask in the l-word FNB field of
the NAM Dblock; this shows that no wildcard context exists after the
RENAME operation. It also clears the l-byte RSL field of the NAM
block to show that no resultant string was returned.

Completion Status and Value

The RENAME operation returns completion status in the 1l-word STS field
of the FAB and returns a completion value in the l-word STV field of
the FAB., Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-45 lists control block fields that are input to the RENAME
operation. Table 5-46 lists control block fields that are output by
the RENAME operation. 4 Th

¥

NOTE

The only input fields taken from both
the "old" and the "new" FABs are the
DNA, DNS, FNA, FNS, FOP, and NAM fields.
All other FAB input fields are taken
from the "old" FAB only. All FAB output
fields are returned to the "old" FAB
only.

Table 5-45: RENAME Input Fields

Block Field Description

ALL NXT Next XAB address

DAT NXT Next XAB address

FAB BPA Private buffer pool address

FAB BPS Private buffer pool size (bytes)
FAB DNA Default string address

FAB DNS Default string size (bytes)

FAB FNA File string address

FAB FNS File string size (bytes)

FAB FOP File processing option mask

FBSFID Use information in NAM block

FAB LCH Logical channel number

FAB NAM NAM block address

KEY NXT Next XAB address

NAM DVI Device identifier

NAM ESa Expanded string buffer address

NAM ESS Expanded string buffer size (bytes)
NAM FNB File specification mask

NBSWCH Wildcard context established

PRO NXT Next XAB address
SUM NXT Next XAB address

OPERATION MACRO DESCRIPTIONS

SRENAME MACRO

Table 5-46: RENAME Output Fields

Block Field

Description

FAB

FAB
FAB
NAM
NAM
NAM
NAM

NAM

DEV

STS
STV
DVI
ESL
FID
FNB

RSL

Device characteristic mask

FBSCCL Carriage-control device
FBSMDI Multidirectory device
FBSREC Record-oriented device
FBSSDI Single-directory device
FBSSQD Sequential device
FBSTRM Terminal device

Completion status code
Completion status value
Device identifier

Expanded string length (bytes)
File identifier °

File specificaggo% mask

A ¥

NBSNOD Node in ﬁile string or default string
NBSDEV Device in-file string or default string
NBSDIR Directory in file string or default string

NBSQUO Quoted string in file
string

S

tring

or default

NBSNAM File name in file string or default string
NBSTYP File type in file string or default string

NBSVER File version 1in file
string

NBSWDI Wildcard directory in
default string

S

NBSWNA Wildcard file name in

default string

NBSWTY Wildcard file +type in

default string
NBSWVE Wildcard file version
default string

in

tring

file
file
file

file

or default
string or
string or
string or

string or

NBSWCH Wildcard context established (cleared)

Resultant string length (bytes)

OPERATION MACRO DESCRIPTIONS
SREWIND MACRO

5.24 SREWIND MACRO

The S$REWIND macro calls the REWIND operation routine to reset the
context for a stream to the beginning-of-file. The file can have any
organization.

The file cannot be on a magtape device.

FORMAT
The format for the SREWIND is:
SREWIND rabaddr [, [erraddr] [,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

R
CONTROL BLOCKS N

-1
$

o

.Sy

You must supply a RAB for the REWIND operation.
OPTIONS

Internal Stream Identifier

The REWIND operation reads the internal stream identifier from the
1-word ISI field of the RAB.

Key of Reference

For an indexed file, you must specify the index that the stream will
use in accessing records. Specify this key of reference in the 1l-byte
KRF field of the RAB. This value matches the value in the file's KEY
block for the index: 0 for the primary index, 1 for the first
alternate index, and so forth.

STREAM CONTEXT

For a record access file, the current context after a REWIND operation
is undefined and the next-record context is the first record in the
file; for an indexed file, this first record is defined by the
specified index.

For a block access file, both the readable-block and writable-block
contexts after a REWIND operation are the first block in the file.

RETURNED VALUES

Completion Status and Value

The REWIND operation returns completion status in the l-word STS field
of the RAB and returns a completion value in the l1-word STV field of
the RAB. Appendix A lists completion status symbols and values.

OPERATION MACRO DESCRIPTIORS

SREWIND MACRO

CHECKLISTS

Table 5-47 lists control block fields that are
Table

operation,

the REWIND operation.

Table 5-47: REWIND Input Fields

input
5-48 lists control block fields that are output by

to

the

REWIND

Block Field

Description

RAB ISI
RAB KRF

Internal stream identifier
Key of reference

Table 5-48: REWIND Output Fields

Block Field

Description

RAB STS
RAB STV

IFF tal

Completion status:code
Completion status value

OPERATION MACRO DESCRIPTIONS
$SEARCH MACRO

5.25 $SEARCH MACRO

The S$SEARCH macro calls the SEARCH operation routine to scan a
directory and return a file specification and identifiers in NAM block
fields. You should precede the SEARCH operation by a PARSE operation,
which initializes the NAM block fields for the SEARCH operation,

The SEARCH operation finds a file specification that matches the
match-pattern initialized (in the expanded string buffer) by the PARSE
operation; a series of wildcard SEARCH operations returns successive
matching file specifications.

FORMAT
The format for the S$SEARCH is:

$SEARCH fabaddr[,[erraddr}i,sucaddr]}
where fabaddr is the addreSS?pffihe FAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS
You must supply a FAB for the SEARCH operation.
You must supply a NAM block for the SEARCH operation.

To supply a NAM block for the SEARCH operation, specify the address of
the NAM block in the l-word NAM field of the FAB.

To supply XABs (ALL, DAT, KEY, PRO, and SUM blocks) for the SEARCH
operation, specify the address of the first XAB in the l-word XAB
field of the FAB; specify the address of the next XAB (if any) in the
1-word NXT field of each XAB; specify 0 in the NXT field of the last
XAB.

All KEY blocks must be together in the chain of XABs, and must be in
ascending order (by the index reference number in the l-byte REF field
of the KEY block); the index reference numbers need not be
consecutive.

All ALL blocks must be together in the chain of XABs, and must be in
ascending order (by the area identifier in the l-byte AID field of the
ALL block); the area identifiers need not be consecutive.

Multiple DAT, PRO, or SUM XABs are illegal.
OPTIONS

Wildcard Context Information

The SEARCH operation reads NAM Dblock fields that are initialized,
written, or preserved by a preceding PARSE or wildcard SEARCH
operation: the 2-word DVI field of the NAM block, the 1l-word ESA
field of the NAM block, the l-byte ESL field of the NAM block, the
NBSWCH mask in the l-word FNB field of the NaM block, the 1l-word RSA
field of the NAM block, the l-byte RSL field of the NAM block, the
1-byte RSS field of the NAM block, the l-word WCC field of the NAM
block, and the l-word WDI field of the NAM block.

OPERATION MACRO DESCRIPTIONS
$SSEARCH MACRO

The SEARCH operation also uses the expanded string in the expanded
string buffer.

You must preserve these fields between a PARSE and a SEARCH operation
and between successive wildcard SEARCH operations.

Private Buffer Pool

If you want the SEARCH operation to use a private buffer pool instead
of the central buffer pool, specify the address of the (word-aligned)
private buffer pool in the l-word BPA field of the FAB, and its size
(in bytes) 1in the l-word BPS field of the FAB; this size must be a
multiple of 4.

If you specify 0 in either the BPA field or the BPS field, the SEARCH
operation uses the central buffer pool.

Logical Channel :g N

Specify the logical channel for the SEARCH operation in the l1-byte LCH
field of the FAB. The logical channel number must not be the same as
the logical channel number for any already-open file, and must not be

0.

Magtape Positioning

The FB$RWO mask in the l-word FOP field of the FAB and the FBSRWC mask
in the 1-word FOP field of the FAB should not be set during wildcard
SEARCH operations on magtape to avoid wunpredictable results. The
first SEARCH operation on a magtape will rewind the tape
automatically.

RETURNED VALUES

Resultant String

The SEARCH operation writes the full file specification for the found
file in the resultant string buffer, and writes the length of the
string in the l-byte RSL field of the NAM block.

Device Characteristics

The SEARCH operation returns device characteristics as masks in the
l-byte DEV field of the FAB. The device characteristics are:

® Printer or terminal (indicated by the set FBSCCL mask in the
l-byte DEV field of the FAB and the set FBSREC mask in the
l-byte DEV field of the FAB; for a terminal, the FBSTRM mask
in the 1l-byte DEV field of the FAB is also set); RMS-11
treats a printer or terminal as a unit-record device.

e Disk, DECtape, or DECTAPE II (indicated by the set FBSMDI mask
in the 1-byte DEV field of the FAB); RMS-11 treats a disk,
DECtape, or DECTAPE II as a disk device.

e Unit-record device (indicated by the set FBSREC mask in the
l-byte DEV field of the FAB).

5-100

OPERATION MACRO DESCRIPTIONS
$SEARCH MACRO

e Non-ANSI magtape or cassette tape (indicated by the set FB$SDI
mask in the 1l-byte DEV field of the FAB and the set FBSREC
mask in the l-byte DEV field of the FAB); RMS-11 treats a
non-ANSI magtape or a cassette tape as a unit-record device.

e ANSI-format magtape (indicated by the set FB$SQD mask in the
l-byte DEV field of the FAB).

File Identifier

If the SEARCH operation finds a file that matches the wildcard
pattern, and the FBSFID mask in the l-word FOP field of the FAB is
set, it writes the file identifier for the found file 1in the 3-word

FID field of the NAM block.

In addition, when using SEARCH with ANSI magtapes, the presence of the
FBSFID mask signifies wildcarding "with intent to open.”" This causes
RMS-11 to use special magtape wildcarding (see the RSTS/E Programming
Manual). If the FBSFID mask s got set, normal magtape wildcarding 1is
used. o

Wildcard Context Information

The SEARCH operation writes the wildcard context in the 1l-word WCC
field of the NAM block, and the wildcard directory context in the
1-word WDI field of the NAM block.

If the SEARCH operation did not find a matching file, it clears the
NBSWCH mask in the l-word FNB field of the NAM block; this shows that
no further wildcarding 1is possible wusing the current wildcard
information.

Completion Status and Value

The SEARCH operation returns completion status in the l-word STS field
of the FAB and returns a completion value in the l-word STV field of
the FAB. Appendix A lists completion status symbols and values.
CHECKLISTS

Table 5-49 lists control block fields that are input to the SEARCH

operation. Table 5-50 lists control block fields that are output by
the SEARCH operation.

Table 5-49: SEARCH Input Fields

Block Field Description

ALL NXT Next XAB address

DAT NXT Next XAB address

FAB BPA Private buffer pool address

FAB BPS Private buffer pool size (bytes)

(Continued on next page)

5-101

OPERATION MACRO DESCRIPTIONS
$SEARCH MACRO

Table 5-49 (Cont.): SEARCH Input Fields

Block Field Description

FAB FoP File processing option mask

FBSFID Use information in NAM block
FBSRWO Rewind magtape before operation
FBSRWC Rewind magtape after closing file

FAB LCH Logical channel number

FAB NAM NAM block address

KEY NXT Next XAB address

NAM DVI Device identifier

NAM ESA Expanded string buffer address
NAM ESL Expanded string length (bytes)
NAM FNB File specification mask

NBSWCH Wildc@rd&context established

AY)

NAM RSA Resultant string buffer address

NAM RSL Resultant string length (bytes)

NAM RSS Resultant string buffer size (bytes)
NAM WCC Wildcard context

NAM WDI Wildcard directory context

PRO NXT Next XAB address

SUM NXT Next XAB address

Table 5-50: SEARCH Output Fields

Block Field Description

FAB DEV Device characteristic mask

FBSCCL Carriage-control device
FBSMDI Multidirectory device
FBSREC Record-oriented device
FBSSDI Single-directory device
FBSSQD Sequential device
FBSTRM Terminal device

FAB STS Completion status code

FAB STV Completion status value
NAM FID File identifier

NAM FNB File specification mask

NBSWCH Wildcard context established

NAM RSL Resultant string length (bytes)
NAM WCC Wildcard context
NAM WDI Wildcard directory context

5-102

OPERATION MACRO DESCRIPTIONS
STRUNCATE MACRO

5.26 S$TRUNCATE MACRO
The STRUNCATE macro calls the TRUNCATE operation routine to remove
records from the latter part of a sequential file; records are
removed inclusively from the current record through the end-of-file.
1f the file cannot be truncated, the TRUNCATE operation returns an
error completion and leaves the current-record context undefined and
the next-record context unchanged.
FORMAT
The format for the $TRUNCATE is:

STRUNCATE rabaddr{,[erraddr][,sucaddr]]
where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is

the address of the success handl?r for the operation.
=R

. ¥

CONTROL BLOCKS

You must supply a RAB for the TRUNCATE operation.
OPTIONS

Internal Stream Identifier

The TRUNCATE operation reads the internal stream identifier from the
l1-word ISI field of the RAB.

STREAM CONTEXT

The TRUNCATE operation destroys the current-record context; the
next-record context after the TRUNCATE operation is the end-of-file.

RETURNED VALUES

Completion Status and Value

The TRUNCATE operation returns completion status in the l-word STS
field of the RAB and returns a completion value in the l-word STV
field of the RAB. Appendix A lists completion status symbols and
values.

CHECKLISTS
Table 5-51 lists control block fields that are input to the TRUNCATE

operation. Table 5-52 lists control block fields that are output by
the TRUNCATE operation.

5-103

OPERATION MACRO DESCRIPTIONS
STRUNCATE MACRO

Table 5-51: TRUNCATE Input Fields
Block Field Description

RAB ISI Internal stream identifier

Table 5-52: TRUNCATE Output Fields

Block Field Description

RAB STS Completion status code
RAB STV Completion status value

5-104

OPERATION MACRO DESCRIPTIONS
SUPDATE MACRO

5.27 SUPDATE MACRO
The SUPDATE macro calls the UPDATE operation routine to transfer a
record from a user buffer to a disk file (overwriting the existing
record). The target of the UPDATE operation is the current record,
which is overwritten.
If no record (as specified in the RAB) can be transferred, the UPDATE
operation returns an error completion.
FORMAT
The format for the S$SUPDATE is:

SUPDATE rabaddr(,[erraddr][,sucaddr]]
where rabaddr is the address of the RAB for the operation; erraddr is

the address of the error hapdlér for the operation; and sucaddr is
the address of the success hanglei for the operation.

. ¥

CONTROL BLOCKS

You must supply a RAB for the UPDATE operation.
OPTIONS

Internal Stream Identifier

The UPDATE operation reads the internal stream identifier from the
l-word ISI field of the RAB.

Record Buffer

Specify the address of the record buffer in the l-word RBF field of
the RAB, and specify the size (in bytes) of the record buffer in the
l-word RSZ field of the RAB. For sequential files and for indexed
files in which duplicate primary key values are permitted, the size of
the buffer must be the same as the size of the existing record.

If the file has VFC format, specify the address of the buffer for the
VFC header in the l-word RHB field of the RAB; 1if you specify zero in
this field, the existing record header will remain unchanged.

Bucket Fill Number Honoring

If you want the UPDATE operation to honor bucket fill numbers for the
file and its areas, set the RBSLOA mask in the l-word ROP field of the
RAB. If you do not set this mask, the UPDATE operation fills buckets
without regard to bucket f£ill numbers.

STREAM CONTEXT

The UPDATE operation destroys the current-record context; the
next-record context after the UPDATE operation is unchanged.

5-105

OPERATION MACRO DESCRIPTIONS

SUPDATE MACRO

RETURNED VALUES

Completion Status and Value

The UPDATE operation returns completion status in the l-word STS field
RAB and returns a completion value in the l-word STV field of
Appendix A lists completion status symbols and values.

of the
the RAB.

CHECKLISTS

Table 5-53

operation.

the UPDATE

lists control block fields that are
Table
operation.

Table 5-53: UPDATE Input Fields

input
5-54 lists control block fields that are output by

to the UPDATE

Block Field

Description -4 “L

RAB
RAB
RAB
RAB

RAB

ISI
RBF
RHB
ROP

RSZ

Internal stream identifier
Record buffer address

VFC control buffer address
Record processing option mask

RBSLOA Honor bucket fill numbers

Record size (bytes)

Table 5-54: UPDATE Output Fields

Block Field

Description

RAB
RAB

STS
STV

Completion status code
Completion status value

5-106

OPERATION MACRO DESCRIPTIONS
SWRITE MACRO (SEQUENTIAL ACCESS)

5.28 SWRITE MACRO (SEQUENTIAL ACCESS)

The SWRITE macro calls the WRITE operation routine to write blocks to
a file. The target of a sequential-access WRITE operation is the
writable block (and, for a multiblock WRITE operation, following
blocks).

FORMAT
The format for the SWRITE ist:
SWRITE rabaddr{, [(erraddr] [,sucaddr]}

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS 4 "k
\ T

You must supply a RAB for the WRITE operation.
OPTIONS

Internal Stream Identifier

The WRITE operation reads the internal stream identifier from the
l-word 18I field of the RAB,

Block Identification

For a sequential-access WRITE operation, specify 0 in the 2-word BKT
field of the RAB.

Record Buffer

Specify the address of the record buffer in the 1l-word RBF field of
the RAB, and specify the size (in bytes) of the record buffer in the
l-word RSZ field of the RAB. You must specify a record buffer for the
WRITE operation; the WRITE operation transfers data from this buffer
to the file.

The WRITE operation normally updates the logical end-of-file marker,
when appropriate. For sequential files with undefined (UDF) record
format, however, the WRITE operation updates the logical end-of-file
marker only if no write-sharing has been specified in the l-byte SHR
field of the FAB.

STREAM CONTEXT
The readable-block context after a WRITE operation 1is the block

following the last-written block; the writable-block context after a
WRITE operation is the block following the last-written block.

5-107

OPERATION MACRO DESCRIPTIONS
SWRITE MACRO (SEQUENTIAL ACCESS)

RETURNED VALUES

Record File Address (RFA)

The WRITE operation returns the virtual block number of the
first-written block in the first two words of the 3-word RFA field of
the RAB (it clears the third word).

Completion Status and Value

The WRITE operation returns completion status in the l-word STS field
of the RAB and returns a completion value in the l-word STV field of
the RAB. Appendix A lists completion status symbols and values.
CHECKLISTS A

Table 5-55 lists control blockgfiglds that are 1input to the WRITE

operation. Table b5-56 lists‘'control block fields that are output by
the WRITE operation. g

Table 5-55: WRITE (Sequential Access) Input Fields

Block Field Description

RAB BKT Virtual block number (VBN)
RAB 181 Internal stream identifier
RAB RBF Record buffer address

RAB RSZ Record size (bytes)

Table 5-56: WRITE (Sequential Access) Output Fields

Block Field Description

RAB RFA Virtual block number (2 words)
RAB STS Completion status code
RAB STV Completion status value

5-108

OPERATION MACRO DESCRIPTIONS
SWRITE MACRO (VBN ACCESS)

5.29 SWRITE MACRO (VBN ACCESS)

The S$WRITE macro calls the WRITE operation routine to write blocks to
a file. The target of a VBN-access WRITE operation is the writable
block (and, for a multiblock WRITE operation, following blocks).

FORMAT
The format for the SWRITE is:
SWRITE rabaddr{,[erraddr] [,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS
STy
You must supply a RAB for the WRITE operation.

OPTIONS

Internal Stream Identifier

The WRITE operation reads the internal stream identifier from the
l-word ISI field of the RAB.

Block Identification

Specify the virtual block number of the first block to be written in
the 2-word BKT field of the RAB.

Record Buffer

Specify the address of the record buffer in the l-word RBF field of
the RAB, and specify the size (in bytes) of the record buffer in the
l-word RSZ field of the RAB. You must specify a record buffer for the
WRITE operation; the WRITE operation transfers data from this buffer
to the file.

The WRITE operation normally updates the logical end-of-file marker,
when appropriate. For sequential files with undefined (UDF) record
format, however, the WRITE operation updates the logical end-of-file
marker only if no write-sharing has been specified in the l-byte SHR
field of the FAB.

STREAM CONTEXT
The readable-block context after a WRITE operation 1is the block

following the last-written block; the writable-block context after a
WRITE operation is the block following the last-written block.

5-109

OPERATION MACRO DESCRIPTIONS
SWRITE MACRO (VBN ACCESS)

RETURNED VALUES

Record File Address (RFA)

The WRITE operation returns the wvirtual block number of the
first-written block in the first two words of the 3-word RFA field of
the RAB (it clears the third word).

Completion Status and Value

The WRITE operation returns completion status in the l-word STS field
of the RAB and returns a completion value in the l-word STV field of
the RAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-57 lists control block*ﬁié;ds that are 1input to the WRITE
operation. Table 5-58 lists control block fields that are output by
the WRITE operation.

Table 5-57: WRITE (VBN Access) Input Fields

Block Field Description

RAB BKT Virtual block number (VBN)
RAB ISI Internal stream identifier
RAB RBF Record buffer address

RAB RSZ Record size (bytes)

Table 5-58: WRITE (VBN Access) Output Fields

Block Field Description

RAB RFA Virtual block number (2 words)
RAB STS Completion status code
RAB STV Completion status value

5~110

CHAPTER 6

CONTROL BLOCK FIELDS

Each major section of this chapter describes an RMS-11 control block,
and includes:

Block summary table ot

oA
A table summarizes théﬁe&tire control block. The table shows
the offset, offset symbol, field size, and a brief description
of each field in the block; for each mask or code for a
field, the table shows the value, symbol, and a brief
description of the mask or code.

Field summaries

Each subsection following the block summary table 1is a
description of one field in the block. A field that has masks
that are very different in purpose (such as the FOP field in
the FAB) is described as a number of separate "fields" (such
as FOP FBSFID, FOP FB$SRWO, and so forth).

The description of each field includes the following:

USE: a summary of the purpose of the field

SIZE: the size of the field

INIT: the format of the field-initialization macro (if any)

ACCESS: the formats of field-access macros to access the
field

MASKS or CODES: (if any) each mask or code symbol and a brief
description

INPUT: the operations that read values from the field, and
the meanings of those values

OUTPUT: the operations that store values in the field, and
the meanings of those values

Fields described as "Reserved" and undefined bits in masks should (and
in some cases must) be 0.

CONTROL BLOCK FIELDS
ALL BLOCK SUMMARY

6.1 ALL BLOCK SUMMARY

This section summarizes the ALL block and its fields. Table 6-1
summarizes the entire block, giving the offset, offset symbol, size,
and a brief description for each field; for a field that has mask or
code symbols, the table also gives the value, symbol, and a brief
description for each mask or code.

Table 6-1: ALL Block Summary

Offset Field
Offset Symbol Size Description

000 0SCOD 1 byte ALL.b;ock identifier code

000004, XBSALL ALL block identifier
4k
001 OSBLN 1 byte ALL bléck length (bytes)

000034 XBSLAL ALL block length (bytes)

002 OSNXT
004 OSAID
005 0OS$BKZ
006 O$VOL
010 OSALN

word Next XAB address

byte Area number

byte Area bucket size (blocks)
word Reserved

byte Area alignment mask

e

000002 XBSLBN Cluster alignment
011 0SAQP 1 byte Area option mask

000002 XBSCTG Contiguous area

022 OSLOC
022 OSLOCO
024 OSLOC1

words Area location
word LOC field low word
word LOC field high word

012 OSALQ 2 words Area allocation size (blocks)
012 OSALQO 1 word ALQ field low word
014 OSALQl 1 word ALQ field high word
0l6 OSDEQ 1 woxd Area default extension size (blocks)
020 1 word Reserved
2
1
1

6.1.1

USE

INIT
SIZE

ACCESS

INPOT

AID Field in ALL Block

CONTROL BLOCK FIELDS
ALL BLOCK SUMMARY

Contains the area identifier for the area described by the

ALL block.

XSAID number

1 byte

$FETCH dst,AID,reg ;AID field to l-byte dst
$STORE src,AID,reg ;1-byte src to AID field
SCOMPARE src,AID,reg ;1-byte src with AID field
CLOSE Area number

CREATE Area number

DISPLAY Area number

EXTEND Area number

OPEN Area ngmb%r

CONTROL BLOCK FIELDS
ALL BLOCK SUMMARY

6.1.2

USE

INIT

SI1ZE

ACCESS

IRPOT

OUTPOT

ALN Field in ALL Block (XBSLBN Mask)

Indicates cluster alignment for the area described by
ALL block.

X$ALN mask

1 byte

$SET mask,ALN, reg ;sMask bits on in ALN field
SOFF mask,ALN,reg ;Mask bits off in ALN field
STESTBITS mask,ALN,reqg ;Test mask bits in ALN field
SFETCH dst,ALN,reg ;ALN field to l-byte dst
$STORE src,ALN,reg ;1-byte src to ALN field
$COMPARE src,ALN,reg ;l-byte src with ALN field
CREATE Initial atea alignment request

DISPLAY Area afﬁgﬁment mask (cleared)

OPEN Area alignment mask (cleared)

the

6.1.3

USE

INIT

SIZE

ACCESS

INPUT

OUTPOUT

CONTROL BLOCK FIELDS
ALL BLOCK SUMMARY

ALQ Field in ALL Block

Contains the allocation size for the area described by the
ALL block.

XSALQ number

2 words
SFETCH dst ,ALQ,reg ;ALQ field to 2-word dst
SSTORE src,ALQ,reg ;2-word src to ALQ field
SFETCH dst ,ALQn,reg ;ALQ word n to l-word dst
$STORE sxc,ALQn,req ;1-word src to ALQ word n
$COMPARE src,ALQn,reg ;l-word src with ALQ word n
CREATE Initial area allocation request size (blocks)
EXTEND Area . allocation extension request size
blocks)-i
(blocks){
Y s 3
CREATE Initial area allocation size (blocks)
DISPLAY Unused area allocation size (blocks)
EXTEND Area allocation extension actual size (blocks)
OPEN Unused area allocation size (blocks)

CONTROL BLOCK FIELDS
ALL BLOCK SUMMARY

6.1.4

USE

INIT
SIZE

ACCESS

INPUT

OUTPUT

AOP Field in ALL Block (XB$SCTG Mask)

Indicates contiguity for the area
block.

described by the

XSAOP mask
1 byte
$SET mask,AOP,reg ;Mask bits on in AOP field
$OFF mask,AOQP,reg ;Mask bits off in AQP field
STESTBITS mask,AOP,reg ;Test mask bits in AOP field
SFETCH dst,AOP,reg ;AOP field to l-byte dst
$STORE src,AOP,reg ;1-byte src to AOP field
SCOMPARE src,AOP,reg ;1-byte src with AOP field
CREATE Contiguoh§ area request

i
DISPLAY Contigébu& area (cleared)

OPEN Contiguous area (cleared)

ALL

6.1.5

USE

INIT

SIZE

ACCESS

INPOT

OUTPUT

CONTROL BLOCK FIELDS
ALL BLOCK SUMMARY

BKZ Field in ALL Block

Contains the bucket size for the area described by the ALL
block.

X$BKZ number

1 byte

SFETCH dst ,BKZ,reg :BKZ field to l-byte dst
SSTORE src,BKZ,reg ;1-byte src to BKZ field
SCOMPARE src,BKZ,reg :1-byte src with BKZ field
CREATE Area bucket size (blocks)

DISPLAY Area bucket size (blocks)

OPEN Area bucget size (blocks)

i 1
s

5

s

CONTROL BLOCK FIELDS
ALL BLOCK SUMMARY

6.1.6 BLN Field in ALL Block (XBSLAL Code)

. USE Contains the length of the ALL block.

INIT None

SIZE 1 byte

ACCESS SFETCH dst,BLN,reg ;BLN field to l-byte dst

SCOMPARE src,BLN,reg ;1-byte src with BLN field

CONTROL BLOCK FIELDS
ALL BLOCK SUMMARY

6.1.7 COD Field in ALL Block (XBSALL Code)

USE Contains the identifier for the ALL block.

INIT None

SIZE 1 byte

ACCESS SFETCH dst,COD,reg ;COD field to l-byte dst

SCOMPARE src,COD,reg ;1-byte sxc with COD field

CONTROL BLOCK FIELDS
ALL BLOCK SUMMARY

6.1.8 DEQ Field in ALL Block

USE Contains the default extension size for the area described
" by the ALL block.

INRIT X$DEQ number

SIZE 1 word

ACCESS SFETCH dst,DEQ,req ;DEQ field to l-word dst
$STORE src,DEQ,reg 71-word src to DEQ field
$COMPARE src,DEQ,reg ;1-word src with DEQ field

INPUT CREATE Area default extension size (blocks)

OUTPUT DISPLAY Area default extension size (blocks)
OPEN Area dgfaﬁlt extension size (blocks)

e |
5

X

o gy

CONTROL BLOCK FIELDS
ALL BLOCK SUMMARY

6.1.9 LOC Pield in ALL Block

USE

INIT
SIZE

ACCESS

INPUT

Contains the location of the area described by the ALL
block.

The value in the LOC field is a cluster number.

XSLOC number

2 words

SFETCH dst ,LOC,reg ;LOC field to 2-word dst

$STORE src,LOC,reg ;2-word src to LOC field

SFETCH dst,LOCn,reg ;LOC word n to l-word dst
SSTORE src,LOCn,reg . ;1-word src to LOC word n

SCOMPARE src,LOCn,reg ;1-word src with LOC word n

ool :
CREATE Init{&l @rea location request
\ ¥

CONTROL BLOCK FIELDS

ALL BLOCK SUMMARY

6.1.10

USE

INIT
SIZE

ACCESS

INPOT

Contains the address of the next XAB (ALL, DAT, KEY,

or SUM block) in

XSNXT address

1 word

SFETCH dst,NXT,reg
$STORE src,NXT,reg

NXT Field in ALL Block

a chain of XARs.

;NXT field to l-word dst
;1l-word src to NXT field

$COMPARE src,NXT,reg ;1-word src with NXT field

CLOSE
CREATE
DISPLAY
ERASE
EXTEND
OPEN
PARSE
RENAME
SEARCH

Next
Next
Next
Next
Next
Next
Next
Next
Next

XAB address
XAB address
XAB- ’ddress
XAB: address
XAB @gddress
XAB dddress
XAB address
XAB address
XAB address

PRO,

CONTROL BLOCK FIELDS
DAT BLOCK SUMMARY

6.2 DAT BLOCK SUMMARY

This section summarizes the DAT block and its fields. Table 6-2
summarizes the entire block, giving the offset, offset symbol, size,
and a brief description for each field; for a field that has mask or
code symbols, the table also gives the value, symbol, and a brief
description for each mask or code.

Table 6-2: DAT Block Summary

Offset Field
Offset Symbol Size Description

000 0sCOD 1 byte DAT block identifier code

000003 XB$DAT DAT block identifier
R

001 O$BLN 1 byte DAT block length (bytes)
000046 XBSDTL DAT block length (bytes)

002 OSNXT
004 OSRVN
006 OSRDT
016 0S8CDT
026 OSEDT
036 OSBDT

word Next XAB address
word Reserved

words File revision date
words File creation date
words Reserved

words Reserved

P N N Sy

CONTROL BLOCK FIELDS
DAT BLOCK SUMMARY

6.2.1 BLN Field in DAT Block (XBS$DTL Code)

USE

INIT

SIZE

ACCESS

Contains the length of the DAT block.
None
1 byte

$FETCH dst,BLN,reg ;BLN field to 1l-byte dst
$COMPARE src,BLN,reg ;l-byte src with BLN field

6.2.2

USE

INIT
SIZE
ACCESS

OUTPUT

CONTROL BLOCK FIELDS
DAT BLOCK SUMMARY

CDT Field in DAT Block

Contains the binary creation date for the file. The time
value is a binary number in 1l00-nanosecond units offset
from the system base date and time, which is 00:00
o'clock, November 17, 1858 (the Smithsonian base date and
time for the astronomical calendar).

None
4 words
SFETCH dst,CDT,reg ;CDT field to 4-word dst

OPEN File creation date

CONTROL BLOCK FIELDS
DAT BLOCK SUMMARY

6.2.3 COD Field in DAT Block {XBS$DAT Code)

USE Contains the identifier for the DAT block.

INIT None

SIZE 1 byte

ACCESS $FETCH dst,COD,reg ;COD field to l-byte dst
SCOMPARE srxc,COD,reg ;1-byte src with COD field

s
PRI S

H

6.2.4

USE

INIT
SI1ZE

ACCESS

INPUT

NXT Field in DAT Block

Contains the address

CONTROL BLOCK FIELDS
DAT BLOCK SUMMARY

of the next XAB (ALL, DAT, KEY, PRO,

or SUM block) in a chain of XABs.

XSNXT address
1 word
SFETCH dst ,NXT,reg

$STORE src,NXT,reg
$COMPARE src,NXT,reg

CLOSE Next XAB
CREATE Next XAB
DISPLAY Next XAB
ERASE Next. XAB
EXTEND Nex t<X
OPEN Next XA
PARSE Next XAR
RENAME Next XAB
SEARCH Next XAB

;NXT field to l-word dst
;1-word src to NXT field
:1-word src with NXT field

address
address
address
address
address
address
address
address
address

CONTROL BLOCK FIELDS
DAT BLOCK SUMMARY

6.2.5 RDT Field in DAT Block

USE

INIT

SIZE

ACCESS

OUTPUT

Contains the binary revision date for the file. The time
value is a binary number in 100-nanosecond units offset
from the system base date and time, which is 00:00
o'clock, November 17, 1858 (the Smithsonian base date and
time for the astronomical calendar).

None

4 words

SFETCH dst,RDT,reg ;RDT field to 4-word dst
OPEN File revision date

Ly

oo
PPt T

CONTROL BLOCK FIELDS
FAB SUMMARY

6.3 FAB SUMMARY

This section summarizes the FAB and its fields. Table 6-3 summarizes
the entire block, giving the offset, offset symbol, size, and a brief
description for each field; for a field that has mask or code
symbols, the table also gives the value, symbol, and a brief
description for each mask or code.

Table 6-3: FAB Summary

Offset Field
Offset Symbol Size Description

000 0O$BID 1 byte FAB identifier

00()‘06%w FBSBID FAB identification code
001 O$BLN 1 byte E‘A]?ilg%hgth (bytes)

000120 FBSBLN FAB length (bytes)

002 08CTX
004 OSIFI
006 08STS
0lo 08$STV
012 OSALQ
016 OSDEQ
020 OSFAC

word User context

word Internal file identifier

word Completion status code

word Completion status value

words TFile allocation size (blocks)

word File default extension size (blocks)
byte Requested access mask

R Nl e

000001 FBSPUT Request put access

000002 FBSGET Request find/get access

000004 FBSDEL Request find/get/delete
access

000010 FBSUPD Request find/get/update
access

000020 FBSTRN Request find/get/truncate
access

000041 FBSWRT Request block write
access

000042 FBSREA Request block read access

021 0$SHR 1 byte Shared access mask
000002 FBSGET Share find/get access
000015 FBSWRI Share find/get/put/update/

delete access
000100 FBSNIL No access sharing

(Continued on next page)

CONTROL BLOCK FIELDS
FAB SUMMARY

Table 6-3 (Cont.): FAB Summary

Offset Field
Offset Symbol Size Description
022 OSFOP 1 word File processing option mask
000001 FBSRWO Rewind magtape before
operation
000002 FBSRWC Rewind magtape after
closing file
000010 FBSPOS Position magtape after
last-closed file
000020 FBS$DLK No file locking on
abnormal close
000209 FBS$CTG Contiguous file
000409 FBS$SUP Supersede existing file
00190¢. FBSNEF No end-of-file magtape
T positioning
002000+, FBSTMP Temporary file
004000 - FBSMKD Mark file for deletion
006000 FBSTMD Temporary file, mark for
deletion
010000 FBSFID Use information in NAM
block
020000 FBSDFW Defer writing
024 OSRTV 1 byte Cluster size (blocks)
025 OS0RG 1 byte File organization code
000000 FBS$SSEQ Sequential file
organization
000020 FBSREL Relative file
organization
000040 FBSIDX Indexed file organization
026 OSRAT 1 byte Record handling mask
000001 FBSFTN FORTRAN-style
carriage-control
character in record
000002 FBSCR Add CRLF to print record
(LF~record-CR)
000004 FB$PRN VFC print record handling
000010 FBS$BLK Blocked records
027 OSREFM 1 byte Record format code
000000 FBSUDF Undefined record format
000001 FBSFIX Fixed-length record
format
000002 FBSVAR Variable-length record
format
000003 FBSVFC VFC record format
000004 FBSSTM Stream record format

(Continued on next page)

CONTROL BLOCK FIELDS
FAB SUMMARY

Table 6-3 (Cont.): FAB Summary

Offset Field
Offset . Symbol Size Description

030 0$XAB 1 word XAB address

032 0$BPA 1 woxd Private buffer pool address

034 0$BPS 1 word Private buffer pool size (bytes)

036 O$SMRS 1 word Maximum record size (bytes)

040 OSMRN 2 words Maximum record number

044 OSLRL 1 word Longest record length

046 OSNAM 1 word NAM block address

050 OSFENA 1 word File string address

052 OSDNA 1 word Default string address

054 OSFNS 1 byte File string size (bytes)

055 O$DNS 1 byte Defaylt string size (bytes)

056 0$BLS 1 word Magtape block size (characters)

060 OSFSZ 1 byte Fixedgcontrol area size for VFC records
(bytes)

061 0$BKS 1 byte File bucket size (blocks)

062 O$DEV 1 byte Device characteristic mask
000001 FBSREC Record-oriented device
000002 FBSCCL Carriage-control device
000004 FBSTRM Terminal device
000010 FBSMDI Multidirectory device
000020 FBSSDI Single-directory device
000040 FBSSQD Sequential device

063 O$LCH 1 byte Logical channel number

CONTROL BLOCK FIELDS

FAB SUMMARY

6.3.1 ALQ Field in FAB

USE

INIT

SIZE

ACCESS

INPUT

OouTPOT

~ Contains the allocation size for the file.

FSALQ number
2 words

SFETCH dst,ALQ,reg ;ALQ field to 2-word dst
$STORE src,ALQ,reg ;2-word src to ALQ field
SFETCH dst,ALQn,reg ;ALQ word n to l-word dst
$STORE src,ALQn,reg ;l-word src to ALQ word n
$COMPARE src,ALQn,reg ;l-word src with ALQ word n

CREATE Initial file allocation request size (blocks)
EXTEND File allpcation extension request size
{(blocks) !
S
s
CREATE Initial fi¥e allocation size {(blocks)
EXTEND File allocation extension actual size (blocks)
OPEN Current file allocation (blocks)

CONTROL BLOCK FIELDS
FAB SUMMARY

6.3.2 BID Field in FAB (FBSBID Code)

USE

INIT

SIZE

ACCESS

Contains the identifier for the FAB.

None
1 byte

SFETCH dst,BID,reg
SCOMPARE src,BID,reg

ari

.
oty

;BID field to l-byte dst
;1-byte src with BID field

CONTROL BLOCK FIELDS

FAB SUMMARY

6.3.3 BKS Field in FaB

USE

INIT

SIZE

ACCESS

INPUT

OUTPOT

Contains the bucket size for the file.

FSBKS number

1 byte
SFETCH dst,BKS,reg ;BKS field to l-byte dst
$STORE src,BKS,reg ;1-byte sxc to BKS field
$COMPARE src,BKS,reg ;1-byte src with BKS field
CREATE File bucket size (blocks)
OPEN File bucket size (blocks)

g

i

CONTROL BLOCK FIELDS
FAB SUMMARY

6.3.4 BLN Field in FAB (FB$BLN Code)

USE

INIT

SIZE

ACCESS

Contains the length of the FAB.

None
1 byte

SFETCH dst,BLN,reg
$COMPARE src,BLN,reg

;BLN field to l-byte dst
;1l-byte src with BLN field

e

i
e

Ly
S

CONTROL BLOCK FIELDS
FAB SUMMARY

6.3.5 BLS Field in FAB

USE Contains the magtape block size for the file.
INIT F$BLS number
SIZE 1 word
ACCESS SFETCH dst ,BLS,reg ;BLS field to l-word dst
SSTORE src,BLS,reg ;1-word srxc to BLS field
$COMPARE src,BLS,reg ;1l-word src with BLS field
INPOUT CREATE Magtape block size (characters)
QUTPUT OPEN Magtape hlock size (characters)
:,fA ‘}
-+ h

CONTROL BLOCK FIELDS
FAB SUMMARY

6.3.6 BPA Field in FAB

USE Contains the address of the private buffer pool for the
operation.
INIT FSBPA address
SIZE 1 word
ACCESS SFETCH dst,BPA,reg ;BPA field to l-word dst
: $STORE src,BPA,reg ;1-word src to BPA field
SCOMPARE src,BPA,reg ;1-word src with BPA field
INPUT CREATE Private buffer pool address
ERASE Private buffer pool address
OPEN Private buffer pool address
PARSE Private buffer pool address
RENAME Privage-buffer pool address
SEARCH Private Buffer pool address
OUTPUT CLOSE Private guffer pool address

CONTROL BLOCK FIELDS
EAB SUMMARY

6.3.7 BPS Field in FAB

USE Contains the size of the private buffer pool for the
" operation.

INIT F$BPS number

SIZE 1 word

ACCESS SFETCH dst ,BPS,reg ;BPS field to l-word dst
$STORE src,BPS,reg 11l-word src to BPS field
$COMPARE src,BPS,reg ;1-word src with BPS field

INPOT CREATE Private buffer pool size (bytes)
ERASE Private buffer pool size (bytes)
OPEN Private buffer pool size (bytes)
PARSE Private buffer pool size (bytes)
RENAME Privatg buffer pool size (bytes)
SEARCH Private bliffer pool size (bytes)

OUTPUT CLOSE Private buffer pool size (bytes)

CONTROL BLOCK FIELDS
FAB SUMMARY

6.3.8 CTX Field in FAB

USE Contains any information you may want to associate with
the file at run time.

INIT FSCTX number

SIZE 1 word

ACCESS SFETCH dst,CTX,reg ;CTX field to l-word dst
SSTORE src,CTX,reg ;1-word src to CTX field

SCOMPARE src,CTX,reg ;1-word src with CTX field

CONTROL BLOCK FIELDS
FAB SUMMARY

6.3.9 DEQ Field in FAB

USE Contains the default extension size for the file.

INIT F$DEQ number

SIZE 1 word

ACCESS SFETCH dst,DEQ,reg ;DEQ field to l-word dst
$STORE src,DEQ,reg ;1-word src to DEQ field
$COMPARE src,DEQ,reg ;1l-word src with DEQ field

INPOT CREATE Permanent file default extension size (blocks)
OPEN While-open file default extension size

(blocks)
OUTPUT OPEN Current fﬁle default extension size (blocks)

S|
4

“
%
5 ¥

CONTROL BLOCK FIELDS
FAB SUMMARY

6.3.10 DEV Field in FAB

USE - Indicates device characteristics for the file.

INIT None

SIZE 1 byte

ACCESS $TESTBITS mask,DEV,reqg ;Test mask bits in DEV field
SFETCH dst,DEV,reg ;DEV field to l-byte dst

SCOMPARE src,DEV,reg ;1-byte src with DEV field

MASKS FBSCCL Carriage-control device
FBSMDI Multidirectory device
FBSREC Record-oriented device
FBSSDI Single-directory device
FBSSQD Sequential dévice
FB$TRM Terminal device
Ty ¥

A} ¥
OUTPUT CREATE Device characteristic mask
ERASE Device characteristic mask
OPEN Device characteristic mask
PARSE Device characteristic mask
RENAME Device characteristic mask
SEARCH Device characteristic mask

6-31

CONTROL BLOCK FIELDS

FAB SUMMARY

6.3.11 DNA

USE

INIT
SIZE

ACCESS

INPOT

Field in FAB

Contains the address of the default string
operation.

FSDNA address

1 word
SFETCH dst ,DNA,reg sDNA field to l-word dst
$STORE src,DNA,reg ;1-word src to DNA field
SCOMPARE src,DNA,reg ;1-woxrd src with DNA field
CREATE Default string address
ERASE Default string address
OPEN Default string address
PARSE Default string address
RENAME Default, siring address

SRS

Y Bl

6-32

for

the

6.3.12

USE
INIT
SIZE

ACCESS

INPOT

DNS Field in FAB

CONTROL BLOCK FIELDS

FAB SUMMARY

Contains the size of the default string for the operation.

FSDNS number

1 byte

SFETCH dst,DNS,reg

$STORE sxc,D

SCOMPARE src,DNS,reg

CREATE
ERASE
OPEN
PARSE
RENAME

NS,reg

Default
Default
Default
Default
Default

R
Ay

;DNS field to l-byte dst
;1-byte src to DNS field

;1-byte src with DNS field

string
string
string
string
string
g

I3

s

size
size
size
size
size

(bytes)
(bytes)
(bytes)
(bytes)
(bytes)

CONTROL BLOCK FIELDS

FAB SUMMARY

6.3.13 FAC

USE

INIT

SIZE

ACCESS

MASKS

INPUT

Field in FAB

Indicates the requested access for the file.

FSFAC mask

1 byte

$SET mask,FAC,req ;Mask bits on in FAC field
$OFF mask,FAC,reqg ;Mask bits off in FAC field
STESTBITS mask,FAC,reg ;Test mask bits in FAC field
SFETCH dst,FAC,reg ;FAC field to l-byte dst
$STORE srxc,FAC,reg ;1l-byte src to FAC field

SCOMPARE src,FAC,reg ;1-byte srxc with FAC field

FBSDEL Request find/get/delete access
FBSGET Request find/get access

FBSPUT Request pyt .access

FB$REA Request block read access

FBSTRN Request find/get/truncate access
FBSUPD Request find/get/update access
FBSWRT Request block write access

CREATE Requested access mask
OPEN Requested access mask

CONTROL BLOCK FIELDS
FAB SUMMARY

6.3.14 FNA Field in FAB

USE Contains the address of the file string for the file.
INIT FSFNA address
SIZE 1 woxd
ACCESS SFETCH dst,FNA,reg ;FNA field to l-word dst
S$STORE src,FNA,reg ;1-word src to FNA field
SCOMPARE src,FNA,reg ;1-word src with FNA field
INPUT CREATE File string address
ERASE File string address
OPEN File string address
PARSE File string address
RENAME File string address
»;% T

L4

5 ¥

CONTROL BLOCK FIELDS
FAB SUMMARY

6.3.15 FNS Field in FAB

USE Contains the size of the file string for the file.
INIT FSFNS number
SIZE 1 byte
ACCESS SFETCH dst ,FNS,reg ;FNS field to l-byte dst
$STORE src,FNS,req ;1-byte src to FNS field
$SCOMPARE src,FNS,reg ;1-byte src with FNS field
INPUT CREATE File string size (bytes)
ERASE File string size (bytes)
OPEN File string size (bytes)
PARSE File strimg size (bytes)
RENAME File spriﬁg size (bytes)

S
i
T8
v *

6-36

CONTROL BLOCK FIELDS
FAB SUMMARY

6.3.16 FOP Field in FAB (FBSCTG Mask)

USE Indicates file contiguity.

INIT FSFOP mask

S1ZE 1 word

ACCESS SSET mask,FOP,reg ;Mask bits on in FOP field
$OFF mask,FOP,reg ;Mask bits off in FOP field
STESTBITS mask,FOP,reg ;Test mask bits in FOP field
SFETCH dst,FOP,reg ;FOP field to l-word dst
$STORE src¢,FOP,reg ;1-word src to FOP field
SCOMPARE src,FOP,reg ;1-word src with FOP field

INPOT CREATE Contiguoys file request

OUTPUT OPEN Contiguogs file

CORTROL BLOCK FIELDS

FAB SUMMARY

6.3.17 FOP

USE

INIT

SI1IZE

ACCESS

INPOT

Field in FAB (FBS$DFW Mask)

Requests deferred writing for the
FSFOP mask

1 word

$SET mask,FOP,reg' ;Mask bits
$OFF mask,FOP,reg ;Mask bits

$TESTBITS mask,FOP,reg ;Test mask
$FETCH dst,FOP,reg ;FOP field

file.

on in FOP field
off in FOP field
bits in FOP field
to l-word dst

$STORE src,FOP,reg ;1l-word src to FOP field
$COMPARE src,FOP,reg ;1-word src with FOP field

CREATE Defer writing
OPEN Defer writing
i
ol

6.3.18

USE

INIT
SI1ZE

ACCESS

INFUT

CONTROL BLOCK FIELDS
FAB SUMMARY

FOP Field in FAB (FBS$SFID Mask)

Requests that NAM block information be used to identify

the file.

FSFOP mask

1 word

$SET mask,FOP,reg ;Mask bits on in FOP field
SOFF mask,FOP,reg ;Mask bits off in FOP field
$TESTBITS mask,FOP,reg ;Test mask bits in FOP field
SFETCH dst,FOP,reg ;FOP field to l-word dst
SSTORE src,FOP,reg ;1-word src to FOP field
$SCOMPARE src,FOP,reg ;1-word src with FOP field
CREATE Use information in NAM block

ERASE Use infoXmation in NAM block

OPEN Use information in NAM block

RENAME Use information in NAM block

SEARCH Use information in NAM block

CORTROL BLOCK FIELDS
FAB SUMMARY

6.3.19 FOP Field in FAB (FB$MKD Mask)

USE Requests that the file be marked for deletion.

INIT FSFOP mask

SIZE 1 word

ACCESS $SET mask,FOP,reg ;Mask bits on in FOP field
$OFF mask,FOP,reg ;Mask bits off in FOP field
STESTBITS mask,FOP,reg ;Test mask bits in FOP field
SFETCH dst,FOP,reg ;FOP field to l-word dst
SSTORE src,FOP,reg ;1-word src to FOP field
SCOMPARE src,FOP,reg ;1-word src with FOP field

INPUT CREATE Mark file; for deletion

R

6.3.20

USE

INIT
SIZE

ACCESS

INPUT

FOP Field in FAB (FBSNEF Mask)

Requests that the magtape file

beginning of the file.
F$SFOP mask
1 word

$SET mask,FOP,reg ;Mask bits
SOFF mask,FOP,reg ;Mask bits
STESTBITS mask,FOP,reg ;Test mask
SFETCH dst,FOP,reg ;FOP field
$STORE src,FOP,reg

SCOMPARE src,FOP,reg

OPEN
S
-k

v 3

CONTROL BLOCK FIELDS
FAB SUMMARY

be positioned to the

on in FOP field
off in FOP field
bits in FOP field
to l-word dst

:1-word src to FOP field
:1-word src with FOP field

No end—B&—file magtape positioning

CONTROL BLOCK FIELDS
FAB SUMMARY

6.3.21

USE

INIT
SIZE

ACCESS

INPUT

FOP Field in FAB (FB$POS Mask)

Requests that the magtape be positioned to the end of
last-closed file before creating the new file,

FSFOP mask

1 word
$SET mask,FOP,reg ;Mask bits on in FOP field
SOFF mask,FOP,reg ;Mask bits off in FOP field
$TESTBITS mask,FOP,reqg ;Test mask bits in FOP field
SFETCH dst,FOP,regq ;FOP field to l-word dst
$STORE src,FOP,reg ;1-word src to FOP field
SCOMPARE src ,FOP,reg ;1-word src with FOP field
CREATE Position magtape after last-closed file
g
5 R

bAS
%
sk

the

6.3.22

USE

INIT
SIZE

ACCESS

INPOT

FOP Field in FAB (FB$RWC Mask)

Requests that the magtape be

closed.
FSFOP mask

1 word

$SET mask,FOP,reg ;Mask bits
SOFF mask,FOP,reg ;Mask bits
STESTBITS mask,FOP,req ;Test mask
SFETCH dst ,FOP,reg :FOP field

CONTROL BLOCK FIELDS
FAB SUMMARY

rewound when the file is

on in FOP field
off in FOP field
bits in FOP field
to l-word dst

$STORE src¢,FOP,reg ;1-word src to FOP field
SCOMPARE src,FOP,reg ;1-word src with FOP field

CLOSE Rewind magtape
CREATE Rewirid magtape
OPEN Rewind magtape
SEARCH Rewind magtape

after
after
after
after

closing file
closing file
closing file
closing file

CORTROL BLOCK FIELDS
FAB SUMMARY

6.3.23 FOP Field in FAB (FBSRWO Mask)

USE - Requests that the magtape be rewound before the operation.

INIT F$FOP mask

SIZE 1 word

ACCESS S$SET mask,FOP,reg sMask bits on in FOP field
SOFF mask,FOP,reg ;Mask bits off in FOP field
STESTBITS mask,FOP,reg ;Test mask bits in FOP field
SFETCH dst,FOP,reg ;FOP field to 1l-word dst
$STORE src,FOP,reg ;1-word src to FOP field
$COMPARE src,FOP,reg t11l-word src with FOP field

INPUT CREATE Rewind magtape before creating file
OPEN Rewind magtape before searching for file

SEARCH Rewind Magtape before operation

6.3.24

USE

INIT
SIZE

ACCESS

INPUT

CONTROL BLOCK FIELDS
FAB SUMMARY

FOP Field in FAB (FBSSUP Mask)

Requests that the created file supersede the old file with
the same specification (if one exists).

FSFOP mask

1 word

$SET mask,FOP,reg ;Mask bits on in FOP field
$OFF mask ,FOP,reg ;Mask bits off in FOP field
$TESTBITS mask,FOP,reg ;Test mask bits in FOP field
SFETCH dst,FOP,reg ;FOP field to l-word dst
SSTORE src,FOP,reg ;1-word src to FOP field
SCOMPARE src,FOP,reg ;1-word src with FOP field
CREATE Superseqé existing file

<
B
voOF

CONTROL BLOCK FIELDS

FAB SUMMARY

6.3.25 FOP

USE

IRIT
SIZE

ACCESS

INPUT

Field in FAB (FBS$TMP Mask)

Requests that the created file be
with no directory entry) .

a temporary file

FSFOP mask

1 word

$SET mask,FOP,reg ;Mask bits on in FOP field
SOFF mask,FOP,reg sMask bits off in FOP field
STESTBITS mask,FOP,req ;Test mask bits in FOP field
SFETCH dst,FOP,reg ;FOP field to l-word dst
$STORE src¢,FOP,reg ;1-word src to FOP field
SCOMPARE src,FOP,reg ;l-word src with FOP field
CREATE Temporarg file

N ¥

(one

6.3.26

USE

INIT

SIZE

ACCESS

INPOT

OoUTPUT

FSZ Field in FAB

CONTROL BLOCK FIELDS
FAB SUMMARY

Contains the size of the fixed control area for VFC

records.

FSFSZ number

1 byte

SFETCH dst ,FSZ,reg :FSZ field to l-byte dst

$STORE src,FSZ,reg ;1-byte src to FSZ field

SCOMPARE srxc,FSZ,reg ;1-byte src with FSZ field

CREATE Fixed control area size for VFC records
(bytes)

OPEN Fixed -control area size for VFC records

(bytes) i

CORTROL BLOCK FIELDS
FAB SUMMARY

6.3.27 1IFI Field in FAB

USE . Contains the internal file identifier for the file.
INIT None
SIZE 1 word
ACCESS $FETCH dst,IFI,reg ;IFI field to l-word dst
SCOMPARE src,IFI,reg s1-word src with IFI field
INPGT CLOSE Internal file identifier
CONNECT Internal file identifier
DISPLAY Internal file identifier
EXTEND Internal file identifier
OUTPUT CLOSE Internal-file identifier
CREATE Internal file identifier

OPEN Internal file identifier

CONTROL BLOCK FIELDS
FAB SUMMARY

6.3.28 LCH Field in FAB

USE : Contains the logical channel number for the operation.
INIT FSLCH number
SIZE 1 byte
ACCESS SFETCH dst,LCH,reg ;:LCH field to l-byte dst
$STORE src,LCH,req ;1-byte src to LCH field
SCOMPARE src,LCH,reg ;1-byte src with LCH field
INPUT CREATE Logical channel number
ERASE Logical channel number
OPEN Logical channel number
PARSE Logical :channel number
RENAME Logical ;channel number

SEARCH Logi&al ichannel number

CONTROL BLOCK FIELDS
FAB SUMMARY

6.3.29

USE

INIT
SIZE

ACCESS

INPOUT

OUTPOT

LRL Field in FAB

Contains the length of the longest record in a sequential

file.
None
1 word
S$FETCH dst,LRL,reg ;LRL field to l-word dst
SCOMPARE src,LRL,reg ;1l-word src with LRL field
CREATE Longest record 1length (block access
sequential files only)
OPEN Longest record length
g
SR

to

6.3.30

USE

INIT
SIZE

ACCESS

INPUT

ouTPOT

CONTROL BLOCK FIELDS
FAB SUMMARY

MRN Field in FAB

Contains the maximum record number allowed in a relative
file.

FSMRN number

2 words
SFETCH dst ,MRN,reg ;sMRN field to 2-word dst
$STORE src,MRN,reg ;2-word src to MRN field
SFETCH dst,MRNn,xreg :MRN word n to l-word dst
SSTORE src,MRNn,reg ;1-word src to MRN word n
SCOMPARE src,MRNn,reg :1-word src with MRN word n
CREATE Maximum: fecord number
OPEN Maximﬁm‘%ecord number

v 3

CONTROL BLOCK FIELDS

FAB SUMMARY

6.3.31 MRS

USE

INIT
SIZE

ACCESS

INPOT

OUTPOT

Field in FAB

, Contains the record size for fixed-length records or

maximum record size for other format recorAs for the file.

FSMRS number

1 word

SFETCH dst,MRS,reg ;MRS field to l-word dst
$STORE src,MRS,reg ;1-word src to MRS field
SCOMPARE src,MRS,reg ;1-word src with MRS field
CREATE Maximum record size (bytes)

OPEN Maximum regord size (bytes)

A

R

6-52

CONTROL BLOCK FIELDS
FAB SUMMARY

6.3.32 NAM Field in FAB

USE : Contains the address of the NAM block for the operation.
INIT FSNAM address
SIZE 1 word
ACCESS SFETCH dst,NAM,reg ;NAM field to l-word dst
$STORE src,NAM,reg ;1-word src to NAM field
$SCOMPARE src,NAM,reg ;1-word src with NAM field
INPUT CREATE NAM block address
ERASE NAM block address
OPEN NAM block address
PARSE NAM blogk address
RENAME NAM blogk address
SEARCH NAM blogk address
LU

CONTROL BLOCK FIELDS

FAB SUMMARY

6.3.33 ORG

USE

INIT

S1ZE

ACCESS

CODES

INPUT

OUTPOT

Field in FAB

Contains the file organization code.

FSORG code

1 byte

SFETCH dst,ORG,reg ;ORG field to l-byte dst
$STORE src,ORG,reg ;1-byte src to ORG field

$COMPARE src,ORG,reg ;1-byte src with ORG field

FBSIDX Indexed file organization
FBSREL Relative file organization
FBSSEQ Sequential file organization

-1

CREATE File organization code
¢1 X e ;\ .
OPEN File orgaéﬁzatlon code

6.3.34

USE

INIT

SIZE

ACCESS

MASKS

INPOUT

OUTPOT

CONTROL BLOCK FIELDS
FAB SUMMARY

RAT Field in FAB

Indicates the record-output characteristic for the file.
(The RAT field also contains the record-blocking

characteristic, which is described in the next section.)

FSRAT mask

1 byte

SSET mask,RAT,reg ;Mask bits on in RAT field
SOFF mask,RAT,reg ;Mask bits off in RAT field
STESTBITS mask,RAT,reg ;Test mask bits in RAT field
SFETCH dst ,RAT,reg ;RAT field to l-byte dst
SSTORE src,RAT,reg ;1-byte src to RAT field

SCOMPARE src,RAT,reg. ;l-byte src with RAT field

FBSCR Add CRLF’#@‘%rint record (LF-record-CR)

FBSFTN FORTRAN-style carriage-control character in record
FBSPRN VFC print reeord handling

CREATE Record handling mask

OPEN Record handling mask

CONTROL BLOCK FIELDS

FAB SUMMARY

6.3.35 RAT

USE

INIT

SIZE

ACCESS

INPUT

OOUTPUT

Field in FAB (FB$BLK Mask)

Indicates whether the file has blocked records. (The RAT
field also contains the record-output characteristic,
which is described in the previous section.)

FSRAT mask
1 byte
$SET mask,RAT.req ;Mask bits on in RAT field
SOFF mask,RAT,regq ;Mask bits off in RAT field
STESTBITS mask,RAT,reg ;Test mask bits in RAT field
SFETCH dst,RAT,reg ;RAT field to l-byte dst
$STORE src,RAT,reg . ;l-byte src to RAT field
SCOMPARE src,RAT,reg -+ ;l-byte src with RAT field
CREATE Blocked%ré%ords

5 e
OPEN Blocked reéords

6.3.36

USE
IRIT
SI1ZE

ACCESS

CODES

INPUOT

OUTPUT

CONTROL BLOCK FIELDS
FAB SUMMARY

RFM Field in FAB

Contains the record format code for the file.

FSRFM code

1 byte

SFETCH dst,RFM,reg ;RFM field to l-byte dst
SSTORE src,RFM,reg ;1-byte src to RFM field

SCOMPARE src,RFM,reqg ;:1-byte src with RFM field

FBSFIX Fixed-length record format
FBSSTM Stream record format
FBSUDF Undefined record format
FBSVAR Variable-~length record format
FBSVFC VFC recorqﬁfq;mat

SRS

CREATE Record format code

OPEN Record format code

CONTROL BLOCK FIELDS
FAB SUMMARY

6.3.37 RTV Field in FAB

USE * Contains the cluster size for the file.

INIT F$RTV number

SI1ZE 1l byte

ACCESS $FETCH dst ,RTV,reg ;RTV field to l-byte dst
$STORE src,RTV,reg ;1-byte src to RTV field
$COMPARE src,RTV,reg ;1-byte src with RTV field

INPOT CREATE Cluster size (blocks)

OUTPUT OPEN Cluster size (blocks)

>

e
R

\

-4

as
b3
3

CONTROL BLOCK FIELDS
FAB SUMMARY

6.3.38 SHR Field in FAB

USE - Indicates requested access sharing for the file.

INIT F$SHR mask

SIZE 1 byte

ACCESS SSET mask,SHR,reg ;Mask bits on in SHR field
SOFF mask,SHR,reg ;Mask bits off in SHR field
STESTBITS mask,SHR,reg ;Test mask bits in SHR field
SFETCH dst,SHR,reg ;SHR field to l-byte dst
$STORE src,SHR,reg ;1-byte src to SHR field

SCOMPARE src,SHR,reg ;1-byte src with SHR field

MASKS FBSGET Share find/get; access
FBSNIL No access sharing
FBSWRI Share findlggtyput/update/delete access
g

Y iy
INPOT CREATE Shared access mask
OPEN Shared access mask

CONTROL BLOCK FIELDS
FAB SUMMARY

6.3.39 STS Field in FAB

USE - Contains the completion status code for the operation.
IRIT None
SIZE 1 word
ACCESS $FETCH dst,STS,reg ;STS field to l-word dst
$COMPARE src,STS,reg ;1-word src with STS field
OUTPUT CLOSE Completion status code
CREATE Completion status code
DISPLAY Completion status code
ERASE Completion status code
EXTEND Completion status code
OPEN Completion status code
PARSE Complefioh status code
RENAME Completioli status code
SEARCH Completion status code

6.3.40

USE
INIT
SIZE

ACCESS

OUTPOT

STV Field in FAB

CONTROL BLOCK FIELDS
FAB SUMMARY

Contains the completion status value for the operation.

None
1 word

SFETCH dst,S
SCOMPARE src

CLOSE
CREATE
DISPLAY
ERASE
EXTEND
OPEN
PARSE
RENAME
SEARCH

TV,reg
+STV,reg

Completion
Completion
Completion
Completion
Completion
Completion
Completi@n
Completidn
Completiagn

;STV field to l-word dst
;1-word src with STV field

status
status
status
status
status
status
status
status
status

value
value
value
value
value
value
value
value
value

CONTROL BLOCK FIELDS
FAB SUMMARY

6.3.41 XAB Field in FAB

USE . Contains the address of the first XAB (ALL, DAT, KEY, PRO,
or SUM block) in a chain of XABs.

INIT FSXAB address
SIZE 1 word

ACCESS $FETCH dst,XAB,reg ;XAB field to l-word dst
$STORE src,XAB,reg ;11-word src to XAB field
SCOMPARE src,XAB,reg ;1-word src with XAB field

INPOT CLOSE XAB address
CREATE XAB address
DISPLAY XAB address
EXTEND XAB address
OPEN XAB adég:e&s

CONTROL. BLOCK FIELDS
KEY BLOCK SUMMARY

6.4 KEY BLOCK SUMMARY

This section summarizes the KEY block and its fields. Table 6-4
summarizes the entire block, giving the offset, offset symbol, size,
and a brief description for each field; for a field that has mask or
code symbols, the table also gives the value, symbol, and a brief
description for each mask or code.

Table 6-4: KEY Block Summary

Offset Field
Offset Symbol Size Description

000 0$CoD 1 byte KEY block identifier code

oogo'b;i XBSKEY KEY block identifier
001 OSBLN 1 byte Kﬁ?lbgock length (bytes)

000075 XBSKYL KEY block length (bytes)
002 OS$SNXT

004 OSREF
005 OSLVL

word Next XAB address

byte Index reference number

byte Number of index levels (not including
data level)

o

006 OSIFL 1 word Index bucket £fill factor

010 OSDFL 1 woxd Data bucket fill factor

012 O$SNUL 1 byte Null key character

013 OSIAN 1 byte Higher level index area number
014 OSLAN 1 byte Lowest index level area number
015 OS$DAN 1 byte Data area number

016 OSFLG 1 byte Index option mask

000001 XBSDUP Duplicate record keys
allowed

000002 XBSCHG Record key changes
allowed on update

000020 XBSINI No entries yet made in
index

000004 XBSNUL Null record keys not
indexed

017 os$DTP 1 byte Key data type code

000000 XBS$STG String

000001 XBSIN2 15-bit signed integer
000002 XBSBN2 16-bit unsigned integer
000003 XBSIN4 31-bit signed integer
000004 XBS$BN4 32-bit unsigned integer
000005 XBSPAC Packed decimal number

(Continued on next page)

CONTROL BLOCK FIELDS
KEY BLOCK SUMMARY

Table 6-4 (Cont.): KEY Block Summary

Offset Field
Offset Symbol Size Description

020 O$KNM
022 O$POS

word Key name buffer address
words Key segment positions

022 08POSO word Key segment position
024 0$POS1 word Key segment position
026 0$P0OS2 word Key segment position
030 0$POS3 word Key segment position
032 0$P0S4 word Key segment position
034 0$POS5 word Key segment position
036 0SP0OS6 word Key segment position
040 O$POS7 word Key segment position

042 0$S17Z
042 0$S1Z0
043 08SIZ1
044 0S$S1Z2
045 085173
046 055174
047 08$SIZ5
050 0$S1Z6
051 085147
052 OS$RVB
056 0$DVB
062 0$1IBS
063 O$DBS
064 OSNSG
065 0STKS

izes (bytes)

size {(bytes)
size (bytes)
size (bytes)
size (bytes)
size (bytes)
size (bytes)

bytes Key segment

byte Key segment

byte Key sggﬁgnt

byte Key segment

byte Key segment

byte Key segmént

byte Key segment

byte Key segment size (bytes)

byte Key segment size (bytes)

words Root index bucket virtual block number

words First data bucket virtual block number

byte Index area bucket size (blocks)

byte Data area bucket size (blocks)

byte Key segment count

byte Total key size ({sum of key segment sizes)
(bytes)

word Minimum length of record containing key
(bytes)

NN WNEFOND OV WNEHO

HEFFNONNFEFRFRRBR®R 0

066 OSMRL

ot

CONTROL BLOCK FIELDS
KEY BLOCK SUMMARY

6.4.1 BLN Field in KEY Block (XB$KYL Code)

USE - Contains the length of the KEY block.

INIT None

SI1ZE 1 byte

ACCESS SFETCH dst,BLN,reg sBLN field to l-byte dst

$COMPARE src,BLN,reg ;1-byte src with BLN field

CONTROL BLOCK FIELDS
KEY BLOCK SUMMARY

6.4.2 COD Field in KEY Block (XBSKEY Code)

OSE
INIT
SIZE

ACCESS

Contains the identif
None
1 byte

SFETCH dst,COD,reqg
SCOMPARE src,COD,reg

ier for the KEY block.

;COD field to l-byte dst
;1-byte sxc with COD field

CONTROL BLOCK FIELDS
KEY BLOCK SUMMARY

6.4.3 DAN Field in KEY Block

USE

INIT

SIZE

ACCESS

INPOT

OUTPUT

Contains the area number of the data area for the index
described by the KEY block.

X$DAN number

1 byte
SFETCH dst,DAN,reg ;DAN field to l-byte dst
$STORE src,DAN,reg ;1-byte src to DAN field
$COMPARE src,DAN,reg ;1-byte src with DAN field
CREATE Data area number
DISPLAY Data area. number
OPEN Data area’number

3

CONTROL BLOCK FIELDS
KEY BLOCK SUMMARY

6.4.4 DBS Field in KEY Block

USE

INIT
SIZE

ACCESS

oUTPOT

Contains the bucket size for the data area for the

" described by the KEY block.

None
1 byte
SFETCH dst,DBS,reg ;DBS field to l-byte dst
$COMPARE src,DBS,regq ;1-byte src with DBS field
DISPLAY Data area bucket size (blocks)
OPEN Data area bucket size (blocks)

S8

index

CONTROL BLOCK FIELDS
KEY BLOCK SUMMARY

6.4.5 DFL Field in KEY Block

USE

INIT

SIZE

ACCESS

INPOT

OUTPOT

Contains the bucket fill number for the data area for the
index described by the KEY block.

X$DFL number

1 word
SFETCH dst,DFL,xeg ;DFL field to l-word dst
$STORE src,DFL,reg ;1-word src to DFL field
SCOMPARE src¢,DFL,reg ;1-word src with DFL field
CREATE Data bucket £ill factor
DISPLAY Data bucket fill factor
OPEN Data bucket fill factor

- ; :l}.

’l.'f:g A

CONTROL BLOCK FIELDS
KEY BLOCK SUMMARY

6.4.6 DTP Field in KEY Block

USE Contains the key data type code for the index described by
" the KEY block.
INIT X$DTP code
SIZE 1 byte
ACCESS SFETCH dst ,DTP,reg ;DTP field to l-byte dst
$STORE src,DTP,reg ;1-byte src to DTP field

SCOMPARE src¢,DTP,reg ;1-byte src with DTP field

CODES XB$BN2 16-bit unsigned integer
XB$BN4 32-bit unsigned integer
XBSIN2 15-bit signed. integer
XB$IN4 31l-bit signed*integer
XB$PAC Packed deci@a% number
XB$STG String B

¥
s

INPOT CREATE Key data type code

OUTPOT DISPLAY Key data type code
OPEN Key data type code

CONTROL BLOCK FIELDS
KEY BLOCK SUMMARY

6.4.7 DVB Field in KEY Block

OSE

INIT
SIZE
ACCESS

OUTPOT

Contains the virtual block number of the first bucket in
the data area for the index described by the KEY block.

None

2 words

SFETCH dst,DVB,feg ;:DVB field to 2-word dst
DISPLAY First data bucket virtual block number
OPEN First data bucket virtual block number

CONTROL BLOCK FIELDS
KEY BLOCK SUMMARY

6.4.8 FLG Field in KEY Block (XBSCHG Mask)

USE

INIT

SIZE

ACCESS

INPUT

OUTPUT

Specifies that a record key (for an alternate index) is

- allowed to change when the record is updated.

X$FLG mask

1 byte

$SET mask,FLG,reg ;Mask bits on in FLG field
$OFF mask,FLG,xreg ;Mask bits off in FLG field
STESTBITS mask,FLG,reg ;Test mask bits in FLG field
$FETCH dst,FLG,req ;FLG field to l-byte dst
$STORE src,FLG,reg ;1-byte src to FLG field
SCOMPARE src,FLG,reg ;1-byte src with FLG field
CREATE Record key}changes allowed on update
DISPLAY Record kbj%changes allowed on update
OPEN Record kéyichanges allowed on update

CONTROL BLOCK FIELDS
KEY BLOCK SUMMARY

6.4.9 FLG Field in KEY Block (XB$DUP Mask)

USE

INIT

SIZE

ACCESS

INPOT

OUTPOT

Indicates that duplicate record keys are allowed for the
index described by the KEY block; duplicate record keys
are not allowed in the primary index.

X$FLG mask

1 byte
$SET mask,FLG,reg ;Mask bits on in FLG field
SOFF mask,FLG,reg ;Mask bits off in FLG field
STESTBITS mask,FLG,reg ;Test mask bits in FLG field
SFETCH dst,FLG,reg ;FLG field to l-byte dst
S$STORE src,FLG,reg ;1-byte src to FLG field
SCOMPARE src,FLG,reg ;1-byte src with FLG field
S
CREATE Dupligate record keys allowed
TR
DISPLAY Dupliéaﬁg record keys allowed
OPEN Duplicate record keys allowed

CORTROL BLOCK FIELDS
KEY BLOCK SUMMARY

6.4.10

USE

INIT
SIZE

ACCESS

INPOT

OUTPUT

FLG Field in KEY Block (XB$RUL Mask)

Indicates that records containing only null characters are
not contained in the index described by the KEY block.
(The null character is specified in the NUL field of the
KEY block.)

XSFLG mask

1 byte

$SET mask,FLG,reg ;Mask bits on in FLG field

$OFF mask,FLG,reg ;Mask bits off in FLG field

STESTBITS mask,FLG,reqg ;Test mask bits in FLG field

$FETCH dst,FLG,reg ;FLG field to l-byte dst

$STORE src,FLG,reg .. . ;l-byte src to FLG field

$COMPARE srxc,FLG,reg " * ;l-byte src with FLG field
o L .

CREATE Null re§o§§ keys not indexed

DISPLAY Null record keys not indexed

OPEN Null record keys not indexed

6.4.11

USE

INIT

SIZE

ACCESS

INPOT

OGTPOT

CONTROL BLOCK FIELDS
KEY BLOCK SUMMARY

IAN Field in KEY Block

Contains the area number of the area containing the higher
index levels (all except the lowest level) for the index
described by the KEY block.

X$IAN number

1 byte

SFETCH dst,IAN,reg ;IAN field to l-byte dst
$STORE src,lAN,reg ;1-byte src to IAN field
SCOMPARE src,IAN,reg ;1-byte src with IAN field
CREATE Higher level index area number
DISPLAY Higher level index area number

OPEN Highex fgvel index area number

CONTROL BLOCK FIELDS
KEY BLOCK SUMMARY

6.4.12

USE

INIT
SIZE

ACCESS

OUTPUT

IBS Field in KEY Block

Contains the bucket size of the area contalnlng the
described by the KEY block.

None
1 byte
SFETCH dst,IBS,reg ;IBS field to l-byte dst
SCOMPARE src,IBS,reg ;1l-byte src with IBS field
DISPLAY Index area bucket size (blocks)
OPEN Index area bucket size (blocks)

-4k

index

6.4.13

USE

INIT
SIZE

ACCESS

INPOT

OUTPUT

CONTROL BLOCK FIELDS
KEY BLOCK SUMMARY

IFL Field in KEY Block

Contains the bucket fill number for the area containing
the index described by the KEY block.

X$IFL number

1 word
SFETCH dst,IFL.reg ;IFL field to l-word dst
$STORE src,IFL,reg ;1-word src to IFL field
$SCOMPARE src,IFL,reg :1-word src with IFL field
CREATE Index bucket fill factor
DISPLAY Index backet fill factor
OPEN Index bucket fill factor

-g T

&

Y, 33

CONTROL BLOCK FIELDS
KEY BLOCK SUMMARY

6.4.14

OSE

INIT
SIZE

ACCESS

INPOT

KNM Field in KEY Block

Contains the address of the 32-byte key name buffer
the index described by the KEY block.

X$KNM address

1 word

SFETCH dst,KNM,reg ;KNM field to l-word dst
$STORE src,KNM,reg ;1-word src to KNM field
$COMPARE src,KNM,reg ;1-word src with KNM field
CREATE Key name buffer address

DISPLAY Key name buffer address

OPEN Key name -buffer address

6-78

for

6.4.15

USE

INIT
SIZE

ACCESS

INPOT

OUTPUT

LAN Field in KEY

Contains the
level of the

X$SLAN number

1 byte

SFETCH dst ,LAN,reg

Block

CONTROL BLOCK FIELDS
KEY BLOCK SUMMARY

area number of the area containing the lowest
index described by the KEY block.

$STORE src,LAN,reg ;1-byte

$SCOMPARE src
CREATE

DISPLAY
OPEN

+LAN,xeg ;1-byte
Lowest index level

Lowest - index level
Lowest %ndex level
A B3

;LAN field to l-byte dst

src to LAN field
src with LAN field

area number

area number
area number

CONTROL BLOCK FIELDS
KEY BLOCK SUMMARY

6.4.16 LVL Field in KEY Block
USE Contains the number of 1levels (not including the
level) for the index described by the KEY block.
INIT None
SIZE 1 byte
ACCESS SFETCH dst,LVL,reg ;LVL field to l-byte dst
SCOMPARE src,LVL,reg ;1-byte src with LVL field
OUTPUT DISPLAY Number of index 1levels (not including
level)
OPEN Number of index 1levels (not including
level) T;

data

data

data

CONTROL BLOCK FIELDS
RKEY BLOCK SUMMARY

6.4.17 MRL Field in KEY Block

USE Contains the length of the smallest record that is 1long
enough to completely contain a record key for the index
described by the KEY block.

INIT None
SIZE 1 word
ACCESS SFETCH dst,MRL,reg ;MRL field to l-word dst
SCOMPARE src,MRL,reg ;1-word src with MRL field
OUTPUT DISPLAY Minimum length of record containing key
(bytes)
OPEN Minimum: length of record containing key
(bytes) ©
%k

CONTROL BLOCK FIELDS
KEY BLOCK SUMMARY

6.4.18

USE

INIT
SIZE

ACCESS

OUTPOT

NSG Field in KEY Block

Contains the number of key segments in the key for
index described by the KEY block.

None
1 byte
SFETCH dst ,NSG,reg ;NSG field to 1l-byte dst
$COMPARE src,NSG,reg +1-byte src with NSG field
DISPLAY Key segment count
OPEN Key segment count

™8

the

6.4.19

USE

INIT
SIZE

ACCESS

INPUT

OUTPUT

CONTROL BLOCK FIELDS
KEY BLOCK SUMMARY

NUL Field in KEY Block

Contains the null character for the (alternate) index
described by the KEY block. For a string key (XB$STG in
the DTP field of the KEY block), the NUL field contains an
ASCII1 character; for any other key data type, the NUL
field is unused (nonstring keys use 0 as the null value
when the XBSNUL mask is set).

X$NUL number

1 byte
SFETCH dst ,NUL,reg ;NUL field to l-byte dst
$STORE src,NUL,reg ;1-byte src to NUL field
SCOMPARE src,NUL,reg: ;1-byte src with NUL field
CREATE Null keyicharacter

L RP

LR
DISPLAY Null key:character
OPEN Null key character

CONTROL BLOCK FIELDS
KEY BLOCK SUMMARY

6.4.20

USE

INIT
SIZE

ACCESS

INPOT

NXT Field in KEY Block

Contains the address of the next XAB (ALL, DAT, KEY, PRO,
or SUM block) in a chain of XABs.

X$NXT address

1 word

$FETCH dst ,NXT,reg ;NXT field to l-word dst
$STORE src,NXT,reg ;l-word src to NXT field
SCOMPARE src,NXT,reg ;1-word src with NXT field
CLOSE Next XAB address

CREATE Next XAB address

DISPLAY Next XAB address

ERASE Next XAB' address

EXTEND Next XAB .address

OPEN Next X§$ Fddress

PARSE Next XAB address

RENAME Next XAB address

SEARCH Next XAB address

CONTROL BLOCK FIELDS
KEY BLOCK SUMMARY

6.4.21 POS Field in KEY Block

USE , Contains the positions of segments for the record keys in
the index described by the KEY block. (The first key
position is position 0.)

INIT X$POS <number [,number]...>

SIZE 8 words

ACCESS SFETCH dst,POS,reg ;POS field to 8-word dst
$STORE src,POS,reg ;8-word src to POS field
SFETCH dst,POSn,reg ; POS word n to l-word dst
$STORE src,POSn,reg ;:1l-word src to POS word n
SCOMPARE src,P0Sn,reg :1-word src with POS word n

INPUT CREATE Key segment positions

Ry .

OUTPOT DISPLAY Key segﬁént positions

OPEN Key segment positions

CONTROL BLOCK FIELDS
KEY BLOCK SUMMARY

6.4.22

USE

INIT
SIZE

ACCESS

INPUT

REF Field in KEY Block

Contains the reference

the KEY block.

XSREF number

1 byte

$FETCH dst,REF,reg
$STORE src,REF,reg
$COMPARE src,REF,reg

CLOSE
CREATE
DISPLAY
EXTEND
OPEN

Index
Index
Index
Index
Index

reference
reference
reference
reference
Agefgrence
R

number for the index

number
number
number
number
number

described by

;REF field to l-byte dst
;l-byte src to REF field
;1-byte src with REF field

6.4.23

USE

INIT
SIZE
ACCESS

OUTPOUT

CONTROL BLOCK FIELDS
KEY BLOCK SUMMARY

RVB Field in KEY Block

Contains the virtual block number of the first block of
the root bucket of the index described by the KEY block.

None

2 words

SFETCH dst,RVB,reg ;RVB field to 2-word dst
DISPLAY Root index bucket virtual block number
OPEN Root index bucket virtual block number

CONTROL BLOCK FIELDS
KEY BLOCK SUMMARY

6.4.24

USE

INIT
SIZE

ACCESS

INPOT

OUTPOT

SIZ Field in KEY Block

Contains the sizes of segments for the record keys in
index described by the KEY block.

X$SIZ <number|[,number]...>

8 bytes

SFETCH dst,SIZ,reg ;SIZ field to 8-byte dst
$STORE src,SIZ,reg ;8-byte src to SIZ field
SFETCH dst,SIZu,reg ;SIZ byte n to l-byte dst
$STORE src,SIZn,reg +1-byte src to SIZ byte n
SCOMPARE src¢,SIZn,reg ;l-byte src with SIZ byte n
CREATE Key segment sizes (bytes)

DISPLAY Key segm&nt sizes (bytes)

OPEN Key segmeht sizes (bytes)

the

CONTROL BLOCK FIELDS
KEY BLOCK SUMMARY

6.4.25 TKS Field in KEY Block

USE . Contains the total key size (sum of the segment sizes) of
a record key for the index described by the KEY block.

INIT None
SI1ZE 1 byte
ACCESS SFETCH dst,TKS,reg ;TKS field to l-byte dst
SCOMPARE src,TKS,reg ;1-byte src with TKS field
OUTPUT DISPLAY Total key size (sum of key segment sizes)
(bytes)
OPEN Total key size (sum of key segment sizes)
(bytes) .3

\ ¥

CONTROL BLOCK F1ELDS
NAM BLOCK SUMMARY

6.5 NAM BLOCK SUMMARY

This section summarizes the NAM block and its fields. Table 6-5
summarizes the entire block, giving the offset, offset symbol, size,
and a brief description for each field; for a field that has mask or
code symbols, the table also gives the value, symbol, and a brief
description for each mask or code.

Table 6-5: NAM Block Summary

Offset Field
Offset Symbol Size Description

000 OSRLF
002 O$RSA
004 OSRSS
005 OSRSL
006 0SDVI
012 OSWDI
014 OS$FID
022 0OSDID
030 OSFNB

word Reserved

word Resultiant string buffer address
byte Resultant string buffer size (bytes)
byte Resﬁlﬁ%nt string length (bytes)
words Device? identifier

word Wildcard directory context

words File identifier

words Reserved

word File specification mask

HWWHN R

000001 NBSVER File version in file
string or default string

000002 NBSTYP File type in file string
or default string

000004 NBSNAM File name in file string
or default string

000010 NBSWVE Wildcard file version in
file string or default
string

000020 NBSWTY Wildcard file type in
file string or default
string

000040 NBSWNA Wildcard file name in
file string or default
string

000100 NBSDIR Directory in file string
or default string

000200 NBSDEV Device in file string or
default string

000400 NBSNOD Node in file string or
default string

001000 NBSWDI Wildcard directory in
file string or default
string

002000 NBSQUO Quoted string in file
string or default string

004000 NBSWCH Wildcard context
established

032 OSESA 1 word Expanded string buffer address

034 OSESS 1 byte Expanded string buffer size (bytes)
035 O$ESL 1 byte Expanded string length (bytes)

036 OSWCC 1 word Wildcard context

The first word of the NAM block is currently reserved, as noted above,
and must contain the value 0. 1If the NAM block is extended in the
future, the first byte will contain an identifier and the second byte
will contain the (new) block length.

CONTROL BLOCK FIELDS
NAM BLOCK SUMMARY

§.5.1 DVI Field in NAM Block

USE Contains the device identifier for the target file.
INIT None
SIZE 2 words
ACCESS SFETCH dst,DVI,reg :DVI field to 2-word dst
INPOT CREATE Device identifier

ERASE Device identifier

OPEN Device identifier

RENAME Device identifier

SEARCH Device identifier
OUTPUT CREATE Device iéentifier

ERASE Devicé identifier

OPEN Devicelidentifier

PARSE Device id@ntifier

RENAME Device idéntifier

CONTROL BLOCK FIELDS
NAM BLOCK SUMMARY

6.5.2 ESA Field in NAM Block

¥

USE Contains the address of the expanded string buffer.
INIT N$SESA address
SIZE 1 word
ACCESS SFETCH dst ,ESA,reg ;ESA field to l-word dst
$STORE src,ESA,reg 71-word src to ESA field
SCOMPARE src,ESA,reg +1-word src with ESA field
INPUT CREATE Expanded string buffer address
ERASE Expanded string buffer address
OPEN Expanded string buffer address
PARSE Expanded: string buffer address
RENAME Expanded” string buffer address
SEARCH Expan@gdastring buffer address

S

CONTROL BLOCK FIELDS
NAM BLOCK SUMMARY

6.5.3 ESL Field in NAM Block

USE Contains the length of the expanded string.
INIT None
SIZE 1 byte
ACCESS SFETCH dst,ESL,reg ;ESL field to l-byte dst
SCOMPARE src,ESL,reg ;l1-byte src with ESL field
INPOUT SEARCH Expanded string length (bytes)
OUTPUT CREATE Expanded string length (bytes)
ERASE Expanded string length (bytes)
OPEN Expanded string length (bytes)
PARSE Expanded- string length (bytes)
RENAME Expanded string length (bytes)
RO

x
3

A} B

CONTROL BLOCK FIELDS
NAM BLOCK SUMMARY

6.5.4

USE
INIT
SIZE

ACCESS

INPOT

ESS Field in NAM Block

Contains the size of the expanded string buffer.

NSESS number
1 byte

SFETCH dst ,ESS,reg
$STORE src,ESS,regq

;ESS field to l-byte dst
to ESS field

s1-byte src

$SCOMPARE src,ESS,reg ;1-byte src
CREATE Expanded string buffer
ERASE Expanded string buffer
OPEN Expanded string buffer
PARSE Expanded. string buffer
RENAME Expandedtstring buffer

3

S~

N

Tx

with

size
size
size
size
size

ESS field

(bytes)
(bytes)
(bytes)
(bytes)
{bytes)

6.5.5

USE
INIT
SI1ZE
ACCESS
INPUT

oUTPUT

CONTROL BLOCK FIELDS
NAM BLOCK SUMMARY

FID Field in NAM Block

Contains the file identifier for the target file.

None

3 words

SFETCH dst,FID,reg :FID field to 3-word dst

OPEN File identifier

CREATE File identifier

ERASE File identifier

OPEN File identifier

SEARCH File ideptifier (only if FBSFID mask is set)

CONTROL BLOCK FIELDS
NAM BLOCK SUMMARY

6.5.6 FNB Field in NAM Block

USE Indicates which parts of the merged string were taken from
» the file string or the default string. (The masks in this
section do not include the NBSWCH mask, which has its own

description in the next section.)

INIT None

S1ZE 1 word

ACCESS STESTBITS mask,FNB,reg ;Test mask bits in FNB field
SFETCH dst,FNB,reg ;FNB field to l-word dst

SCOMPARE src,FNB,reg ;l-word src with FNB field

MASKS NBSDEV Device in file string or default string
NBSDIR Directory in»file string or default string
NBSNAM File name-inifile string or default string
NBSNOD Node in file#istring or default string
NBSQUO Quoted string in file string or default string
NBSTYP File type in file string or default string
NBSVER File version in file string or default string
NBSWDI Wildcard directory in file string or default

string
NBSWNA Wildcard file name in file string or default
string
NBSWTY Wildcard file type in file string or default
string
NBSWVE Wildcard file version in file string or default
string
OUTPUT CREATE File specification mask
ERASE File specification mask
OPEN File specification mask
PARSE File specification mask
RENAME File specification mask

CONTROL BLOCK FIELDS
NAM BLOCK SUMMARY

6.5.7 FNB Field in RAM Block (NBSWCH Mask)

USE Indicates that a valid wildcard context exists. (Masks
- for the FNB field other than the NBSWCH mask are described
in the previous section.)

INIT None
SIZE 1 word
ACCESS STESTBITS mask,FNB,reg ;Test mask bits in FNB field
SFETCH dst,FNB,reg ;FNB field to l-word dst
$COMPARE src,FNB,reg ;1-word src with FNB field
INPOT ERASE Wildcard context established
OPEN Wildcard context established
RENAME Wildcard-&ontext established
SEARCH Wildcard ¢ontext established
R
OUTPUT CREATE Wildcard context established
OPEN Wildcard context established
PARSE Wildcard context established
SEARCH Wildcard context established

CONTROL BLOCK FIELDS
NAM BLOCK SUMMARY

6.5.8 RSA Field in NAM Block

USE Contains the address of the resultant string buffer.

INIT NSRSA address

SIZE 1 word

ACCESS $FETCH dst,RSA,reg ;RSA field to l-word dst
$STORE src,RSA,reg ;1-word src to RSA field

SCOMPARE src¢,RSA,reg ;1-word src with RSA field

INPUT SEARCH Resultant string buffer address

-
Tl

6.5.9

USE
INIT
SIZE

ACCESS

INPOT

OUTPOT

CONTROL BLOCK FIELDS
NAM BLOCK SUMMARY

RSL Field in NAM Block

Contains the length of the resultant string.

None
1 byte
SFETCH dst,RSL,reg sRSL field to l-byte dst
SCOMPARE src,RSL,reg ;1-byte src with RSL field
SEARCH Resultant string length (bytes)
SEARCH Resultant string length (bytes)

S

R -

CONTROL BLOCK FIELDS
NAM BLOCK SUMMARY

6.5.10

USE
INIT
SIZE

ACCESS

INPOUT

RSS Field in NAM Block

Contains the size of the resultant string buffer.

N$RSS number

1 byte
$FETCH dst,RSS,reg ;RSS field to l-byte dst
$STORE src,RSS,reg ;1-byte src to RSS field

SCOMPARE src

SEARCH

+RSS,reg ;1-byte src with RSS field

Resultant string buffer size (bytes)

6-100

CONTROL BLOCK FIELDS
NAM BLOCK SUMMARY

6.5.11 WCC Field in NAM Block

USE Contains wildcard context information.
INIT None
SIZE 1 word
ACCESS SFETCH dst,WCC,reg ;WCC field to l-word dst
SCOMPARE src,WCC,reg ;1l-word src with WCC field
INPOT SEARCH Wildcard context
OUTPUT PARSE Wildcard context
SEARCH Wildcard context
oo
S
\ &*

6~101

CONTROL BLOCK FIELDS

NAM BLOCK SUMMARY

6.5.12

USE
INIT
SIZE

ACCESS

INPUT

OUTPOT

WDI Field in NAM Block

Contains wildcard directory context information.

None

1 word

SFETCH dst,WDI,reqg
SCOMPARE src,WDI,reg ;s 1-word

SEARCH

PARSE
SEARCH

Wildcard directory

;WDI field to l-word dst

Wildcard directory

Wildcard directory

6-102

src with WDI field
context

context
context

CONTROL BLOCK FIELDS
PRO BLOCK SUMMARY

6.6 PRO BLOCK SUMMARY

This section summarizes the PRO block and its fields. Table 6-6
summarizes the entire block, giving the offset, offset symbol, size,
and a brief description for each field; for a field that has mask or
code symbols, the table also gives the value, symbol, and a brief
description for each mask or code.

Table 6-6: PRO Block Summary

Offset Field
Offset Symbol Size Description

000 0$COD 1 byte PRO block identifier

ooéodﬁf XB$PRO PRO block identifier code
001 O$BLN 1 byte PRO b Ibck length (bytes)

000012 XBSPRL PRO block length (bytes)

002 O$NXT
004 O$PRG

word Next XAB address
woxd Programmer or member portion of file
owner code
006 OSPRJ 1 word Project or group portion of file owner
code
010 OSPRO 1 word File protection code

e

6-103

CONTROL BLOCK FIELDS
PRO BLOCK SUMMARY

6.6.1 BLN Field in PRO Block (XB$PRL Code)

USE Contains the length of the PRO block.

INIT | None

SIZE 1 byte

ACCESS $FETCH dst ,BLN,reg ;BLN field to l-byte dst

$COMPARE src,BLN,reg ;1-byte src with BLN field

6-104

6.6.2 COD

USE
INIT
SIZE

ACCESS

CONTROL BLOCK FIELDS
PRO BLOCK SUMMARY

Field in PRO Block (XBSPRO Code)

Contains the identifier for the PRO block.
None
1 byte

$FETCH dst,COD,reg ;COD field to l-byte dst
SCOMPARE src,COD,reg ;1-byte src with COD field

6-105

CONTROL BLOCK FIELDS

PRO BLOCK SUMMARY

6.6.3

USE

INIT
SIZE

ACCESS

INPUT

NXT Field in PRO Block

Contains the address of the next XAB (ALL, DAT, KEY,
or SUM block) in

XSNXT address

a chain of XABs.

1 word

SFETCH dst ,NXT,reg ;NXT field to l-word dst
$STORE src,NXT,reg ;1-word src to NXT field
$SCOMPARE src,NXT,reg :1-word src with NXT field
CLOSE Next XAB address

CREATE Next XAB address

DISPLAY - Next XAB address

ERASE Next XAB1§ddress

EXTEND Next XAB*?ddress

OPEN Next XAB #ddress

PARSE Next XAB address

RENAME Next XAB address

SEARCH Next XAB address

6-106

PRO,

6.6.4

USE

INIT
SIZE

ACCESS

OUTPOT

PRG Field in PRO Block

Contains the member or
owner code,

X$PRG numberx

SFETCH dst,PRG,reg
$STORE src,PRG,reg
SCOMPARE src,PRG,reg

Programmer

CORTROL BLOCK FIELDS
PRO BLOCK SUMMARY

programmer portion of the file

;PRG field to l-word dst
;1-word src to PRG field
:1-word src with PRG field

or member portion of file owner

6-107

CONTROL BLOCK FIELDS
PRO BLOCK SUMMARY

6.6.5

USE

INIT
SIZE

ACCESS

OUTPUOT

PRJ Field in PRO Block

Contains the group or project portion of the file owner

code.
X$PRJ number
1 worxd

SFETCH dst,P
$STORE src,P

RJ,reqg
RJ,reg

;PRI field to l-word dst
;1l-word src to PRJ field

$COMPARE src,PRJ,reg j1-word src with PRJ field

OPEN

Project or group portion of file owner code

6-108

6.6.6

USE
INIT
SIZE

ACCESS

IRPOT

OUTPUT

CONTROL BLOCK FIELDS
PRO BLOCK SUMMARY

PRO Field in PRO Block

Contains the protection code for the file.

X$PRO number

1 word
$FETCH dst,PRO,reg ;PRO field to l-word dst
$STORE sxrc,PRO,reg ;1-word src to PRO field
SCOMPARE src¢,PRO,reg ;1-word src with PRO field
CREATE File protection code
OPEN File protection code

s

S “I\

6-109

CONTROL BLOCK FIELDS
RAB SUMMARY

6.7 RAB SUMMARY

This section summarizes the RAB and its fields. Table 6-7 summarizes
the entire block, giving the offset, offset symbol, size, and a brief
description for each field; for a field that has mask or code
symbols, ‘the table also gives the value, symbol, and a brief
description for each mask or code.

Table 6-7: RAB Summary

Offset Field
Offset Symbol Size Description

000 08BID 1 byte RAB identifier code
. 000001% RBSBID RAB identifier

001 OSBLN 1 byte RAB lefigth (bytes)

000120 = RBSBLN RAB length (bytes)

002 08CTX
004 0$ISI
006 0$STS
010 O$STV
012 OSRFA
020 O$RAC

word User context

word Internal stream identifier
word Completion status code
word Completion status value
words Record file address

byte Record access code

W

000000 RBSSEQ Sequential access
000001 RBSKEY Key access
000002 RBSRFA RFA access

021 O$KSZ 1 byte Key size (bytes)
022 OSROP 1 word Record processing option mask
000001 RBSEOF Position to end-of-file
000002 RBSMAS Mass insert
000020 RBSLOA Honor bucket fill numbers
000100 RBSLOC Locate mode
002000 RBSKGE Greater-than-or-equal key
criterion
004000 RBSKGT Greater-than key
criterion
010000 RBSFDL. Fast deletion
020000 RBSUIF Update if record exists
024 08USsZ 1 word User buffer size (bytes)
026 OS$UBF 1 word User buffer address
030 OSRSZ 1 word Record size (bytes)
032 OS$RBF 1 word Record buffer address
034 OSKBF 1 word Key buffer address
036 O$KRF 1 byte Key of reference
037 OSMBF 1 byte Multibuffer count
040 OSMBC 1 byte Multiblock count
041 OS$SRT1A 1 byte Reserved
042 OS$RHB 1 worxd VEC control buffer address
044 OSFAB 1l word FAB address
046 O$BKT 2 words Virtual block number (VBN) or relative

record number (RRN)

6-110

CONTROL BLOCK FIELDS
RAB SUMMARY

6.7.1 BID Field in RAB (RB$SBID Code)

USE

INIT

SIZE

ACCESS

Contains the identifier for the RAB.
None
1 byte

SFETCH dst,BID,reg ;BID field to l-byte dst
SCOMPARE src,BID,reg ;1-byte src with BID field

%
+

6-111

CONTROL BLOCK FIELDS
RAB SUMMARY

6.7.2 BKT Field in RAB

USE Contains a virtual block number or relative record number
~ for a target record.

INIT R$SBKT number
SIZE 2 words
ACCESS SFETCH dst,BKT,reg ;BKT field to 2-word dst
$STORE src,BKT,reg ;2-word src to BKT field
SFETCH dst,BKTn,reg ;BKT word n to l-word dst
$STORE src,BKTn,req yl1-word src to BKT word n
SCOMPARE src,BKTn,reg ;l-word src with BKT word n
INPOUT READ Virtual block number (VBN)
WRITE Virtual block number (VBN)
N |
e S
OUTPUT FIND Relative ¥ecord number (RRN)
GET Relative pecord number (RRN)
PUT Relative record number (RRN)

6-112

CONTROL BLOCK FIELDPS
RAB SUMMARY

6.7.3 BLN Field in RAB (RBSBLN Code)

OSE Contains the length of the RAB.

INIT None

SI1ZE 41 byte

ACCESS SFETCH dst,BLN,;reg ;BLN field to l-byte dst

SCOMPARE src¢,BLN,reg ;l-byte src with BLN field

6-113

CONTROL BLOCK FIELDS
RAB SUMMARY

6.7.4 CTX Field in RAB

USE Contains any information you may want to associate with
- the stream at run time.

INIT RSCTX number

SIZE 1 word

ACCESS SFETCH dst,CTX,reg ;CTX field to l-word dst
SSTORE src,CTX,reg s1-word src to CTX field

$COMPARE src,CTX,reg ;1-word src with CTX field

6-114

CONTROL BLOCK FIELDS
RAB SUMMARY

6.7.5 FAB Field in RAB

USE

INIT

SIZE

ACCESS

INPOT

Contains the address of the FAB for the target file.

RSFAB address

1 word
SFETCH dst,FAB,red ;FAB field to l-word dst
SSTORE src,FAB,reg ;1-word src to FAB field
SCOMPARE src,FAB,reg :1-word src with FAB field
CONNECT FAP address
m;
Y A

?3.‘
3

2

6-115

CONTROL BLOCK FIELDS
RAB SUMMARY

6.7.6 ISI Field in RAR

USE Contains the internal stream identifier for the target
file.
INIT None
SIZE 1 word
ACCESS $FETCH dst,ISI,reg ;ISI field to l-word dst
$COMPARE src,ISI,reg ;1l-word src with ISI field
INPOT DELETE Internal stream identifier
DISCONNECT Internal stream identifier
FIND Internal stream identifier
FLUSH Internal stream identifier
FREE Internal stream identifier
GET Internal gtream identifier
PUT Intern&l #tream identifier
READ Internal Stream identifier
REWIND Internal dtream identifier
TRUNCATE Internal stream identifier
UPDATE Internal stream identifier
WRITE Internal stream identifier
OUTPUT CONNECT Internal stream identifier

DISCONNECT Internal stream identifier

6-116

6.7.7

USE

INIT
SIZE

ACCESS

INPUT

KBF Field in RAB

CONTROL BLOCK FIELDS
RAB SUMMARY

Contains the address of the key buffer £for the target

record.

RSKBF address

1 word

SFETCH dst ,KBF,reg

$STORE src,KBF,reg
SCOMPARE src,KBF,reg

FIND Key buffer
GET Key buffer
PUT Key buffer
S
4 TR
\\.

;KBF field to l-word dst
;1-word src to KBF field
;l1-word src with KBF field

address
address
address

6-117

CONTROL BLOCK FIELDS

RAB SUMMARY

6.7.8 KRF Field in RAB

USE

INIT

SIZE

ACCESS

INPOT

Contains the index reference number of the index
operation.

RSKRF number

1 byte

SFETCH dst ,KRF,reg ;KRF field to l-byte dst
$STORE src,KRF,reg ;l-byte src to KRF field
$COMPARE src,KRF,reg ;1-byte src with KRF field
CONNECT RKey of reference

FIND Key of reference

GET Key of - reference

REWIND Key of reference

"‘.i\
%

:
o

6-118

for

the

CONTROL BLOCK FIELDS
RAB SUMMARY

6.7.9 KSZ Field in RAB

USE

INIT

SIZE

ACCESS

INPOT

Contains the size of the record key for the operation.

RSKSZ number

1 byte

$FETCH dst,KSZ,reg ;KS7Z field to l-byte dst
$SSTORE src,KSZ,reg ;1-byte src to KSZ field
SCOMPARE src,KSZ,reg ;1-byte src with KSZ field
FIND Key size (bytes)

GET Key size (bytes)

PUT Key size (bytes)

RN

g -

s g

6-119

CONTROL BLOCK FIELDS

RAB SUMMARY

6.7.10 MBC

USE

INIT

SIZE

ACCESS

INPOT

Field in RAB

Contains the multiblock count for the stream.

RSMBC number

1 byte
SFETCH dst.,MBC,reg ;MBC field to l-byte dst
$STORE src,MBC,reg ;1-byte src to MBC field

$COMPARE src,MBC,reg ;+1-byte src with MBC field

CONNECT Multiblock count

6-120

6.7.11

USE
INIT
SIZE

ACCESS

INPUT

CONTROL BLOCK FIELDS
RAB SUMMARY

MBF Field in RAB

Contains the multibuffer count for the stream.

RSMBF number

1 byte
SFETCH dst,MBF,reg :MBF field to l-byte dst
$STORE src,MBF,reg ;1-byte src to MBF field

SCOMPARE src,MBF,reg :1-byte src with MBF field

CONNECT Multibuffer count

gt

L
;g

6-121

CONTROL BLOCK FIELDS
RAB SUMMARY

6.7.12 RAC Field in RAB

USE) Contains the access mode code for the operation.

INIT R$RAC code

SIZE 1 byte

ACCESS $FETCH dst,RAC,reg ;RAC field to l-byte dst
$STORE src,RAC,reg ;1-byte src to RAC field

SCOMPARE src,RAC,reg ;1-byte src with RAC field
CODES RBSKEY Key access

RBSRFA RFA access

RBSSEQ Sequential access

INPUT FIND Record access code

GET Record adccess code

PUT Record atcess code

6-122

CONTROL BLOCK FIELDS
RAB SUMMARY

6.7.13 RBF Field in RAB

USE . Contains the address of the record buffer for the
operation.
INIT RSRBF address
SIZE 1 word
ACCESS SFETCH dst,RBF,reg :RBF field to l-word dst
$STORE src,RBF,reg :1-word src to RBF field
SCOMPARE src,RBF,reg ;1-word src with RBF field
INPOT PUT Record buffer address
UPDATE Record buffer address
WRITE Record buyffer address
OUTPUT CONNECT Recomﬁkﬁﬁffer address
GET Record'biffer address
PUT Record bwffer address
READ Record buffer address

6-123

CONTROL BLOCK FIELDS
RAB SUMMARY

6.7.14 RFA Field in RAB

USE . Contains the record file address for the target record.
INIT None
SIZE 3 words
ACCESS SFETCH dst,RFA,reg ;RFA field to 3~word dst
INPUOT FIND Record file address
GET Record file address
OUTPOT CONNECT End-of-file address
FIND Record file address
GET Record -file address
PUT Recoxd %ile address
READ Virtuoaljplock number (2 words)
WRITE Virtual dlock number (2 words)

6-124

6.7.15

USE

INIT
SIZE

ACCESS

INPOT

RHB Field in RAB

CONTROL BLOCK FIELDS
RAB SUMMARY

Contains the address of the VFC fixed control area buffer

for the target record.

RSRHB address

1 word
SFETCH dst,RHB,reg ;:RHB field to l-word dst
$STORE src,RHB,reg ;1-word src to RHB field
SCOMPARE src,RHB,reg ;1-word src with RHB field
GET VFC control buffer address
PUT VFC control buffer address
UPDATE VEFC contggl buffer address

’;ﬁf &

6-125

CONTROL BLOCK FIELDS

RAB SUMMARY

6.7.16 ROP

USE

INIT

SIZE

ACCESS

INPOUT

Field in RAB (RB$SEOF Mask)

Requests initial stream context at end-of-file.

RSROP mask

1 word

$SET mask,ROP,reg ;Mask bits on in ROP field
S$OFF mask,ROP,reg ;Mask bits off in ROP field
STESTBITS mask,ROP,reg ;Test mask bits in ROP field
SFETCH dst,ROP,reg ;ROP field to l-word dst
$STORE src,ROP,reg ;:1-word src to ROP field

SCOMPARE src,ROP,reg ;1-word src with ROP field

CONNECT Position to end-of-file

6-126

CONTROL BLOCK FIELDS
RAB SUMMARY

6.7.17 ROP Field in RAB (RBSFDL Mask)

USE Requests fast deletion.

INIT " RSROP mask

SIZE 1 word

ACCESS $SET mask,ROP,reqg ;Mask bits on in ROP field
SOFF mask,ROP,reg ;Mask bits off in ROP field
STESTBITS mask,ROP,reqg ;Test mask bits in ROP field
SFETCH dst,ROP,reg ;ROP field to l-word dst
$STORE src,ROP,reg ;1-word src to ROP field
SCOMPARE src,ROP,reg ;1-word src with ROP field

INPUT DELETE Fast deletion

Sy

*

5 +

6-127

CONTROL BLOCK FIELDS

RAB SUMMARY

6.7.18 ROP

USE

INIT

SIZE

ACCESS

INPUT

Field in RAB (RBS$KGE Mask)

Requests greater-than-or-equal key match criterion.

RSROP mask
1 word
$SET mask,ROP,reg :Mask bits on in ROP field
$OFF mask,ROP,reg ;Mask bits off in ROP field
STESTBITS mask,ROP,reg ;Test mask bits in ROP field
$FETCH dst,ROP,reg ;ROP field to l-word dst
$STORE src,ROP,reg ;1-word src to ROP field
SCOMPARE src,ROP,reg ;1-word src with ROP field
FIND Greater-than-or-equal key criterion
GET Greater-than-or-equal key criterion
STy

%

3

SRR
Y

W

6-128

6.7.19

USE
INIT
SIZE

ACCESS

INPUT

CONTROL BLOCK FIELDS
RAB SUMMARY

ROP Field in RAB (RB$KGT Mask)

Requests greater-then key match criterion.

R$ROP mask

1 word

$SET mask,ROP,reg ;Mask bits on in ROP field
$OFF mask,ROP,reg ;Mask bits off in ROP field
$TESTBITS mask,ROP,reqg ;Test mask bits in ROP field
SFETCH dst,ROP,reg ;ROP field to l-word dst
$STORE src,ROP,reg ;1-word src to ROP field
SCOMPARE src,ROP,reg ;1-word src with ROP field
FIND Greater-than key criterion

GET GreateIAghan key criterion

N B3

6-129

CONTROL BLOCK FIELDS

RAB SUMMARY

6.7.20 ROP

USE

INIT

SIZE

ACCESS

INPOT

Field in RAB (RBSLOA Mask)

Requests bucket fill number honoring.

RSROP mask
1 word
SSET mask,ROP,reg ;Mask bits on in ROP field
$OFF mask,ROP,reg ;Mask bits off in ROP field
STESTBITS mask,ROP,reg ;Test mask bits in ROP field
SFETCH dst,ROP,reg ;ROP field to l-word dst
$STORE src,ROP,reg ;1-word src to ROP field
SCOMPARE src,ROP,reg ;1-word src with ROP field
PUT Honor 'bugket £ill numbers
UPDATE Honor: bucket fill numbers

.

-~ °h

ey
[

6-130

CONTROL BLOCK FIELDS
RAB SUMMARY

6.7.21 ROP Field in RAB (RBSLOC Mask)

USE rRequests locate mode operation.

INIT RSROP mask

SIZE 1 word

ACCESS $SET mask,ROP,reg :Mask bits on in ROP field
$OFF mask,ROP,reg ;:Mask bits off in ROP field
STESTBITS mask,ROP,reg ;Test mask bits in ROP field
SFETCH dst,ROP,reg ;ROP field to l-word dst
$STORE src,ROP,reg ;1l-word src to ROP field
$COMPARE src,ROP,reg ;1-word src with ROP field

INPUT CONNECT Locate mode
GET Locate mode
PUT Locatelger

- 5

By £
Ay k3

6-131

CONTROL BLOCK FIELDS
RAB SUMMARY

6.7.22 ROP Field in RAB (RB$MAS Mask)

USE ~ Requests mass insertion.

INIT RSROP mask

SIZE 1 word

ACCESS $SET mask,ROP,req ;Mask bits on in ROP field
$OFF mask,ROP,reg ;Mask bits off in ROP field
STESTBITS mask,ROP,reg ;Test mask bits in ROP field
SFETCH dst,ROP,reg ;ROP field to l-word dst
$STORE src,ROP,reg ;1-word src to ROP field
$COMPARE src,ROP,reg ;1l-word src with ROP field

INPOT PUT Mass insert

oo

6-132

6.7.23

USE
INIT
SIZE

ACCESS

INPOT

ROP Field in RAB (RB$UIF Mask)

CONTROL BLOCK FIELDS
RAB SUMMARY

Requests update if target record already exists.

RSROP mask

1 word

$SET mask,ROP,reg ;Mask bits on in ROP field
$OFF mask,ROP,reg ;Mask bits off in ROP field
STESTBITS mask,ROP,reg ;Test mask bits in ROP field
SFETCH dst,ROP,reg sROP field to l-word dst
SSTORE src,ROP,reg s1l-word src to ROP field

SCOMPARE src¢,ROP,xreg ;1-word src with ROP field

PUT Update;if record exists

- _§ =
i

RRET T

6-133

CONTROL BLOCK FIELDS
RAB SUMMARY

6.7.24

USE

INIT

SIZE

ACCESS

INPUT

OUTPUT

RSZ Field in RAB

Contains the size of the target record.

RSRSZ number
1 word

SFETCH dst,R
SSTORE src,R

SZ,reg
SZ,reg

;RSZ field to l-word dst
;1-word src to RSZ field

SCOMPARE src,RSZ,reg ;l-word src with RSZ field

PUT
UPDATE
WRITE

GET
READ

Record
Record
Record

Record
Record

size (bytes)
size (bytes)
size (bytes)

sizé (bytes)
g&zs (bytes)

s Ry

6-134

CONTROL BLOCK FIELDS
RAB SUMMARY

6.7.25 STS Field in RAB

USE Contains the completion status code for the operation.
INIT None
SIZE 1 word
ACCESS $FETCH dst,STS,reg ;STS field to l-word dst

$COMPARE src,STS,reg ;l-word src with STS field
OUTPUT CONNECT Completion status code

DELETE Completion status code

DISCONNECT Completion status code

FIND Completion status code

FLUSH Completion status code

FREE Completiion status code

GET Completilon status code

PUT ComplgtiPhn status code

READ Completign status code

REWIND Completion status code

TRUNCATE Completion status code

UPDATE Completion status code

WRITE Completion status code

6-135

CONTROL BLOCK FIELDS
RAB SUMMARY

6.7.26 STV Field in RAB

USE Contains the completion status value for the operation.
INIT None
SIZE 1 word
ACCESS SFETCH dst,STV,reg ;STV field to l-word dst

$COMPARE src,STV,regq ;1-word src with STV field
OUTPUT CONNECT Completion status value

DELETE Completion status value

DISCONNECT Completion status value

FIND Completion status value

FLUSH Completion status value

FREE Completion status value

GET Completjor status value

PUT Completiony status value

READ Completion status value

REWIND Completion status value

TRUNCATE Completion status value

UPDATE Completion status value

WRITE Completion status value

6-136

CONTROL BLOCK FIELDS
RAB SUMMARY

6.7.27 UBF Field in RAB

USE Contains the address of the user buffer for the operation.
INIT RSUBF address
SIZE 1 word
ACCESS SFETCH dst ,UBF,reg ;UBF field to l-word dst
$STORE src,UBF,reg :1-word src to UBF field
$COMPARE src,UBF,reg ;1-word src with UBF field
INPOT CONNECT User buffer address
GET User buffer address
PUT User buffer address
READ User .buffer address
EE N

6-137

CONTROL BLOCK FIELDS
RAB SUMMARY

6.7.28 USZ Field in RAB

USE Contains the size of the user buffer for the operation.
INIT) RSUSZ number
SIZE 1 word
ACCESS SFETCH dst,USZ,reg ;USZ field to l-word dst
$STORE src,USZ,reg ;1l-word src to USZ field
SCOMPARE src,USZ,reg ;1-word src with USZ field
INPOT CONNECT User buffer size (bytes)
GET User buffer size (bytes)
PUT User buffer size (bytes)
READ User buffer size (bytes)
;» 3
N

6-138

CONTROL BLOCK FIELDS
SUM BLOCK SUMMARY

6.8 SUM BLOCK SUMMARY

This section summarizes the SUM block and 1its fields. Table 6-8
summarizes the entire block, giving the offset, offset symbol, size,
and a brief description for each field; for a field that has mask or
code symbols, the table also gives the value, symbol, and a brief
description for each mask or code.

Table 6-8: SUM Block Summary

Offset Field
Offset Symbol Size Description

000 0$COD 1 byte SUM block identifier

oquo;;?s XBSSUM SUM block identifier code
001 OS$BLN 1 byte Sdﬁ giock length (bytes)

000012 XBSSML SUM block length (bytes)

002 OSNXT
004 O$NOK
005 O$NOA
006 OSNOR
007

010 O$PVN

word Next XAB address

byte Number of indexes

byte Number of areas

byte Reserved

byte Reserved

word Prologue version number

o el i o

6-139

CONTROL BLOCK FIELDS
SUM BLOCK SUMMARY

6.8.1 BLN Field in SUM Block (XB$SML Code)

USE Contains the length of the SUM block.

INIT | None

SIZE 1 byte

ACCESS $FETCH dst ,BLN,reg ;BLN field to 1l-byte dst

SCOMPARE src,BLN,reg ;il-byte src with BLN field

6-140

CONTROL BLOCK FIELDS
SUM BLOCK SUMMARY

6.8.2 COD Field in SUM Block (XB$SUM Code)

USE Contains the identifier for the SUM block.

INIT None

SIZE 1 byte

ACCESS $FETCH dst,COD,reg ;COD field to l-byte dst

SCOMPARE src,COD,reg ;1-byte src with COD field

6-141

CONTROL BLOCK FIELDS
SUM BLOCK SUMMARY

6.8.3

USE
INIT
SIZE

ACCESS

OUTPUT

NOA Field in SUM Block

Contains the number of areas in the file.

None

1 byte

SFETCH dst,NOA,reqg ;NOA field to l-byte dst
SCOMPARE src,NOA,reg ;1-byte src with NOA field
DISPLAY Number of areas

OPEN Number of areas

(g

P
SRt e

6-142

CONTROL BLOCK FIELDS
SUM BLOCK SUMMARY

6.8.4 NOK Field in SUM Block

USE ~ Contains the number of indexes in the file.
INIT None
SIZE 1 byte
ACCESS $SFETCH dst,NOK,reg ;NOK field to l-byte dst
SCOMPARE src,NOK,reg ;1-byte src with NOK field
OUTPUT DISPLAY Number of indexes
OPEN Number of indexes
.

-
TR g

6-143

CONTROL BLOCK FIELDS

SUM BLOCK SUMMARY

6.8.5

USE

INIT
SIZE

ACCESS

INPOT

NXT Field in SUM Block

Contains the address of the next XAB (ALL, DAT, KEY,
or SUM block) in

XSNXT address

1 word

$FETCH dst,NXT,reg

a chain of XABs.

;NXT field to l-word dst

$STORE src,NXT,reg ;1-word src to NXT field
SCOMPARE src,NXT,reg ;1-word src with NXT field

CLOSE
CREATE
DISPLAY
ERASE
EXTEND
OPEN
PARSE
RENAME
SEARCH

Next
Next
Next
Next
Next
Next
Next
Next
Next

XAB address
XAB address
XAB jaddress
XAB ‘address
XAB-!address
XAB Bddress
XAB address
XAB address
XAB address

6-144

PRO,

6.8.6

USE
INIT
SI1ZE

ACCESS

OUTPUT

CONTROL BLOCK FIELDS
SUM BLOCK SUMMARY

PVN Field in SUM Block

Contains the prologue version number for the file.

None

1 word

$FETCH dst,PVN,reg ;PVN field to l-word dst
SCOMPARE src,PVN,reg ;11-word src with PVN field
DISPLAY Prologue version number

OPEN Prologue version number

. et
e r'Td

6-145

CHAPTER 7

EXAMPLE PROGRAMS

This chapter contains example programs; the titles of the programs
are:

e PARSE - $PARSE TEST %
e SEARCH - $SEARCH TEST?§;§
e ERASE - SERASE TEST =
e RENAME - S$RENAME TEST

e GSA - CORE SPACE ALLOCATOR

Sections 7.1 through 7.4 contain these programs and give instructions
for building and running them,

NOTE

References to [ppn] in the command lines
in the following sections indicate that
you should include your default PPN.

Each program requires the GSA routine (Section 7.5) for allocating
dynamic memory:

RUN S$MAC.TSK
MAC> SY:GSA=LB :RMSMAC/ML,SY: [ppn] GSA
MAC> “Z

EXAMPLE PROGRAMS

7.1 PARSE - $PARSE TEST

The following shows how to build the PARSE program (Example
shows a brief sample run of the program.

RUN SMAC.TSK

MAC)> SY:PARSE=LB:RMSMAC/ML,SY: [ppn] PARSE

MAC> "2

RUN $TKB.TSK

TKB>SY:PARSE=8Y:PARSE,SY:GSA

TKB>LB:SYSLIB/LB: INIDM:EXTSK

TKB>LB:RMSLIB/LB '

TKB>//

RUN PARSE

Enter the default name string: DMO:

Enter the primary name string: .LOG

$PARSE expanded string is DMO:[1,51].LOG
File name bits (FNB) are 004302
(DEV, TYP, DIR) =

Enter the default name string: "2

.

7-1)

and

EXAMPLE PROGRAMS
Example 7-1: PARSE - $PARSE Test
.TITLE PARSE - SPARSE TEST
.IDENT /X01.00/
".ENABL LC
.MCALL FABSB,NAMS$B,GSAS

.MCALL S$PARSE,S$STORE,$FETCH,$COMPARE
.MCALL ALUNSS,QIOWS$,DIRS,EXITSS

This program tests/demonstrates the use of
the RMS-11 S$PARSE function.

e Ne W we

RMS-11 Data Structures

~e %o e
¢
+

GSAS$ GSA ¥
FAB:: FABSB -; Argument FAB
FSNAM NAM ; Link to NAM
FSLCH 2. ; Channel #2
FABSE
NAM: : NAMSB ; NAM definition
NSESA EXPSTR ; EXP STR address
NSESS 128. ; EXP STR length
NAMSE
.PSECT $CODE$,RO,I
PARSE::
ALUNSS #1,#"TI,#0 ; Assign the terminal
MOV #FAB,RO ; Map the target FAB
MOV $EDBLK,R2 ; Map the exit block
MOV #NAM,R3 ; Map the target NAM
MOV #READ,R4 ; Map the input DPB
MOV #WRITE,RS ; Map the output DPB
CLR Q.IOPL+4 (R5) ; Turn off carriage ctl
MOV #QUES1,Q.IOPL(R5)
MOV #QUES1L,Q.IO0OPL+2 (R5)
DIRS R5 ; Prompt for the DNA
TSTB IOSTAT ; Check the IOSB
BMI EXIT ; Exit if errxror
MOV #BUFF1l,Q.I0PL (R4)
MOV #64,,0.I0PL+2 (R4)
DIRS R4 ; Get the response
TSTB IOSTAT Check the IOSB
BMI EXIT Exit if error

$STORE IOLEN,DNS,RO
$STORE #BUFF1,DNA,RO

Set the default length
Set the default address

~e WE we N N

MOV #QUES2,Q.I0PL(R5)

MOV #QUES2L,0Q0.IOPL+2 (R5)

DIRS R5 ; Prompt for the DNA
TSTB IOSTAT ; Check the IOSB

BMI EXIT ; Exit if error

MOV #BUFF2,Q.I0PL (R4)

MOV #64.,Q0.I0PL+2 (R4)

DIRS R4 ;s Get the response
TSTB IOSTAT ; Check the IOSB

BMI EXIT ; Exit if error

EXAMPLE PROGRAMS

EXIT:

ERROR:

BITS:

28:

48:

6S:

108:

128:

148:

168:

185:

208:

PRINT:

)
\

kS

N

%
&

$STORE IOLEN,FNS, R0
$STORE #BUFF2,FNA, RO
MoV #40,0Q.I0PL+4 (R5)
$PARSE RO

SCOMPARE #0,STS, R0
BLT ERROR

" CLR (R2)

"S$FETCH (R2) ,ESL,R3
TST (R2) +

SFETCH (R2)+,ESA,R3
SFETCH (R2) ,FNB,R3
MOV #ESSSTR,RL
CALL PRINT

CALL BITS

BR PARSE

EXITSS

$FETCH (R2)+,STS,R0, -}
SFETCH (R2),STV,R0O
MOV #ERRSTR, R1
CALL PRINT

BR PARSE

MOV #EDBLK, R2
$FETCH RO,FNB,R3
BIT #2000,R0

BEQ 28

MOV #QU0, (R2) +
BIT $1000,R0

BEQ 48

MOV #WDI, (R2)+
BIT 400, R0

BEQ 63

MOV $NOD, (R2) +
BIT #100,R0

BEQ 8%

MOV #DIR, (R2) +
BIT #40,R0

BEQ 108

MOV $WNA, (R2) +
BIT $#20,R0

BEQ 128

MOV #WTY, (R2) +
BIT #10,R0

BEQ 148

MOV $WVE, (R2)+
BIT #4,R0

BEQ 168

MOV #NME, (R2) +
BIT 42,R0

BEQ 188

MOV $TYP, (R2) +
BIT $#1,R0

BEQ 208

MOV #VER, (R2) +
MOV $END, (R2)
MOV $DEV,R1

CALL PRINT

RETURN

MOV $EDBLK, R2

~e O we we e

e NG Mo NE We NS e NE e NP we N W Ne Wy

~

WO e N NA NGO N NS M NS M MO N NG Mp NE W NS we NG ME NGO me WO N We e NE me WE we M we e wWa we we

~e

Set the default length
Set the default address
Restore carriage control
Parse the strings

An error?

Yes if MI; display it
Init the length

Get the string length
Advance

Get the string address
Get the file name bits
Select the format string
Display the file

Do the FNB bit disply
And let's try another

Task exit

Set the STS returned

And the STV

Set the error format string
Go edit and print the message
Let's try this again

Init EDBLK address
Get the FNB bits
Quoted string?

No if EQ

Set Quoted string
Wild directory?

No if EQ

Set wild directory
Node spec?

No if EQ

Set nodespec
Directory spec?

No if EQ

Set directory

Wild name?

No if eq

Set wild name

Wild type?

No if EQ

Set wild type

Wild version?

No if EQ
Set wild
Name?

No if EQ
Set name
Type?

No if EQ
Set type
Version?
No if EQ
Set version

End with a null...
Set the default (dev)
Edit and print

And exit

version

Setup edit

QUES1:
QUES2:

ERRSTR:
ESSSTR:

DEV:
NOD:
DIR:
NME:
QUO:
TYP:
VER:
WDI:
WNA:
WTY:
WVE:
END:

EDBLK:
BUFFER:
BUFF1:
BUFF2:
EXPSTR:
IOSTAT:
IOLEN:
READ:
WRITE:

MOV
CALL
MOV
MOV
DIRS
RETURN

.PSECT

.Ascii
QUESI1L
.Ascii

QUES2L =

.Asciz
.Ascii
JAsciz
.Asciz
Asciz
.Asciz
.Asciz
.Asciz
.Asciz
.Asciz
LAsciz
.Asciz
.Asciz
.Asciz
JAsciz

.EVEN
.BLKW

.Blkb
.Blkb
.BLKB
.WORD
.WORD
QIOWS
QIOWS

.END

#BUFFER, RO
SEDMSG

;
;
#BUFFER,Q. IOPL (R5)

R1,Q.IOPL+2 (R5)
R5

$DATAS, RW,D

.
r
.
r

EXAMPLE

Output buffer.
Exit the string

Send to the terminal
Return to caller

<15><12>"Enter the default name string: "

. - QUES1

<15><12>"Enter the primary name string: "

. — QUES2

"SPARSE error --

STS=%P,

STV=%pP"

"SPARSE expanded string is %VA%N"

" File name bits (FNB)
n (DEV%I"

NODSI™ = .
DIRSI" ’

VERSI"
WDISI"
WNASI"
WTYSI"
", WVESI"

'
'
r
r

", TYP%I"
r
’
’

16,

64.
64
128.
0

0

NAMSI" o %
QUO%1L" vOE

I0.RrRLB,1,1,,I0STAT

10.WLB,1,1,,I0STAT, ,<,,40>

PARSE

are %P"

PROGRAMS

EXAMPLE PROGRAMS

7.2 SEARCH - $SEARCH TEST

The following shows how to build the SEARCH program (Example 7-2)
shows a brief sample run of the program.

RUN S$MAC.TSK

MAC>SY: SEARCH=LB :RMSMAC/ML, SY: [ppn] SEARCH
MAC>" 2

RUN STKB.TSK
TKB>SY:SEARCH=SY:SEARCH,SY:GSA
TKB>LB:SYSLIB/LB: INIDM:EXTSK
TKB>LB:RMSLIB/LB)

TKB>//

RUN SEARCH

Enter a wildcard filespec: VHC?.*

SY:[1,51]VHC.LOG
SY:[1,51]VHC.BAK
SY:[1,51] VHC.MST o
SY:[1,51)VHC.SEQ TR

SY:[1,51]VHC. INX g
SY:[1,51]VHC.ERR TR

SY:[1,51)VHC.KRO
SY:[1,51]VHC.KR1

Total of 8 files matching SY:{1,51]1VHC?.2?2?
Enter a wildcard filespec: [1,*]CUST.*
SY:[1,10]CUST.DAT

SY:[1,51}CUST.DAT

5Y:[{1,51]CUST.FIL

Total of 3 files matching SY:{[1,*]CUST.???

Enter a wildcard filespec: "2

and

EXAMPLE PROGRAMS
Example 7-2: SEARCH - $SEARCH Test
.TITLE SEARCH - $SEARCH TEST
.IDENT /X01.00/
.ENABL LC
.MCALI. FABSB,NAMSB,GSAS

.MCALL S$PARSE,$SEARCH,$STORE, SFETCH,S$COMPARE
.MCALL ALUNSS,QIOWS,DIRS,EXITSS

This program tests/demonstrates the use of
vthe RMS-11 SSEARCH function.

NS we W we

RMS-11 Data Structures

~e we we
e

GSAS GSA 5

,
N
w18

FAB:: FABSB =
FSDNA SYDSKA '
FSDNS SYDSKL
FSNAM NAM
FSLCH 2.
FABSE

Argument FAB

If no device, SY:
should be used
Link to NAM
Channel #2

~e NO wme N W

NAM: : NAMSB
NSESA EXPSTR
NSESS 128.
NSRSA RESSTR
NSRSS 128,
NAMSE

NAM definition
EXP STR address
EXP STR length
RES STR address
RES STR length

DR TR T Y

.PSECT S$CODES$,RO,I

SEARCH::
ALUNSS #1,#"TI,#0 ; Assign the terminal
MOV #FAB,RO ; Map the target FAB
MOV #EDBLK,R2 ; Map the exit block
MOV #NAM,R3 ; Map the target NAM
MOV #READ, R4 ; Map the input DPB
MOV #WRITE,RS ; Map the output DPB
CLR Q.IOPL+4 (R5) ; Turn off carriage ctl
MOV #QUES, Q. IOPL (R5)
MOV #QUESL,Q.IOPL+2 (R5)
DIRS R5 ; Prompt for the DNA
TSTB IOSTAT ; Check the IOSB
BMI EXIT ; Exit if error
MOV #BUFF,Q.IOPL (R4)
MOV #64.,0.I0PL+2 (R4)
DIRS R4 Get the response
TSTB IOSTAT Check the IOSB
BMI EXIT Exit if error

$STORE IOLEN,FNS,RO
$STORE #BUFF,FNA, K0

Set the string length
Set the string address

NP W NS we B wp W Ne N0 we

MOV #40,Q.I0PL+4 (R5); Restore carriage control
CLR FILCNT Init count of matches
SPARSE RO Parse the strings
SCOMPARE #0,STS,RO An error?

BLT ERROR Yes if MI; display it

GETFIL:

EXAMPLE PROGRAMS

NOTFST:

EXIT:

ERROR:

ERROR2:

ERRORO:

ERROR1:

PRINT:

SYDSKA:
QUES:
ERRSTR:

RSSST1:
RSSSTR:

MOV #EDBLK, R2 ; Reset the edit block addr
$SEARCH RO ;7 Get a matching file
SCOMPARE #0,STS,R0O ; Error?

BLT ERROR ; Yes if LT

CLR (R2) ; Init the length

SFETCH (R2),RSL,R3 ; Get the string length
TST (R2)+ ; Advance
- $SFETCH (R2)+,RSA,R3 ;i Get the string address
MOV #RSSSTR,R1 ; Select the format string
TST FILCNT ; First file needs a blank
BNE NOTFST ; line before it

MOV #RSSST1,R1- ; Insert CR/LF first

CALL PRINT ; Display the file

MOV #FAB,RO ; Rest the FAB address

INC FILCNT ; Count this file

BR GETFIL ;i And let's try another
EXITS$S . T*; Task exit

o

$COMPARE #ERsNMF,STs;RQﬂ; No more matches?

BNE ERRORO “; No - some other error
MOV FILCNT, (R2)+ ; Set the cound of matches
BEQ ERROR2 ; No files...

CLR (R2) ; Give the ESA

SFETCH (R2),ESL,R3 ;7 Set the length

TST (R2)+ ; Advance word

SFETCH (R2),ESA,R3 ; Set the address

MOV $TTLSTR,R1 ; Set the format string

BR ERROR1 ; Go show it and exit

CLR -(R2) ; Setup for string length
SFETCH (R2),ESL,R3 ; Set the length

TST (R2) + ; Advance to next word
SFETCH (R2) ,ESA,R3 ; Set the address

MOV #NOFILE,RL ; Set the format string

BR ERROR1 ; Print the error

SFETCH (R2)+,S8TS,R0O ; Set the STS returned
$FETCH (R2),STV,R0 ; And the STV

MOV #ERRSTR,R1 ; Set the error format string
CALL PRINT ; Go edit and print the message
JMP SEARCH ; Let's try this again

MOV #EDBLK,R2 ; Setup edit

MOV #BUFFER, RO ; Output buffer

CALL SEDMSG ; Exit the string

MOV #BUFFER, Q. I0OPL (R5)

MOV R1,Q.I0PL+2 (R5)

DIRS RS ; Send to the terminal
RETURN ; Return to caller

.PSECT SDATAS,RW,D

.Ascii "sy:"

SYDSKL = . - SYDSKA

«Ascii <15><12>"Enter a wildcard filespec: "
QUESL = . -~ QUES

.Asciz "$SEARCH error -- STS=%P, STV=%P"

.Ascii "gN"

.Asciz " gvA"

NOFILE:
TTLSTR:

FILCNT:
EDBLK:
BUFFER:
BUFF:

EXPSTRY

RESSTR:
IOSTAT:
IOLEN:
READ:
WRITE:

.Asciz
.Asciz
.EVEN
WORD
+BLKW

.Blkb
.BLKB
.BLKB
.WORD
.WORD
QIOWS
QIOWS

. END

EXAMPLE

"gNNo files matching $VAIN"
"gNTotal of %D files matching %VASN"

0
6

128.

128.

128.

0

0

10.RLB,1,1,,I0STAT
10.WLB,1,1,,I0STAT, ,<,,40>

SEARCH

PROGRAMS

EXAMPLE PROGRAMS

7.3 ERASE - $ERASE TEST

The following shows how to build the ERASE program (Example
shows a brief sample run of the program.

RUN $MAC,TSK

MAC>SY : ERASE=LB:RMSMAC/ML, SY: [ppn] ERASE
MAC>" 7

RUN S$TKB,TSK
TKB>SY:ERASE=SY:ERASE,SY:GSA
TKB>LB:SYSLIB/LB:INIDM:EXTSK

TKB>LB:RMSLIB/LB
TKB>//

RUN ERASE
File{s) to erase: DES.XXX
File SY:[1,51]DES.XXX deleted
Total of 1 files matchinglsy;[l,Sl]DES.XXX deleted

File(s) to erase: *g

and

EXAMPLE PROGRAMS
Example 7-3: ERASE - S$ERASE Test

.TITLE ERASE - SERASE TEST
.IDENT /X01.00/

s

.ENABL LC

.MCALL FABSB,NAMSB,GSAS
.MCALL S$PARSE,S$ERASE,$STORE, SFETCH,$COMPARE
.MCALL ALUNSS,QIOWS,DIRS,EXITSS

This program tests/demonstrates the use of
the RMS-11 SERASE function, with implicit $SEARCH.

~e we e W

RMS-11 Data Structures

-t we W

GSAS GSA -
FAB:: FABSB " ; Argument FAB
FSDNA SYDSKA ; If no device, SY:
FSDNS SYDSKL ; should be used
FSNAM NAM ; Link to NAM
FSLCH 2. ; Channel #2
FABSE
NAM: : NAMSB ; NAM definition
NSESA EXPSTR ; EXP STR address
NSESS 128. ; EXP STR length
NSRSA RESSTR ; RES STR address
NSRSS 128. ; RES STR length
NAMSE
.PSECT S$CODES$,RO,1
ERASE::
. ALUNSS #1,#"TI,#0 ; Assign the terminal
MOV #FAB,RO ; Map the target FAB
MOV #EDBLK,R2 ; Map the exit block
MOV #NAM,R3 ; Map the target NAM
MOV #READ,R4 ;s Map the input DPB
MoV #WRITE,RS ; Map the output DPB
CLR Q.IOPL+4 (R5) ; Turn off carriage ctl
MOV #QUES, Q. IOPL (R5)
MOV #QUESL, Q. IOPL+2 (R5)
DIRS R5 ; Prompt for the DNA
TSTB IOSTAT ; Check the IOSB
BMI EXIT ; Exit if error
MOV #BUFF,Q.IOPL (R4)
MOV $64.,Q.I0PL+2(R4)
DIRS R4 ; Get the response
TSTB IOSTAT ;: Check the IOSB
BMI EXIT ; Bxit if error
SSTORE IOLEN,FNS,RO ; Set the string length
SSTORE #BUFF,FNA,RO : Set the string address
MOV #40,0Q.1I0PL+4 (R5); Restore carriage control
CLR FILCNT ; Init count of matches
SPARSE RO ; Parse the strings
$SCOMPARE #0,STS,RO ; An error?
BLT ERROR ; Yes if MI; display it
GETFIL:

EXAMPLE PROGRAMS

NOTFST:

EXIT:

ERROR:

ERROR2:

ERRORO:

ERROR1:

PRINT:

MOV #EDBLK, R2 ;
$ERASE RO ;
SCOMPARE #0,STS, R0 ;
BLT ERROR ;
CLR (R2) ;
SFETCH (R2) ,RSL,R3 ;
TST (R2) + ;
$SFETCH (R2)+,RSA,R3 ;
MOV $RSSSTR, R1 ;
TST FILCNT ;
BNE NOTFST ;
MOV #RSSST1,R1 ;
CALL PRINT ;
MOV #FAB,RO ;
INC FILCNT ;
BR GETFIL ;
EXITSS S

< 4
SCOMPARE #ERSNMF,STS,RO :;
BNE ERRORO ;
MOV FILCNT, (R2)+ ;
BEQ ERROR2 ;
CLR (R2) ;
SFETCH (R2),ESL,R3 ;
TST (R2) + ;
SFETCH (R2) ,ESA,R3 ;
MOV #TTLSTR, R1 ;
BR ERROR1 ;
CLR - (R2) ;
SFETCH (R2),ESL,R3 ;
TST (R2) + ;
SFETCH (R2),ESA,R3 ;
MOV #NOFILE,R1 ;
BR ERROR1 ;
SFETCH (R2)+,STS,RO ;

. §FETCH (R2),STV,RO ;
MOV #ERRSTR, R1 ;
CALL PRINT ;
JMP ERASE ;
MOV #EDBLK, R2 ;
MOV #BUFFER, RO ;
CALL SEDMSG ;
MOV $BUFFER, Q. IOPL (R5)
MOV R1,Q.IOPL+2 (R5)
DIRS RS ;
RETURN ;

SYDSKA:
QUES:
ERRSTR:

RSSST1:
RSSSTR:

.PSECT $DATAS,RW,D

Reset the edit block addr
Issue implicit SERASE
Error?

Yes if LT

Init the length

Get the string length
Advance

Get the string address
Select the format string
First file needs a blank
line before it

Insert CR/LF first

Display the file

Rest the FAB address
Count this file

And let's try another

Task exit

No more matches?

No - some other error
Set the cound of matches
No files...

Give the ESA

Set the length

Advance word

Set the address

Set the format string

Go show it and exit

Setup for string length
Set the length

Advance to next word
Set the address

Set the format string
Print the error

Set the STS returned
And the STV

Set the error format string

Go edit and print the message

Let's try this again

Setup edit
Output buffer
Exit the string

Send to the terminal
Return to caller

.Ascii "gy:"

SYDSKL = . - SYDSKA

.Ascii <15><12>"File(s) to erase: "
QUESL = . - QUES

.Asciz "SERASE error -- STS=%P, STV=%P"
.Ascii "gN"

.Asciz " File %VA deleted”

7-12

NOFILE:
TTLSTR:

FILCNT:
EDBLK:
BUFFER:
BUFF:
EXPSTR:
RESSTR:
IOSTAT:
IOLEN:
READ:
WRITE:

.Asciz
.Asciz
.EVEN
+WORD
. BLKW

.Blkb
.BLKB
.BLKB
.WORD
-WORD
QIOWS
QIOWS

. END

"$NNo files matching $VA%ZN"
"$NTotal of %D files matching %VA

0
6

128.

128.

128.

0

0 _
I0.RLB,1,1,,I0STAT
10.WLB,1,1,,I0STAT, ,<,,40>

ERASE

EXAMPLE PROGRAMS

deleted%N"

EXAMPLE PROGRAMS

7.4 RENAME - SRENAME TEST

The following shows how to build the RENAME program (Example 7-4)
shows a brief sample run of the program.

RUN $MAC.TSK
MAC>SY : RENAME=LB : RMSMAC/ML, SY: [ppn] RENAME
MAC>"7Z
RUN S$TKB.TSK
TKB>SY:RENAME=SY:RENAME, SY:GSA
TKB>LB:SYSLIB/LB:INIDM:EXTSK
TKB>LB:RMSLIB/LB
TKB>//
RUN RENAME
From: DES.BAK
To: DES. XXX

File DMO:[1,51]DES.BAK renamed to DM0:[1,51]DES.XXX

Total of 1 files matching DM@:{1,51]DES.BAK renamed

o' -~ «
From: Z 5
AY

- B

and

.TITLE
. IDENT

i.ENABL
.MCALL

.MCALL
.MCALL

~e wa we N

EXAMPLE PROGRAMS

Example 7-4: RENAME - $RENAME Test

RENAME - S$RENAME TEST

/X01.00/
LC

FABSB,NAMSB,GSAS

SPARSE, SSEARCH, SRENAME, $STORE, SFETCH, SCOMPARE
ALUNSS,QIOWS,DIRS,EXITSS

This program tests/demonstrates the use of
the RMS-11 $RENAME function.

0ld file name
Default to SY:

Link to NAM1
Channel #2
Turn on NAM usage

NAM definition
EXP STR address
EXP STR length
RES STR address
RES STR length

New file name
Link to NAM2
Same channel

NAM definition
EXP STR address
EXP STR length

Assign the terminal
Map the target FAB
Map the exit block
Map the input DPB

Map the output DPB
Turn off carriage ctl

Prompt for the DNA
Check the IOSB
Exit if error

1
; RMS-11 Data Structures Lk
r Y
S
GSA$ GSa 3
FABl:: FABSB ;
F$SDNA SYDSKA ;
F$DNS SYDSKL
FSNAM NAM1 H
FSLCH 2. H
F$FOP FBSFID ;
FABSE
NAM1l:: NAMSB H
NSESA ESSTRI1 ;
NSESS 128, H
NSRSA RSSTR1 ;
NSRSS 128. ;
NAMSE
FAB2:: FABSB ;
FSNAM NAM2 ;
FSLCH 2. ;
FABSE
NAM2:: NAMSB ;
NSESA ESSTR2 ;
NSESS 128. i
NAMSE
.PSECT $CODES$,RO,I
RENAME::
ALUNSS #1,#"TI,#0 ;
MOV #FAB1,RO ;
MOV $EDBLK, R2 :
MOV #READ, R4 ;
MOV #WRITE,R5 ;
CLR Q.IOPL+4 (R5) H
MOV #QUES1,Q.IOPL(R5)
MOV #QUES1L,Q.IOPL+2 (R5)
DIRS R5 H
TSTB IOSTAT ;
BMI EXIT H
MOV $BUFF1,Q.I0PL(R4)
MOV #64.,0.I10PL+2 (R4)

7-15

EXAMPLE PROGRAMS

EXIT:

LOOP:

. $SCOMPARE #0,STS,R0O

ERROR:

SEAERR:

DIRS R4 ; Get the response

TSTB IOSTAT ; Check the IOSB

BMI EXIT ; Exit if error

8STORE IOLEN,DNS,RO ; Set the default length
$STORE #BUFF1,DNA,RO ; Set the default address
$PARSE RO ; Parse the input spec
SCOMPARE #0,S8TS,R0 ; An error?

BLT ERROR ; Yes if LT

MOV #FAB2,R0 ; Map the 24 FAB

MOV #QUES2,Q.I0PL(R5)

MOV #QUES2L,Q.I0OPL+2 (R5)

DIRS R5) ; Prompt for the new name
TSTB IOSTAT ; Check the IOSB

BMI EXIT ; Exit if error

MOV #BUFF2,0.I0PL (R4)

MOV #64.,Q.I0PL+2 (R4)

DIRS R4 ; Get the response

TSTB IOSTAT ; Check the IOSB

BMI EXIT © _:; Exit if error

$STORE IOLEN,FNS,RO - 7; Set the default length
SSTORE #BUEFZ,FNA,RQ& -1; Set the default address
MOV #40,Q.I0PL+4 (R5)% Restore carriage control
CLR FILCNT 3 Initialize file count
BR LOOP ; Enter the RENAME loop
EXITS$S ; Task exit

MOV #FAB1,RO Get the input FAB

MOV #$FAB2,R1 And the output FAB

MOV #NAM1,R2 Setup NAM references
MOV #NAM2,R3

SSEARCH RO Attempt to find a file
$COMPARE #0,STS,R0 Error?

BLT SEAERR Yes if LT

SFETCH R4,RSA,R2 Get the resultant address
$STORE R4,DNA,RL Set this as default
SFETCH R4,RSL,R2 Get the resultant length
SSTORE R4,DNS,R1l Set the default length
SRENAME RO,,,R1l Rename input as output

WS NS We NG M WO WM NS Me WE Ws WE We WE e WE NP MG We N My NE Wy WO W N e

BLT ERROR
MOV #EDBLK, RO

CLR (RO)

SFETCH (RO) ,RSL,R2

TST (RO) +

$FETCH (RO)+,RSA,R2

CLR (RO)

$FETCH (RO) ,ESL,R3

TST (RO) +

$FETCH (RO) ,ESA,R3

MOV #RENMSG, R1

CALL PRINT

INC FILCNT

BR LOOP

MOV #EDBLK,R2 ;
$FETCH (R2)+,STS,RO ;
SFETCH (R2),STV,RO ;
MOV #ERRSTR,R1 ;
CALL PRINT ;
JMP RENAME ;

Error?
Yes if LT- investigate
Setup to show the rename

Set the
Advance
Set the

length
to next word
address

Set the length
Advance to next word
Set te address
Format string
Display it

Count the file

And try another file

Map the edit block

Set the STS returned

And the STV

Set the error format string
Go edit and print the message

Let's try this again

EXAMPLE PROGRAMS

SCOMPARE #ERSNMF,STS,RO End of wild card search?

1

BNE ERROR ; No if NE- show why

MOV $EDBLK, RO ; Map the edit block

TST FILCNT ; Any files?

BNE TOTAL : Yes if NE, show total

- Mov #NOFILE,R1 ; Show the total

SETES:

CLR (RO) :

SFETCH (RO) ,ESL,R2 ; Set the length

TST (RO) + ; Advance

SFETCH (RO)+,ESA,R2 ; Get the ESA address

CALL PRINT ;

JMP RENAME ; Repeat
TOTAL:

MOV FILCNT, (RO)+ ; Set the rename count

MOV #TTLMSG,R1 ; Set the format string

BR SETES ; Add ESA and print
PRINT: o

MOV #EDBLK,R2 . - ; Setup edit

MOV $BUFFER,RO - -1 ; Output buffer

CALL SEDMSG L ¥ ; Exit the string

MOV #BUFFER,WRITE+Q.IOPL

MOV R1,WRITE+Q.IOPL+2

DIRS #$WRITE ; Send to the terminal

RETURN ; Return to caller

.PSECT $DATAS,RW,D

SYDSKA: .Ascii "sSy:"
SYDSKL = . - SYDSKA

QUESl: ,Ascii <15><12>"From: "
QUESIL = . - QUES1
QUES2: .Ascii <15><12>"To: "
QUES2L = . - QUES2
ERRSTR: .Asciz "SRENAME error -- STS=%P, STV=%P"
RENMSG: .Asciz " File %VA renamed to %VA"

TTLMSG: .Asciz "$NTotal of %D files matching %VA renamed$N"
NOFILE: .Asciz "%NNo files matching %VA%N"

' .EVEN
FILCNT: .WORD 0
EDBLK: .BLKW 6
BUFFER:

BUFF1l: .BLKB 64.
BUFF2: .BLKB 64

ESSTR1: .BLKB 128,

ESSTR2: .BLKB 128,

RSSTRl: .BLKB 128,

IOSTAT: .WORD 0

IOLEN: .WORD 0

READ: QIOWS IO.RLB,1,1,,IOSTAT

WRITE: QIOWS I10.WLB,l,1,,IOSTAT,,<,,40>

.END RENAME

EXAMPLE PROGRAMS

7.5 GSA -- CORE SPACE ALLOCATOR

WS NME NS e e WE e NS WE We WO M ME NE WE N wp ME WE NS NE N e e W WS Mo Ne We e o

NS NS NP N NE NE e e s WS e wE we we

Example 7-5: GSA - Core Space Allocator

.Title GSA - Core space allocator
.Ident /V02.00/
.Enabl LC
Copyright (C) 1982, Digital Equipment Corporation

Maynard, Massachusetts 01754

**-GSA - Dynamic memory allocation for RMS-11 pool

P ‘.i
R

Called by RMS-11 to manage\péol space.

In the event of pool exhaustion, the task

image will be extended to obtain more space.

May be called by user written code providing
the interface standard is adhered to.

Interface:

Request space:
R0 -> RMS/user Pool list head (maintained by RL/CQB)
R1 := Amount of space requested (bytes)
R2 := 0 (differentiates between request and release)
Release space:
RO -> RMS Pool list head (maintained by RL/CQB)
Rl := Amount of space to be released (bytes)
R2 -> Base address (for release)
Returns:
C-Bit "set" if an error has occurred (failure)

C-Bit "clear" if no error has occurred (success)

.Mcall Extks$Ss
. Page
.8bttl Control block definitions
.Psect GSAS$SD,RW,D
GSA internal data:

GSABAS - Base address for the next memory allocation.
Initially set to zero, it will be assigned
the first address outside of the task's
current address limits.

GSAMIN - Decimal value reflecting the minimum size
(in bytes) to extend the task in order to
provide space to the pool.

GSAREQ - Requested pool block number. If a request

for the 'GSAMIN' fails, then the original
allocation size will be attempted. If that
fails, then there is no more memory left,

7-18

EXAMPLE PROGRAMS

-
r

GSABAS::

.Word 000000
GSAMIN: :

.Word 512./64.
GSAREQ::

.Word 0060000

GSA base address

(for next allocation)
Minimum allocation

(in 32-word blocks)

Size of this regquest

(if 'GSAMIN' extends fail)

Ne we N we W

.Page
.Sbttl GSA Initialization code

.Psect GSAS$SI,RO,1I

GSA Initialization

This code is entered when GSA is entered with GSABAS

set to zero. In order to be able to build valid pool
header tables, GSABAS must jpe properly initialized and
maintained. * RS

Initialization consists of finding the size of the task
in 32-word units, and converting that value to a usable
16-bit address (which corresponds to the address of the
next task extension (Extk$S) call. Once GSABAS has been
initialized, GSAINI will not be reused.

MO ME NI e Ne we N NE N e e NE we W

GSAINI:
Mov RO, - (SP) ; R0O-2 will be used to
Mov R1,-(SP) ; communicate with S$INIDM
Mov R2,-(SP) ; NOTE: SINIDM uses EXTSK.

The following code will use S$INIDM to initialize the
dynamic memory. As documented, R1 will return

the first address following the task image, and R2 will
return the size.of the "free" memory from that address.

NOTE: SINIDM and EXTSK reside in LB:[1l,1]VMLIB for RSX
systems, and in LB:SYSLIB for RSTS/E systems.

SINIDM interface:
Calls:
RO ~-> Pool list head

Returns:
RO -> First address in task
Rl -> First address AFTER task
R2 := Size of free core after task (based at R1l)

P T T N TR TE T TR TR TEL TR TR DL PR T

Call SINIDM ; Initialize dynamic memory
Mov R1,GSABAS ; Setup the "free" address
Mov (SP)+,R2 ; Restore the registers

Mov (SP) +,R1 ;

Mov (SP)+,R0 ;

Return ; And return to GSA

.Page

.Sbttl GSA Mainline code

.Psect GSASSM,RO,I

EXAMPLE PROGRAMS

EYIE TR TEE YRRNPRE Y

GSA Mainline

Entry point is "GSA", with registers 0-2 loaded as
described above.

GSA::

NE ME NS NS NE Ne N NS e N we N we we

First, determine if dynamic memory has been initialized.
GSABAS (initially set to zero) will be non-zero if SINIDM
has been called and the memory list initialized. On RSX
based systems it is possible to install tasks with an
extension (/INCREMENT). SINIDM will detect this and setup
the first memory entry in the pool list.

A point to note: If the RSX task has been installed with
the non-checkpointable (/ CP); flag, then EXTKs will not
return success. If it is necessary to install the task
non-checkpointable, then th,&ask should be installed with
an increment value.

Tst GSABAS ; Dynamic memory initialized?
Bne 108 ; Yes if NE, proceed
Call GSAINI ; Otherwise, initialize pool

108:

e ME Ne we we ws

Determine if this call involves real memory.

Rl should contain the size (in bytes) of the core
block requested or to be released. 1If zero then
return to the caller without an error (TST leaves CC).

Tst R1 ;7 Real memory?
Bne 208 ; Yes if NE, then process it
Return ; Otherwise return with success

20S:

NS Ne We e W we wB

If this call is a request for space, pass control

to the allocation routines. Otherwise, pass control
to the system deallocation module $RLCB. There is
no need to return, so control is passed via JMP.
Note that module RQLCB resides in LB:{1,1]SYSLIB

for RSX11M/M-PLUS and LB:SYSLIB for RSTS/E.

Tst R2 ; Address specified? (release)
Begq 308 ; No if EQ, then it's a request
Jmp SRLCB ; Otherwise it's a release; do it

308:

Ne W we we we we

Save our current context:

RO = Pool list head
Rl = Size of memory required
R2 = 0 (signifies request)

Mov RO, - (SP)
Mov R1,- (SP)
Mov R2,- (SP)

EXAMPLE PROGRAMS

Attempt an allocation from the current pool
If this is successful, pass control to the
common exit.

e e we we we

Call SRQCB ; Try the allocation
Bce 708 ; CC signifies success

Now that the initial allocation failed, we must extend
the task and give the new area (extended into) to the
caller. To do this, the following procedure is used:

1. The task is extended

2. The area extended is returned to the

pool specified as if a release was attempted
We retry the allocation operation, but

this time it should. succeed, since we have
increased the size 8f the pool area

NOTE: SRQCB has a bad habifﬁo§ nuking registers, so 1it
becomes necessary to save and restore them arocund
unsuccessful calls.

WE WE NS We e WE Ne NE we NS we N we N e N
.

Mov 2(8SP),R1l ; Obtain the request size

Determine what the requirement is in 32-word blocks.
Retain this value to allow GSA to decide whether

to issue further task extension directives in

order to satisfy the requirements.

~o W we we we we

Add #63.,R1 : Round the request

Asr R1 ; to a 32-word boundary
Asr R1 ; Then convert the value
Asr R1 ; to the number of

Asry Rl" : 32-word blocks.

Asr R1

Asr R1

Mov R1,GSAREQ ; Save the real size

We will allocate core to the pool in "reasonable™
increments to cut down on system overhead, and pool
fragmentation. This is accomplished by using either
the requested size, or "GSAMIN", whichever is LARGER.
If the request is unsuccessful, and the amount is
smaller than GSAMIN, then request that particular size.

NS we W& We W e Ne we

Cmp R1,GSAMIN ; Smaller than minimum?

Bhi 408 ; No if HI, use it as is

Mov GSAMIN,R1 ; Otherwise use GSAMIN
408:

Now we attempt to extend the task by that size.
I1f the request fails, then use the size of the
original request. If that also fails, then we
simply ran out of memory.

~e WA we N e we

Extk$S R1 ; Extend the task

7-21

EXAMPLE PROGRAMS

Bce 608 ; CC if successful

Cmp R1,GSAREQ ; Is this request?

Blos 508 ; Yes if LOS, the end

Mov GSAREQ,R1 ; Otherwise try to use

Br 408 ; the actual request
508:

‘Sec ; Mark failure

Br 708 ; And exit

The task has been extended, now this memory must be
released to the pool for future allocation.

To do this, we setup the registers as if RMS were
going to release the core, and call ourself to do

the work. When the area has been released to the
pool, we will return inline and proceed to reenter

our code again from start to reattempt the allocation.

We Ne e we N me ws ws we

-4

608: 53
Mov 4 (SP) ,RO % %; setup the PLH
Asl R1 .4 Convert the real
Asl R1 ; size to the actual
Asl R1 ; 1l6-bit size that
Asl Rl ; was allocated.
Asl R1 ; The virtual address
Asl R1 ; should be after the
Mov GSABAS,R2 ; task (which is now
Add R1,GSABAS ; part of the task)
Call GSA ; Call ourself to release

At this point, the new memory has been added to the
pool, and is available for use. We now reattempt
to allocate the memory required.

~e we we e we

Mov (SP)+,R2 ; Restore our registers

Mov (SP)+,R1 ; to the initial state

Mov (SP)+,R0 ; upon entry, and reenter
. Br GSA ; as if it's a new request

Common exit. Leave the registers in their current state,
and return control to the caller.

we e we ws

70S:
Inc (SP) + ;7 These won't alter the
Bit (SP)+,(SpP) + ; C-bit, so status remains
Return ; unchanged upon return

. End

APPENDIX A

COMPLETION CODES AND FATAL ERROR CODES

Section A.l describes RMS-11 completions that are returned in the STS
and STV fields of FABs and RABs. Section A.2 describes RMS-11 fatal
error completions. g

A.1 COMPLETIONS RETURNED IN STS-AND STV FIELDS

This section lists and explains RMS-11 completions that are returned
in the STS and STV fields of FABs and RABs. For each completion, the
symbol, message, octal and decimal values, and explanation are given.

SUSSUC Operation succeeded Octal: 000001
Decimal: 1
SUSDUP Inserted record has duplicate key Octal: 000002
Decimal: 2

The PUT or UPDATE operation inserted a record whose key
duplicates a key already in the index. Note that this
completion may also be returned if a duplicate of some key 1in
the new or updated record ever existed in the file, even if
that key has since been changed or the record deleted.

SUSIDX Error updating index Octal: 000003
Decimal: 3

The PUT or UPDATE operation inserted the record properly, but
RMS-11 did not optimize the index structure; subsequent
retrievals of the record will require extra I/O operations.

ERSACC File access error Octal: 177740
Decimal: -32

1. A relative or indexed file is in the initial stage of
creation and cannot be accessed yet. 2. A write-accessed
file was not properly closed. 3. The file processor could
not access the file. The STV field of the FAB contains the
file processor error code; see your operating system
documentation for the meaning of the code.

If the STV field contains a 0, the creation (or Dblock access
copy) of the relative or indexed file never completed. If the
STV field contains a nonzero value, that value is a system
error code indicating the reason the access was rejected.

COMPLETION CODES AND FATAL ERROR CODES

ERSACT

ER$SAID

ERSALN

ERSALQ

ERSANI

ERSAOP

ERSATR

ERSATW

ER$BKS

ER$BKZ

Activity precludes operation Octal: 177720
Decimal: -438

RMS-11 could not perform the requested operation because of an
activity in progress (for example, RMS-11 cannot perform the
CLOSE operation for a file that has an outstanding
asynchronous operation).

Bad value in AID field Octal: 177700
Decimal: -64

The file contains no area with the area number given in the
AID field of an ALL block.

Bad mask in ALN field Octal: 177660
Decimal: -80

The ALN field of an ALL block contains an invalid value.
Bad value in ALQ field . Octal: 177640
N Decimal: -96
\ ¥
The ALQ field of a FAB ok an ALL block contains an invalid
value; the value in the ALQ field is either too large, or is
0 for an EXTEND operation,

Bad ANSI-format magtape file Octal: 177620
Decimal: -112
The records in an ANSI-format magtape file are

variable-length, but are not in the proper ANSI-D format.

Bad mask in AOP field Octal: 177600
Decimal: -128

The AOP field of an ALL block contains an invalid mask value.

Error reading attributes Octal: 177540
Decimal: -160

The file processor could not read the attributes for the file.

"The 8TV field of the FAB or RAB contains the file Processor

error code; see your operating system documentation for the
meaning of the code.

Error writing attributes Octal: 177520
Decimal: -176

The file processor could not write the attributes for the
file. The STV field of the FAB or RAB contains the file
processor error code; see your operating system documentation
for the meaning of the code.

Bad value in BKS field Octal: 177500
Decimal: -192

The value in the BKS field of the FAB is too large.

Bad value in BKZ field Octal: 177460
Decimal: -208

The value in the BKZ field of an ALL block is too large; or
the bucket sizes of the lowest (LAN) and upper (IAN) areas of
an index are not equal.

ER$BOF

ERSBPA

ER$BPS

ERSCCR

ERSCHG

ER$CHK

ERS$CLS

ERSCOD

COMPLETION CODES AND FATAL ERROR CODES

Beginning-of-file found Octal: 177430
Decimal: -232

The SPACE operation backspaced to the beginning-of-file.

Bad address in BPA field Octal: 177420
. Decimal: -240

The value in the BPA field of the FAB is odd, and the BPS
field contains a nonzero value.

Bad value in BPS field Octal: 177400
Decimal: -256

The value in the BPS field of the FAB is nonzero and not a
multiple of 4, and the BPA field is nonzero,.

RAB already in use Octal: 177340
. Decimal: -288

The CONNECT operatioﬁicq?ld not connect a stream using the
specified RAB because %the file 1is sequential and does not
allow multiple connected’ streams.
e
Illegal record key change Octal: 177320
Decimal: -304

The UPDATE operation did not allow a changed record key
because the index does not allow key changes or does not allow
duplicate key values.

Bad bucket header Octal: 177300
Decimal: -320

The bucket header data for an indexed file is corrupted.

Notify your system manager, who should follow this procedure
to recover from the error:

1. Move the disk to a different drive and try the process

again, If the process succeeds, the error was a hardware
error; report the faulty hardware and continue
processing. If the process fails again, proceed to the

next step.

2. Recreate the file using an RMS-11 wutility (RMSIFL or
RMSCNV) . If this succeeds, the primary index and data
records were free of errors and the new file 1is wvalid;
continue processing. If this fails, proceed to the next
step.

3. Restore the file from a backup copy.

File processor error Octal: 177260
Decimal: -336

The file processor returned an error condition to the CLOSE
operation. The STV field of the FAB contains the file
processor error code; see your operating system documentation
for the meaning of the code.

Bad code in COD field Octal: 177240
Decimal: -352

The value in the COD field of an XAB is not valid.

COMPLETION CODES AND FATAL ERROR CODES

ERSCRE

ERSCOR

ERSDAN

ER$SDEL

ER$DEV

ERSDFW

ER$DIR

ER$DME

ER$DNA

ER$DRF

File processor error Octal: 177220
Decimal: -368

The file processor returned an error condition to the CREATE
operation, The STV field of the FAB contains the file
processor error code; see your operating system documentation
for the meaning of the code.

Undefined current-record context Octal: 177200
Decimal: -384

A DELETE, TRUNCATE, or UPDATE operation required a defined
current-record context, but it was undefined.

Bad value in DAN field Octal: 177140
Decimal: -416

The value in the DAN field of a KEY block specifies a
nonexistent area. .

Record having RFA deleﬁeq; Octal: 177120
“ﬁ % Decimal: ~-432

The record specified by RFA has been deleted.
Bad device specification Octal: 177100
Decimal: -448

The device specification given contains a syntax error, there
is no such device, the device is inappropriate for the
operation, or two different devices have been specified for a
RENAME operation.

File processor error Octal: 177070

Decimal: -456
The file processor returned an error while writing
deferred-write data. The STV field of the FAB or RAB contains
the file processor error code; See your operating system

documentation. for the meaning of the code.

Bad directory specification Octal: 177060
Decimal: -464

The directory specification contains a syntax error.

Pool exhausted Octal: 177040
Decimal: -480

One of the five pools that RMS-11l uses cannot provide needed
space for the operation.

Bad address in DNA field Octal: 177030
Decimal: -488

The DNA field of the FAB contains 0, but the DNS field is
nonzero.

No such directory Octal: 177020
Decimal: -496

The directory specification given specifies a nonexistent
directory.

ERSDNR

ERSDPE

ER$DTP

ERS$DUP

ERSENV

ERSEOF

ER$ESA

ERSESL

ERSESS

ER$EXP

ERSEXT

COMPLETION CODES AND FATAL ERROR CODES

Device not ready Octal: 177000
Decimal: -512

The device specified is not on line.

Device positioning error Octal: 176770
! Decimal: -520

The file processor could not position the magtape device as
specified. The STV field of the FAB or RAB contains the file
processor error code; see your operating system documentation
for the meaning of the code.

Bad code in DTP field Octal: 176760
Decimal: -528

The value in the DTP field of a KEY block does not specify a
valid key data type.

Duplicate key not allowéd Octal: 176740
S S Decimal: ~-544

‘.{\\ %

.
The record offered for insertion had a record key that would

duplicate a record already in the index, but the index does
not allow duplicate keys.

Feature not in selected RMS-1ll environment Octal: 176700
Decimal: -576

The RMS-11 environment (selected with the ORGS$ macro or by the
compiler or by the manner in which RMS-11 code is linked with
your program) does not ‘include the attempted operation for the
specified file organization.

End-of-file reached Octal: 176660
Decimal: -592

The operation specified a record or block that is past the
last record or block.

Bad address in ESA field Octal: 176650
Decimal: -600

The ESA field of the NAM block contains 0.

Bad value in ESL field Octal: 176644
Decimal: -604

The ESL field of the NAM block contains 0.

ESS field value too small Octal: 176640
Decimal: -608

The value in the ESS field of the NAM block specifies an
expanded string buffer that is too small to contain the
expanded string,

File expiration date not yet reached Octal: 176630
Decimal: -616
File processor error Octal: 176620
Decimal: -624

The file processor could not make the requested extension to
the file. The STV field of the FAB or RAB contains the file

A-5

COMPLETION CODES AND FATAL ERROR CODES

ERSFAC

ERSFAL

ERSFEX

ERSFID

ERSFLG

ERSFLK

processor error code; see your operating system documentation
for the meaning of the code.

FAC field forbids operation Octal: 176560
Decimal: ~656

The attempted record or block operation was not specified in
the FAC field of the FAB when the file was created or opened.

Operation not supported by remote node Octal: 176550
Decimal: -664

The remote node for a remote RMS-11 operation does not support
that operation. The STV field of the FAB or RAB contains (in
its high 4 bits) a code that gives the reason for the error:

® O--Incompatible operating systems; the low 12 bits of the
STV field contain the type of the remote operating system

® l--Incompatible fi¥é‘§ystems; the low 12 bits of the STV
field contain the type of the remote file system
A5
[
® 2--DAP version number gmaller than 5; the low 12 bits of
the STV field contain the DAP version number

® 3--DAP modification number smaller than 6; the low 12 bits
of the STV field contain the DAP modification number

® 4--Unsupported file organization
® 5--Unsupported record access

® 6--Operation not supported by FAL; the low 12 bits of the
STV field contain the operation code

® 7--Remote I/0 buffer too small; the low 12 bits contain
the size of the remote I/0 buffer

File already exists Octal: 176540
' Decimal: -672
The file specified for creation already exists, but

supersession was not specified.

Bad value in FID field Octal: 177530
Decimal: -680

The FID field of the NAM block contains a value that is not a
file identifier.

Bad mask in FLG field Octal: 176520
Decimal: -688

The combination of masks specified in the FLG field of a KEY
block is illegal.

File locked by another task Octal: 176500
Decimal: -704

The file sharing specified is not allowed by a task already
accessing the file.

ERSFNA

ERSFNF

ER$FNM

ERSFOP

ER$FSS

ERSFUL

ERSIAN

ER$IDX

ERSIFI

ER$ IMX

COMPLETION CODES AND FATAL ERROR CODES

Bad address in FNA field Octal: 176470
Decimal: -712

The FNA field of the FAB contains 0, but the FNS field 1is
nonzero.

File not found Octal: 176440
Decimal: -736

The file specified for a directory or file operation does not
exist.

Bad file name Octal: 176420
Decimal: -752

The file name portion of a file specification string has a
syntax error.

Bad mask in FOP field Octal: 176400
LTy Decimal: -768

il

The FOP field of the FAB contains one or more illegal masks.

Bad merged string - Octal: 176370
Decimal: -776

The file processor found syntax errors in the merged string.
The STV field of the FAB contains the file processor error
code; see your operating system documentation for the meaning
of the code.

Device or file full Octal: 176360
Decimal: ~784

The specified device or file has no room to allow file
creation or extension.

Bad value in IAN field Octal: 176340
Decimal: ~800

The value in the IAN field of a KEY block specifies a
nonexistent file area.

Index not initialized Octal: 176320
Decimal: ~-816

This code is only returned in the STV field of the RAB in
conjunction with the code ERSRNF in the 8TS field. It
indicates that no entries have been made in the index
specified for the GET or FIND operation.

Bad value in IFI field Octal: 176300
Decimal: -832

The value in the IFI field of the FAB is not the internal file
identifier for a file.

Too many XABs of same type Octal: 176260
Decimal: -848

The number of XABs of the same type in the chain of XABs is
too large {more than 254 ALL blocks or KEY blocks, more than 1
DAT block, PRO block, or SUM block).

COMPLETION CODES AND FATAL ERROR CODES

ERSIOP

ERSIRC

ERSISI

ERSKBF

ERSKEY

ER$SKRF

ER$KS2Z

ERSLAN

ERSLBL

ER$LBY

ERSLCH

Illegal operation for file

The requested operation is illegal for the

or for the allowed access.

file

Octal:
Decimal:

176220
-880

organization

Illegal record found in sequential file Octal: 176200
- Decimal: -896
The record length field of a record in a sequential file is
invalid.
Bad value in ISI field Octal: 176160
Decimal: -912
The ISI field of the RAB contains a value that is not an
internal stream identifier.
Bad address in KBF field: Octal: 176140
oo Decimal: -928
B
The KBF field of the RAB %ontains 0.
Bad key N Octal: 176120
Decimal: -944
The key specified for a key access operation is invalid

(either a negative RRN or an erroneous packed-decimal key).

Bad value in KRF field

The KRF field of the RAB contains (or contained) a value

does not specify a file index.
operation, the RAB contains the
field;

Octal: 176100
Decimal: -960
that

For a key access FIND or GET

invalid

value
for a sequential access FIND or GET operation, the RAB

in its KRF

contained the invalid value in its KRF field during an earlier

CONNECT or REWIND operation.

Bad value in 'KSZ field

The KSZ field of the RAB contains

Bad value in LAN field

The value in the LAN field

nonexistent file area.

of

Bad magtape label

The magtape does not have a valid
Logical channel busy

The LCH field of the FAB contains
channel that is already in use by

Bad value in LCH field

The LCH field of the FAB contains
be a logical channel number.

A-8

Octal:
Decimal:

176060
-976

an invalid value.

a KEY block

ANSI label.

the number
the task.

a value that

Octal:
Decimal:

176040
-992

specifies a

Octal: 176020
Decimal: ~1008
Octal: 176000
Decimal: -1024
of a logical
Octal: 175760
Decimal: -1040

is too large to

ERSLEX

ERSLOC

ERSMEM

ER$MKD

ER$SMRN

ERSMRS

ER$NAE

ER$NAM

ERSNEF

COMPLETION CODES AND FATAL ERROR CODES
Extension not needed Octal: 175750
Decimal: -1048

The requested extension was not needed because the file area
still contains an unused extent.

.Bad value in LOC field Octal: 175740

Decimal: -1056

The LOC field of an ALL block contains a value that does not
specify a valid location.

Memory address roliover Octal: 175710
Decimal: -1080

The area specified for the file string, default string,
expanded string, or resultant string extends beyond the end of
addressable memory.

File processor error -i Octal: 175700
P .f Decimal: ~-1088
/_,c‘*\\ ~ ";
The file processor c0uﬁa not mark the specified file for
deletion. The STV field of the FAB contains the file
processor error code; See your operating system documentation

for the meaning of the code.

Bad value in MRN field or bad record number Octal: 175660
Decimal: -1104

The MRN field of the FAB contains a negative number (CREATE
operation), or the record number specified for a key access
record operation is larger than the file maximum record number
(specified in the MRN field at file creation).

Bad value in MRS field Octal: 175640
Decimal: -1120

The MRS field of the FAB contains 0 even though the file to be
created is requested either to be a relative file or to have
fixed-length records.

Unmappable network access error Octal: 175630
Decimal: -1128

1f this error occurs, please submit a Software Performance
Report to DIGITAL, including the following information:

e Contents of general registers and stack

e Operation and file organization for which the error
occurred

e Task builder map of the task

Bad address in NAM field Octal: 175620
Decimal: -1136

The NAM field of the FAB contains 0 or an odd address.

Context not end-of-file Octal: 175600
Decimal: -1152

The PUT operation could not insert a record into a sequential
file because the next-record context was not the end-of-file.

COMPLETION CODES AND FATAL ERROR CODES

ERSNET

ER$NMF

ER$NPK

ER$SOPN

ERSORD

ERSORG

ER$PLG

Network link lost Octal: 175570
Decimal: -1160

The STV field of the FAB or RAB contains the network error
code.

No more matching files Octal: 175554
Decimal: -1172

The SEARCH operation ended the wildcard SEARCH series because
there are no more files matching the wildcard file
specification. .

No primary key for indexed file Octal: 175540
Decimal: -1184

The CREATE operation did not create the specified file because
no primary index was specified even though the request
specified indexed file organization.

. AA;
4 Octal: 175520

% ‘% Decimal: -1200
\ X

File processor error

The file processor could nat open the specified file, The STV
field of the FAB contains the file processor error code; see
your operating system documentation for the meaning of the
code,

Ordering of XABs illegal Octal: 175500
Decimal: -~1216

The chain of XABs for a directory or file operation is
improperly ordered.

Bad mask in ORG field Octal: 175460
Decimal: -1232

The ORG field of the FAB contains an invalid file organization
code; the file was not created.

Error reading file prologue Octal: 175440
Decimal: -1248

The data read from the file prologue is incorrect.

Notify your system manager, who should follow this procedure
to recover from the error:

1. Move the disk to a different drive and try the process

again. If the process succeeds, the error was a hardware
error; report the faulty hardware and continue
processing. If the process fails again, proceed to the

next step.

2. Recreate the file using an RMS-11 utility (RMSIFL or
RMSCNV) . If this succeeds, the primary index and data
records were free of errors and the new file is valid;
continue processing. If this fails, proceed to the next
step.

3. Restore the file from a backup copy.

ERSPLV

ERSPOS

ERSPRM

ER$PRV

ER$RAC

ER$RAT

ER$RBF

ERSRER

ERSREX

ER$SRFA

ER$RFM

COMPLETION CODES AND FATAL ERROR CODES

File prologue version level unsupported Octal: 175430
Decimal: -1256

The file prologue version number shows that the file was
created by a version of RMS that is not supported on your
system.

Bad value in POS field Octal: 175420
Decimal: -1264

The POS field of a KEY block contains a value that is greater
than the maximum record size for the file; the STV field of
the FAB contains the address of the KEY block.

Bad file date read Octal: 175400
Decimal: -1280

The file dates read are illegal.

Privilege violation 2'%% Octal: 175360
S Decimal: -1296
4k

The file processor dehi&d the requested operation because the

task has no privilege for the operation.

Bad mask in RAC field Octal: 175320
Decimal: -1328

The RAC field of the RAB contains an illegal value.

Bad mask in RAT field Octal: 175300
Decimal: -1344

The RAT field of the FAB contains illegal set bits.

Bad address in RBF field Octal: 175260
Decimal: -1360

The RBF field of the RAB contains an odd address; the address
must be even for block access.

File processor error Octal: 175240
Decimal: -1376

The file processor could not read the requested record or
block. The 8TV field of the FAB or RAB contains the file
processor error code; see your operating system documentation
for the meaning of the code.

Record already exists Octal: 175220
Decimal: -1392

The target cell for a PUT operation to a relative file already
contains a record.

Bad value in RFA field Octal: 175200
Decimal: -1408

The RFA field of the RAB contains an illegal RFA.

Bad code in RFM field Octal: 175160
Decimal: -~1424

The RFM field of the FAB contains an illegal value.

COMPLETION CODES AND FATAL ERROR CODES

ER$RLK Record locked Octal: 175140
Decimal: <1440

The bucket containing the specified record is locked by
another task or by another stream in your task.

ERSRNF No such record Octal: 175100
‘ Decimal: -1472

The record specified for key access does not exist.

ERSRNL Record not locked » Octal: 175060
Decimal: -1488

The FREE operation found that no record was locked for the
stream.

ERSROP Bad mask in ROP field Octal: 175040
Decimal: -~1504

-4
The ROP field of the RAB fontained illegal set bits.
A_"‘ - ‘>
ERSRPL File processor error . & Octal: 175020
5 Decimal: -1520
The data read from the file prologue is incorrect.

Notify your system manager, who should follow this procedure
to recover from the error:

1. Move the disk to a different drive and try the process

again. If the process succeeds, the error was a hardware
error; report the faulty hardware and continue
processing. If the process fails again, proceed to the

next step.

2. Recreate the file wusing an RMS-11 utility (RMSIFL or
RMSCNV) . If this succeeds, the primary index and data
records were free of errors and the new file is valid;
continue processing. If this fails, proceed to the next
step.

3. Restore the file from a backup copy.

ERSRRV Bad internal pointer Octal: 175000
Decimal: -1536

An internal pointer in the file is invalid. Reload the file,
with RMSCNV or RMSIFL, using its primary index.

ERSRSL Bad value in RSL field Octal: 174754
Decimal: -1556

The RSL field of the NAM block contains 0.

ER$RSS Bad value in RSS field Octal: 174750
Decimal: -~1560

The RSS field of the NAM block contains 0.

ERSRST Bad address in RSA field Octal: 174744
Decimal: -~1564

The RSA field of the NAM block contains 0.

ERSRSZ

ERSRTB

ER$RVU

ER$SSEQ

ER$SHR

ER$SIZ

ER$SUP

ER$SYS

COMPLETIOR CODES AND FATAL ERROR CODES

Bad value in RSZ field Octal: 174740
Decimal: -1568

The RSZ field of the RAB contains a value that is larger than
the maximum allowed record size, or (for fixed-length records)
%s not equal to the maximum record size, or (for an UPDATE
operation to a sequential file) is not equal to the length of
the record to be updated.

Record too big for user buffer Octal: 174720
Decimal: -1584

The record read cannot fit into the user buffer; the STV
field of the RAB contains the size of the record, and the
portion that will fit is moved to the user buffer as for a
successful GET.

Internal pointer corrupted Octal: 174710

R Decimal: -1592
The record insertioni#s@pceeded and the primary index was
updated successfully; ¥ however, RMS-11 could not update
internal pointers. :

b1

To recover from the error, follow this procedure:

1. Recreate the file using an RMS-11 utility (RMSIFL or
RMSCNV) . If this succeeds, the primary index and data
records were free of errors and the new file is wvalid;
continue processing. If this fails, proceed to the next
step.

2. Restore the file from a backup copy.

Sequential insertion records not in order Octal: 174700
Decimal: -1600

The sequential access PUT operation found records whose
primary keys were not in ascending order.

Bad mask in SHR field Octal: 174660
Decimal: -1616

The SHR field of the FAB contains an illegal mask.

Bad value in SIZ field Octal: 174640
Decimal: -1632

The SIZ field of a KEY block contains an illegal value.

Operation not supported over network Octal: 174610
Decimal: =-1656

The requested operation is not supported over the network.

System error Octal: 174600

Decimal: -1664
The interface between RMS-11 and the system is in error; the
STV field of the FAB or RAB contains the status code for a
system directive. Please submit a Software Performance
Report.

COMPLETION CODES AND FATAL ERROR CODES

ERSTRE

ERSTYP

ER$SUBF

ERSUIN

ERSUSZ

ERSVER

ERSWCD

ERSWER

ERSWLK

ERSWPL

Index error Octal: 174560
Decimal: -1680

The index contains invalid data. Build a new file using
either an RMS-11 utility (RMSIFL or RMSCNV) or using
sequential access and the primary index to fetch the old
records,

Bad file type Octal: 174540
Decimal: -1696

The file type in a file specification contains invalid syntax.

Bad address in BBF field Octal: 174520
Decimal: -1712

The UBF field of the RAB contains 0 or, for block access, an
odd address.

Field value rejected by FAL Octal: 174510

:i’j' Decimal: -1720
The FAL (file access llstener) rejected the value in a control
block field; the STV field of the FAB or RAB contains a code
show1ng which field. See your DECnet documentation for the
meanings of these codes.

Bad value in USZ field Octal: 174500
Decimal: -1728

The USZ field of the RAB contains 0.

Bad file version number Octal: 174460
Decimal: -1744

The file version portion of a file specification contains a
syntax error.

Illegal wildcard in merged string Octal: 174430
. Decimal: -1768

The merged string contains a wildcard character, but
wildcarding is not in progress or is illegal for the
operation.

File processor error Octal: 174420
Decimal: -~1776

The file processor could not write to the file. The STV field
of the FAB or RAB contains the file processor error code; see
your operating system documentation for the meaning of the
code.

Device write-locked Octal: 174410
Decimal: -1784

The device specified is write-locked.

File processor error Octal: 174400
Decimal: -1792

The file processor could not write the file prologue. The STV
field of the FAB or RAB contains the file processor error
code; see your operating system documentation for the meaning
of the code.

COMPLETION CODES AND FATAL ERROR CODES

ERSXAB Bad address in XAB field Octal: 174360
Decimal: -1808

The XAB field of the FAB contains an odd address.

ER$XTR Extraneous data in file specification Octal: 174340
Decimal: -1824

The file specification contains extraneous characters. The
value in the STV field of the FAB is the address of the first
character beyond the end of the valid file specification.

A.2 FATAL ERROR COMPLETIONS

This section lists and explains RMS-11 completions that are returned
in general register RO. These errors are fatal either because RMS-11
detected an internal error iCQQdition and could not continue, or
because the RAB or FAB 1is ‘of questionable validity and RMS-11
therefore did not write the qgm%}etion in its fields.

&

ERSACT 1Illegal concurrent operézion Octal: 177720

Decimal: ~-48

1. The FAB you specified is already in use by another

operation. 2. You have illegally interrupted RMS-11
processing.

ERSAST Illegal operation at AST level Octal: 177560

Decimal: -144

Your program attempted to use WAIT operation at AST level.

ERSBUG Error in RMS-11 internal data Octal: 177360
Decimal: -272

RMS-11 detected an error in its internal data structures. The
error may have been caused by your task writing into the
structures; if you think your task did not cause the error,
please submit a Software Performance Report to DIGITAL,
including the following information:

e Contents of general registers and stack

e Operation and file organization for which the error
occurred

e Task builder map of the task

ERSCPB Bad parameter block Octal: 177230
Decimal: -360

The parameter block (pointed to by R5) for an operation macro
has an invalid argument count or is at a zero or odd address.

ERSFAB Bad FAB Octal: 176600
Decimal: ~-640

The value in the BID or BLN field of the specified FAB is not
the correct identifier or block length for a FAB, or the
address of the FAB is 0 or odd.

COMPLETION CODES AND FATAL ERROR CODES
ERSLIB Resident library not available Octal:
Decimal:

The version of the RMS-11 resident library needed for
task is not available.

ERSMAP Error in internal buffer mapping data Octal:
. Decimal:

RMS-11 detected an error in its internal data structures.
error may have been caused by your task writing into the

structures; if you think your task did not cause the

please submit a Software Performance Report to DIGITAL,

including the following information:
e Contents of general registers and stack

e Operation and file organization for which the
occurred o2

Lo

e Task builder map oﬁ%ﬁhé task
AV
5 It
ERSRAB Bad RAB 2 Octal:

Decimal:

The value in the BID or BLN field of the specified RAB is

the «correct identifier or block length for a RAB,
address of the RAB is 0 or odd.

APPENDIX B

ASSEMBLY-TIME MESSAGES

RMS-11 macros detect some errors during assembly. For each such
error, the macro issues a .PRINT or .ERROR assembler directive with a
message. This appendix shows' these messages and their meanings.

sk
SCOMPARE MACRO - FIELD TOO LARGES

You can specify only a l—b;te or l-word field as the field
parameter for the $COMPARE macro.

SCOMPARE MACRO - FIELD PARAMETER INVALID

You must specify a valid field mnemonic as the field parameter
for the $COMPARE macro.

SFETCH MACRO - PC DESTINATION INVALID

You cannot specify the PC as the destination for the $FETCH
macro.

$FETCH OR S$STORE MACRO - ADDRESS MODE INVALID

You have used an illegal address mode in the source for a $STORE
macro or in the destination for a $FETCH macro. See Chapter 3
for a description of legal address modes for these macros.

SFETCH OR $STORE MACRO -~ FIELD PARAMETER INVALID

You can specify only a valid field mnemonic as the field
parameter for a field access macro.

SFETCH OR $STORE MACRO - FIELD TOO LARGE FOR GIVEN REGISTERS
You cannot specify the given register as the source or
destination address because the field 1is larger than the
remaining registers.

SFETCH OR SSTORE MACRO ~ FIELD TOO LARGE FOR IMMEDIATE MODE

You can specify an immediate mode value for a field access macro
only if you specify a l-byte or l-word field.

$FETCH OR $STORE MACRO - FIELD TOO LARGE FOR REGISTERS

You cannot specify a register as the source or destination
address because the given field is too large.

ASSEMBLY-TIME MESSAGES

SFETCH OR $STORE MACRO - REGISTER PARAMETER INVALID

You can specify only RO, R1, R2, R3, R4, or R5 as the register
parameter for a field access macro.

$FETCH OR $STORE MACRO - REGISTER USAGES OVERLAP
You - cannot specify the given register as the source or
destination address because the indicated registers overlap the
register containing the control block address.

$OFF MACRO - FIELD TOO LARGE’

You can specify only a 1l-byte or 1l-word field as the field
parameter for the SOFF macro.

SOFF MACRO - FIELD PARAMETER INVALID
You must specify a valid fleld mnemonic as the field parameter

for the SOFF macro.

I §
$SET MACRO - FIELD TOO LARGE . §

You can specify only a l—byie or l-word field as the field
parameter for the $SET macro.

$SET MACRO - FIELD PARAMETER INVALID

You must specify a valid field mnemonic as the field parameter
for the $SET macro.

$SETGSA MACRO - REGISTER PARAMETER INVALID

You must specify RO, Rl, R2, R3, R4, or R5 as the register
parameter for the $SETGSA macro.

STESTBITS MACRO - FIELD TOO LARGE

You can specify only a 1l-byte or 1l-word field as the field
parameter for the STESTBITS macro.

STESTBITS MACRO - FIELD PARAMETER INVALID

You must specify a valid field mnemonic as the field parameter
for the STESTBITS macro.

F$BSZ MACRO - BSZ FIELD NOT USED IN RMS-11

RMS~11 has no BSZ field in the FAB; therefore the F$BSZ macro
cannot initialize the field.

F$JEN MACRO - JFN FIELD NOT USED IN RMS-11

RMS-11 has no JFN field in the FAB; therefore the F$JFN macro
cannot initialize the field.

FAB$SB MACRO - ALREADY IN BLOCK OR POOL DECLARATION
You cannot use the FAB$B macro to begin FAB declaration until you
have ended the current block or pool declaration (using the
FABSE, NAMSE, POOLSE, RABSE or XABSE macro).

FABSB MACRO - FAB NOT WORD-ALIGNED
Use the .EVEN assembler directive before the FABSB macro; this

assures word-alignment for the FAB.

B-2

ASSEMBLY-TIME MESSAGES

FABSE MACRO - NOT IN FAB DECLARATION

You must begin a FAB declaration with the FAB$B macro before
ending it with a FABSE macro.

NAMSB MAGRO -~ ALREADY IN BLOCK OR POOL DECLARATION

You cannot use the NAMSB macro to begin NAM block declaration
until you have ended the current block or pool declaration (using
the FABSE, NAMSE, POOLSE, RABSE or XABSE macro).

NAMSB MACRO - NAM BLOCK NOT WORD-ALIGNED

Use the .EVEN assembler directive before the NAMSB macro; this
assures word-alignment for the NAM.

NAMSE MACRO - NOT IN NAM BLOCK DECLARATION

You must begin a NAM blbc§~ declaration with the NAMSB macro
before ending it with a *NAM$SE macro.
~ &
OPERATION MACRO - FAB OR RAB ADDRESS PARAMETER MISSING

You must specify a control block address for the operation macro;
for a file operation, specify a FAB address; for a stream,
record, or block 1/0 operation, specify a RAB address.

ORGS MACRO - OPERATION PARAMETER INVALID

You can specify only CRE, DEL, FIN, GET, PUT, and UPD as
operation parameters for the ORGS macro.

ORGS MACRO - ORGANIZATION PARAMETER INVALID

You can specify only 1IDX, REL, or SEQ as the organization
parameter for the ORG$ macro.

ORGS$S MACRO - ORGANIZATION PARAMETER MISSING

You must specify IDX, REL, or SEQ as the organization parameter
for the ORG$ macro.

POOLSB MACRO - ALREADY IN BLOCK OR POOL DECLARATION
You cannot use the POOLSB macro to begin pool declaration until
you have ended the current block or pool declaration (using the
FABSE, NAMSE, POOLSE, RABSE or XABSE macro).

POOLSE MACRO - NOT IN POOL DECLARATION

You must begin a POOL declaration with the POOLSB macro before
ending it with a POOLSE macro.

RSLSN MACRO -~ LSN FIELD NOT USED IN RMS-11

RMS-11 has no LSN field in the RAB; therefore the RSLSN macro
cannot initialize the field.

RABSB MACRO - ALREADY IN BLOCK OR POOL DECLARATION
You cannot use the RABSB macro to begin RAB declaration until you

have ended the current block or pool declaration (using the
FABSE, NAMSE, POOLSE, RABSE or XABSE macro).

ASSEMBLY-TIME MESSAGES

RABSB MACRO - RAB NOT WORD-ALIGNED

Use the ,EVEN assembler directive before the RAB$SB macro; this
assures word-alignment for the RAB.

RABSB MACRO - RAB TYPE PARAMETER INVALID

You can specify only SYN, ASYN, or a null as the parameter for
the RABSB macro.

RABSE MACRO - NOT IN RAB DECLARATION

You must begin a RAB declaration with the RABSB macro before
ending it with a RABSE macro.

X$SI1Z MACRO - TOTAL KEY SIZE TOO LARGE

The sum of the segment sizes for a key 1is greater than 255,
Specify smaller segments. -%

Sy
XABSB MACRO - ALREADY IN BLOCKﬁOR%POOL DECLARATION
Y i
You cannot use the XABS$B macfo to begin XAB declaration until you
have ended the current block or pool declaration (using the
FABSE, NAMSE, POOLSE, RABSE or XABSE macro).
XABSB MACRO - XAB NOT WORD-ALIGNED

Use the .EVEN assembler directive before the XABSB macro; this
assures word-alignment for the XAB.

XABSB MACRO - XAB TYPE PARAMETER INVALID

You can specify only XBSALL, XB$SDAT, XBSKEY, XB$SPRO, or XBSSUM as
the XAB type parameter for the XABSB macro.

XABSE MACRO - NOT IN XAB DECLARATION

You must begin a XAB declaration with the XABS$B macro before
ending it with a XABSE macro.

APPENDIX C

MACROS THAT DECLARE SYMBOLS AND OTHER MACROS

Table C-1 lists RMS-11 macros (and their arguments) that declare
symbols and other macros. In the table, the expression xxx represents
a 2- or 3-character string, so that the expression O0$xxx represents
all symbols that begin with 0$; ‘the expression fld represents a field
mnemonic. ,# B3

[<
Note that you can declare symbols, either globally or locally. For a
FABSBT, RABSBT, XABSBT, or SRMSTAT macro, give the argument DFINSG (or
omit the argument) to define symbols globally; give the argument
DFINSL to define symbols locally.

Note also that you can declare symbols for control block sizes without
declaring field-offset symbols. For a FABOFS$, NAMOFS$, RABOFS$, XABOFS,
XBAOFS, XBDOF$, XBKOFS, XBPOFS$, or XBSOF$ macro, give the argument
DEFS$SZ to define only symbols for block sizes, or give no argument to
define both symbols for block sizes and field-offset symbols.

Table C-1: Macros That Declare Symbols and Other Macros

Macro Argument Declares
FABSB - FAB field-initialization macros: of the form
. F$fla

- FAB end-block-declaration macro: FABSE
- FAB field-offset symbols: of the form 0$fld
- FAB code and mask symbols: of the form

FB$xxX

FABSBT DFINSG - Global FAB code and mask symbols: of the
form FBSxxx (except FAB length symbol
FBSBLN)

FABSBT DEINSL - Local FAB code and mask symbols: of the form

FBSxxx (except FAB length symbol FBSBLN)

FABOFS - FAB field offset symbols: of the form 0S$fld
- FAB length symbol: FBSBLN

FABOFS DEFS$SZ - FAB length symbol: FBSBLN

{Continued on next page)

MACROS THAT DECLARE SYMBOLS AND OTHER MACROS

Table C-1 (Cont.): Macros That Declare Symbols and Other Macros

Macro Argument Declares
SFBCAL - Directory operation macros: SPARSE, SRENAME,
and S$SEARCH
- File operation macros: $CLOSE, SCREATE,
SDISPLAY, SERASE, SEXTEND, and SOPEN
SGNCAL - Get-space address macros: GSAS, S$GETGSA, and
SSETGSA
- Facilities-declaration macro: ORGS
- RMS-11 initialization macros: SINIT and
SINITIF (obsolete)
- Field-access macros: SCOMPARE, SFETCH, S$SOFF,
$SET, SSTORE, and STESTBITS
- Completidgn-handler return macro: SRETURN
NAMSB - NAM blgcK, field-initialization macros: of
the form Wsfld
- NAM block,end-block-declaration macro: NAMSE
- NAM block -field-offset symbols: of the form
08£f1d
- NAM block code and mask symbols: of the form
NBSxxX
NAMOF $ ~ NAM block field offset symbols: of the form
0sfla
- NAM block length symbol: NBSBLN
NAMOFS DEF$S2Z - NAM block length symbol: NBS$BLN
POOLSB - Pool declaration macros: PSBDB, PSBUF,
PSFAB, PSIDX, PSRAB, and PSRABX
- End-pool-declaration macro: POOLSE
RABSB - RAB field-initialization macros: of the form
RSf1ld
- RAB end-block-declaration macro: RABSE
- RAB field-offset symbols: of the form 0Sfld
- RAB code and mask symbols: of the form
RBSXxxX
RABSBT DFINSG - Global RAB code and mask symbols: of the
form RBSxxX (except RAB length symbol
RBSBLN)
RABSBT DFINSL - Local RAB code and mask symbols: of the form
RBSxxx (except RAB length symbol RBS$SBLN)
RABOFS$ -~ RAB field offset symbols: of the form 0$fld
- RAB length symbol: RBS$SBLN
RABOFS DEF$SZ - RAB length symbol: RBSBLN

(Continued on next page)

MACROS THAT DECLARE SYMBOLS AND OTHER MACROS

Table C-1 (Cont.): Macros That Declare Symbols and Other Macros

Macro Argument Declares
SRBCAL - Stream operation macros: SCONNECT,
SDISCONNECT, SFLUSH, SFREE, SNXTVOL,

SREWIND, and SWAIT

- Record operation macros: S$DELETE, $FIND,
SGET, $PUT, STRUNCATE, and SUPDATE

- Block operation macros: S$READ, S$SPACE, and
SWRITE

SRMSTAT DFINSG - Global completion symbols: of the £forms
ERS$xxx and SUSxxx

$RMSTAT DFINSL - Local completion symbols: of the forms
ER$xxx and SUSxxx

XABSB XBSALL - ALL bl@d& field-initialization macros: of
the form3Xs$fld
- XAB end-block-dectaration macro: XABSE
- ALL block field-offset symbols: of the form

0sfld
- XAB code and mask symbols: of the form
XBSxXX
XABSB XB$DAT - DAT block field-initialization macros: of

the form X$£fld
- XAB end-block-declaration macro: XABSE
- DAT block field-offset symbols: of the form

0sfld
- XAB code and mask symbols: of the form
XBSxxx
XABS$B XBSKEY - KEY block field-initialization macros: of

the form X$fld
- XAB end-block-declaration macro: XABSE
- KEY block field-offset symbols: of the form

0s$fla
- XAB code and mask symbols: of the form
XBSxXx
XABSB XBSPRO - PRO block field-initialization macros: of

the form x$fld
- XAB end-block-declaration macro: XABSE
- PRO block field-offset symbols: of the form

0sfld
- XAB code and mask symbols: of the form
XBSXXX
XABSB XBSSUM - SUM block field-initialization macros: of

the form XS$£fld

- XAB end-block-declaration macro: XABSE

- SUM block field-offset symbols: of the form
0s$fld

- XAB code and mask symbols: of the form
XBSxxx

(Continued on next page)

MACROS THAT DECLARE SYMBOLS AND OTHER MACROS

Table C-1 (Cont.): Macros That Declare Symbols and Other Macros
Macro Argument Declares
XABSBT °~ DFINSG - Global XAB code and mask symbols: of the
form XBSxxx (except XAB length symbols:
XBSLAL, XBS$DTL, XBSKYL, XBSPRL, and XB$SML)
XABSBT DFINSL - Local XAB code and mask symbols: of the form
XBSxxx (except XAB length symbols: XBSLAL,
XB$DTL, XBSKYL, XBSPRL, and XBSSML)
XABOFS - XAB field offset symbols: of the form 08$fld
- XAB length symbols: XBSLAL, XBSDTL, XBSSKYL,
XBSPRL, and XB$SML
XABOFS DEFSSZ - XAB lenq%p symbols: XBSLAL, XBSDTL, XBSKYL,
XBSPRL, -and XBSSML
%
- ok
XBAOFS - ALL black field offset symbols: of the form
0$fld .
- ALL block-length symbol: XBSLAL
XBAOFS DEFS$SZ - ALL block length symbol: XBSLAL
XBDOFS$ - DAT block field offset symbols: of the form
0sfld
- DAT block length symbol: XBSDTL
XBDOF$ DEF$S2Z - DAT block length symbol: XBSDTL
XBKOFS$ - KEY block field offset symbols: of the form
0s$f1ld
- KEY block length symbol: XBSKYL
XBKOFS$ DEF$SZ - KEY block length symbol: XBSKYL
XBPOFS$ - PRO block field offset symbols: of the form
0$fld
- PRO block length symbol: XBSPRL
XBPOF'S$ DEFS$SZ - PRO block length symbol: XBS$SPRL
XBSOF$ - SUM block field offset symbols: of the form
0sfld
- SUM block length symbol: XBSSML
XBSOFS$ DEF$S2 - SUM block length symbol: XBSSML

APPENDIX D

RMS-11 WITH DIFFERENT OPERATING SYSTEMS

This appendix contrasts the behaviors of RMS-11 on different operating
systems:

- {
e PRO/RMS-11 versus RSTS/E;RMS-11
g
’it\ o
e PRO/RMS-11 versus RSX-11M/M-PLUS RMS-11

3

e RSTS/E RMS-11 versus RSX-11M/MPLUS RMS-11

D.1 PRO/RMS-11 VERSUS RSTS/E RMS-11

This section contrasts the behaviors of PRO/RMS-11 and RSTS/E RMS-11.

D.1.1 Different Behaviors
The following features behave differently for RSTS/E and P/0OS users:
e Macro library location

RMS-11 macro libraries for the systems are located in the
files:

RSTS/E LB:RMSMAC.MLB
P/0S LB:[1,1] RMSMAC.MLB

e RTV field in FAB
The RTV field in the FAB has different uses:

RSTS/E Cluster size
P/0S Retrieval pointer count

e Maximum bucket size

The maximum bucket sizes (given by the BKS field in the FAB or
the BKZ fields in ALL blocks) are different:

RSTS/E 15 blocks
P/0S 32 blocks

RMS-11 WITH DIFFERENT OPERATING SYSTEMS

e Area alignment

The meanings of area alignment codes (in the ALN field of an
ALL block) are different:

RSTS/E XBSLBN Cluster alignment

P/0S XBSCYL Cylinder alignment
XBSLBN Logical block alignment
XBSVBN Virtual block alignment

e Protection codes

The protection codes (and defaults) are system-specific.

D.1.2 Features Not Supported on RSTS/E

- ¥
The following RMS-11 features arie not supported on RSTS/E, but are
supported on P/0S: N

L5
v F

e ENTER operation (SENTER hacro)

e NXTVOL operation ($NXTVOL macro)

® REMOVE operation (SREMOVE macro)

® SPACE operation ($SPACE macro)

e WAIT operation (SWAIT macro)

® User-provided interlocking (FBSUPI mask in SHR field of FAB)

e File version numbers (NBSVER mask in FNB field of NAM)

e Asynchronous execution of operations (RBSASY mask in ROP field
of RAB; SYN and ASYN arguments to RABSB macro; RBS$SBLL symbol
for length of asynchronous RAB)

@ Directories (DID field in NAM block)

® Areca extension (ALL block fields for SEXTEND macro)

e Contiguous file extension (FBS$CTG mask in FOP field of FAB for
SEXTEND macro)

e Hard placement (XBSHRD mask in AOP field of ALL block)

® Return of date and protection information by DISPLAY operation
(PRO block fields and DAT block fields for $DISPLAY macro)

e File expiration date (EDT field of NAM block) and file
revision number (RVN field of NAM block)

D.l1.3 Features Not Supported on P/OS

On RSTS/E, for compatibility with older file system, RMS-11 treats
certain sequential files with undefined records as sequential files
with stream records. P/0S will allow only block access to such files.
In addition, magtape devices are not supported on P/0S, and remote
operations are not supported on P/OS.

RMS-11 WITH DIFFERENT OPERATING SYSTEMS

D.2 PRO/RMS-11 VERSUS RSX-11M/M-PLUS RMS-11

The P/0S operating system does not support magtape devices

RMS~-11 operations.

P/0S files, have decimal version numbers (NBSVER mask in FNB

NAM) .

D.3 RSTS/E RMS-11 VERSUS RSX-11M/M-PLUS RMS-11

This section contrasts the behaviors of RSTS/E
RSX-11M/M-PLUS RMS-11.

D.3.1 Different Behaviors

L - ";
The following features behave differently for
RSX-11M/M-PLUS users: =k
v GF
e Macro library location s

or remote

RMS-11

RSTS/E

RMS-11 macro libraries for the systems are located in

files:

RSTS/E LB:RMSMAC .MLB
RSX-11M/M-PLUS LB:[1,1] RMSMAC.MLB

e RTV field in FAB
The RTV field in the FAB has different uses:

RSTS/E Cluster size
RSX-11M/M-PLUS Retrieval pointer count

e Maximum bucket size

field

of

and

and

the

The maximum bucket sizes (given by the BKS field in the FAB or

the BKZ fields in ALL blocks) are different:

RSTS/E 15 blocks
RSX-11M/M-PLUS 32 blocks

e Area alignment

The meanings of area alignment codes (in the ALN field of

ALL block) are different:

RSX-11M/M-PLUS XBSCYL Cylinder alignment

RSTS/E XBSLBN Cluster alignment

XBSLBN Logical block alignment
XBSVBN Virtual block alignment

an

RMS-11 WITH DIFFERENT OPERATING SYSTEMS

D.3.2

Features Not Supported on RSTS/E

The following RMS-11 features are not supported on RSTS/E, but are
supported on RSX-11M/M-PLUS:

ENTER operation (SENTER macro)

NXTVOL operation (SNXTVOL macro)

REMOVE operzation (SREMOVE macro)

REWIND operation for magtape device (SREWIND macro)

SPACE operation (SSPACE macro)

WAIT operation (SWAIT macro)

User-provided interlqgk%ng (FBSUPI mask in SHR field of FAB)
Octal file version ngjnﬁé:;s (NBSVER mask in FNB field of NAM)
Asynchronous executiéﬁ é% operations (RBSASY mask in ROP field
of RAB; SYN and ASYN arguments to RABSB macro; RBSBLL symbol
for length of asynchronous RAB)

Directories (DID field in NAM block)

Area extension (ALL block fields for SEXTEND macro)

Contiguous file extension (FBSCTG mask in FOP field of FAB for
SEXTEND macro)

Hard placement (XB$SHRD mask in AOP field of ALL block)

Return of date and protection information by DISPLAY operation
(PRO block fields and DAT block fields for S$DISPLAY macro)

File expiration date (EDT field in NAM block) and file
revision number (RVN field of NAM block)

Initial end-of-file context for magtape file (FBSNEF mask in

- FOP field of FAB for SOPEN macro)

Multivolume magtapes

INDEX

SCLOSE macro, 5-3 $SEARCH macro, 5-99
SCOMPARE macro, 2-16 example, 7-7, 7-15
example, 7-3, 7-7, 7-11, 7-15 $SET macro, 2-11
SCONNECT macro, 5-5 $SETGSA macro, 2-18
SCREATE macro, 5-8 SSPACE macko
SDELETE macro, 5-24 pP/0S, D-2
SDISCONNECT macro, 5-26 RSX-11, D-4
$DISPLAY macro, 5-28 ' $STORE macro, 2-10
P/0S, D=2 example, 7-3, 7-7, 7-11, 7-15
RSX-11, D-4 STESTBITS macro, 2-17
SENTER macro STRUNCATE macro, 5-103
P/0S, D-2 $UPDATE macro, 5-105
RSX-11, D-4 SWAIT macro
S$ERASE macro, 5-33 P/0S, D-2
example, 7-11 cE RSX-11, D-4
SEXTEND macro, 5-38 - 7 SWRITE macro
P/0S, D-2 B sequential access, 5-107
RSX-11, D-4 NF VBN access, 5-109
SFBCAL macro, C-2 ;. .EVEN assembler directive
$FETCH macro, 2-15 control block alignment, 2-8
example, 7-3, 7-7, 7-11, 7-15 pool alignment, 2-4
SFIND macro .MCALL assembler directive, 2-2
key access, 5-43 /ML assembler switch, 2-20
RFA access, 5-46
sequential access, 5-41 Access
S$FLUSH macro, 5-48 requested
$FREE macro, 5-50 See FAC field in FAB
SGET macro shared
key access, 5-55 See SHR field in FAB
RFA access, 5-59 Access mode
sequential access, 5-52 block
SGETGSA macro, 2-19 See BKT field in RAB
S$GNCAL macro, C-2 record
SINIT macro (obsolete), xv See RAC field in RAB
SINITIF macro (obsolete), xv AID field in ALL block, 2-12
SNXTVOL macro ' CLOSE operation, 5-3
P/0S, D-2 CREATE operation, 5-8, 5-15
RSX-11, D-4 DISPLAY operation, 5-28
$OFF macro, 2-11 ERASE operation, 5-33
SOPEN macro, 5-62 EXTEND operation, 5-38 to 5-39
RSX-11, D-4 offset, 6-2
SPARSE macro, 5-76 OPEN operation, 5-63
example, 7-3, 7-7, 7-11, 7-15 PARSE operation, 5-76
$PUT macro RENAME operation, 5-91
key access, 5-84 SEARCH operation, 5-99
sequential access, 5-81 summary, 6-3
$RBCAL macro, C-3 Alignment
SREAD macro See ALN field in ALL block
sequential access, 5-87 ALL block
VBN access, 5-89 chaining to FAB, 2-12
SREMOVE macro declaring, 2-8
P/0S, D-2 initializing, 2-9
RSX-~-11, D-4 summary, 6-2
SRENAME macro, 5-91 Allocation
example, 7-15 See ALQ field in ALL block
SRETURN macro, 2-18 See ALQ field in FAB
SREWIND macro, 5-97 XAB
RSX-11 magtape device, D-4 See ALL block
SRLCB system routine, 2-20 ALN field in ALL block
SRMSTAT macro, C-3 CREATE operation, 5-16
SRQCB system routine, 2-20 DISPLAY operation, 5-29

Index-1

offset, 6-2
OPEN operation,
P/0S, D-2
RSX~-11, D-4
summary
XBSLBN mask, 6-4
ALQ field in ALL block
CREATE operation, 5-15, 5-20
DISPLAY operation, 5-29
EXTEND operation, 5-39
offset, 6-2
OPEN operation,
P/0S, D-2
RSX-11, D-4
summary, 6-5
ALQ field in FAB
CREATE operation, 5-15,
EXTEND operation,

5-69

5-69

5-20

offset, 6-19 Lo
OPEN operation, 5-67 i
summary, 6-22 Y
ALQO field in ALL block B
offset, 6-2
ALQl field in ALL block
offset, 6-2
ANSI magtape device, 3-2, 5-19,
5-36, 5-67, 5-78, 5-94, 5-101
AOP field in ALL block
CREATE operation, 5-16
DISPLAY operation, 5-29
offset, 6-2
OPEN operation, 5-69
P/0S, D-2
RSX-11, D-4
summary
XBSCTG mask, 6-6
Area
alignment
See ALN field in ALL block
allocation '
See ALQ field in ALL block
bucket size
See BKZ field in ALL block
count
See NOA field in SUM block
default extension size
See DEQ field in ALL block

description, obtaining
See DISPLAY operation
extending allocation
See EXTEND operation
identifier
See AID field in ALL block
location
See LOC field in ALL block
See ALL block
Assembly, 2-20
ASYN argument to RABSB macro
P/0S, D-2
RSX-11, D-4

BDB pool,
BID field
offset,
summary

2-8
in FAB
6-19

5-38 to 5-39

INDEX

FBSBID code,
BID field in RAB
offset, 6-110
summary
RBSBID code,
Binary key
See XBS$BN2 mask in DTP field
See XBS$BN4 mask in DTP field
BKS field in FAB
CREATE operation,
offset, 6-21
OPEN operation, 5-67
p/0S, D-1
RSX-11, D-3
summary, 6-24
BKT field in RAB,

6-23

6-111

5-16

4-5, 4-11

FIND operation, 5-41, 5-44,
5-47

GET operation, 5-53, 5-57,
5-60

offset, 6-110

PUT operation, 5-82, 5-85

READ operation, 5-87, 5-89

summary, 6-112

WRITE operation, 5-107, 5-109

BKZ field in ALL block
CREATE operation, 5-16
DISPLAY operation, 5-29

offset, 6-2
OPEN operation,
P/0S8, D-1 to D-2
RSX-11, D-3 to D-4
summary, 6-7
BLN field in ALL
offset, 6-2
summary
XBSLAL code,
BLN field in DAT
offset, 6-13
summary
XBSDTL code,
BLN field in FAB
offset, 6-19
summary
FBSBLN code,
BLN field in KEY
offset, 6-63
summary
XBSKYL code,
BLN field in PRO
offset, 6~103
summary
XBSPRL code,
BLN field in RAB
offset, 6-110
summary
RBSBLN code,
BLN field in SUM
offset, 6-139
summary
XBSSML code,
Block
access mode
See BKT field in RAB
reading

5-69

block

6-8
block

6-14

6-25
block

6-65
block

6-104

6-113
block

6~140

Index-2

INDEX

See READ operation See RAT field in FAB
size, magtape Carriage-control device
See BLS field in FAB See FBSCCL mask in DEV field
writing Carriage-return carriage control
See WRITE operation See FBSCR mask in RAT field
Block context, 4-10 Casette tape device, 3-2, 5-19,
Block operation, 4-12 5-36, 5-67, 5-78, 5-94, 5-101
Block operation macro CDT field in DAT block
SREAD, 5-87, 5-89 offset, 6-13
$WRITE, 5-107, 5-109 OPEN operation, 5-71
declaring, C-3 p/0S, D-2
Block processing, 4-10 ’ RSX-11, D-4
Block stream, 4-10 summary, 6-15
Block-~declaration macro, Central buffer pool, 3-4
2-8 to 2-9 Changed key
Blocked record See XBSCHG mask in FLG field
See FBSBLK mask in RAT field CLOSE operation, 3-6
BLS field in FAB SCLOSE macro, 5-3
CREATE operation, 5-14 > BDB requirement, 2-8
offset, 6-21 LR 1/0 buffer requirement, 2-7
OPEN operation, 5-68 2%‘{; wildcard loop, 3-8
summary, 6-26 % % Cluster size
BPA field in FAB, 2-7, 3-4 N See RTV field in FAB
CLOSE operation, 5-4 " coD field in ALL block
CREATE operation, 5-12 offset, 6-2
ERASE operation, 5-35 summary
offset, 6-21 XBSALL code, 6-9
OPEN operation, 5-64 COD field in DAT block
PARSE operation, 5-77 offset, 6-13
RENAME operation, 5-93 summary
SEARCH operation, 5-100 XBSDAT code, 6-16
summary, 6-27 CoD field in KEY block
BPS field in FAB, 2-7, 3-4 offset, 6-63
CLOSE operation, 5-4 summary
CREATE operation, 5-12 XBSKEY code, 6-66
ERASE operation, 5-35 CoD field in PRO block
offset, 6-21 offset, 6-103
OPEN operation, 5-64 summary
PARSE operation, 5-77 XBSPRO code, 6-105
RENAME operation, '5-93 cop field in SUM block
SEARCH operation, 5-100 offset, 6-139
summary, 6-28 summary
Bucket XBSSUM code, 6-141
fill number Code and mask symbol
data declaring
See DFL field in KEY block ALL block, C-3 to C-4
honoring DAT block, C-3 to C-4
See RBSLOA mask in ROP field FAB, C-1
index KEY block, C-3 to C-4
See IFL field in KEY block NAM block, C-2
size PRO block, C-3 to C-4
See BKS field in FAB RAB, C-2
See BKZ field in ALL block SUM block, C-3 to C-4
Buffer XAB, C-4
record value
See RBF field in RAB ALL block, 6-2
user DAT block, 6-13
See UBF field in RAB FAB, 6-19
Buffer pool, 3-4 KEY block, 6-63
NAM block, 6-90
Call PRO block, 6-103
operation routine, 2-13 RAB, 6-110
arguments in memory, 2-14 SUM block, 6-139
macro argument, 2-13 Code symbol
Carriage control See Code and mask symbol

Index-3

INDEX

Completion
handler, 2-17
return macro

declaring, C-2
symbol
declaring, C-3

Completion status
See STS field in
See STS field in
See STV field in
See STV field in

CONNECT operation
SCONNECT macro, 5-5
BDB requirement, 2-8
block stream, 4-12
1/0 buffer requirement, 2-7
IRAB requirement, 2-5
key buffer requirement, 2-6

FAB
RAB
FAB
RAB

record stream, 4-7 o
Context T
block stream, 4-10 RS S
record stream, 4-2 ’ﬁ &
Control block, 1-2 o

chaining, 2-12
declaring, 2-8
examining, 2-15
field
See Field
initializing, 2-8
setting up, 2-10
CRE argument to ORG$ macro,
CREATE operation, 3-5
SCREATE macro, 5-8
BDB requirement, 2-8
declaring with ORGS macro,
I1/0 buffer requirement, 2~7
IFAB requirement, 2-5
wildcard loop, 3-9
Creation date
See CDT field in DBAT block

2-3

2-3

CTX field in FAB, 2-18
offset, 6-19
summary, 6-29

CTX field in RAB, 2-18
offset, 6-110
summary, 6-114

Current-record context, 4-2

DAN field in KEY block
CREATE operation, 5-18
DISPLAY operation, 5-30
offset, 6-63)
OPEN operation, 5-70
summary, 6-67

DAT block

chaining to FAB, 2-12 to 2-13
declaring, 2-8
initializing, 2-9
summary, 6-13
Data area number
See DAN field in KEY block
Date
See DAT block
XAB

See DAT block

DBS field in KEY block

DISPLAY operation, 5-30
offset, 6-64
OPEN operation, 5-70
summary, 6-68
DECtape device, 3-1, 5-19,
5-35, 5-67, 5-78, 5-94, 5-100
DECTAPE II device, 3-1, 5-19,
5-35, 5-67, 5-78, 5-94, 5-100

DEF$SZ argument, C-1
Default extension size
See DEQ field in ALL block
See DEQ field in FAB
Default string
See DNA field in FAB
Deferred writing
See FBSDFW mask in FOP field
DEL argument to ORG$ macro, 2-3
DELETE operation, 4-9
SDELETE macro, 5-24
declaring with ORG$ macro, 2-3
Deletion, file marked for
See FBSMKD mask in FOP field
DEQ field in ALL block
CREATE operation, 5-16
DISPLAY operation, 5-29
offset, 6-2
OPEN operation,
P/0S, D-2
RSX-11, D-4
summary, 6-10
DEQ field in FAB
CREATE operation,
offset, 6-19
OPEN operation,
summary, 6-30
DEV field in FAB, 3-1 to 3-2
CREATE operation, 5-19
ERASE operation, 5-35 to 5-36
offset, 6-21
OPEN operation,
PARSE operation,
RENAME operation,
SEARCH operation,
5-100 to 5-101
summary, 6-31
Device
characteristics
See DEV field in
identifier
See DVI field in
DFIN$G argument, C-1
DFINSL argument, C-1
DFL field in KEY block
CREATE operation, 5-18
DISPLAY operation, 5-30
offset, 6~63
OPEN operation, 5-70
summary, 6-69
DID field in NAM block field
P/0S, D-2
RSX-11, D-4
Directory
wildcard context
See WDI field in NAM block

5-69

5-16

5-64, 5-67

5-67
5-78
5-94

FAB

NAM block

Index-4

wildcard operation
See NBSWCH mask in FNB field
Directory entry
replacing
See RENAME operation
Directory ,operation, 3-4
Directory operation macro
$PARSE, 5-76
SRENAME, 5-91
$SEARCH, 5-99
declaring, C-2
Directory processing, 3-1
DISCONNECT operation
SDISCONNECT macro, 5-26
block stream, 4-12
record stream, 4-8
Disk device, 3-1, 5-19, 5-35,
5-67, 5-78, 5-94, 5-100
DISPLAY operation, 3-6

$DISPLAY macro, 5-28 SR

BDB requirement, 2-8 =&
1/0 buffer requirement, 2-7
wildcard loop, 3-8
DNA field in FAB, 3-3
CREATE operation, 5-9
ERASE operation, 5-34
offset, 6-21
OPEN operation, 5-63
PARSE operation, 5-77
RENAME operation, 5-92 to 5-93
summary, 6-32
DNS field in FAB, 3-3
CREATE operation, 5-9
ERASE operation, 5-34
offset, 6-21
OPEN operation, 5-63
PARSE operation, 5-77
RENAME operation, 5-92 to 5-93
summary, 6-33
DTP field in KEY block
CREATE operation, 5-17
DISPLAY operation,
5-29 to 5-30
offset, 6-63
OPEN operation, 5-69
summary, 6-70
Duplicate key
See XBSDUP mask in FLG field
DVB field in KEY block
DISPLAY operation, 5-30
offset, 6-64
OPEN operation, 5-70
summary, 6-71
pvl field in NAM block, 3-3
CREATE operation, 5-9, 5-19
ERASE operation, 5-34 to 5-35
offset, 6-90
OPEN operation, 5-63, 5-67
PARSE operation, 5-78
RENAME operation, 5-92 to 5-94
SEARCH operation, 5-99
summary, 6-91

EDT field in NAM block
RSTS/E, D-2, D-4

INDEX

ERS$-family symbol
declaring, C-3
value, A-1 to A-17

ERASE operation, 3-6
SERASE macro, 5-33
BDB requirement, 2-8
1/0 buffer requirement, 2-7
IFAB requirement, 2-5
wildcard loop, 3-8

nonselective, 3-9
selective, 3-10

Error
assembly-time, 2-20
fatal, 2-15
handlexr, 2-17

ESA field in NAM block, 3-3, 3-8
CREATE operation, 5-9
ERASE operation, 5-34
offset, 6-90
OPEN operation, 5-64
PARSE operation, 5-77
RENAME operation, 5-93
SEARCH operation, 5-99
summary, 6-92

ESL field in NAM block
CREATE operation, 5-19
ERASE operation, 5-35
offset, 6-90
OPEN operation, 5-67
PARSE operation, 5-78
RENAME operation, 5-94
SEARCH operation, 5-99
summary, 6-93

ESS field in NAM block
CREATE operation, 5-9
ERASE operation, 5-35
offset, 6-90
OPEN operation, 5-64
PARSE operation, 5-77
RENAME operation, 5-93
summary, 6-94

Expanded string
See ESA field in NAM block

EXTEND operation, 3-6
SEXTEND macro, 5-38
BDB requirement, 2-8
I1/0 buffer reguirement, 2-7
wildcard loop, 3-8

Extended attribute block
See XAB

F$-family macro, 2-9
declaring, C-1
example, 7-3, 7-7, 7-11, 7-15

FAB
chaining to RAB, 2-13
declaring, 2-8
initializing, 2-9
summary, 6-19

FAB field in RAB, 4-1
chaining FAB to RAB, 2-13
CONNECT operation, 5-5
offset, 6-110
summary, 6-115

FABSB macro, 2-8, C-1

Index-5

example, 7-3, 7-7,
FABSBT macro, C-1
FABSE macro, 2-9
declaring, C-1
example, 7-3, 7-7,
FABOFS$ macro, C-1
FAC field in FAB
CREATE operation, 5-13
offset, 6-19
OPEN operation,
summary, 6-34

5-65

7-11,

7-11,

7-15

7-15

Facilities-declaration macro,

2-2
declaring, C-2
Fast deletion

See RBSFDL mask in ROP field

Fatal error, 2-15

FB$-family symbol
declaring, C-1

FBSBID code in BID field
summary, 6-23
value, 6-19

FBSBLK mask in RAT field
CREATE operation, 5-11
OPEN operation, 5-68
summary, 6-56
value, 6-20

FBSBLN code in BLN field
summary, 6-25
value, 6-19

FBSCCL mask in DEV field,
CREATE operation, 5-19
ERASE operation, 5-35
OPEN operation, 5-67
PARSE operation, 5-78
RENAME operation, 5-94
SEARCH operation, 5-100
value, 6-21

FBSCR mask in RAT field
CREATE operation, 5-12
OPEN operation, 5-68
value, 6-20

FBSCTG mask in FOP field
CREATE operation, 5-16
OPEN operation, 5-67
P/0S, D-2
RSX-11, D-4
summary, 6-37
value, 6-20

FBSDEL mask in FAC field
CREATE operation, 5-13
OPEN operation, 5-65
value, 6-19

FBSDFW mask in FOP field

CREATE operation, 5-14
OPEN operation, 5-66
summary, 6-38
value, 6-20

FBSDLK mask in FOP field
value, 6-20

FBSFID mask in FOP field,
3-8 to 3-10
CREATE operation, 5-9
ERASE operation, 5-34
OPEN operation,

5-63 to 5-64

INDEX

RENAME operation,
SEARCH operation, 5-101
summary, 6-39
value, 6-20

FBSFIX code in RFM field
CREATE operation, 5-10
OPEN operation, 5-68
value, 6-20

FBSFTN mask in RAT field
CREATE operation, 5-12
OPEN operation, 5-68
value, 6-20

FBSGET mask in FAC field
CREATE operation, 5-13
OPEN operation, 5-65
value, 6-19

FBSGET mask in SHR field
CREATE operation, 5-13
OPEN operation, 5-65
value, 6-19

FBSIDX code in ORG field
CREATE operation, 5-10
OPEN operation, 5-67
value, 6-20

FBSMDI mask in DEV field,
CREATE operation, 5-19
ERASE operation, 5-35
OPEN operation, 5-67
PARSE operation, 5-78
RENAME operation, 5-94
SEARCH operation, 5-100
value, 6-21

FBSMKD mask in FOP field
CREATE operation, 5-10
summary, 6-40
value, 6-20

FBSNEF mask in FOP field
OPEN operation, 5-66
RSX-11, D-4
summary, 6-41
value, 6-20

FBSNIL mask in SHR field
CREATE operation, 5-13
OPEN operation, 5-65
value, 6-19

FBSPOS mask in FOP field
CREATE operation, 5-14
summary, 6-42
value, 6-20

FBSPRN mask in RAT field
CREATE operation, 5-12
OPEN operation, 5-68
value, 6-20

FBSPUT mask in FAC field
CREATE operation, 5-13
OPEN operation, 5-65
value, 6-19

FBSREA mask in FAC field
CREATE operation, 5-13
OPEN operation, 5-65
value, 6-19

FBSREC mask in DEV field,
3-1 to 3-2
CREATE operation,
ERASE operation,

5-19

Index-6

5-92 to 5-93

3-1

5-35 to 5-36

5-67
5-78
5-94

OPEN operation,
PARSE operation,
RENAME operation,
SEARCH operation,
5-100 to 5-101

value, 6-21

FBSREL code in ORG field
CREATE operation, 5-10
OPEN operation, 5-67
value, 6-20

FBSRWC mask in FOP field
CLOSE operation, 5-3
CREATE operation, 5-14
OPEN operation, 5-66
SEARCH operation, 5-100
summary, 6-43
value, 6-20

FBSRWO mask in FOP field
CREATE operation, 5-14
OPEN operation, 5-66
SEARCH operation, 5-100
summary, 6-44
value, 6-20

FBSSDI mask in DEV field,
CREATE operation, 5-19
ERASE operation, 5-36
OPEN operation, 5-67
PARSE operation, 5-78
RENAME operation, 5-94
SEARCH operation, 5-101
value, 6-21

FBSSEQ code in ORG field
CREATE operation, 5-10
OPEN operation, 5-67
value, 6-20

FBSSQD mask in DEV field,
CREATE operation, 5-19
ERASE operation, 5-36
OPEN operation, 5-67
PARSE operation, 5-78
RENAME operation, 5-94
SEARCH operation, 5-101
value, 6-21

FBSSTM code in RFM field
CREATE operation, 5-10
OPEN operation, 5-68
value, 6-20

FBSSUP mask in FOP field
CREATE operation, 5-9
summary, 6-45
value, 6-20

FBSTMD mask in FOP field
CREATE operation, 5-10
value, 6-20

FBSTMP mask in FOP field
CREATE operation, 5-9

summary, 6-46
value, 6-20

FBSTRM mask in DEV field,
CREATE operation, 5-19
ERASE operation, 5-35
OPEN operation, 5-67
PARSE operation, 5-78
RENAME operation, 5-94
SEARCH operation, 5-100

3-2

3-2

3-1

INDEX

value, 6-21

FBSTRN mask in FAC field
CREATE operation, 5-13
OPEN operation, 5-65
value, 6-19

FBSUDF code in RFM field
CREATE operation, 5-10
OPEN operation, 5-68
value, 6-20

FBSUPD mask in FAC field
CREATE operation, 5-13
OPEN operation, 5-65
value, 6-19

FBSUPI mask in SHR field
RSTS/E, D-2, D-4

FBSVAR code in RFM field
CREATE operation, 5-10
OPEN operation, 5-68
value, 6-20

FBSVFC code in REM field
CREATE operation, 5-10
OPEN operation, 5-68
value, 6-20

FBSWRI mask in SHR field
CREATE operation, 5-13
OPEN operation, 5-65
value, 6-19

FBSWRT mask in FAC field
CREATE operation, 5-13
OPEN operation, 5-65
value, 6-19

FID field in NAM block
CREATE operation, 5-19
ERASE operation,
offset, 6-90
OPEN operation, 5-63, 5
RENAME operation, 5-94
SEARCH operation, 5-101
summary, 6-95

Field, 1-2
clearing bits in,
comparing value,
copying value from,

2-11
2-16

of FAB

5-34 to 5-35

-67

2-15

copying value into, 2-10

2-15
2-8

examining,
initializing,
mnemonic, 1-2
setting bits in, 2-11
setting up, 2-10
testing bits in, 2-17
Field-access macro
SCOMPARE, 2-16
SFETCH, 2-15
SOFF, 2-11
SSET, 2-11
$STORE, 2-10
STESTBITS, 2-17
declaring, C-2

Field-initialization macro,

declaring
ALL block, C-3
DAT block, C-3
FAB, C-1
KEY block, C-3
NAM block, C-2

Index-7

2-9

PRO block,

RAB, C-2

SUM block, C-3

Field-offset symbol

declaring

ALL block,

DAT block,

FAB, C-1

KEY block,

NAM block,

PRO block,

RAB, C-2

SUM block,

XAB, C-4
value

ALL block,

DAT block,

FAB, 6-19

KEY block, .

NAM block, 6-90 O

PRO block, 6-103 -

RAB, 6-110 =

SUM block, 6-139

File

access requested

See FAC field in
access shared

See SHR field in
alignment

See ALN field
allocation

See ALQ field

See ALQ field
area

See ALL block
bucket size

See BKS field

See BKZ field
closing

See CLOSE operation
cluster size

See RTV field in FAB
creating

See CREATE operation
creation date

See CDT field in DAT
date

See DAT block
default extension size

See DEQ field in ALL

See DEQ field in FAB
deleting

See ERASE operation
extending allocation

See EXTEND operation
identifier

See FID field in NAM block
internal file identifier

See IFI field in FAB
location

See LOC field in ALL block
locking

See FBSDLK mask in FOP field
name block

See NAM block

C-3

to
to

to
to

to

6-63

FAB
FAB

in ALL block

in block
in

ALL
FAB

in FAB

in ALL block

block

block

INDEX

opening
See OPEN operation
organization
See ORG field in FAB
owner
See PRG field in PRO block
protection
See PRO field in PRO block
record-output characteristic
See RAT field in FAB
renaming
See RENAME operation
revision date
See RDT field in DAT block
revision number
See RVN field in DAT block
specification string
default
See DNA field in FAB
parsing
See FNB field in NAM block
See FNA field in FAB
string
See FNA field in FAB
supersession
See FBS$SUP mask in FOP field
truncating
See TRUNCATE operation
wildcard context
See WCC field in NAM block
wildcard operation
See NBSWCH mask in FNB field
wildcard search
See SEARCH operation
File access block
See FAB
File operation, 3-5
File operation macro
$CLOSE, 5-3
SCREATE, 5-8
SDISPLAY, 5-28
SERASE, 5-33
SEXTEND, 5-38
SOPEN, 5-62
declaring, C-2
File processing, 3-1
File specification
fully gualified, 3-4
merged string, 3-3
parsing
See PARSE operation
wildcard, 3-7
Fill number
data bucket
See DFL field in KEY block
index bucket
See IFL field in KEY block
FIN argument to ORGS macro, 2-3
FIND operation, 4-8
SFIND macro
key access, 5-43
RFA access, 5-46
sequential access, 5-41
declaring with ORGS$ macro, 2-3
Fixed-control-size

Index-8

See FSZ field in FAB
Fixed-length record format

See FBSFIX code in RFM field
FLG field in KEY block

INDEX

CREATE operation, 5-17 to 5-18

DISPLAY operation, 5-30
offset, 6-63

OPEN operation, 5-70
summary
XBSCHG mask, 6-72
XBSDUP mask, 6-73
XBSNUL mask, 6-74
FLUSH operation
SFLUSH macro, 5-48
record stream, 4-7
FNA field in FAB, 3-3

CREATE operation, 5-9
ERASE operation, 5-34

offset, 6-21
OPEN operation, 5-63 .
PARSE operation, 5-77 o
RENAME operation, 5-92 to 539
summary, 6-35

FNB field in NAM block, 3-3,
3-8 to 3-9
CREATE operation, 5-20
ERASE operation, 5-34, 5-36

offset, 6-90

OPEN operation, 5-71

PARSE operation, 5-78

RENAME operation, 5-92,
5-94 to 5-95

~

.. H(ﬁ;*‘;- Cogets

SEARCH operation, 5-99, 5-101

summary, 6-96
NBSWCH mask,
wildcard loop, 3-8
FNS field in FAB, 3-3
CREATE operation, 5-9
ERASE operation, 5-34
offset, 6-21
OPEN operation, 5-63
PARSE operation, 5-77

6-97

RENAME operation, 5-92 to 5-93

summary, 6-36

FOP field in FAB, 3-8 to 3-10
CLOSE operation, 5-3
CREATE operation,

5-9 to 5-10, 5-14,
ERASE operation, 5-34
offset, 6-20
OPEN operation, 5-63 to 5-64,

5-66 to 5-67
RENAME operation,
SEARCH operation,

5-100 to 5-101
summary

FBSCTG

FBSDFW

FBSFID

FBSMKD

FBSNEF

FBSPOS

FBSRWC

FBSRWO

FBSSUP

5-16

6-37
6-38
6-39
6-40
6-41
6-42
6-43
6-44
6-45

mask,
mask,
mask,
mask,
mask,
mask,
mask,
mask,
mask,

5-92 to 5-93

FBSTMP mask, 6-46

FORTRAN-style carriage control

See FBSFTN mask in RAT field
FREE operation

SFREE macro,

block stream, 4-12

record stream, 4-7
Free-space list for pool, 2-19
FSz field in FAB

CREATE operation, 5-11

offset, 6-21

OPEN operation, 5-68

summary, 6-47

5-50

GET argument to ORGS macro, 2-3
GET operation, 4-8
SGET macro
key access, 5-55
RFA access, 5-59

sequential access, 5-52

declaring with ORG$ macro, 2-3

Get-space routine, 2-18
example, 7-18
macro
declaring, C-2

RMS-11-supplied, 2-4
GSAS macro, 2-18
example, 7-3, 7-7, 7-11, 7-15

1/0 buffer pool, 2-6
IAN field in KEY block
CREATE operation, 5-18

DISPLAY operation, 5-30
offset, 6-63

OPEN operation, 5-70
summary, 6-75

IBS field in KEY block
DISPLAY operation, 5-30
offset, 6-64
OPEN operation, 5-70
summary, 6-76

IDB pool, 2-5

IDX argument to ORGS$ macro, 2-3

IFAB pool, 2-5

IFI field in FAB
CLOSE operation, 5-3 to 5-4
CONNECT operation, 5-5
CREATE operation, 5-19
DISPLAY operation, 5-29
EXTEND operation, 5-38
offset, 6-19
OPEN operation, 5-66
summary, 6-48

IFL field in KEY block
CREATE operation, 5-18
DISPLAY operation, 5-30
offset, 6-63
OPEN operation, 5-70
summary, 6-77

Index
area bucket size

See IBS field in KEY block
area number
higher levels

See IAN field in KEY block

Index-9

INDEX

lowest level data type
See LAN field in KEY block See DTP field in KEY block
count duplication
See NOK field in SUM block See XBSDUP mask in FLG field
data bucket size match criterion
See DBS field in KEY block See RBSKGE mask in ROP field
data bucket VBN See RBSKGT mask in ROP field
See DVB field in KEY block name
description, obtaining See KNM field in KEY block
See DISPLAY operation null character
level count See NUL field in KEY block
See LVL field in KEY block reference
reference number See KRF field in RAB
See REF field in KEY block segment
root bucket VBN position
See RVB field in KEY block See POS field in KEY block
See KEY block size
Indexed file : See SI1Z field in KEY block
declaring with ORG$ macro, 2-3 : segment count
Indexed file organization T See NSG field in KEY block
See FBSIDX code T4 size, total
Initialization TE See TKS field in KEY block
field, 2-9 . XAB
Integer key o See KEY block
See XBS$IN2 mask in DTP field KEY block
See XBSIN4 mask in DTP field chaining to FAB, 2-12 to 2-13
Internal file identifier declaring, 2-8
See IFI field in FAB initializing, 2-9
Internal stream identifier summary, 6-63
See ISI field in RAB Key buffer pool, 2-6
IRAB pool, 2-5 Key record access
ISI field in RAB, 4-1 See RBSKEY code in RAC field
CONNECT operation, 5-6 KNM field in KEY block
DELETE operation, 5-24 CREATE operation, 5-17
DISCONNECT operation, 5-26 DISPLAY operation, 5-29
FIND operation, 5-41, 5-43, offset, 6-64
5-46 OPEN operation, 5-64
FLUSH operation, 5-~48 summary, 6-78
FREE operation, 5-50 KRF field in RAB, 4-4
GET operation, 5-52; 5-55, CONNECT operation, 5-6
5-59 FIND operation, 5-43
offset, 6-110 GET operation, 5-55
PUT operation, 5-81, 5-84 offset, 6-110
READ operation, 5-87, 5-89 REWIND operation, 5-97
REWIND operation, 5-97 summary, 6-118
summary, 6-116 KSZ field in RAB, 4-4 to 4-5
TRUNCATE operation, 5-103 FIND operation, 5-43
UPDATE operation, 5-105 GET operation, 5-55
WRITE operation, 5-107, 5-109 offset, 6-110
PUT operation, 5-85
KBF field in RAB, 4-4 summary, 6-119
FIND operation, 5~43
GET operation, 5-55 LAN field in KEY block
offset, 6-110 CREATE operation, 5-18
PUT operation, 5-85 DISPLAY operation, 5-30
summary, 6-117 offset, 6-63
Key OPEN operation, 5-70
buffer address summary, 6-79
See KBF field in RAB LCH field in FAB, 3-2
buffer size CREATE operation, 5-13
See KSZ field in RAB ERASE operation, 5-35
changes offset, 6-21
See XBSCHG mask in FLG field OPEN operation, 5-64
characteristics PARSE operation, 5-77
See FLG field in KEY block RENAME operation, 5~93

Index-10

INDEX

SEARCH operation,
summary, 6-49
LOC field in ALL block
CREATE operation, 5-16
offset, 6-2
P/0S, D-2
RSX-11, D-4
summary, 6-11
LOCO field in ALL block
offset, 6-2
LOCl field in ALL block
offset, 6-2
Locate mode
See RBSLOC mask in ROP field
Location
See LOC field in ALL block
Locking, file
See FBSDLK mask in FOP fiel
Logical channel number o
See LCH field in FAB R
LRL field in FAB g

5-100

CREATE operation, 5-18 TR
offset, 6-21 s
OPEN operation, 5-69 ’
summary, 6-50

LVL field in KEY block

DISPLAY operation, 5-30
offset, 6-63
OPEN operation, 5-70

summary, 6-80

Macro library
P/0S, D-1
RMSMAC .MLB,
RSX-11, D-3

Macro-declaration macro, 2-2

Magtape
positioning

See RBSEOF mask in ROP field

Magtape block size "

See BLS field in FAB

2-20

Magtape device, 3-2, 5-19,
5-36, 5-67, 5-78, 5-94, 5-101
ANSI, 3-2, 5-19, 5-36, 5-67,

5-78, 5-94, 5-101
P/0S, D-2

Mark-for-deletion
See FBSMKD mask in FOP field
Mask symbol
See Code and mask symbol
Mass insertion
See RBSMAS mask in ROP field
Match criterion
See RBSKGE mask in ROP field
See RBSKGT mask in ROP field
MBC field in RAB
CONNECT operation, 5-5
offset, 6-110
summary, 6-120
MBF field in RAB
CONNECT operation, 5-5
offset, 6-110
summary, 6-121
Merged string, 3-3
MRL field in KEY block

DISPLAY operation, 5-30
offset, 6-64

OPEN operation, 5-70
summary, 6-81

MRN field in FAB
CREATE operation, 5-12
offset, 6-21
OPEN operation, 5-68
summary, 6-51
MRS field in FAB
CREATE operation,
of fset, 6-21
OPEN operation,
summary, 6-52
Multiblock count
See MBC field in RAB
Multibuffer count
See MBF field in RAB
Multidirectory device
See FBSMDI mask in DEV field

5-12

5-68

N$-family macro, 2-9
declaring, C-2

example, 7-3, 7-7, 7-11, 7-15
NAM block
chaining to FAB, 2-12

declaring, 2-8
identification by
See FBS$FID mask in FOP field
initializing, 2-9
summary, 6-90
NAM field in FAB
chaining NAM block to FAB,
2-12
CREATE operation, 5-8
ERASE operation, 5-33
offset, 6-21
OPEN operation,
PARSE operation, 5-76
RENAME operation, 5-91
SEARCH operation, 5-99
summary, 6-53
NAMSB macro, 2-8, C-2
example, 7-3, 7-7,
NAMSE macro, 2-9
declaring, C-2
example, 7-3, 7-7,
NAMOFS$ macro, C-2
NBS-family symbol
declaring, C-2
NBSDEV mask in FNB field
CREATE operation, 5-20
ERASE operation, 5-36
OPEN operation, 5-71
PARSE operation, 5-78
RENAME operation, 5-94
value, 6-90
NBSDIR mask in FNB field
CREATE operation, 5-20
ERASE operation, 5-36
OPEN operation, 5-71
PARSE operation, 5-78
RENAME operation, 5-94
value, 6-90
NBSNAM mask in FNB field

5-62

7-11,

7-15

7-11, 7-15

Index-11

CREATE operation,
ERASE operation,
OPEN operation,
PARSE operation

5-20
5-36
5-71

(set if NBSQUO is set), 5-78

RENAME operation, 5-94
value, 6-90

NBSNOD mask in FNB field
CREATE operation, 5-20
ERASE operation, 5-36
OPEN operation, 5-71
PARSE operation, 5-78
RENAME operation, 5-94
value, 6-90

NB$SQUO mask in FNB field
CREATE operation, 5-20
ERASE operation, 5-36
OPEN operation, 5-71
PARSE operation, 5-78
RENAME operation, 5-94
value, 6-90

NBSTYP mask in FNB field
CREATE operation, 5-20
ERASE operation, 5-36
OPEN operation, 5-71
PARSE operation

(set if NBSQUO is set), 5-78

RENAME operation,
value, 6-90

NBSVER mask in FNB field
CREATE operation, 5-20
ERASE operation, 5-36
OPEN operation, 5-71
PARSE operation, 5-78
RENAME operation, 5-94
value, 6-90

5-94

NBSVER mask in FNB field of NAM

RSTS/E, D-2, D-4

NBSWCH mask in FNB field,
3-8 to 3-9 ’
CREATE operation, 5-20
ERASE operation, 5-34,
OPEN operation, 5-71
PARSE operation, 5-78
RENAME operation, 5-92,
SEARCH operation, 5-99,
summary, 6-97
value, 6-90
wildcard loop, 3-8

NBSWDI mask in FNB field
CREATE operation, 5-20
ERASE operation, 5-36
OPEN operation, 5-71
PARSE operation, 5-78
RENAME operation, 5-94
value, 6-90

NBSWNA mask in FNB field
CREATE operation, 5-20
ERASE operation, 5-36
OPEN operation, 5-71
PARSE operation, 5-78
RENAME operation, 5-94
value, 6-90

NBSWTY mask in FNB field
CREATE operation, 5-20

5-36

5~95
5-101

INDEX

5-36
5-71
5-78

5-94

ERASE operation,
OPEN operation,
PARSE operation,
RENAME operation,
value, 6-90
NBSWVE mask in FNB field
CREATE operation, 5-20
ERASE operation, 5-36
OPEN operation, 5-71
PARSE operation, 5-78
RENAME operation, 5-94
value, 6-90
Next-record context, 4-2
NOA field in SUM block

DISPLAY operation, 5-31
offset, 6-139
OPEN operation, 5-71
summary, 6-142
: NOK field in SUM block
©* DISPLAY operation, 5-31
4 offset, 6-139
" ¥ OPEN operation, 5-71
N summary, 6-143

'NSG field in KEY block

DISPLAY operation, 5-30
offset, 6-64
OPEN operation, 5-70
summary, 6-82

NUL field in KEY block
CREATE operation, 5-18
DISPLAY operation, 5-30
offset, 6-63
OPEN operation, 5-70
summary, 6-83

Null key character

See NUL field in KEY block
See XBSNUL mask in FLG field

NXT field in ALL block
CLOSE operation, 5-3
CREATE operation, 5-8
DISPLAY operation, 5-28
ERASE operation, 5-33
EXTEND operation, 5-38
offset, 6-2
OPEN operation,
PARSE operation,
RENAME operation,
SEARCH operation,
summary, 6-12

NXT field in DAT block
CLOSE operation, 5-3
CREATE operation, 5-8
DISPLAY operation, 5-28
ERASE operation, 5-33
EXTEND operation, 5-38
offset, 6-13
OPEN operation,
PARSE operation,
RENAME operation,
SEARCH operation,
summary, 6-17

NXT field in KEY block
CLOSE operation, 5-3
CREATE operation, 5-8
DISPLAY operation, 5-28

5-63

5-76
5-91
5-99

5-63

5-76
5-91
5-99

Index-12

INDEX

ERASE operation, 5-33 using, 2-9
EXTEND operation, 5-38 Operation macro, 1-2, 2-9
offset, 6-63 ORG field in FAB
OPEN operation, 5-63 CREATE operation, 5-10
PARSE operation, 5-76 offset, 6-20
RENAME operation, 5-91 OPEN operation, 5-67
SEARCH bperation, 5-99 summary, 6-54
summary, 6-84 ORGS macro, 2-2
NXT field in PRO block Organization, file
CLOSE operation, 5-3 See ORG field in FAB
CREATE operation, 5-8 Owner, file
DISPLAY operation, 5-28 . See PRG field in PRO block
ERASE operation, 5-33
EXTEND operation, 5-38 P$-family macro
offset, 6-103 declaring, C-2
OPEN operation, 5-63 PSBDB macro
PARSE operation, 5-76 argument computation, 2-8
RENAME operation, 5-91 format, 2-4
SEARCH operation, 5-99 .-+ PSBUF macro
summary, 6-106 Ty argument computation, 2-7
NXT field in SUM block S format, 2-4
CLOSE operation, 5-3 "% & PSFAB macro
CREATE operation, 5-8 f_ argument computation, 2-5
DISPLAY operation, 5-28 - format, 2-4
ERASE operation, 5-33 PSIDX macro
EXTEND operation, 5-38 argument computation, 2-5
offset, 6-139 format, 2-4
OPEN operation, 5-63 PSRAB macro
PARSE operation, 5-76 argument computation, 2-5
RENAME operation, 5-91 format, 2-4
SEARCH operation, 5-99 PSRABX macro
summary, 6-144 argument computation,
NXT field in XAB 2-5 to 2-6
chaining XABs to FAB, 2-12 format, 2-4
Packed decimal key
0$-family symbol See XBSPAC mask in DTP field
declaring PARSE operation, 3-5
ALL block, C-3 to C-4 SPARSE macro, 5-76
DAT block, C~-3 to C-4 BDB requirement, 2-8
FAB field offset, C-1 1/0 buffer requirement, 2-7
KEY block, C-3 to C-4 IFAB requirement, 2-5
NAM. block field offset, C-2 wildcard initialization, 3-7
PRO block, C-3 to C-4 Pool
RAB, C-2 buffer descriptor block, 2-8
SUM block, C-3 to C-4 declaring space, 2-4
XAB, C-4 free-space list, 2-19
value 1/0 buffer, 2-6
ALL block, 6-2 index descriptor block, 2-5
DAT block, 6-13 internal FAB, 2-5
FAB, 6-19 to 6-21 internal RAB, 2-5
KEY block, 6-63 to 6-64 key buffer, 2-6
NAM block, 6-90 See also Get-space routine
PRO block, 6-103 POOLS$B macro, 2-4, C-2
RAB, 6-110 POOLSE macro, 2-4
SUM block, 6-139 declaring, C-2
OPEN operation, 3-6 Pool-declaration macro, 2-4
SOPEN macro, 5-62 declaring, C-2
BDB requirement, 2-8 POS field in KEY block
I1/0 buffer requirement, 2-7 CREATE operation, 5-17
IFAB requirement, 2-5 DISPLAY operation, 5-30
wildcard loop, 3-8 to 3-10 offset, 6-64
Operation, 1-2 OPEN operation, 5-70
routine summary, 6-85
calling, 2-13 POS0 field in KEY block
return, 2-14 offset, 6-64

Index-13

P0OS1 field in KEY block
offset, 6-64

POS2 field in KEY block
offset, 6-64

POS3 field in KEY block
offset, 6-64

POS4 fieldl in KEY block
offset, 6-64

POSS5 field in KEY block
offset, 6-64

POS6 field in KEY block
offset, 6-64

POS7 field in KEY block
offset, 6-64

PRG field in PRO block
offset, 6-103
OPEN operation, 5-70
P/0S, D-2
RSX-11, D-4 .
summary, 6-107

Printer device, 3-1, 5-19,
5-~35, 5-67, 5-78, 5-94,
Private buffer pool
See BPA field in FAB
See BPS field in FAB
PRJ field in PRO block
offset, 6-103
OPEN operation,
P/0S, D-2
RSX-11, D-4
summary, 6-108
PRO block
chaining to FAB,
declaring, 2-8
initializing, 2-9
summary, 6-103
PRO field in PRO block
CREATE operation, 5-10
offset, 6-~-103
OPEN operation,
P/0S, D=2
RSX-11, D-4
summary, 6-109
PRO/RMS-11
contrasted with RSTS/E RMS-11,
D-1
contrasted with RSX-11 RMS-11,
D-3
Prologue version number
See PVN field in SUM block
Protection
file
See PRO field in PRO block
XAB
See PRO block
PUT argument to ORGS$ macro, 2-3
PUT operation, 4-9
SPUT macro
key access, 5-84
sequential access, 5-81
declaring with ORGS$ macro, 2-3
PVN field in SUM block

5-10Q

5-70

2-12 to 2-13

5-70

DISPLAY operation, 5-31
offset, 6-139
OPEN operation, 5-71

ES

. ‘\}
S

b3
i

INDEX

summary, 6-145
R$-family macro, 2-9
declaring, C-2
RAB
declaring, 2-8
initializing,
summary, 6-110
RABSB macro, 2-8,
RABSBT macro, C-2
RABSE macro, 2-9
declaring, C-2
RABOFS$ macro, C-2

2-9

C-2

RAC field in RAB, 4-3 to 4-5

FIND operation, 5-41, 5-43,
5-46

GET operation, 5-52, 5-55,
5-59

offset, 6-110

PUT operation, 5-81, 5-84

summary, 6-122

RAT field in FAB
CREATE operation,
offset, 6-20
OPEN operation,
summary, 6-55

FBSBLK mask,

RBS$-family symbol
declaring, C-2

RBSASY mask in ROP field
P/0S, D-2
RSX-11, D-4

RBSBID code in BID
summary, 6-111
value, 6-110

RBSBLL code in BLN
P/0S, D-2
RSX-11, D-4

RBSBLN code in BLN
summary, 6-113
value, 6-110

RBSEOF mask in ROP field
CONNECT operation, 5-6
summary, 6-126
value, 6-110

RBSFDL mask in ROP field

5-11
5-68

6-56

field

field

field

DELETE operation, 5-24
summary, 6-127
value, 6-110

RBSKEY code in RAC field,
FIND operation, 5-43
GET operation, 5-55
PUT operation, 5-84

value, 6-110
RBSKGE mask in ROP field,
4-4 to 4-5
FIND operation,
GET operation,
summary, 6-128
value, 6-110
RBSKGT mask in ROP field,
4-4 to 4-5
FIND operation,
GET operation,
summary, 6-129

5-44
5-56

5-44
5-56

Index-14

4-4

INDEX

value, 6-110

RBSLOA mask in ROP field
PUT operation, 5-82, 5-85
summary, 6-130
UPDATE operation, 5-105
value, 6-110

RBSLOC mask in ROP field, 4-6
CONNECT operation, 5-5
GET operation, 5-53, 5-56,
5-60
PUT operation,
summary, 6-131
value, 6-110
RBSMAS mask in ROP field
PUT operation, 5-82
summary, 6-132
value, 6-110
RBSRFA code in RAC field, 4-5
FIND operation, 5-46 2
GET operation, 5-59 L
value, 6-110 ;é‘é‘
RBSSEQ code in RAC field, 4-3% ¥
FIND operation, 5-41 N
GET operation, 5-52
PUT operation, 5-81
value, 6-110
RBSUIF mask in ROP field, 4-3
PUT operation, 5-82, 5-85
summary, 6-133
value, 6-110
RBF field in RAB,
4-11 to 4-12
CONNECT operation, 5-6
GET operation, 5-53, 5-56,
5-60
offset, 6-110
PUT operation,
5-84
READ operation, 5-88,
summary, 6-123 ’
UPDATE operation, 5-105
WRITE operation, 5-~107, 5-109
RDT field in DAT block
offset, 6-13
OPEN operation,
p/0S, D-2
RSX-11, D-4
summary, 6-18
READ operation,
SREAD macro
sequential access,
VBN access, 5-89
Readable-block context,
Record
access mode
See RAC field in RAB
blocked
See FBSBLK mask in RAT field
buffer address
See RBF field in RAB
deleting
fast
See RBSFDL mask in ROP field
See DELETE operation
fast deletion

5-82

4-6,

5-81 to 5-82,

5-90

5-71

4-12

5-87

4-10

See RBSFDL mask in ROP field
format
See RFM field in FAB
locating
See FIND operation
longest
See LRL field in FAB
reading
See GET operation
replacing
See UPDATE operation
size
See RSZ field in RAB
update existing
See RBSUIF mask in ROP field
writing
See PUT operation
Record access block
See RAB field in RAB
Record access mode, 4-3
Record context, 4-2
Record file address
See RFA field in RAB
Record length
longest
See LRL field in FAB
maximum
See MRL field in FAB
Record number
maximum
See MRN field in FAB
Record operation, 4-8
Record operation macro
SDELETE, 5-24
SFIND, 5-41,
$GET, 5-52,
spUuT, 5-81, 5-84
STRUNCATE, 5-103
SUPDATE, 5-105
declaring, C-3
Record processing,
Record stream, 4-2
Record-oriented device
See FBSREC mask in DEV field
Record-output characteristic
See RAT field in FAB
REF field in KEY block,
CLOSE operation, 5-3
CREATE operation, 5-8, 5-17
DISPLAY operation, 5-28
ERASE operation, 5-33
EXTEND operation, 5-38
offset, 6-63
OPEN operation, 5-63 to 5-64
PARSE operation, 5-76
RENAME operation, 5-91
SEARCH operation, 5-99
summary, 6-86
REL argument to ORGS$ macro, 2-3
Relative file
declaring with ORGS$ macro, 2-3
Relative file organization
See FBSREL code
Relative record number
See BKT field in RAB

5-46
5-59

5-43,
5-55,

4-2

2-13

Index-15

Remote operation
P/0S, D=2
RENAME operation, 3-5
SRENAME macro, 5-91
BDB requirement, 2-8
I1/0 buffer requirement, 2-7
IFAB reguirement, 2-5
wildcard loop, 3-8
nonselective, 3-9
selective, 3-10
Resultant string
See RSA field in NAM block
Retrieval pointer count
See RTV field in FAB
Return
operation, from, 2-14
Return from completion handler,
2-18

INDEX

RBSKGT
RBSLOA
RBSLOC
RBSMAS mask, 6-132
RBSUIF mask, 6-133
UPDATE operation, 5-105
RRN
See BKT field in RAB
RSA field in NAM block,
offset, 6-90
SEARCH operation,
summary, 6-98
RSL field in NAM block
CREATE operation, 5-20
ERASE operation, 5-36
offset, 6-90
OPEN operation,
PARSE operation,

6-129
6-130
6-131

mask,
mask,
mask,

3-8

5-99

5-71
5-77

Revision date i RENAME operation, 5-95
See RDT field in DAT block T % SEARCH operation,
Revision number S 5-99% to 5-100
See RVN field in DAT block ™ & summary, 6-99
REWIND operation ' f«RSS field in NAM block
SREWIND macro, 5-97 7 offset, 6-90
record stream, 4-8 SEARCH operation, 5-99
RFA field in RAB, 4-5 summary, 6-100
CONNECT operation, 5-6 RSTS/E RMS-~11
FIND operation, 5-42, 5-44, contrasted with PRO/RMS-11,
5-46 D-1
GET operation, 5-53, 5-57, contrasted with RSX-11 RMS-11,
5-59 D-3
offset, 6-110 RSX-11M/M-PLUS RMS-11
PUT operation, 5-83, 5-85 contrasted with PRO/RMS-11,
READ operation, 5-88, 5-90 D-3
summary, 6-124 contrasted with RSTS/E RMS-11,
WRITE operation, 5-108, 5-110 D-3
RFA record access RSZ field in RAB, 4-6,
See RBSRFA code in RAC field 4-11 to 4-12
RFM field in FAB GET operation, 5-53, 5-56,
CREATE operation, 5-10 5-60
offset, 6-20 offset, 6-110
OPEN operation, 5-68 PUT operation, 5-81, 5-84
summary, 6-57 READ operation, 5-88, 5-90
RHB field in RAB, 4-6 summary, 6-134
GET operation, 5-52, 5-56, UPDATE operation, 5-105
5-59 WRITE operation, 5-107, 5-109
offset, 6-110 RTV field in FAB
PUT operation, 5-81, 5-84 CREATE operation, 5-12
summary, 6-125 offset, 6-20
UPDATE operation, 5-105 OPEN operation, 5-68
RMSMAC.MLB macro library, 2-20 P/0S, D-1
P/0S, D-1 RSX-11, D-3
RSX-11, D-3 summary, 6-58
ROP field in RAB, 4-3 to 4-6 RVB field in KEY block
CONNECT operation, 5-5 to 5-6 DISPLAY operation, 5-30
DELETE operation, 5-24 offset, 6~64
FIND operation, 5-44 OPEN operation, 5-70
GET operation, 5-53, 5-56, summary, 6-87
5-60 RVN field in DAT block
offset, 6-110 P/0S, D-2
PUT operation, 5-82, 5-85 RSX-11, D-4
summary RVN field in NAM block
RBSEOF mask, 6-126 RSTS/E, D-2, D-4
RBSFDL mask, 6-127
RBSKGE mask, 6-128 SEARCH operation

Index-16

$SEARCH macro, 5-99
BDB requirement, 2-8
I1/0 buffer requirement, 2-7
IFAB requirement, 2-5
wildcard loop, 3-8
explicit, 3-10
implicit, 3-8 to 3-9

SEQ argument to ORGS$ macro, 2-3

Sequential block access

See BKT field in RAB
Sequential device

See FB$SQD mask in DEV field
Sequential file

INDEX

rewinding
See REWIND operation

Stream operation

block stream, 4-12

record stream, 4-7
Stream operation macro

SCONNECT, 5-5

SDISCONNECT, 5-26

$FLUSH, 5-48

$FREE, 5-50

SREWIND, 5-97

declaring, C-3
Stream record format

declaring with ORGS macro, 2-3 See FBSSTM code in RFM field

Sequential file organization
See FBSSEQ code
Sequential record access

See RBSSEQ code in RAC field

Shared access
See SHR field in FAB

SHR field in FAB .

CREATE operation, 5-13
offset, 6-19

OPEN operation, 5-65

READ operation, 5-88, 5-90
summary, 6-59

WRITE operation, 5-107, 5-109

Single-directory device
See FBSSDI mask in DEV field
S1Z field in KEY block
CREATE operation, 5-17
DISPLAY operation, 5-30
offset, 6-64
OPEN operation, 5-69
summary, 6-88
SIZ0 field in KEY block
offset, 6-64
S1Z1 field in KEY block
offset, 6-64
S1z2 field in KEY block
offset, 6-64
S1Z3 field in KEY block
offset, 6-64
S1Z4 field in KEY block
offset, 6-64
S1Z5 field in KEY block
offset, 6-64
S17Z6 field in KEY block
offset, 6-64
S1Z7 field in KEY block
offset, 6-64
Stream, 4-1
connecting
See CONNECT operation
disconnecting
See DISCONNECT operation
internal identifier
See ISI field in RAB
unlocking bucket
See FREE operation
writing buffers
See FLUSH operation
Stream context
advancing to next volume
See NXTVOL operation

String key
See XBSSTG mask in DTP field
STS field in FAB, 2-14, 3-4
CLOSE operation, 5-4
CREATE operation, 5-20
DISPLAY operation, 5-31
~4 ERASE operation, 5-36
EXTEND operation, 5-39
offset, 6-19
OPEN operation, 5-71
PARSE operation, 5-79
RENAME operation, 5-95
SEARCH operation, 5-101
summary, 6-60
STS field in RAB, 2-14, 4-1
CONNECT operation, 5-7
DELETE operation, 5-25
DISCONNECT operation, 5-26
FIND operation, 5-42, 5-44,
5-47
FLUSH operation, 5-48
FREE operation, 5-50
GET operation, 5-53, 5-57,
5-60
offset, 6-110
PUT operation, 5-83, 5-85
READ operation, 5-88, 5-90
REWIND operation, 5-97
summary, 6-135
TRUNCATE operation, 5-103
UPDATE operation, 5-106
WRITE operation, 5-108, 5-110
STV field in FAB, 2-14, 3-4
CLOSE operation, 5-4
CREATE operation, 5-20
DISPLAY operation, 5-31
ERASE operation, 5-36
EXTEND operation, 5-39
offset, 6-19
OPEN operation, 5-71
PARSE operation, 5-79
RENAME operation, 5-95
SEARCH operation, 5-101
summary, 6-61
STV field in RAB, 2-14, 4-1
CONNECT operation, 5-7
DELETE operation, 5-25
DISCONNECT operation, 5-26
FIND operation, 5-42, 5-44,
5-47
FLUSH operation, 5-48

Index-17

5-50
5-53,

FREE operation,
GET operation,
5-60

offset, 6-~110

PUT operation, 5-83,

READ operation, 5-88,

REWIND ‘operation, 5-97

summary, 6-136

TRUNCATE operation, 5-103

UPDATE operation, 5-106

WRITE operation, 5-108, 5-110
SUS-family symbol ’

declaring, C-3

value, A-1
Success

handler,
SUM block

chaining to FAB,

declaring, 2-8

initializing, 2-9

summary, 6-139
Summary XAB

See SUM block
Supersession

See FBS$SUP mask in FOP field
Symbol-declaration macro, 2-2
SYN argument to RABSB macro

P/0S, D-2

RSX-11, D-4

5-57,

5-85
5-90

2-17

2-12

Temporary file
See FBSTMP mask in FOP field
Terminal device, 3-1, 5-19,
5-35, 5-67, 5-78, 5-94, 5-100
See FBSTRM mask in DEV field
TKS field in KEY block
DISPLAY operation, 5-30
offset, 6-64
OPEN operation,
summary, 6-89
TRUNCATE operation, 4-10
$TRUNCATE macro, 5-103

5-70

UBF field in RAB, 4-6, 4-11
CONNECT operation, 5-5
GET operation, 5-52, 5-56,
5-59
offset, 6-110
PUT operation, 5-82, 5-84
READ operation, 5-87, 5-89

summary, 6-137
Undefined record format

See FBSUDF code in RFM field
Unit-record device, 3-1, 5-19,

5-35, 5-67, 5-78, 5-94, 5-100
UPD argument to ORGS$ macro, 2-3
UPDATE operation, 4-9

SUPDATE macro, 5-105

declaring with ORGS macro, 2-3

User buffer
address
See UBF field in RAB
size
See USZ field in RAB
USZ field in RAB, 4-6, 4-11

INDEX

CONNECT operation, 5-5

GET operation, 5-52, 5-56,
5-59

offset, 6-110

PUT operation, 5-82, 5-84

READ operation, 5-87, 5-89

summary, 6-138
Variable-length record format

See FBSVAR code in RFM field
VBN

See BKT field in RAB
VBN access

See BKT field in RAB
VFC carriage control

See FB$PRN mask in RAT field
VFC header buffer address

See RHB field in RAB
VFC record format

See FBSVFC code in RFM field
Virtual block number

See BKT field in RAB

WCC field in NAM block
offset, 6-90
PARSE operation, 5-77
SEARCH operation, 5-99,
summary, 6-101
WDI field in NAM block
offset, 6-90
PARSE operation,
SEARCH operation,
summary, 6-102
Wildcard
directory context
See WDI field in NAM block
file context
See WCC field in NAM block
operation
See NBSWCH mask in FNB field
Wildcard loop, 3-7
Writable-block context, 4-10
WRITE operation, 4-13
SWRITE macro
sequential access,
VBN access, 5-109

5-101

5-77

5-99, 5-101

5-107

X$-family macro, 2-9
declaring
ALL block, C-3
DAT block, C-3
KEY block, C-3
PRO block, C-3
SUM block, C-3
XAB
chaining to FAB, 2-12
See also ALL block
See also DAT block
See also KEY block
See also PRO block
See also SUM block
XAB field in FAB
chaining XABs to FAB,
CLOSE operation, 5-3
CREATE operation, 5-8

2-12

Index-18

DISPLAY operation, 5-28
ERASE operation, 5-33

EXTEND operation, 5-38
offset, 6-21
OPEN operation, 5-63
PARSE operation, 5-76
RENAME ‘operation, 5-91
SEARCH "operation, 5-99
summary, 6-62
XABSB macro, 2-8, C-3
XABS$SBT macro, C-4
XABSE macro, 2-9
declaring, C-3
XABOFS macro, C-4
XB$-family symbol
declaring
ALL block, C-3 to C-4
DAT block, C-3 to C-4
KEY block, C-3 to C-4
PRO block, C-3 to C-4
SUM block, C-3 to C-4
XAB, C-4
XBSALL code in COD field,
summary, 6-9
value, 6-2
XBSBN2 code in DTP field
CREATE operation, 5-17
DISPLAY operation, 5-29
OPEN operation, 5-69

value, 6-63

XBSBN4 code in DTP field
CREATE operation, 5-17
DISPLAY operation, 5-29
OPEN operation, 5-69
value, 6-63

XBSCHG mask in FLG field
CREATE operation, 5-17

DISPLAY operation, 5-30
OPEN operation, 5-70
summary, 6-72 ’
value, 6-63

XBSCTG mask in AOP field
CREATE operation, 5-16
OPEN operation, 5-69
P/0S, D-2
RSX-11, D-4
summary, 6-6
value, 6-2

XBSCYL mask in ALN field
P/0S, D-2
RSX-11, D-3 to D-4

XBSDAT code in COD field,
summary, 6-16
value, 6-13

XBSDTL code in BLN field
summary, 6-14
value, 6-13

XBSDUP mask in FLG field
CREATE operation,

DISPLAY operation, 5-30
OPEN operation, 5-70
summary, 6-73

value, 6-63

XBSHRD mask in AOP field
P/0S, D=2

2-8

INDEX

5-17 to 5-18

RSX-11, D-4
XBSHRD mask in AOP field of
ALL block
RSTS/E, D-2, D-4

XBSIN2 code in DTP field
CREATE operation, 5-17
DISPLAY operation, 5-29
OPEN operation, 5-69
value, 6-63

XBSIN4 code in DTP field
CREATE operation, 5-17
DISPLAY operation, 5-29
OPEN operation, 5-69
value, 6-63

XBSINI mask in FLG field
DISPLAY operation, 5-30
OPEN operation, 5-70
value, 6-63

XBSKEY code in COD field,
summary, 6-66
value, 6-63

XBSKYL code in BLN field
summary, 6-65
value, 6-63

XBSLAL code in BLN field
summary, 6-8
value, 6-2

XBSLBN mask in ALN field
CREATE operation, 5-16
P/0S, D-2
RSX-11, D-3 to D-4
summary, 6-4
value, 6-2

XBSNUL mask in FLG field
CREATE operation, 5-18

DISPLAY operation, 5-30
OPEN operation, 5-70
summary, 6-74

value, 6-63

XBSPAC code in DTP field
CREATE operation, 5-17
DISPLAY operation, 5-29
OPEN operation, 5-69
value, 6-63

XBSPRL code in BLN field
summary, 6-104
value, 6-103

XBSPRO code in COD field,
summary, 6-105
value, 6-103

XBSSML code in BLN field
summary, 6-140
value, 6-139

XB$STG code in DTP field
CREATE operation, 5-17
DISPLAY operation,

5-29 to 5-30
OPEN operation, 5-69
value, 6-63

XB$SUM code in COD field,
summary, 6-141
value, 6-139

XBSVBN mask in ALN field
P/0S, D-2
RSX-11, D-3 to D-~4

Index-19

2-8

2-8

2-8

INDEX

XBAOFS$ macro, C-4
XBDOF$ macro, C-4
XBKOF$ macro, C-4
XBPOF$ macro, C-4
XBSOFS$ macro, C-4

Index-20

RSTS/E RMS-11
Macro Programmer’s Guide
AA-P507A-TC
READER’'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the

company’s discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

[] Assembly language programmer
[0 Higher-level language programmer
(] Occasional programmer (experienced)
[] User with little programming experience
[J Student programmer
(1] Other (please specify)
Name Date
Organization
Street
City State Zip Code

or Country

- — — ~— DoNot Tear- Fold Here and Tape — — — — — —_—— = - —_—— - =

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

b=

POSTAGE WILL BE PAID BY ADDRESSEE
o Ls
\

i

B3

wr

BSSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD

NASHUA, NEW HAMPSHIRE 03061

— — — DoNotTear-FoldHere — — — — — — — — — — o - = — — -

No Postage
Necessary
if Mailed in the
United States

Cut Along Dotted Line

