RSTS/E
Task Builder
Reference Manual

Order No. AA-5072C-TC

March 1983

This document describes the RSTS/E Task Builder (TKB), and tells how
you use it to link programs.

OPERATING SYSTEM AND VERSION: RSTS/E V8.0
SOFTWARE VERSION: RSTS/E V8.0

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Cor-
poration. Digital Equipment Corporation assumes no responsibility for any
errors that may appear in this document.

The software described in this document is furnished under a license and
may be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip-
ment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1981, 1982, 1983 by Digital Equipment Corporation.
All Rights Reserved.

The postage-paid READER’S COMMENTS form on the last page of this
document requests your critical evaluation to assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

Enanuan ™ DECwriter RSTS

DIBOL RSX
MASSBUS UNIBUS DECmate
PDP : VAX DECsystem-—10
P/0OS VMS DECSYSTEM-20
Professional VT DECUS
DEC Rainbow Work Processor

Commercial Engineering Publications typeset this manual using DIGITAL’s
TMS-11 Text Management System.

4/83-14

Contents

Preface

Summary of Technical Changes

Chapter 1

Part |

Chapter 2

introduction

1.1

1.2
1.3

What the Task Builder Does.

111
1.1.2

Linking
Overlays

Relationship to the DCL LINK Command
Organization of This Manual

Getting Started

Building Programs

2.1

2.2

2.3

24

JobArea L
2.1.1 Job Space for Your Programs
212 Your Program Within the Job Area
Libraries
221 Disk Libraries.
2.22 Resident Libraries.
2.23 Comparison of Disk and Resident Libraries
How to Run the Task Builder
231 CommandLine,
2.3.2 Multiline Command. L.
233 Options
234 TheLIBR and RESLIB Options
235 TheCLSTROption
Examples of Simple Builds
2.4.1 BASIC-PLUS-2 Examples Including Disk, Resident, and

Cluster Libraries
2.4.2 PDP-11 COBOL Example Including Two Disk Libraries. . .
2.43 COBOL-81 Examples Including Disk Library and

Cluster Libraries
2.4.4 DIBOL Example Including Disk and Resident Libraries . . .
245 FORTRAN-77 Example Including One Disk Library.
2.4.6 MACRO Examples Including Resident Libraries.

Page
xi

xiii

1473

Part Il

Chapter 3

Chapter 4

Chapter 5

w

Overlays

The Basic Concepts

3.1 What Are Overlays?.o

3.2 Constructing an ODL File: ROOT, FCTR, and .END Commands . . .

321 The ROOTCommand.
3.2.2 The FCTRCommand
323 The ENDCommand
3.24 Flexibility of the Overlay Description Language

3.3 Using an ODL File When YouRunTKB
3.4 The MemoryMapFile.
3.5 Designing Overlays Intelligently: Considering Space and Time. . . .

3.5.1 Considering Space: Two Possibilities for Example
3.5.2 Considering Time: Reducing Disk Acecess

3.6 Logical Independence of Items in Overlay Structure
3.7 Resolution of Global Symbols

3.71 What Isa Global Symbol?
3.7.2 Undefined, Multiply-Defined, and Ambiguously-Defined
Global Symbolso
3.7.3 How Routines Are Inserted from Libraries.
3.7.4 The Default Library.

Co-Trees: Another Way to Save Space

4.1 The Co-Tree Structure.« v v v v v oo
4.2 Using the NAME Command for a Co-Tree Root
4.3 Designing the Most Space-Saving Co-Trees
4.4 Co-Trees and High-Level Languages.

4.4.1 Sample Source Program and Subprograms.
4.4.2 Outlining the Sample Program’s Call Structure
4.4.3 Compiling the Sample Program and Subprograms
4.4.4 First Build for Sample Program: Putting Subprograms in

the Root. e
445 Second Build for Sample Program: Using a Co-Tree
4.4.6 Third Build for Sample Program: Restructured Tree and

Library Routinesin Root
447 FurtherTips o .o
44.8 Using Co-Tree Techniques with the Default Library

The Autoload Indicator

5.1 What Are Autoload Vectors?
59 Where Are Autoload Vectors Really Needed?
5.3 How to Request Specific Autoload Vectors

5.3.1 Asterisk Before File Names and Program Sections.
5.3.2 Asterisk Before Items in Parentheses
53.3 Asterisk Before Names Defined in .FCTR Commands
5.3.4 Asterisk Before Names Defined in .NAME Command

5.4 Example of Specific Autoload Vector Requests
5.5 The Effects if You Make a Mistake

3-11

Chapter 6 Working with Program Sections

Part il

Chapter 7

Part IV

Chapter 8

Chapter 9

6.1
6.2
6.3
6.4
6.5
6.6

What Is a Program Section? 6-1
Allocating Space for Global Program Sections 6-2
How the Task Builder Orders Program Sections 6-3
The Task Builder’'s PSECT Command. 6-5
Using .NAME to Make a Data PSECT Autoloadable. 6-5
More About Program Sections: Deciphering the Map. 6—6

System Aspects

Building Your Own Memory-Resident Areas

7.1
7.2
7.3

7.4

7.5

What is a Resident Area? 7-1
The Steps in Creating a Resident Area 7-1
How to Build Memory-Resident Areas 7-2
7.3.1 Building Position-Independent Resident Areas. 7-2
7.3.2 Building Absolute Resident Areas 7-4
Resident Areas with Memory-Resident Overlays. 7—4
7.4.1 Specifying Memory-Resident Overlays. 7-5
7.4.2 Building Memory-Resident Overlays. 7-6
Building Your Own Clusterable Libraries 7-8
7.5.1 Rule 1: Position-Independent or Built for Same Address7-9
7.5.2 Rule 2: Use Memory-Resident Overlays 7-9
7.5.3 Rule 3: No Required Parameters on the Stack 7-10
7.5.4 Rule 4: No Trap or Asynchronous Entry 7-10
7.5.5 Rule 5: No Calls to Routines in Another Cluster Library. . . 7-10

Reference Section

Task Builder Command Line Format

8.1

8.2
8.3
8.4
8.5
8.6

Running the Task Builder. 8-1
811 CommandLine 8-1
81.2 Multiline Command. 8-3
Options 84
Multiple BuildsinOneRun 84
Indirect Command Files. 84
CommentsinLines 8-7
File Specifications.o 8-17

Task Builder Switches

9.1
9.2
9.3
94
9.5
9.6
9.7

/CC — Concatenated Programs and Subprograms 9-3
/CO — Build a Common Block Shared Region. 94
/DA — Debugging Aid 9-5
/DL — Default Library 9-7
/FP — Floating Point. 9-8
/FU —FullSearch 9-9
/HD — Header 9-10

9.8

9.9

9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22
9.23
9.24

/LB —Library File 9-11

/LI — Build a Library Shared Region 9-13
/MA — Map Contentsof File 9-14
/MP —OverlayMap 9-15
/MU — Multiuser Program 9-16
/NM — No Diagnostic Messages 9-17
/PI — Position Independent L. 9-18
/PM — Post-Mortem Dump 9-19
/RO —ResidentOverlay 9-20
/SG — Segregate Program Sections 9-21
/SH —Short Map. e 9-22
/SP — Spool Map Output 9-27
/SQ — Sequential. 0oL 9-28
/8S — Selective Search 9-29
/TR — Traceable Program 9-31
/WI — Wide Listing Format 9-32
/XTn:] —Exiton Error 9-33

Chapter 10 Task Builder Options

Chapter 11

vi

10.1
10.2
10.3
104
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17
10.18
10.19
10.20
10.21
10.22
10.23
10.24
10.25
10.26

ABORT — AborttheBuild 10-3
ABSPAT — AbsolutePatch 104
ACTFIL — Number of Active Files 10-5
ASG — Assign Deviceso 10-6
CLSTR — Cluster Libraries 10-7
COMMON — Access System Common Block. 10-10
EXTSCT — Extend Program Section 10-11
EXTTSK — Extend Task Memory. 10-12
FMTBUF — Format Buffer Size. 10-13
GBLDEF — Define a Global Symbol. 10-14
GBLINC — Include Global in STBFile. 10-15
GBLPAT — Global Relative Patch. 10-16
GBLREF — Global Symbol Reference 10-17
GBLXCL — Exclude Global from .STBFile 10-18
HISEG — Define High Segment. 10-19
LIBR — Access System-Owned Resident Library. 10-20
MAXBUF — Maximum Record Buffer Size 10-22
ODTV — ODT SST Vector 1023
PAR — Partition for Resident Area 10-24
RESCOM — Access Resident Common Block 10-25
RESLIB — Access Resident Library 10-26
STACK — Declare Stack Size 10-28
TASK — Program Name for SYSTAT 10-29
TSKV — Task SST Vector. 10-30
UNITS — Maximum Number of Units or Channels 10-31
WNDWS — Number of Address Windows 10-32

Overlay Description Language (ODL)

111
11.2
11.3

ODL Command Line 11-1
The . END Command v ... 11-2
The FCTR Command v v .. 11-2

114
11.5
11.6
11.7

The NAME Command«
The .PSECT Command
The .ROOT Command. v v v v oo v
Indirect Command Files.

Appendix A Error Messages

Appendix B Task Builder Input Data Formats

B.1

B.2
B.3
B.4

B5

B.6

Global Symbol Directory

B.1.1 Module Name.
B.1.2 Control Section Name
B.1.3 Internal Symbol Name
B.1.4 Transfer Address
B.1.5 Global Symbol Name
B.1.6 PSECT Name« v v v v .
B.1.7 Program Version Identification

End of Global Symbol Directory
Text Informationo
Relocation Directory. Lo

B.4.1 Internal Relocation
B.4.2 Global Relocation
B.4.3 Internal Displaced Relocation
B.4.4 Global Displaced Relocation
B.4.5 Global Additive Relocation
B.4.6 Global Additive Displaced Relocation
B.4.7 Location Counter Definition.
B.4.8 Location Counter Modification.
B.49 Program Limits
B.4.10 PSECT Relocation.
B.4.11 PSECT Displaced Relocation.
B.4.12 PSECT Additive Relocation
B.4.13 PSECT Additive Displaced Relocation
B.4.14 Complex Relocation
B.4.15 Additive Relocation

Internal Symbol Directory.

B.5.1 Overall Record Format
B.5.2 TKB-Generated Records (Type 1)

B.5.2.1 Start-of-Segment Item Type (1)
B.5.2.2 Task Identification Item Type (2)
B.5.2.3 Autoloadable Library Entry Point Item Type (3) . .

B.5.3 Relocatable/Relocated Records (Type2)

B.5.3.1 Module Name Item Type (1)
B.5.3.2 Global Symbol Item Type (2).
B.5.3.3 PSECTItem Type(3)
B.5.3.4 Line-Number Or PC Correlation Item Type (4). . .
B.5.3.5 Internal Symbol Name Item Type (6).

B.5.4 Literal Records (Type4).
End of Module« . oo

vii

Appendix C Executable File Structure

C.1 Label Block Group C-2
C2 Header C-5
C21 LowCoreContext. C-8
C.3 Overlay Data Structure C-10
C.3.1 Autoload Vectors C-10
C.3.2 Segment Descriptor C-11
C.3.3 Window Descriptor C-13
C.34 Region Descriptor C-14
C4 RootSegment. C-14
C.5 OverlaySegments. C-14

Appendix D Reserved Symbols

Appendix E Improving Task Builder Performance

E.1 Evaluating and Improving Task Builder Performance E-1
E.1.1 The Task Builder Work File. E-1
E.1.2 Input File Processing E-4

Appendix F Revectoring Cluster Libraries

F.1 Sample Vector Code Table. F-3
F.2 GBLXCL and GBLINCOptions F-3
Index
Figures
1-1 The Steps in Creating a Program 1-1
1-2 The Task Builder Resolves Global References 1-2
1-3 The Task Builder Constructs the Overlays You Specify 14
2-1 You Tell the Task Builder Which Libraries to Include 2-1
2-2 Job Area: Two User Programs. 2-3
2-3 Disk and Resident Libraries. 2-6
2—4 Active Page Registers (APRs) for Your Job Area. 2-13
2-5 Clustered Resident Libraries 2-14
3-1 The ODL File Is Your “Blueprint” for Overlays 3-1
3-2 Outlining the Call Structure 3-2
3-3 A Simple Overlay in Memory 3-3
3-4 Overlay Description of Memory Allocation Map 3-7
3-5 Outline of First Call Structure for Example 3-8
3-6 Outline of Second Call Structure for Example 3-9
3-7 Separate Paths in an Overlay Structure 3-11
3-8 Resolving Global Symbols 3-13
3-9 Resolving Global Symbols from Disk Libraries. 3-14
4-1 Co-Trees Can Save Even More Space Than Simple Overlays 4-1
4-2 PuttingAandBintheRoot. 4-2

viii

4-3

4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
5-1
6-1
6-2
6-3
7-1
7-2
9-1
B-1
B-2
B-3
B4
B-5
B-6
B-7
B-8
B-9
B-10
B-11
B-12
B-13
B-14
B-15
B-16
B-17
B-18
B-19
B-20
B-21
B-22
B-23
B-24
B-25
B-26
B-27
B-28
B-29
B-30
B-31
B-32
B-33
B-34
B-35
B-36

A Co-Tree Structure.o 42

How a Co-Tree Is Loaded During Program Execution 44
Co-Trees Save More Space When Pieces Are the Same Size 4-5
Call Structure for Sample Program 4-8
First Build Structure for Sample Program 4-9
First Page of Map File for Sample Program 4-10
Structure for Second Build of Sample Program. 4-10
Excerpts from Map File for Second Build of Sample Program. 4-12
Sketch of the Structure for Second Build of Sample Program. 4-14
Structure for Third Build of Sample Program 4-15
First Page of Map File for Third Build of Sample Program. 4-16
The Easiest Way to Use Autoload Indicators. 5-1
The Task Builder Works with Program Sections 6-1
Allocating Space for Global Program Sections 6-3
Allocation of Program Sections for IN1, IN2, and IN3 64
Memory-Resident Overlays 7-5
Using a “Null” Memory-Resident Overlay 7-9
Memory Allocation (Map) File. 9-22
General Object Module Format B-2
GSD Record and Entry Format B-3
Module Name Entry Format. B4
Control Section Name Entry Format. B-5
Internal Symbol Name Entry Format B-5
Transfer Address Entry Format B-6
Global Symbol Name Entry Format B-7
PSECT Name Entry Format. B-8
Program Version Identification Entry Format B-9
End-of-GSD Record Format e e B-9
Text Information Record Format. . .&. B-10
Relocation Directory Record Format B-12
Internal Relocation Entry Format B-13
Global Relocation Entry Format. B-13
Internal Displaced Relocation Entry Format. B-13
Global Displaced Relocation Entry Format. B--14
Global Additive Relocation Entry Format B-14
Global Additive Displaced Relocation Entry Format B-15
Location Counter Definition. B-15
Location Counter Modification. B-16
Program Limits Entry Format. B-16
PSECT Relocation Entry Format B-17
PSECT Displaced Relocation Entry Format B-18
PSECT Additive Relocation Entry Format. B-18
PSECT Additive Displaced Relocation Entry Format. B-19
Complex Relocation Entry Format. e B-21
Additive Relocation Entry Format. B-21
General Format of Al ISD Records B-22
General Format of TKB—Generated Record B-23
Format of TKB—Generated Start-of-Segment Item (1) B-23
Format of TKB—Generated Task Identification tem (2) B-24
Format of an Autoloadable Library Entry Point Item (3). B-24
Format of a Module Name Item Type (1). B-25
Format of a Global Symbol Item Type (2) B-26
Format of a PSECT Item Type 3) B-27
Format of a Line-Number or PC Correlation Item Type (4). B-27

B-37 Format of an Internal Symbol Name Item Type (5) B-28

B-38 Format of a Literal Record Type. B-29
B-39 End-of-Module Record Format. B-29
C-1 TaskImageonDisk. C-1
C-2 Label Block Group C-3
C-3 Task Header Fixed Part. C-6
C-4 Task Header Variable Part Cc-7
C-5 Vector Extension Area Format C-9
C-6 Task-Resident Overlay Data Base C-10
C-7 Autoload Vector Entry L. C-10
C-8 Segment Descriptoro, C-11
C-9 SampleTree C-12
C-10 Segment Linkage Directives. C-12
C-11 Window Descriptor C-13
C-12 Region Descriptor L C-14
F-1 Overview of How Inter-Cluster-Library Calls Work F-2
Tables
2-1 Disk Libraries Used with RSTS/E. 24
6-1 Program Sections for IN1,IN2, andIN3. 64
9-1 Task Builder Switches. 9-1
9-2 Input Files for /SS Example. 9-29
10-1 Task Builder Options 10-1
D-1 Task Builder Reserved Global Symbols D-2
D-2 PSECT Names Reserved by the Task Builder D-2

Preface

This manual tells how to use the RSTS/E Task Builder to link your com-
piled or assembled programs and subprograms into an executable program
file to run on RSTS/E.

On RSTS/E systems, your programs must be linked by the Task Builder if
they were written in languages for the compilers listed below. Note that
this manual is current for the versions shown in parentheses. Information
about using the Task Builder may change for subsequent versions.

Compiler (Version)

BASIC~-PLUS-2 (V2.0)
FORTRAN-77 (V4.1)
PDP-11 COBOL (V4.4)
COBOL-81 (V2.0
DIBOL (V4.5)

This manual also applies to the MAC assembler, Version M1200, for
MACRO programs.

Although you do not need to be a computer expert to use this manual, you
will have an easier time if you are familiar with using programs and sub-
programs, and if you have a general understanding of computer languages.

Organization of this Manual

This manual is organized in four parts, as indicated by the divider sheets
preceding each section. Part I, “Getting Started,” tells how to do simple
(non-overlaid) builds. Part II, “Overlays,” consists of four chapters. These
four chapters tell how to specify overlay structures for your program, and
proceed from the simple to the complex.

You need to read Part III, “System Aspects,” only if you need to build what
are called “resident areas” for your system. Resident areas are libraries of
routines or data that are to be shared by more than one user program.

xi

Part IV, “Reference Section,” provides some new information not covered in
the preceding sections. (The Task Builder provides many features tailored
for some special-purpose linking for your program.) However, the general
intent of the reference section is to give you quick access to rules for speci-
fying Task Builder commands, switches, and options, and for describing the
overlay structure. Chapters in this section are printed on paper in alternat-
ing color, so that you can find each chapter quickly.

Appendix A lists and describes the Task Builder error messages. Remain-
ing appendixes give information supplementing the body of the book.

Conventions Used in this Manual

xii

In general command format descriptions, uppercase indicates commands
that you must type as shown. Lowercase indicates variables that you sup-
ply. For example:

.ROOT structure

In the examples of Task Builder commands, the part of the command that
you type is shown in red. The Task Builder’s responses and prompts are
printed in black. For example:

ENTER OPTIONS:
TRKBXUNITS=8

MK-00565-00

Summary of Technical Changes
The following is a summary of changes to this manual for RSTS/E V8.0:

® Throughout the manual, examples are updated to reflect changes result-
ing from BASIC-PLUS-2 V2.0. Note that RSX directive emulation code
must be installed in your RSTS/E monitor to use the BASIC-PLUS-2
V2.0 compiler. See Section 2.1.1.

®* A program running under the RSX run-time system can expand to
(32K-32) words if the monitor contains RSX directive emulation code.
The manual is updated as necessary to include this information.

¢ Several disk library names have changed, and new disk libraries have
been added. See Table 2-1.

® A new section compares disk and resident libraries. See Section 2.2.3.

¢ Additional resident libraries can cluster for RSTS/E V8.0. See Sections
2.3.5 and 10.5.

¢ Memory allocation maps are updated in Chapters 3, 4, 6, and 9.

* BASIC-PLUS-2 V2.0 programs no longer use the HISEG option. See
Section 10.15.

¢ Additional attribute parameters are available for use with the .PSECT
command. See Section 11.5.

¢ Changes to error messages are described in Appendix A.
¢ Record formats in Appendix B are corrected.

® A new section, describing Internal Symbol Directory record formats, has
been added. See Section B.5.

® Figure C-2 is updated to include new task and resident library data.
® A new section describes window descriptors. See Section C.3.3.
® A new section describes region descriptors. See Section C.3.4.

¢ Table D-1 is updated to include additional global symbols reserved by the
Task Builder.

® Table D-2 is updated to include additional PSECT names reserved by the
Task Builder.

xiil

Chapter 1
Introduction

You need to use TKB, the Task Builder, if you write programs on RSTS/E
systems in BASIC-PLUS-2, PDP-11 COBOL, COBOIL-81, DIBOL,
FORTRAN-77, or the MACRO assembly language using the MAC
assembler.

The compilers and assemblers associated with these languages translate
the programs and subprograms that you have written (called source code)
into machine instructions (object code). The Task Builder applies the final
touches, converting the object code produced by the compilers to code that
can be executed by the computer. Figure 1-1 shows the steps involved in
creating a program.

Figure 1-1: The Steps in Creating a Program

MAIN.SRC MAIN.OBJ PROGRAM.TSK
PROGRAM 0 011 O[(RSTS/E INFORMATION)
' 1000 (STACK)
A= BC 101 2000
END
(MAIN CODE)
SUB:SRC 1567
: SUB. OBJ 2263
y (LIBRARY ROUTINES)
SUB-END 0 1110 2375
101 . (SUB CODE)
(DCREATING 263
THE (LIBRARY ROUTINES)
(2)COMPILING
SOURCE OR
LINKING
(EDT OR OTHER ASSEMBLING /\\@
EDITOR) (TKB)
(MAC, FORTRAN
p—— BP2, DIBOL,
COBOL)
FE— W |
AT
MK-00566—00

1-1

1.1 What the Task Builder Does

1-2

The Task Builder handles two basic functions: linking and producing
overlays.

1.1.1 Linking

Linking is necessary because you seldom write programs as one unit. It is
easier to work with programs that are written as modules — programs and
subprograms — that you can separately design, code, debug, and maintain.

Even if you code your program as one main program, with no separately
assembled or compiled subprograms, every compiler translates some source
statements into calls to subroutines kept in libraries. For example, all the
compilers generate calls to library subroutines to perform I/0 or do mathe-
matical calculations. Libraries are provided with the system and with the
compilers available with RSTS/E systems.

The Task Builder links these separate modules — your main program,
subprograms, and library routines — together in the order you specify,
resolving any references that cross module boundaries. For example,
Figure 1-2 shows a call to SUB1 from the program MAIN.

Figure 1-2: The Task Builder Resolves Global References

OCTAL
ADDRESS
0
MAIN
CALL SUBt1
11216
11216
SUB SUB1
SUBEND
RUN $TKB
TKB>MAIN =MAIN, SUB1, LB:F4POTS /LB
TKB>// MK-00567-00

Introduction

The command to the Task Builder (the line after RUN $TKB) says that
these two modules are to be linked together. In addition, any routines
necessary from the FORTRAN library are to be linked with these two mod-
ules. To simplify, the figure shows only the linking of MAIN and SUBI.
Part of the linking process involves generating the proper succession of
addresses. As Figure 1-1 showed, the compilers and assemblers generate
what are called “relative addresses”; the first address of each module
(MAIN and SUB1) is numbered 0 at the compilation stage. When the Task
Builder links modules, it changes the addresses of the second and following
modules to begin where the addresses of the previous module left off. So,
the final addresses for the linked program, as assigned by the Task Builder,
range upward from 0 in succession.

The second aspect of linking is resolving references to what are called
“global symbols.” At compile time, for example, MAIN’s reference to SUB1
cannot be resolved. SUBI is flagged as a global reference (somewhere in the
“world outside of MAIN”) when MAIN is compiled. Likewise, when SUB1 is
compiled, it is again flagged as a global symbol; it will serve as an entry
point from the “outside world.”

The Task Builder, as shown in Figure 1-2, keeps track of the addresses
assigned to global symbols and substitutes the address for the entry point of
SUBLI into the call in MAIN. Then, when the program is run, and the call is
executed, control will transfer to address 11216, the entry point for SUB1.

1.1.2 Overlays

The second necessary service that the Task Builder provides is a means to
construct overlays. The amount of memory from which programs can be
executed is limited on PDP-11 computers to 32,000 words. On RSTS/E
systems, for reasons described in Chapter 2, there are further limitations. If
your program is too large to fit in the space available, you must specify how
you want it overlaid — such that sections of code and data can be called
into memory at different times (the new sections “overlaying” the old).

Figure 1-3 shows the concept behind overlays. The Task Builder links both
the modules SUB1 and SUB2 to start at address 15,726. The Task Builder
then inserts code into MAIN such that, when MAIN’s call to SUB2 is exe-
cuted, SUB2 will replace SUB1, called and executed previously. SUB1 does
not have to be the same length as SUB2, but both will be linked to start at
the same address.

The figure also shows something called the “high segment” in high address
space. This code is the main reason your program does not have the full
32,000 words available on PDP-11 systems; it is discussed in Chapter 2.

Introduction 1-3

Figure 1-3: The Task Builder Constructs the Overlays You Specify

RUN $ TKB
TKB> PROG =0VR/MP
TKB>//

(THE ‘MAP FILE’
OVR.ODL CONTAINS

AN OVERLAY MAIN
DESCRIPTION)

15,726

{21,322

(32 K) MK-00568-00

1.2 Relationship to the DCL LINK Command

You can use the DCL LINK command to link your programs, as described
in the RSTS/E DCL User’s Guide. Like all DCL commands, the LINK
command is somewhat simpler to use, compared to typing a RUN command
to execute TKB. However, the LINK command does not offer all the
features and flexibility of the Task Builder. Note that the DCL LINK com-
mand does not work any faster than running TKB; LINK also runs the
Task Builder to perform the requested action.

1.3 Organization of This Manual

14

The Task Builder provides many features for tailoring your programs to
meet specific requirements. Most Task Builder users, however, simply need
to link their main program and subprograms (if any) with one or more
DIGITAL or user-provided libraries. Part 1 of this manual, “Getting
Started,” tells all you should need to know to get a program built with the
right libraries to run on a RSTS/E system. The two types of libraries (disk
libraries and memory-resident libraries) are explained, along with detail on
how to link them with your program.

Introduction

Part II of this manual deals with overlays. Chapter 3 tells how to do over-
lays when you want to describe the overlay structure in terms of programs
and subprograms. The key statements of the Overlay Description Language
(ODL) are described and examples given. Chapter 4 extends the discussion
of overlays; it describes a special overlay structure, called co-trees. Chapter
5 explains the autoload indicator, a symbol used in the Overlay Description
Language, and tells how you can use this symbol to save some space in your
program. Chapter 6 describes overlays from another point of view: when
you are working with units called “program sections.” Special ODL com-
mands are available to deal with these units; they are described and more
examples given.

Part III of this manual (Chapter 7) describes system aspects of Task
Building: how to build your own resident library, for example.

Part IV of this manual is organized for use as a reference. Chapters 8, 9,
and 10 describe the full Task Builder command format, switches, and
options, respectively. Chapter 11 describes the Overlay Description Lan-
guage in detail.

Error messages provided by the Task Builder are described in Appendix A.
Appendixes B and C describe internal data formats used by the Task
Builder and the format of the executable file produced by the Task Builder.
Appendix D lists and describes global symbols and program section names
reserved for use by the Task Builder. Appendix E describes how to improve
Task Builder performance. Appendix F describes techniques for Revector-
ing Cluster Libraries.

Introduction 1-5

PART |
Getting Started

Chapter 2
Building Programs

This chapter tells how to build nonoverlaid programs. How large can a
program be before it must be overlaid? The answer depends on the lan-
guage you used to write your program; Section 2.1 discusses some specifics.
The library routines built into your executable program also affect its size
(Figure 2-1). Section 2.2 names and describes the disk libraries currently
provided by DIGITAL for the various languages. Section 2.3 discusses the
Task Builder command line in general and Section 2.4 gives specific exam-
ples for building programs written in each of the various languages.

Figure 2-1: You Tell the Task Builder Which Libraries to Include

MAIN
FAPOTS
W@
c_/<> 3 SUB1
219
@ | »n
RUN $TKB
TKB>MAIN, SUB1, LB: FAPOTS/LB
TKB> //

MK-00569-00

2-1

2.1 Job Area

As mentioned in Chapter 1, the first limitation on your program’s size is
imposed by the hardware. The PDP—11 computer handles instructions and
data in terms of a “16-bit word.” A 16-bit word can reference 2'° (65,536,
bytes, or 32,768 words. So, 32K words is the maximum area of computer
memory you can work with at one time.

Within this 32K—word “job area,” some amount of memory is taken up by
code that, among other things, loads your executable program from disk
when it is run. This code — called a “run-time system”— occupies some
portion of the high address space in the 32K~word job area.

2.1.1 Job Space for Your Programs

BASIC-PLUS-2, PDP-11 COBOL, COBOIL-81, DIBOL, FORTRAN-77,
and MACRO programs assembled with the MAC assembler use the RSX
run-time system. This run-time system occupies 4K words of your user job
area, while it is loading your executable program. However, this run-time
system can “disappear” once your program is loaded, if the system manager
has installed what is called “RSX directive emulation” in the RSTS/E
monitor.

RSX directive emulation code emulates part of the DIGITAL RSX-11M
executive directives. If RSX was installed as part of the RSTS/E monitor,
the loader portion of the RSX run-time system loads your executable pro-
gram and disappears from the user job area. Your program can then either
extend to 32K words or map to resident libraries to give you the 32K~word
job area for your program. Note that RSX directive emulation code must be
installed on your system in order to use the BASIC-PLUS-2 V2.0 compiler.
(Compiled programs do not require RSX emulation in the monitor.)

If the system manager has installed the RSTS/E system without RSX direc-
tive emulation in the monitor, the directive emulation code is handled by
part of the run-time system. Because this emulation is necessary to
programs written in COBOL, DIBOL, FORTRAN, and MACRO, the run-
time system cannot disappear.

A display produced by the RSTS/E SYSTAT utility shows that the RSX
run-time system itself occupies less than 4K words of memory:

RUN $SYSTAT
Qutput Status to? /R

Run-Time Svstems:

Name Ext Dev Size Users Comments

BASIC BAC DR1: 13(1B)K 0 Temps Addr:398: KBM, CSZ

RT11 Say DR1: 428K 0 Temps Addr:2358, KBM, CSZs» EMT:C
R8X TEK DR1: 3(2B)K 0 TemPps Addr:276, KBM

+
+

+

The SYSTAT also shows how much memory you have available for your
program (28K).

2-2 Building Programs

3
o

2.1.2 Your Program Within the Job Area

The Task Builder constructs your executable program so that it fits within
the job area in the low address space, beneath the run-time system (see
Figure 2-2). Note the way your job area is constructed of various regions in
physical memory.

For example, Figure 2—-2 shows physical memory addresses for user pro-
gram 2 that are actually higher than the so-called “hiseg” or run-time
system. Yet the Task Builder, when it builds a program, constructs
addresses for the program as though it operated within one 32K-word job
area in memory. (The RSTS/E monitor resolves this difference by using
APRs).

The job area is sometimes called “virtual address space,” because it appears
to you that your program and its associated run-time system reside in a
contiguous 32K-word area. As Figure 2-2 shows, this is not actually the
case in physical memory.

Figure 2-2: Job Area: Two User Programs

PHYSICAL MEMORY

VIRTUAL ADDRESS
SPACE

JOB1 o
aK
8K
12K
16K
20K
24K
28K
.

USER PROGRAM

JOB2 o
4K
8K

12K
16K
20K
24K
28K
32K

- USER PROGRAM -

MK-00570-00

Building Programs 2-3

2.2 Libraries

As mentioned in Chapter 1, every compiler translates some source state-
ments into calls to subroutines. These subroutines are kept in what are
called “libraries.” DIGITAL supplies libraries of subroutines used with
each language. Because the Task Builder has no way of knowing the source
language you used, you must tell it what libraries contain routines that are
referenced by your program. Two general types of libraries may be avail-
able on your system: disk libraries and resident libraries.

2.2.1 Disk Libraries

The libraries listed in Table 2—1 are currently shipped with RSTS/E and its
associated languages. Note that the table is current for the versions of the
software mentioned in the Preface. As new versions of languages are
released, library names and contents may change. In addition, other prod-
ucts available with RSTS/E can have associated libraries, and your own
installation may have generated its own libraries.

One way to find out what libraries are available is to run DIRECT for the
system library device (LB:) with a wildcard file name and a file type of
.OLB. (OLB stands for object library.) For example:

DIR LB:*,0LB

Name Tvp Size Prot DrR3:L{1,11
SYSLIB.OLB 220 < 40
RMSLIB,.OLB 300 o 40>
BPZOTS.0LB 225 < 40
CcoBLIB.OLB 178 40

Table 2—1 describes some of the libraries in this account that your program
may use.

Table 2-1: Disk Libraries Used with RSTS/E

Disk Library
Name Description

SYSLIB.OLB The system library. Contains many routines used by programs writ-
ten in MACRO (for the MAC assembler) and the higher-level
languages. The Task Builder always searches this library to resolve
undefined symbols. You do not need to specify it in a Task Builder
command line. '

RMSLIB.OLB Contains routines needed if you use RMS (Record Management Ser-
vices) on RSTS/E systems.

RMSDAP.OLB Contains routines needed for network record access through RMS on
RSTS/E systems.

BP20TS.OLB Contains routines needed to run your BASIC-PLUS-2 program
under the RSX run-time system. The RSX run-time system takes up
4K words of the user job area, but disappears once it loads your
program if RSX emulation is in the monitor.

(continued on next page)

24 Building Programs

Table 2-1:

Disk Libraries Used with RSTS/E (Cont.)

Disk Library
Name

Description

DBLLIB.OLB

DBRLIB.OLB

COBLIB.OLB

COBOVR.OLB

C81CIS.OLB

C81LIB.OLB

FDVDBG.OLB

FDVLIB.OLB

F4POTS.OLB
F4PRMS.OLB

Contains routines needed to run your DIBOL program if it uses the
DIBOL Management System (DMS) for /0. Note that you must also
declare a resident library (DBLRES) if you use this disk library. See
Section 2.3.4 for information on how to specify resident libraries.

Contains routines needed to run your DIBOL program if you use the
Record Management System (RMS) for I/0. Note that you must also
declare a resident library (DBRRES) if you use this disk library. See
Section 2.3.4 for information on how to specify resident libraries.

Contains routines needed to run your PDP-11 COBOL program. If
you use this library rather than COBOVR.OLB, your program will
take more memory but will run faster.

Contains routines needed to run your PDP-11 COBOL program if it
is overlaid. You use this library if you use the PDP-11 COBOL
segmentation facility. However, if you use this library rather than
COBLIB.OLB, your program will run slower, as the routines are
called in as needed and overlay each other.

Contains routines needed to run your COBOL-81 program if the pro-
gram was compiled with the /CIS switch. This is the normal default
if your computer has the Commercial Instruction Set (CIS) option.

Contains routines needed to run your COBOL-81 program if the pro-
gram was compiled with the /—CIS switch. This is the normal default
if your computer does not have the Commercial Instruction Set (CIS)
option.

Contains routines needed if you use the FMS form driver with debug
mode support.

Contains routines needed if you use the FMS form driver without
debug mode support.

Contains routines needed to run your FORTRAN-77 program.
Contains routines for FORTRAN-77 programs using RMS (Record

Management Services) for 1/0.

2.2.2 Resident Libraries

In addition to disk libraries, you may also have to work with resident
libraries on RSTS/E systems. “Resident” means residing in computer mem-
ory. The system manager defines libraries as resident so that they can be
shared by more than one user. Instead of building routines into your pro-
gram (as is done with disk libraries), you use a copy of the library. The copy
is resident in memory as long as you or someone else is using it.

The Task Builder links your program to appropriate routines in the resi-
dent library by a technique called “mapping”. Mapping is the process of
accessing different logical areas of memory. With the mapping technique,
many programs can use routines from the same space in computer memory.

Building Programs 2-5

2-6

The system manager usually defines a library to be resident when it is
heavily used. In such cases, less overall computer memory is taken by a
resident library than by having each program include its own copy of
routines from the library.

Figure 2-3 shows the difference between disk and resident libraries. For
disk libraries, the Task Builder takes a copy of each routine that you refer-
ence in your program and builds it into your program. Note that a copy of
RTNA has been built into both PROG1 and PROG?2 in this figure. However,
both programs can reference a resident library from the same area of
physical memory.

Figure 2-3: Disk and Resident Libraries

PROG1 PROG2

RTN C
RTN B
DISK LIBRARY: COPIES OF ROUTINES ARE BUILT INTO EACH PROGRAM.
PROG1 PROG2
PHYSICAL
MEMORY

- RESIDENT
 LIBRARY

- RESIDENT
1 meRaRy

RESIDENT LIBRARY: MANY PROGRAMS CAN USE ONE COPY OF THE LIBRARY IN MEMORY.

MK~00571-00

Building Programs

You need to be aware of the distinction between disk and resident libraries
because the Task Builder commands that cause a link to resident libraries
differ from those for disk libraries. You can tell what resident libraries are
on your system by running the SYSTAT program. One section of the sys-
tem status report is headed “Resident Libraries:”. You can request just this
section of the report by using the /L switch of SYSTAT. For example:

RUN $SYSTAT
OQuteput Status to? /L
Resident Libraries:

Name Frot Acct Size Users Comments
RMSRES < 42% DR1:L 0,1] 4K i Temp: Addr:733
RMSLBB < 42 DR1:L 01 1 4K 1 Temp» Addr:737
RMSLBA < 42> DR1:L 01 1 4K 0 Temp» Addr:741
RMSLBC < 42 DR1:L Gl 1 3K 0 Non-Res» Addr:743
RMSLBD < 42 DrR1:L G4l] 2K 0 Temp» Addr:748
RMSLBE <« 42> DR1:L 01 1 4K 0 Temp» Addr:730
RMSLBF < 42 DRi:LC 0Ol 1 4K 0 Temps Addr:754
BP2ZRES « 42> DRi:L Ol 1 19K 0 Non-Ress» Addr:760
BPZ2SML < 42 DRi:L 01] BK (¢} Teme s Addr:7789

This example shows resident libraries. The RMS libraries are supplied with
all RSTS/E systems. They contain routines providing RMS (Record Man-
agement Services) for input/output. The two BASIC resident libraries,
BP2RES and BP2SML are components of the layered product
BASIC-PLUS-2 and are discussed further in the next section.

The Task Builder allows your program to access up to five resident libraries
on RSTS/E systems.

2.2.3 Comparison of Disk and Resident Libraries

Resident libraries require a large amount of physical memory. However, if
many tasks run at the same time, resident libraries reduce the total
amount of physical memory required by these tasks.

For example, BP2RES contains most of the BASIC Object Time System
(OTS), that is, most of the library routines supplied with BASIC-PLUS-2.
It occupies 19K words of physical memory and takes 8K words of virtual
address space in your program. BP2SML contains a subset of the most
commonly used BASIC routines. It uses 8K words of physical memory and
8K words of virtual address space. Even though BP2RES takes up 19K
words of physical memory, that would be less than, say 5 running copies of
a program each using 4K words of BP2 routines built into each copy from a
disk library (20K words total).

Therefore, the main advantage of using resident libraries is that their code
can be shared by many programs. In addition, task-building is much faster
when using resident libraries because the Task Builder does not have to
access the library on disk as often. If you program in BASIC-PLUS-2, note
that the resident libraries (BP2SML and BP2RES) do not contain the entire
OTS, therefore, most BASIC-PLUS-2 programs will reference some entry
points within the disk library BP20OTS.OLB.

Building Programs 2-7

2.3 How to Run the Task Builder

2-8

To run the Task Builder, type:
RUN $TKB

Or, if the system manager has installed TKB as a concise command lan-
guage (CCL) command, you can simply type:

TKB

The Task Builder responds with the prompt TKB> and you type a com-
mand. If TKB has been installed as a CCL. command, you can type TKB and
the command on the same line:

TKB command

We describe the format of Task Builder commands below. Note that the
Task Builder allows much flexibility in the way you can specify commands.
The following sections show only the simplest and most direct way. For a
detailed description of all the features available, including command file
input to the Task Builder, see Chapter 7.

2.3.1 Command Line

The Task Builder produces up to three files as output from its analysis of
the object files you specify as input. The general form of the command is
shown below in lowercase letters:

RUN $TKB

TKB>task-file,map-file,symbol-file = object,....,object

TKB>//

where:

task-file is the file specification you give to name the executable pro-
gram file produced by the Task Builder. If you do not want
this file produced, simply type the comma. If you leave off the
file type from the file specification, the Task Builder supplies
a default type of .TSK.

map-file is the file specification you give to name the memory map file

produced by the Task Builder. This map can be very useful if
you are doing overlays; it is not particularly helpful other-
wise. See Chapters 3, 4, and 6, where overlays are discussed,
for a description of the map file.

If you do not wént this file, simply type the comma delimiter.
If you leave off the file type from the file specification, the
Task Builder supplies a default type of .MAP.

Building Programs

symbol-file

object,...

is the file specification you give to name the symbol-table file
produced by the Task Builder. This file is necessary if you
want to build your own resident library. It is also used by the
COBOIL-81 symbolic debugger. It is not useful otherwise. See
Chapter 7 for a description of the symbol file.

If you do not want this file, simply leave out the file specifica-
tion. If you leave off the file type from the file specification,
the Task Builder supplies a default type of .STB.

are the object files produced from the assembly or compila-
tion of your program and subroutines, plus disk library files
containing subroutines needed to complete the program.
These files are input to the Task Builder. The Task Builder
combines these object files in the order you specify, and
resolves cross-references to produce the task file.

You signify disk library files by appending the switch /LB to
the file specification. This notifies the Task Builder that the
file named is a library to be searched. The library is searched
for routines that resolve references to undefined global sym-
bols in all files to the left of the library file in the input list.
So, be sure to put the library to the right of all object files
that may contain references to routines in the library. (Usu-
ally, you put the library or libraries at the end of the input
list.)

If you do not specify file types, the Task Builder assumes a
default type of .OBJ for object files and a default type of .OLB
for object libraries.

If you give a device or project-programmer number in a file
specification in the input list (to the right of the equal sign),
it applies to all file specifications to the right in the list.

Consider a build using MACRO object programs, for example. Assuming
that TKB has been installed as a concise command language (CCL) com-
mand, a suitable command line is:

TKB EXE1+EXEl+EXEL1=0BJ! »OBJ2+LB:RMSLIB/LB

The Task Builder constructs the executable file EXE1.TSK, the map file
EXE1.MAP and the symbol table file EXE1.STB from the files OBJ1.0BJ,
OBJ2.0BJ, and relevant modules from the library LB:RMSLIB.OLB. (The
relevant modules are those referenced in your program. You may have
referred to them in source statements, or the MAC assembler may have
translated source statements into calls referring to this library.)

To omit the map file, type:

TKB EXEl s EXEL1=0BJ1.,0BJZ2LB:RMSLIB/LB

Building Programs 2-9

2-10

To produce only the executable file, type:

TRB EXE1=0B8J1,0BJ2+LB:RMELIB/LB

To produce no output files, type:

TKB=0BJ1 ,0BJZ,,LB:RMSLIB/LB

The example above is useful if you are running the Task Builder only to see
error messages; that is, a diagnostic run.

Note how project-programmer numbers and device designators work when
given for a file specification in the input list:

TKkB=0BJ1 ,[2,24310BJ2,0BJ3+L.B:RMSLIB/LBMYLIB/LB

For this command, the Task Builder would search for the file OBJ1.0BdJ in
the user’s account and for the files OBJ2.0BJ and OBJ3.0BJ in the account
[2,243]. The project-programmer number also applies to the library; that is,
the Task Builder would look on the system library disk for a file
RMSLIB.OLB under the account [2,243]. Likewise, since the device name
LB: also applies to MYLIB, the Task Builder looks on the system library
disk under account [2,243] for the library file MYLIB.OLB.

If you do not want this to happen, respecify the project-programmer number
and device that you want to apply to remaining files. The simplest way to
accomplish this is to assign a logical name to the account [2,243] and use
the system-wide logical SY: to “get back to” your account on the public disk
structure. For example:

ASSIGN SY:[2,2431 JOHN
Ready

ThB=0BJ1 » JOHN:0BJZ+8Y:0BJ3,,L.B:RMSLIB/LB 8SY:MYLIB/LB

This can also be accomplished using multiline commands, as shown in the
following section.

2.3.2 Multiline Command

Because you can specify any number of input files to the Task Builder, you
sometimes need to use more than one line to enter a command.

If you type RUN $TKB or just TKB, so that the Task Builder prompts with
TKB>, it continues prompting for input until it receives a line consisting
only of two slash characters (//). For example:

RUN $TKB
TKB>IMG1 »IMGL,IMG1=8Y:(2,2431FILE!
TKB:FILEZ »FILE3,LB:RMSLIB/LB
TKB>MYLIB/LB

TKB://

Building Programs

The prior sequence produces the same result as the single-line command:

TKB IMG1,IMGI1,IMG1=JOHN:FILEY, SY :FILEZ»FILE3 LB:RMSLIB/LB,SY:MYLIB/LB

You must specify the output file specifications and the equal sign on the
first line. You can begin or continue input file specifications on subsequent
lines.

2.3.3 Options

You may need to specify options to build a particular program. An option
modifies the action taking place during the build. To include options, you
must use the multiline format as shown below. When you type a line con-
sisting of a single slash (/), the Task Builder assumes that the last input
file has been entered and prompts for options by displaying “ENTER
OPTIONS:” and another “TKB>” prompt.

RUN $TKB
TKB>command
TKB>continued-command
TKB>/

ENTER OPTIONS:
TKB>option = value:value
TKB>//

The format for options is shown here because some languages require cer-
tain options for a Task Build. If your language manual set includes a user’s
guide, you will probably find helpful pointers about necessary or particu-
larly useful options for your language. Table 10-1 in the Reference Section
of this manual gives an overview of all the options available for the Task
Builder. The options are then described in detail in the remainder of that
chapter.

The options you will probably find most useful regardless of source lan-
guage are RESLIB and LIBR. You need to use these options if you need to
link to one or more resident libraries. Since resident libraries are
commonly used, these options are discussed in the following section. Some
examples of these and other options are shown in Section 2.4.

2.3.4 The LIBR and RESLIB Options

You can link to a maximum of five resident libraries using the Task
Builder on RSTS/E systems. With either the LIBR or RESLIB option, you
specify that you want to link your program to one resident library. The
choice between LIBR or RESLIB depends on whether the library is
“system-owned” or “user-owned.”

The LIBR option declares that your program intends to access a “system-
owned” resident library. “System-owned” simply means that the file
containing the library is located in the library account (LB:). This can be
any account on any disk, as assigned by the system manager.

Building Programs 2-11

2-12

“User-owned” means that the library can be in some account other than
LB:. With the RESLIB option, you specify the disk containing the resident
library files.

The formats for the options are:
LIBR =name:access-codel:apr]
RESLIB = file-specification / access-code[:apr]

Note that with the LIBR option, you name only the resident library. The
Task Builder looks for the appropriate files (name.STB and name.TSK) on
the system library disk (LLB:) when it is building the code necessary to load
the resident library. With the RESLIB option, you specify a complete file
specification. This names the device, account, and file name of the execut-
able file to be loaded. You do not specify the file type. The Task Builder
uses the executable file and the symbol table file for the library, and
requires that they have file types of .TSK and .STB.

The access-code is either RW (read/write) or RO (read-only), indicating
how your program intends to access the library. (It will be RO for
DIGITAL- provided resident libraries such as RMSRES.)

The apr parameter is an integer in the range of 1 to 7 that specifies the first
Active Page Register (APR) reserved for the library. If you leave this
parameter off, the Task Builder assigns the highest APR it can to the
resident library.

NOTE

There is one special case where you must specify an APR. If
your program is to run under the RSX run-time system and
your system manager has not installed the RSX run-time
system as “disappearing,” that is, with RSX directive emula-
tion as part of the RSTS/E monitor, you must specify the APR
to build with the resident library properly. Otherwise, the
Task Builder builds the program as though the resident
library were in the “high segment” occupied by the run-time
system. This will cause errors at run time.

It is not really necessary to understand Active Page Registers to under-
stand or use the APR modifier. Think of your 32K—word user job area as
divided into eight parts of 4K words each, numbered from 0 through 7 (see
Figure 2—4). Your program occupies one or more of the lowest-numbered
segments. The run-time system occupies one or more of the highest-
numbered segments (unless it is the RSX run-time system installed with
RSX emulation in the monitor itself).

You can “map” a resident library into an area in between your program
and the run-time system. The map must begin on a 4K—word boundary. For
example, suppose your program takes 6K words and the run-time system
takes 4K words of memory. You can map up to 20K words of resident
library into your job, beginning with APR 2.

Building Programs

Figure 2—4

APR

Active Page Registers (APRs) for Your Job Area

RUN-TIME SYSTEM

MK-01047-00

2.3.5 The CLSTR Option

The CLSTR option is useful if you need to use more than one resident
library. CLSTR lets multiple resident libraries share the same virtual
address space in your program. However, not all resident libraries avail-
able with RSTS/E can take advantage of this feature. Those that can are:

BP2RES

BP2SML

C81CIS

C81LIB

FDVRDB

FDVRES

RMSRES

DAPRES

Clusterable resident library for BASIC-PLUS-2
programs.

Clusterable resident library (a subset of BP2RES) for
BASIC-PLUS-2 programs.

Clusterable resident library for COBOL-81 programs com-
piled with the /CIS switch (normal default if your com-
puter has the Commercial Instruction Set (CIS) option).

Clusterable resident library for COBOL-81 programs com-
piled with /—CIS switch (normal default if your computer
does not have the Commercial Instruction Set (CIS)
option).

Clusterable resident library for the FMS form driver with
debug mode support.

Clusterable resident library for the FMS form driver with-
out debug mode support.

Clusterable resident library for RMS-11 that supports
sequential, relative, and indexed file operations.

Clusterable resident library for network record access
through RMS.

Building Programs 2-13

2-14

Refer to the documentation for your specific languages to see whether their
libraries can cluster.

Figure 2-5 illustrates the concept of cluster libraries. In the figure, three
libraries form a cluster for the user program: LIB1, LIB2, and LIB3. LIB1 is
the “default library;” that is, it is mapped into the high end of the user
program’s address space before any calls have been made to any library at
execution time.

Figure 2-5: Clustered Resident Libraries

USER USER
VIRTUAL PHYSICAL VIRTUAL PHYSICAL
ADDRESS SPACE MEMORY ADDRESS SPACE MEMORY
Lst I LIB1
USER USER
(detautt
PROGRAM b PROGRAM Cram)

LIB2 LiB2
Time 1 Time 2
USER USER
VIRTUAL PHYSICAL VIRTUAL PHYSICAL
ADDRESS SPACE MEMORY ADDRESS SPACE MEMORY
BT LIB1
USER e USER
PROGRAM » (ﬁgfgfy") PROGRAM (ﬁsgfy“)

LIB3

LIB2

Time 3

MK-01048-00

At “time 2” in the figure, a call is executed to a routine in LIB3. LIB1 is
unmapped from the high address space, and LIB3 is mapped, so the routine
can be executed. When control passes from the library routine back to the
user program (time 3), LIB3 is unmapped, and LIB1 (the default
library) is mapped again. At time 4, a call is executed to a routine in LIB2;
again, LIB1 is unmapped and LIB2 is mapped to the high address space.

Building Programs

This process of mapping and unmapping proceeds throughout execution of
the user program. The resident libraries forming a cluster share the same
high address space in the job area (virtual address space). They take much
less space from the user program than they would if all three libraries were
mapped to the virtual address space at the same time.

To use cluster libraries, you use the CLSTR option. The format is:
CLSTR =default-library,library-2,...,library—5:access-code[:apr]

The first library listed in the CLSTR option is the default library. Because
of the way clustering works, only certain libraries can be default libraries.
If you want to build libraries to be clusterable, the techniques are described
in Chapter 7. If you simply want to use libraries in a resident library
cluster, the DIGITAL—supplied libraries are designed so the language li-
brary can always serve as the default library.

Thus, for the resident libraries listed previously, you can use either
BP2SML or BP2RES for BASIC-PLUS-2 programs, or C81CIS or C81LIB
for COBOL~81 programs. As a secondary library in the cluster, you can use
FDVRES and/or RMSRES.

Up to five resident libraries can form a cluster. A cluster for DIGITAL—
supplied libraries must occupy the upper 8K words of your address space. If
your site builds its own clusterable libraries, however, these libraries can
occupy their own separate cluster, as long as the limit of five resident
libraries for each task build is not exceeded. (You can have no more than
five libraries involved in clusters.)

Thus, you can cluster either of two variations of the COBOL—-81 library
(C81CIS or C81LIB) with the FMS library (FDVRES) and/or the RMS
library (RMSRES), and any two of your own clusterable libraries either in
the same cluster or in a separate cluster in lower virtual address space.

Likewise, you can cluster BP2RES or BP2SML with the RMS (RMSRES)
and/or FMS (FDVRES) libraries, along with any two of your own cluster-
able libraries.

The access-code is either RW (read /write) or RO (read-only). This code is an
attribute of the library itself. That is, you could not select RW (indicating
your program can read from or write to the library) if the library has been
built RO. The access-code is RO for DIGITAL—provided resident libraries
such as BP2RES, FDVRES, C81CIS, and C81LIB. For example:

TKB*CLSTR=CB1CIS +FDYRES yRMSRES: RO

The APR parameter is an integer in the range of 1 to 7 that specifies the
first Active Page Register (APR) reserved for the clustered libraries. If you
leave this parameter off, the Task Builder assigns the highest APR it can to
the cluster (APRs 6 and 7 for the command line above).

Building Programs 2-15

Currently, DIGITAL-supplied libraries are built to use the top two APRs
available to the cluster:

1. If the language library is part of a cluster, the cluster will occupy
APRs 6 and 7. (You need not specify an APR parameter.)

2. If the language library is not part of a cluster and occupies the top
two APRs, such as the BP2SML resident library, the cluster will
occupy APRs 4 and 5. (You specify an APR parameter of 4.) This
description applies mainly to users who are building their own clus-
ter libraries.

3. If a run-time system occupies the top APR (7), the cluster will occupy
APRs 5 and 6. (You specify an APR parameter of 5.)

2.4 Examples of Simple Builds

2-16

The examples in this section illustrate building programs in various lan-
guages and with various kinds of libraries. Note that in all the examples,
an executable program file is requested. You might want to request the
other files once to see what they look like. For these simple builds, how-
ever, neither the map file nor symbol table file are particularly useful. Map
files become useful when you are working with overlays; they are described
in Chapters 3, 5, and 6. Symbol table files are chiefly useful when you are
constructing your own resident libraries (Chapter 7), or when you are using
the COBOL-81 symbolic debugger.

2.4.1 BASIC-PLUS—-2 Examples Including Disk, Resident, and
Cluster Libraries

Note that RSX directive emulation code must be installed on your system
in order to use BASIC-PLUS-2 V2.0.

To build a BASIC-PLUS-2 program using disk and resident libraries, you
can type:

RUN $TKB

TKB>*PROG=0BJ1 ,0BJ20BJ3+L.B:BP2DTS/LB
TKB =/

ENTER DPTIONS:

TKB*LIBR=BPZSML : RO
TRKB>LIBR=RMSRES:RO

TKB>UNITS=12
TKB*AGG=5Y:5:6:7:8:9:10:11:12
TEB*EXTTSK=512

TKB >/ /

The first line tells the Task Builder to create the task image file, named
PROG.TSK. The object programs are OBJ1.0BJ, OBJ2.0BJ, and
OBJ3.0BJ. The /LB switch references the BP20TS library. LB: is the sys-
tem library device, and the Task Builder assumes a default file type of
.OLB for libraries.

Building Programs

You end the command line and indicate that you want to enter options by
typing a single slash (/) on a separate line. The Task Builder responds with
ENTER OPTIONS: and another TKB> prompt. You then enter the LIBR
option, designating BP2SML as the resident library to be mapped
read-only. RMSRES is the RMS resident library; it also is to be mapped
read-only. (Symbols not resolved by the resident library, BP2SML, will be
resolved by BP20OTS.OLB.)

The UNITS option declares the maximum number of I/0 channels (units)
that your program will use. The ASG option relates these channels to
devices. For instance, the example shows a maximum of twelve channels
are used by the program. Defaults are accepted for channels 1 through 4.
Channels 5 through 12 are the public structure (SY:). EXTTSK allocates an
additional 512 words of memory to your program. You then end Task
Builder input by typing two slash characters (//) on a separate line.

This BASIC-PLUS-2 example shows the use of cluster libraries:

RUN $TKB
TKB>MYPROG=PROG! ,5UB1 +SUB2,LB:BP20TS/LB
TKB>/

ENTER OPTIONS:

TKB>CLSTR=BFZRES +RMSRES: RO

TKB>UNITS=12
TKB>ASG=8Y:5:6:7:8:8:10:11:12
TKB>EXTTSK=512

TKB>//

In this example, you request the executable file MYPROG.TSK, consisting
of the object modules PROG1.0BJ, SUB1.0BJ, and SUB2.0BJ. The resi-
dent libraries BP2RES and RMSRES are to be built to form a cluster using
the upper 8K words of address space (APRs 6 and 7). The libraries are to be
mapped read-only. The language library BP20OTS is the default library.

2.4.2 PDP-11 COBOL Example Including Two Disk Libraries
To build a PDP-11 COBOL program, you can type:

RUN $TKB
TKB>0UT=PROG »SUB +SUBZ2+LB:COBLIB/LBL.BsRMSLIB/LE
TKB>//

This command tells the Task Builder to create one file, the executable file,
named OUT.TSK. The compiled object programs are PROG.OBJ, SUB.OBJ,
and SUB2.0BJ. Two libraries are referenced; COBLIB.OLB and
RMSLIB.OLB. The /LB switch indicates that the libraries are located in
the library account (LB:).

2.4.3 COBOL-81 Examples Including Disk Library and Cluster
Libraries

The following example illustrates building a COBOL-81 program:
RUN $TKB

TKB>»FINAL=PROG! ,PROGZ,LB:CBICIS/LB
TKB>//

Building Programs 2-17

2-18

With this command, the Task Builder creates the executable file
FINAL.TSK from the compiled object programs PROG1.0BJ and
PROG2.0BJ, and from necessary routines from the library for the Commer-
cial Instruction Set (CIS), C81CIS.OLB.

The second example for COBOL—-81 shows the use of cluster libraries:

RUN $TKB

TKB>FINAL=PROGL sPROGZLB:CHICIS/LE
TKB>/

ENTER OPTIONS:
TRKB*CLSTR=CBICIS FDURES +RMERES RO
TRKB>//

In the example above, you request the executable file FINAL.TSK, consist-
ing of the object modules PROG1.0BJ and PROG2.0BdJ. The /LB switch
references the disk library C81CIS.OLB. The resident libraries C81CIS,
FDVRES, and RMSRES are to be built to form a cluster using the upper 8K
words of address space (APRs 6 and 7). The libraries are to be mapped read-
only. The language library C81CIS is the default library. Note that while
C81CIS in the command line refers to the disk library, C81CIS in the
CLSTR option refers to the resident library.

2.4.4 DIBOL Example Including Disk and Resident Libraries
The following example illustrates building a typical RMS DIBOL program:

RUN %TKB
TKB>PAY=HOURS +EMPLK ,CHECK sMYLIB/LB,LB:DBRLIB/LB
TKB >/

ENTER OPTIONS:

TKB:>LIBR=DBRRES:R0:4

TKB>LIBR=RMSRES:R0:6

TRB>//

This example requests the executable file PAY.TSK. The object modules
used are HOURS.OBJ, EMPLK.OBJ, and CHECK.OBJ. Modules are
included from the library MYLIB.OLB (on the system disk in your account)
and the library DBRLIB.OLB (in the system library account LB:). DBRRES
is the DIBOL resident library for RMS; it is to be mapped read-only, begin-
ning in APR 4. RMSRES is the RMS resident library; it also is to be
mapped read-only, beginning in APR 6.

2.4.5 FORTRAN-77 Example Including One Disk Library
To build a FORTRAN-77 program, you can type:

RUN &$TKB
TKB>BURNS=KNIGHT ;DAY +L.B:F4POTS/LB
TKB:>//

This example requests an executable file named BURNS.TSK. The files
KNIGHT.OBJ and DAY.OBJ are the compiled files to be used, along with
referenced routines from the library F4APOTS.OLB.

Building Programs

2.4.6 MACRO Examples Including Resident Libraries

The following examples show the use of the LIBR and RESLIB options.
The first uses LIBR:

RUN $TKB

TRKB>*FINAL=FINAL ,SUB1,SUB2
TKB>/

ENTER OPTIONS:
TRB>LIBR=RMSRES

TKB>//

This example requests the executable file FINAL.TSK, constructed using
the compiled files FINAL.OBJ, SUB1.0OBJ, and SUB2.0BdJ. The resident
library RMSRES is linked in also. Note that in this case, no APR is given;
the Task Builder will use APRs 6 and 7 for RMSRES, so the system mana-
ger must have installed the system with RSX directive emulation code as a
part of the monitor.

The LIBR option is used because the files RMSRES.TSK and RMSRES.STB
are located on the system library device (LB:).

The next example uses the RESLIB option:

RUN $TKB
TKB>*FINAL=FINAL,SUB1,8UB2
TKB >/

ENTER OPTIONS:
TKB>RESLIB=DRO:[1,1501RMERES
TKB>//

The same requests are made as in the previous example. In this case, the
files RMSRES.TSK and RMSRES.STB are located on the device DRO: in
account [1,150]. The RESLIB option is used instead of LIBR because the
library is not in LB:.

Building Programs 2-19

PART Il
Overlays

Chapter 3
The Basic Concepts

If your program is too large to fit in the space available, you must specify
an overlay structure for it. The easiest way to find out if your program is
too large is to try to build it, using the steps outlined in Chapter 2. If you
get the following error message, your program is too large:

Task has illedal memory limits

Languages that can dynamically allocate memory (such as
BASIC-PLUS-2) may not give this error at task build. Rather, they may
produce another message at run time, such as:

Maximum memory exceeded

This chapter tells how to specify an overlay structure to eliminate this
problem. You design an overlay structure, such as the diagram in Figure
3-1, and describe the structure to the Task Builder using an “ODL file:” a
file written in the Overlay Description Language.

Figure 3-1: The ODL File Is Your “Blueprint” for Overlays

| MAIN l

FILE

.ROOT MAIN-+(AWL, BWL, CWL)
AWL: .FCTR A-LIB- (A1-LIB,A2-LIB)
BWL: .FCTR B-LIB
CWL: .FCTR C-LIB

LIB: .FCTR LB:BP20OTS/LB
END MK—-00573-00

3-1

COBOL programmers note: you cannot use the specific techniques
described in this chapter to construct overlays. In COBOL, you begin work-
ing with overlays within the language itself by using the segmentation
facility of the COBOL compiler. Techniques are described in the PDP—11
COBOL User’s Guide and the RSTS/E COBOL-81 User’s Guide.

COBOL programmers may want to read this chapter to get an idea of what
the PDP-11 COBOL or COBOL-81 compiler and MRG utility (for PDP-11
COBOL) or BLDODL utility (for COBOL~81) are doing for you. Chapter 6
describes overlays in terms of program sections and may also be of interest
to you.

3.1 What are Overlays?

3-2

The best way to explain overlays is by example. Suppose that the program
you have written consists of a main program (called MAIN) and two sepa-
rately compiled subroutines (called SUB1 and SUB2). Suppose further that
MAIN calls both SUB1 and SUB2, and that neither SUB1 nor SUB2 con-
tain any calls to separately compiled subroutines or to MAIN (see Figure
3-2).

Figure 3-2: Outlining the Call Structure

MAIN
(CALL SuB1) (CALL SUB2)
SuB1 sSuB2
MK~00574-00

You can specify an overlay structure such that the run-time system
(described in Section 2.1) loads MAIN when the program is first run. When
MAIN calls SUBI1, code built into MAIN by the Task Builder loads SUB1
for execution. Then, when control passes back to MAIN and it calls SUB2,
the loading code that was built into MAIN brings SUB2 into memory over-
laying SUBL1 (see Figure 3-3).

Note that SUB1 and SUB2 do not call or use data from each other. This
“logical independence” is necessary for program pieces that overlay each
other. In this example, calls to routines or references to data that are not
currently in memory must be made from the “root:” the MAIN program.

The Basic Concepts

Figure 3-3: A Simple Overlay in Memory

MAIN MAIN

suB2
(UNUSED MEMORY) R R
TIME 1 - TIME 2

MK-00575-00

3.2 Constructing an ODL File: .ROOT, .FCTR, and .END Commands

To define an overlay structure to the Task Builder, you construct an “over-
lay map:” a file consisting of instructions written in a language called the
“Overlay Description Language.” This file is often referred to as an ODL
file.

Three commands form the heart of the Overlay Description Language:
.ROOT, .FCTR, and .END. To give you an idea of its simplicity, here is an
ODL file for the example shown in Figure 3-2:

+ROOT MAINWL-*(SUB1WL »SUBZWL)

MAINWL : +FCTR MAIN-LIBR

SUB1ML: +FCTR SUB1-LIBR

SUBZWL : +FCTR SUBZ-LIBR

LIBR: +FCTR LB:BP20TS/LB
+END

The .ROOT, .FCTR, and .END commands for this example are described in
the following sections.

3.2.1 The .ROOT Command

Every ODL file has one and only one .ROOT command; this command
describes the entire overlay structure. In the example at the start of Section
3.2, the .ROOT command defines the entire structure in terms of “factors”
defined in following .FCTR commands. This is simply for the convenience of
saving space in the command line. You could have referred to the actual
object files MAIN, SUB1, SUB2, and the library LB:BP20TS in the .ROOT
command and eliminated the .FCTR commands entirely (see Section 3.2.4).
However, the . ROOT command would have been long and somewhat hard
to read and interpret.

The Basic Concepts 3-3

34

The syntax of the .ROOT and .FCTR commands defines the overlay struc-
ture. The first item following the .ROOT command indicates the root item,
to be assigned the lowest virtual addresses:

+ROOT MAINWL-*(SUBI1WL SUBZHL)

The root item in this example is MAINWL. This item — named to denote
“MAIN With Library” — is defined in the following .FCTR command:

MAINWL: +FCTR MAIN-LIBR

For the moment, however, consider the .ROOT command. The following
symbols define the structure of the overlay:

- Separates pieces to be concatenated in memory

Separates pieces to be overlaid in memory

)

() Groups pieces to be overlaid

Thus, the hyphen in the .ROOT command indicates that MAINWL is to be
concatenated with the structure (SUB1WL,SUB2WL). The parentheses
indicate grouping; they enclose items that are to overlay each other. The
structure inside — SUB1WL,SUB2WL — indicates SUB1WL and SUB2WL
are to occupy the same space, or overlay each other as necessary.

In other words, a comma separating two or more items within parentheses
indicates that they are to overlay each other. A dash between two items
indicates they are to be concatenated, with the item on the left assigned the
lowest addresses.

The asterisk (*) symbol shown in the example is an autoload indicator. It
does not affect the overlay structure, although it is very important. It tells
the Task Builder to generate what are called autoload vectors to ensure
that overlay pieces can be loaded properly when the program is executed.

The use of asterisks is discussed in detail in Chapter 5; you can save a little
space in your program if you use them carefully. However, the simplest
rule, and one that always ensures proper loading for overlay structures
described in this chapter, is to put an asterisk before the outermost left
parenthesis in your ODL file.

3.2.2 The .FCTR Command

Consider the example under discussion again:

+ROOT MAINWL-*(SUBI1WL sSUBZWL)

MATINWL 3 +FCTR MAIN-LIBR

SUBILWL: +FCTR SUBL1-LIBR

SUBZWL: +FCTR SUBZ-LIBR

LIBR: +FCTR LB:BPZ0TS/LB
+END

The Basic Concepts

MAINWL, SUB1WL, and SUB2WL are all defined as factors in the lines
following the first line. The term “factor” is used in the sense of “ingred-
ient.” That is, FCTR commands are used to further define elements used in
a .ROOT command or a preceding .FCTR command.

Note that the names used in the .ROOT command are defined in each
FCTR command by the first field: the name terminated by a colon. Like-
wise, the name LIBR, used in several of the .FCTR commands, is defined in
the last .FCTR command. In general, factor names can consist of 1-6 char-
acters from the set A-Z, 0-9, and the dollar sign ($).

The .FCTR command also specifies an overlay structure; the same items
and operators used in a .ROOT command can also be used in a .FCTR
command. In the example, the first three FCTR commands consist of two
items separated by a hyphen. Again, the hyphen separating two items
means that the first item is assigned the lowest addresses, and the second
item is to be concatenated following the first.

In the example shown at the start of Section 3.2, however, the concatenated
item is LIBR, defined by a later .FCTR command as the BP2OTS library.
When an item in a hyphenated series is a file with the /LB switch, it means
that the first item’s unresolved references are to be resolved from routines
within that disk library. In other words, the entire library is not conca-
tenated. Only those routines referenced are actually concatenated and
added to the executable file. The items MAIN, SUB1, and SUB2 are the
compiled or assembled object files. As with a simple build, the default file
type for such files is .OBJ. The default file type for a file with the /LB
switch is .OLB.

Note that a . FCTR command can contain an item defined in another . FCTR
command. In general, .FCTR commands can be “nested” in this fashion up
to 16 levels.

3.2.3 The .END Command

The .END command ends the ODL file; every ODL file must have one
ROOT command and end with .END.

3.2.4 Flexibility of the Overlay Description Language

From the preceding discussion, you probably have observed that there are
many ways to construct ODL files using the three basic commands and
their operators. For example, the following ODL file has the same effect as
the example in Section 3.2:

+ROOT MAIN-LB:BP20TS/LB-*(SUB1-LB:BP20TS/L.B»SUBZ-LB:BP20TS/LB)
+END

The ODL file above has no .FCTR statements. The following file also pro-
duces the same structure as the example at the beginning of Section 3.2:

+ROOT MAIN-LIBR-*(SUB1-LIBR,SUB2-LIBR)
LIBR: .FCTR LB:BP20TS/LB
+END

The Basic Concepts 3-5

3.3 Using an ODL File When You Run TKB

To tell the Task Builder to build a program according to the structure
specified in an ODL file, you simply give the ODL file name with the switch
/MP instead of the object files in an ordinary command line. For example,
to build the program described in Sections 3.1 and 3.2, you can type:

RUN $TKB

TKB:*MYPROG sMPFILE=OVERLY /MP
ENTER OPTIONS:
TKB:LIBR=BPZRES:RO
TKB:UNITS=12
TKB>ASG=8Y:5:6:7:8:9:10:11:12
TKB*EXTTEK=512

TKB>//

When you specify /MP on the input file for your task, it must be the only
input file that you specify. Note that when you specify an ODL file, TKB
automatically prompts for option input. Therefore, do not use the single
slash (/) to direct TKB to prompt for options when you specify /MP on your
input file.

The /MP switch indicates the file is an “overlay map,” or ODL file. The
default file type for files with the /MP switch is .ODL. Thus, the file used
here as an overlay map is named OVERLY.ODL, on the system disk in the
user’s account.

The LIBR option declares that your program will access the resident library
BP2RES. UNITS, ASG, and EXTTSK are other options often useful with
BASIC-PLUS-2 programs. For another language, use the appropriate com-
mand as described in Chapter 2.

Note that you request a map file in this example. The map file is very
useful when working with overlays.

3.4 The Memory Map File

3-6

This section discusses how to determine the size of the programs and sub-
programs you want to overlay.

Suppose that the build in Section 3.3 produces the error “SEGMENT seg-
name HAS ADDR OVERFLOW: ALLOCATION DELETED”. The program
is too large; you must reexamine it. Now, though, you have an important
tool: the memory map file, called in this case MPFILE.MAP. The first page
of this map is shown in Figure 3—4. Note the highlighted section, titled
“MYPROG.TSK OVERLAY DESCRIPTION".

This section of the memory allocation map appears only if you request
overlays by using the /MP switch appended to an ODL file specification. To
get this information, then, you must specify the most reasonable overlay
structure possible without actually knowing the length of the pieces.

The Basic Concepts

In the first three columns, this section gives, in octal, the base address, top
address, and length, in bytes, of each overlay piece. The most relevant
information is given in the second of the two LENGTH columns: the deci-
mal length of the piece, in bytes. The MAIN program, for example, is
49,152 bytes long. SUB1 is 34,164 bytes, and SUB2 is 16,384 bytes.

You are building the program to run under the RSX run-time system,
which allows 28K words, or 56K bytes for your program. Thus, you must
restructure the program to divide MAIN into further pieces to be overlaid.
At 49152 bytes, MAIN with SUB1 and SUB2 is too large to fit in the space
available. To do this intelligently, however, you need to know more about
the Task Builder.

Note that total task size and task image size show the space allocated for
the program minus a calculated overflow.

Figure 3—4: Overlay Description of Memory Allocation Map

MAIN,TSK Memory allocation mar TKB 08.006 Page 1
19-MAR-B83 14:56

Partition name : GEN

Identification : BGOO318

Task UWIC : [1,2341

Stack limits: 001000 001777 001000 00512,

PRG xfr address: 012000
Total address windows: 2.

Task extension : 512, words
Task imade size 1 25280, words
Total task gize : 25792, words

Task address limits: 000000 035047
R-W disK bBlK limits: Q00002 0QO000OB0 0OQC0OS7 00047,

49152,
3died.
 163s4.

(Other pages of memory map)

3.5 Designing Overlays Intelligently: Considering Space and Time

The same considerations are necessary in designing an overlay structure as
in other aspects of computing: space and time. Some aspects of the problem
of space (how to get the pieces to fit) have been discussed. To do the job well,
you must also consider the problem of time: how to get the pieces to fit so
that they execute in the least possible time.

The Basic Concepts 3-17

3.5.1 Considering Space: Two Possibilities for Example

Suppose that examining the program in the example reveals two possibili-
ties for dividing the program so that the pieces will fit.

In the first case, you divide MAIN into five parts by inserting calls in
MAIN in the source code. Now you have a “root” segment, MAIN, with five
branches, MAIN1, MAIN2, MAIN3, SUB1, and SUB2. The call structure is

outlined in Figure 3-5.
Figure 3-5: Outline of First Call Structure for Example

MAIN
l
(CALL MAIN1) (CALL MAIN2) (CALL MAIN3) (CALL SuBt1) (CALL SUB2)
MAINA MAIN2 MAIN3 SUB1 SuB2

MK-00576-00

Note again the logical independence of the call structure for the items to be
overlaid. Defining the overlay structure based on the call structure is one
way to ensure the logical independence of the items in the overlay struc-
ture. In this case, MAIN1, MAIN2, MAIN3, SUB1, and SUB2 could not call
each other or refer to data in each other. These items overlay each other
and will not reside in memory at the same time. The ODL file for such a
structure could look as follows:

+RODT MAINMWL-*(MAINIL MAINZL »MAIN3L SUBIL ,SUBZL)
MAINWL: FCTR MAIN-LIBR
MAINiIL: FCTR MAINI-LIBR
MAINZL: FCTR MAINZ-LIBR
MAIN3L: .FCTR MAIN3-LIBR
suBpiL: FCTR SUBI1-LIBR
suBzl.: JFCTR SUBZ-LIBR
LIBR: +FCTR LB:BP2OTS/LB
+END

In the second case, you divide MAIN into two pieces and divide SUB2 into

two pieces called SUB2A and SUB2B. The outline for the call structure is
shown in Figure 3-6.

3-8 The Basic Concepts

Figure 3-6: Outline of Second Call Structure for Example

MAIN
(CALL MAIN1) (CALL MAIN2)
MAIN1 MAIN2
~
(CALL SuB1) (CALL SUB2A) (CALL SUB2B)
SUB1 SUB2A SuB2B
MK-00577-00

The ODL file for such a structure could look as shown below. Note the
nested parentheses used to group the pieces that overlay each other. In
general, parentheses can be nested to 16 levels.

+ROOT MAINWL-*(MAINIL-SUBI1LMAINZL-(SUBZAL sSUBZBL))

MATNKL : +FCTR MAIN-LIBR
MAIN1L: +FCTR MAINI-LIBR
SUB1L: +FCTR SUB1-LIBR
MAINZL: +FCTR MAINZ-LIBR
SuUBzZAL: +FCTR SUBZ2A-LIBR
sSUBZBL: +FCTR SUB2B-LIBR
LIBR: +FCTR LB:BP20OTS/LB
+END

Now suppose you build the program successfully in both of the above cases.
The problem with space is resolved with either the structure shown in
Figure 3-5 or in Figure 3-6. You would choose the structure that requires
the least time to execute, as described in the following section.

3.5.2 Considering Time: Reducing Disk Access

When you ask for overlays, the Task Builder inserts code into your program
to load the overlays properly. For the example in Figure 3-5, the Task
Builder inserts code into MAIN to load MAIN1, MAIN2, MAIN3, SUBI1,
and SUB2 from disk into memory when they are called. (MAIN itself is
loaded by the run-time system when the program is first run.)

Thus, when MAIN calls MAIN1, the code inserted by the Task Builder is
executed to load MAIN1 from disk into memory for execution. When MAIN
calls MAIN2, this code is again executed to load MAIN2 from disk into
memory, and so forth. These disk accesses take time. You want to design
your overlays to reduce the number of disk accesses.

The Basic Concepts 3-9

In general, the Task Builder analyzes your ODL file to determine the best
way to store pieces on disk so that they can be loaded quickly. It constructs
the executable program file in “segments” that are loaded with one disk
access. Pieces connected by a dash (-) are stored in one segment. Pieces
separated by a comma are stored in separate segments.

Thus, the executable file for the ODL file in Figure 3—5 consists of the main
program (loaded by the run-time system) and five segments each requiring
a separate disk access for loading. The executable file for the ODL file in
Figure 3—6 consists of the main program and four segments. MAIN1 and
SUBI1, connected by a dash in the ODL file, are stored as one segment.
When MAIN calls MAIN1, MAIN1 and SUBI1 are loaded together. Then,
when MAIN1 calls SUBI, no separate disk access is necessary: SUBI is
already in memory.

MAIN2, SUB2A, and SUB2B are stored as separate segments. Each
requires a separate disk access.

Thus, assuming each call is made only once, the structure in Figure 3-5
calls for five disk accesses. The structure in Figure 3-6 calls for four disk
accesses. Since both fit, you would choose the structure shown in Figure
3-6.

3.6 Logical Independence of Items in Overlay Structure

3-10

This section discusses the need for the logical independence of items in an
overlay structure and suggests that basing the overlay structure on the call
structure is a reasonable way to approach overlay structure design. If your
program has a complex call structure, however, this approach may not be
feasible.

You can still visualize the tree-like structure we have shown previously,
and you can still specify an overlay structure in terms of separately assem-
bled or compiled program and subroutine files. However, you must consider
the sequence of calls these pieces make to each other. In general, you must
structure the overlay tree so that calls (or references to data) take place
between pieces that are along the same path. Calls or references to data
cannot take place between pieces that are along different paths. A path is
simply any route from the root of the structure that follows a series of
branches to an outermost piece of the tree.

Figure 3-7 shows a structure that is specified by the following ODL
commands:

+ROOT AL-BL-#(CL+FCTR1)

FCTR1: LFCTR DL-(ELsFL +GL)
Al +FCTR A-LIBR
BL: +FCTR B-LIBR
CL: +FCTR C-LIBR
DL: +FCTR D-LIBR
EL: +FCTR E-LIBR
FiL: +FCTR F-LIBR
GL: +FCTR G-LIBR
LIBR: +FCTR LB:F4POTS/LB
+END

The Basic Concepts

Figure 3—7 shows pieces that overlay each other as separate “branches” of
the tree. C and D would start at the same virtual address, as would E, F,
and G. The paths in this structure are A-B-C, A-B-D-E, A-B-D-F, and
A-B-D-G. Calls may be made between pieces on any of these paths. How-
ever, F could not call G, E, or C; C could not call D, E, F, or G; and so forth.

Figure 3-7: Separate Paths in an Overlay Structure

FOUR PATHS:

MK-00578-00

3.7 Resolution of Global Symbols

In the last section, it was noted that overlay pieces that are on separate
paths cannot call each other or refer to data in each other. If you specify
such a structure, the Task Builder gives you error messages about
multiply-defined or ambiguously-defined global symbols. Since these errors
can be one of the most frustrating aspects of task building, further clarifica-
tion of the underlying concepts is necessary.

3.7.1 What Is a Global Symbol?

All languages provide the facility for defining and referring to symbols. In
general, a symbol is a name that is eventually translated to an address for
a location in computer memory. The location may contain data or a com-
puter instruction.

Symbols can be classified as either local or global. A local symbol is one
that is both defined and referenced within one program or subprogram.
That is, its definition and usage are in the same (local) area.

A global symbol is one that can be defined in one program or subprogram
and referred to by another separately compiled or assembled program or
subprogram.

The Basic Concepts 3-11

3-12

While you may not be aware of it, for example, the FORTRAN compiler
defines a name you give to a COMMON area as a global symbol. Similar
translations take place in all languages for common areas and entry points
to programs and subprograms, including subprobrams contained in
libraries.

3.7.2 Undefined, Multiply-Defined, and Ambiguously-Defined
Global Symbols

The Task Builder resolves references to global symbols at build time. In
general, you can define two global symbols with the same name if they are
on separate paths and are not referenced from a piece that is common to
both paths.

If you define a global symbol on one path but refer to it on another path, the
symbol is diagnosed as undefined where it is referenced.

If you define two global symbols with the same name on the same path, the
symbol is multiply defined.

If you define two global symbols with the same name on different paths, but
the symbol is referenced from a piece that is common to both, the symbol is
ambiguously defined.

Examine the overlay structure in Figure 3-8. The global symbol Q is
defined in AO and BO. The references to Q in A22 and A1 are resolved by
the definition in AO. The reference to Q in B1 is resolved by the definition
in BO. The two definitions of Q are distinct in all respects; the definitions
and references occupy separate paths.

The global symbol R is defined in A2. The reference to R in A22 is resolved
by the definition in A2 because there is a path to the reference from the
definition (CNTRL-A0-A2-A22). The reference to R in Al, however, is
undefined because there is no definition for R on a path through Al.

The global symbol S is defined in both A0 and BO. References to S from Al,
A21, or A22 are resolved by the definition in AQ. References to S in B1 and
B2 are resolved by the definition in BO. However, the reference to S in
CNTRL cannot be resolved, because there are two different definitions of S
on separate paths through CNTRL. The global symbol S is ambiguously
defined.

The global symbol T is defined in both A21 and AO0. Since there is a single
path through the two definitions (CNTRL-A0-A2-A21), the global symbol
T is multiply defined.

The Basic Concepts

Figure 3-8: Resolving Global Symbols

3.7.3 How Routines Are Inserted from Libraries

CNTRL
S(REF)
AO
BO
slés
T(DEF) S(DEF)
A1 B1
Q(REF) A2 Q(REF B2
ggggg R(DEF) S((REF)) S(REF)
A22
A21
R(REF)
T(DEF
SEE}EF; Q(REF)
S(REF)
MK-00579-00

In all the examples so far, you have seen a library concatenated (using the
dash in the ODL file) at the end of the root and every segment in the
overlay structure. Unless you know which library routines are used by each
piece of your program, this is the best way to ensure that library routines
are properly inserted from the desired disk libraries. The Task Builder then
ensures that routines referred to by more than one piece are accessible to
all pieces. For example, consider the following ODL file for the overlay
structure shown in Figure 3-9:

ROOTL:
AL :
BL:
BiL:
B2L:
LIBR:

+ROOT
+FCTR
+FCTR
+FCTR
+FCTR
+FCTR
+FCTR
+END

ROOTL-*(AL»BL-(BLILBZL))
ROOT-LIBR
A-A1-LIBR

B-LIBR
Bi-LIBR
BZ-LIBR

LB:FAPOTS/LB

The Basic Concepts

3-13

3-14

Figure 3-9: Resolving Global Symbols from Disk Libraries

ROOT
REF $READ
REF $WRITE
$READ
SWRITE
A B
REF $READ REF $READ
REF $ASIN REF $ASIN
REF $COS
Al $ASIN
REF $SWRITE $COS
$ASIN
B1
B2
REF $COS
REF $ABS REF $READ
$ABS MK—00580—00

As shown in Figure 3-9, the ROOT section calls the routines $READ and
$WRITE. The Task Builder resolves these references by building the
routines into ROOT. The references to $READ in A and B are then resolved
from ROOT. The reference to $WRITE in Al is likewise resolved from
ROOT.

Both A and B refer to the $ASIN routine. Since A and B are on different
paths, the Task Builder puts the $ASIN routine in both A and B.

Both B and B1 refer to the $COS routine; it is built into B because B is
closer to the root than B1l. The reference to $COS in B1 is resolved by
referring to the routine in B.

The $ABS routine is referred to in B1 only. It is built into B1.

If you know which routines are called from the various pieces of your
program, you can shorten the time necessary to build your program by
specifying the routines directly. You make a direct specification by append-
ing a colon and the routine name to the /LB switch. For example, to build
the structure shown in Figure 3-9, you could use:

+ROOT ROOTL-*(ALBL-(BIL,B2))

ROOTL : +FCTR ROOT-LB:FA4POTS/LB:&READ:$SKRITE
Al +FCTR A-A1-LB:F4POTS/LB:$ASIN
BL: +FCTR B-LB:FA4POTS/LB:$ASIN:$C0OS
Bil: +FCTR BI1-LB:FAPOTS/LB:$ABS
+END

The Basic Concepts

You could also request a different structure. To build all the required
routines into the root, for example, you could specify:

+ROOT ROOTL-*(A-A1:B-(B1:B2))
ROOTL : +FCTR ROOT-LB:FA4POTS/LB:sREAD:$WRITE:$ASIN:1$C05:4ABS
+END

In general, up to eight routines can be specified on one /LB switch.

3.7.4 The Default Library

The Task Builder searches through the overlay structure to resolve global
symbols. If any symbols are undefined after it examines all the pieces you
specify, it will search the default library (normally LB:SYSLIB.OLB). If it
can resolve a global symbol by inserting a piece from this library, it will do
S0.

Note that because SYSLIB.OLB used the MACRO assembly language judi-
ciously, the code is not inserted as described in Section 3.7.3. Units called
program sections have been carefully defined using MACRO, such that the
code in SYSLIB takes as little space as possible. Program sections, and how
the Task Builder builds programs with them, are described in Chapter 6.

For libraries built from compiler-language routines, however, Section 3.7.3
holds true.

The Basic Concepts 3-15

Chapter 4
Co-Trees: Another Way to Save Space

Chapter 3 describes the basics of specifying an overlay structure in an ODL
file. This chapter discusses another overlay structure: co-trees. Co-trees are
slightly more complex structures than any previously discussed. If applica-
ble to your call structure, however, they can be extremely useful in cutting
down the virtual address space your program takes (see Figure 4-1).

Figure 4-1: Co-Trees Can Save Even More Space Than Simple
Overlays

— COTREE
cosugt |-292U82

ODL FILE:

.ROOT MANTRE, COTRE
MANTRE: .FCTR MAIN-LIB—(SUB1-LIB, SUB2-LIB)
COTRE: .FCTR+COTREE-LIB—+(COSUB1-LIB, COSUB2-LIB)
LIB: .FCTR LB:BP20TS/LB
.END

MK-00581-00

4-1

4.1 The Co-Tree Structure

As the name implies, co-trees allow you to define more than one tree struc-
ture in an overlay description. For example, suppose that A and B are
routines that are called from several branches of a tree. You could define A
and B as part of the root, so that they are always accessible from any
branch of the tree (see Figure 4-2).

Figure 4-2: Putting A and B in the Root

—v] MAN f—————
(CALL (CALL
SUB1) ,——> A <———| SUB2)

(CALL B (CALL

A) A)
(CALL (CALL
e & |

SUB1 SUB2

MK-00582-00

The ODL file for such a structure could appear as follows:

+ROOT MAIN-A-B-LIBR-*(SUB1-LIBR:SUBZ-LIBR)
LIBR: .FCTR LB:BPZOTS/LB
+END

Since A and B never call each other, however, they do not need to reside in
memory at the same time. To save space, you could define A and B as part
of a co-tree, such that they overlay each other. Like the main tree, co-trees
must have a root. In this case, the root is called “COTRE” (see Figure 4-3).

Figure 4-3: A Co-Tree Structure

MAIN [7T T / COTRE \
(CALL SUB1) (CALL SUB2) (CALLA) (CALL B)
SuBt suB2 A B
(CALL COTRE) (CALL COTRE)

MK-00583-00

4-2 Co-Trees: Another Way to Save Space

The ODL file for such a structure could be:

+NAME COTRE

+ROOT MANTRE,COTREE
MANTRE: FCTR MAIN-LIBR-*#(SUB1-LIBR,SUBZ-LIBR)
COTREE: .FCTR *COTRE-LIBR-*(A-LIBR,B-LIBR)
LIBR: +FCTR LB:BP20OTS/LB

+END

To separate co-trees, use the comma — not enclosed in parentheses — as
between MANTRE and COTREE in the .ROOT statement above. (When
the comma is used within parentheses, it separates pieces to be overlaid.)
Note also that you put an autoload indicator (*) before the co-tree root and
before the outermost left parenthesis in the co-tree overlay description.

To get an idea of how co-trees are loaded during execution, see Figure 4—4.
This figure assumes that the call sequence is: MAIN calls SUB1 which calls
COTRE twice, once to execute A and once to execute B. MAIN then calls
SUB2 which calls COTRE to call A and B again.

The run-time loader loads MAIN. The remaining pieces are loaded by code
inserted in MAIN by the Task Builder. Once called (at time 3 in Figure
4-4), COTRE is resident in memory for the rest of the run. Note that it
begins at the place where the longest part of the main tree ends (after
SUB2).

As shown in Figure 44, storage is not shared between trees. Any piece in a
tree can call or refer to data in another tree without displacing pieces from
the calling tree. However, calls back and forth between trees can get you
into trouble. For example, suppose that at time 4 in Figure 44 the subpro-
gram A had called SUB2. SUB2 would be loaded, displacing SUB1 from the
main tree. In the normal course of events, SUB2 would return control to A,
which would return control to an address generated for SUB1 at build time.
SUBLI is no longer in memory, however. Control would be passed to some
location in SUB2, which has displaced SUB1 in memory.

To keep this from happening inadvertently, the Task Builder restricts its
search through the structure for references to the default library if you
specify co-trees. The Task Builder makes one pass through the entire struc-
ture trying to resolve global symbols from the pieces you have specified in
the ODL file. If there are unresolved symbols after this first pass, the Task
Builder makes another pass, attempting to resolve undefined symbols from
the default system library. If you have specified co-trees, the Task Builder
restricts its search during this second pass.

For example, if the Task Builder resolves a symbol in one tree by inserting
a module from the default system library, it does not search through
co-trees to see if there are other unresolved references to this module. It
restricts its search to the current tree and the root of the main tree. This
procedure eliminates cross-tree calls like that described above; necessary
code is not inadvertently displaced.

Co-Trees: Another Way to Save Space 4-3

Figure 44: How a Co-Tree Is Loaded During Program Execution

J_MAN | MAIN MAIN MAIN
—(CALL SUBT |~
SUBH !

/N

TIME 1 TIME 2 TIME 3 TIME 4 TIME 5

MAIN MAIN CALLS SuB1 CALLS COTRE CALLS COTRE CALLS
LOADED SUB1; SUB1 COTRE; COTRE A; A LOADED B; B LOADED
LOADED LOADED
Z__MAN | MAIN MAIN
1 CALL SUB2 |~
suB2 suB2 suB2
“Z CALL COTRE|=
COTRE COTRE
COTRE —i CALLA |~ =|"caLs |
R
B B
TIME 6 TIME 7 TIME 8
CONTROL FALLS SuUB2 CALLS COTRE CALLS
BACK TO MAIN, COTRE (ALREADY B; B LOADED
WHICH CALLS SuB2: THERE) COTRE
SUB2 LOADED CALLS A; A LOADED MK_00584-00

4.2 Using the .NAME Command for a Co-Tree Root

The example in Section 4.1 defined a separate co-tree root routine called
COTRE. You can eliminate the need for a real routine (which takes space)
by using the NAME command to define the name of a dummy root for a co-
tree. The calls out of SUB1 and SUB2 can then refer to A and B directly,
and they will be loaded properly. For example, the ODL file could be: .

+NAME NULL

+ROOT MANTRE,COTREE
MANTRE : +FCTR MAIN-LIBR-#(SUB1-LIBR,SUBZ-LIBR)
COTREE: +FCTR NULL-*(A-LIBRsB-LIBR)
LIBR: +FCTR LB:BPZ0OTS/LB

+END

4-4 Co-Trees: Another Way to Save Space

The .NAME command lets you give a name to a piece of the overlay struc-
ture. (You can also use it to assign certain attributes to pieces of the over-
lay structure, described further in Section 6.5.) The .NAME command is
described in detail in Section 11.4.

Note in the preceding example that you do not need to use an autoload
indicator (*) before a null root in a co-tree.

4.3 Designing the Most Space-Saving Co-Trees

Co-trees can save the most space when the pieces being overlaid in each
tree are about the same size. For example, look at the structure of the
example from the previous sections. Figure 4-5 shows three different struc-
tures. (Figure 4-5 also shows a new way of looking at overlay structures
that takes the size of the pieces into account. You may find this particularly
useful when dealing with co-trees.)

Figure 4-5: Co-trees Save More Space When Pieces Are the Same
Size

MAIN MAIN MAIN

(A) NO (B) FIRST (C) REDESIGNED
CO-TREE CO-TREE CO-TREE MKL00585-00

Figure 4-5(a) shows the original overlay design, with A and B built after
MAIN in the root of the overlay structure. SUB1 and SUB2 overlay each
other, after the root. Figure 4-5(b) shows the structure arrived at in the
previous section: A and B are overlaid in a co-tree. By comparing Figures
4-5(a) and Figure 4-5(b), you can see that co-trees can save space. The total
size of the program in virtual address space is smaller using the co-tree.

Note in Figure 4-5(b), however, that SUB2 and B are much larger than
their counterparts SUB1 and A. The space shown between SUBI and the
A-B co-tree is essentially wasted. If you cut down SUB2, you can “squeeze”
the co-tree down further in virtual address space. Furthermore, if you
reduce the size of B, you can also reduce the total size of the program in
virtual address space.

Co-Trees: Another Way to Save Space 4-5

Figure 4-5(c) shows a better co-tree. SUB2 has been divided into two
routines, SUB2 and SUB3. These routines are overlaid and are about the
same size as each other and SUB1. B has also been divided into two sepa-
rate routines, B and C. Again, the routines are overlaid and are about the
same size as each other and A. Note that the total size of the program in
virtual address space has been reduced even more than the structure shown
in Figure 4-5(b).

Thus, the general rule for constructing tight programs using co-trees is: use
small subprograms of uniform size. If you are using co-trees at all, you are
probably more concerned with space than with your program’s execution
time. You may not lose that much time, though, depending on how the calls
are structured. Remember that calls can be made between co-trees without
necessarily causing a new overlay segment to be loaded from disk.

For example, suppose that in Figure 4-5(c), SUBI1 calls A. A will remain in
memory until B or C is called. Suppose control passes back to SUB1 to call
A again, back to MAIN, and on to SUB2, which is loaded and calls A. A is
still in memory. It does not need to be loaded again.

4.4 Co-Trees and High-Level Languages

46

As you can see from the previous sections, using co-trees can save space.
The first time you try to build one using a high-level language, however,
you will likely get a number of diagnostic error messages flagging multiply
defined, ambiguously defined, and undefined symbols. This can be a bit
disconcerting, especically since many of the symbols will not be any that
you have referred to or defined in your program. Furthermore, the total
virtual address space taken by the program may be even larger than that
taken without co-trees.

The symbols are from library routines that have been inserted by the Task
Builder. Note that the Task Builder is very careful about where it puts
routines that are called from outside the main tree root on different trees in
a co-tree structure. When you put general library references in your ODL
file the Task Builder builds any routine that is called from outside the
main tree root on two or more paths in two or more trees, into all the paths
and trees where it is referenced. The Task Builder then resolves references
to a routine in a particular path in a tree by referring to the routine built
into that path on that tree.

So, the program will run as it has been built (unless you have made errors
in your program, of course). Still, you may not want these routines built
into each tree, where they can take more space than might actually be
necessary. So, the Task Builder flags the symbols it finds as multiply
defined or ambiguously defined, so that you can correct the situation if you
want to.

Co-Trees: Another Way to Save Space

4.4.1 Sample Source Program and Subprograms

Consider the following BASIC-PLUS-2 program and subprograms.

The main program, USER, simply calls three subprograms: INTRO,
CRUNCH, and CHATR. INTRO displays a question at the user’s terminal,
and accepts the user’s response: two integers. CRUNCH performs addition,
multiplication, and subtraction on the two input numbers and calls CALC2
and CALC1, passing on the two input numbers. CHATR takes the sum,
product, and difference calculated by CRUNCH and displays the values on
the user’s terminal. It then calls CALC1 and CALC2. CALC1 subtracts the
two values and displays the difference. CALC2 adds the two values and
displays the sum.

Source for Program USER

10 CALL INTRO(A1%,BL%)

20 CALL CRUNCH(A1%,+B1% SUMMYZ,PRODUCT%.DIFFERY)
30 CALL CHATR(A1%:B1%,SUMMY% ,PRODUCTY% DIFFERY)
40 END

Source for Subprogram INTRO

10 SUB INTRO(AAYLBAL)
20 INPUT "INPUT TWO NUMBERS"iAA%.BAZ
30 SUBEND

Source for Subprogram CRUNCH

10 SUB CRUNCH(ABY :BBY% 1CAZL,CBL,CCY)
20 CAY = ABYZ + BBY

30 CBY% = AB% * BBY

40 " CCY% = ABY% - BBY

50 CALL CALCZ(ABYBBY)

60 CALL CALC1(ABYBBY)

70 SUBEND

Source for Subprogram CHATR

10 sUB CHATR(ACY ,BC% CA%CBYL,CCL)

20 PRINT "THE SUM OF "3AC%3" AND "iBCYi" IS "iCA%L

30 PRINT "THE PRODUCT OF "3AC%43i" AND "3iBC%3" IS "3CB%

40 PRINT "THE DIFFERENCE OF "3AC%3i" AND "iBC%i" 1§ "jiCC%
50 CALL CALC1(AC%,BCH)

BO CALL CALCZ2(ACY.BCZ)

70 SUBEND

Source for Subprogram CALC1

10 SUB CALC1(ADY.BD%)

20 DA%=ADY%-BD%

30 PRINT "THE COTREE DIFFERENCE IS "iDAZ
40 SUBEND

Source for Subprogram CALC2

10 SUB CALCZ(AE%BEY)

20 EA%L=AE%L+BEY

30 PRINT "THE COTREE SUM IS "3EAZL
40 SUBEND

Co-Trees: Another Way to Save Space 4-7

4-8

4.4.2 Outlining the Sample Program’s Call Structure

As Figure 4-6 shows, the sample program and its subprograms fit the
general situation where co-trees can help: one or more subprograms called
by one or more other subprograms.

Figure 4-6: Call Structure for Sample Program

USER
CALL INTRO |
i
(i) (CALL CRUNCH) (CALL CHATR)
INTRO |
CRUNCH CHAI\TR
(CALL CALC2) (CALL CALC1) (CALL CALCH1) (CALL CALC?2)
I | | |
CALC2 CALC1 CALC1 CALC2

MK—-00586—-00
4.4.3 Compiling the Sample Program and Subprograms
The general steps for compiling a BASIC-PLUS-2 program are:

RUN $BASICZ

BASICZz «———(the prompt from BASIC-PLUS-2)

OLD source—file

BASICZ -«

COMPILE /0BJ

For example, to compile a source file named USER.B2S, type:

RUN $BASICZ2
BASICZ

OLD USER
BASICZ2
COMPILE /0BJ

These commands compile the file USER.B2S, creating the file USER.OBdJ.
(.B2S and .OBJ are the default file types assumed by BASIC-PLUS-2.)

Co-Trees: Another Way to Save Space

4.4.4 First Build for Sample Program: Putting Subprograms in the
Root

After creating the object files, the next step is task building. For the first build,
without co-trees, we put CALC1 and CALC2 in the root (Figure 4-7).

Figure 4-7: First Build Structure for Sample Program

USER

CALC1
CALC2

INTRO CRUNCH CHATR

MK—-00586—01
The ODL file for such a structure could be;

+RODT USER-CALC1-CALCZ2-LIBR-*(INTWL sCHATWL sCRUNWL)

INTHL = +FCTR INTRO-LIBR

CRUNWL : +FCTR CRUNCH-LIBR

CHATHL : +FCTR CHATR-LIBR

LIBR: +FCTR LB:BP20TS/LB
+END

Calling the above file OVER1.0DL, the build process is:

RUN $TKB
TEKB>»TRY1»TRY1=0VER1/MP

ENTER OPTIONS:

TKB»UNITS=12
TKB*ASG=8Y:5:6:7:8:9:10:11:12
TRBXEXTTSK=312

TKB>//

The build proceeds without error. Examining the map file, TRY1.MAP, you see
the first page shown in Figure 4-8.

The significant information is highlighted in Figure 4-8. The TASK IMAGE
SIZE is 6528 words, or 13056 bytes. This means that the total amount of virtual
address space that the program will take is 13056 bytes. Further down, the size
is itemized by segment. Segment USER (constructed from the files USER.OBJ,
CALC1.0BJ, and CALC2.0BJ, plus library routines from BP20TS.OLB)
requires 11348 bytes; INTRO, 1696 bytes; CHATR, 380 bytes; and CRUNCH,
196 bytes. In subsequent builds, you will see the structure (shown by the way
the segment names are indented) and the sizes change.

Co-Trees: Another Way to Save Space 4-9

Figure 4-8: First Page of Map File for Sample Program

TRY1.TSK Memory allocation mar TKB 0B.008 Page 1
15-MAY-83 14:46

Partition name : Gen

Identification : 0QOO708

Task UIC : [1,196]

Stack limits: 001000 001777 Q01000 00312,
PRGC xfr address: 022462

Total address windows: 1.

Task extension : 512 words

Task imase size : B528. words

Total task size : 7040, words

Task address limits: 000000 031363

R-W disk blK Limits: 000002 000036 Q00033 0029,

TRY1,TSK Querlav descrirptioni:
BASE TOP Lendgth

Q00000 026123 026124
0268124 031363 003240
026124 026717 000374
026124 026427 000304

{inag.

MK-01049-00

4.4.5 Second Build for Sample Program: Using a Co-Tree

For the second build of the sample program, use the co-tree structure shown in
Figure 4-9.

Figure 4-9: Structure for Second Build of Sample Program

INTRO CRUNCH CHATR CALC1 CALC2

MK-00586-02

The ODL file for such a structure could be:

+NAME NULL

+ROOT USERWL »COTRWL
COTRWL: JFCTR NULL-*(CALC1-LIBR,CALCZ-LIBR)
USERWL: +FCTR USER-LIBR-#*(INTHL +CHATWL sCRUNWL)
INTHL : +FCTR INTRO-LIBR
CHATWL: JFCTR CHATR-LIBR
CRUNWL: FCTR CRUNCH-LIBR
LIBR: «FCTR LB:BP20TS/LB

+END

4-10 Co-Trees: Another Way to Save Space

Calling the previous file OVER2.0DL, the build process is:

RUN $TKB

TKB:>TRYZ »TRYZ=0VERZ/MP

ENTER OPTIONS:

TKB>UNITS=12
TRB>ASG=8Y:5:6:7:8:9:10:11:12
TRKBEXTTSK=512

TKB>//

This run, unlike the first, produces a blizzard of diagnostic error messages:

TKB -- *DIAG* -- MODULE CALC1 AMBIGUOUSLY DEFINES SYMBOL xxxx
TKB -- *DIAG¥ -- MODULE $ICINI MULTIPLY DEFINES SYMBOL xxxx
TKB -- *DIAG* -- MODULE $JPMOY MULTIPLY DEFINES SYMBOL xxxx

)
+

+

It is useful to take note of the modules mentioned, for reasons that become clear
later when you look at the memory map. The modules are, in order: CALC1,
$ICINI, $JPMOV, S$ICWRT, $ECONV, $ICFNS, $STFN1, CALC2, (and again)
$ICINI, $JPMOV, $ICWRT, $ECONV, $ICFNS, and $STFN1.

If you try running the program built (by typing RUN TRY2.TSK), it works. So
the Task Builder’s error messages are only diagnostic messages, as indicated.

Figure 4-10 shows two pages of the relevant information from the map file
TRY2.MAP. Page 2 of the map shows that the total size of the program has
grown from 6528 words in the first build to 7552 words for the second build.
This would seem an inauspicious start for a memory-saving co-tree structure,
but you can be prepared for this and look for the reasons.

Page 5 shows the start of the information you are most interested in at this
point. The highlighted portion under the TITLE column shows the names of
library routines that have been built into the INTRO piece of the overlay struc-
ture. You know that they are library routines because the FILE column shows
them as from the library file BP20TS.OLB.

Following pages of the map (not shown in Figure 4-10) would show similar

entries for library routines in the overlay pieces CRUNCH, CHATR, CALC1,
and CALC2.

Co-Trees: Another Way to Save Space 4-11

4-12

Figure 4-10: Excerpts from Map File for Second Build of Sample

Program

TRYZ2.TEK Memory allocation mar

CALEZ 15-MAY-B3

Partition name : GEN
Identification 3 Q00708
Task UIC : [1:1963

StacK limits: 001000 Q01777 001000

PRG xfr address: 016030
Total address windows:s 1.

Task extension : 512, words
‘Task imade size ¢ 7852, words
Total task size ¢ BOG4, words

Task address limits: OQOQOQOQOQ0 035313
R-W disk bBlK limits: Q00002 CQO0OS4 000083

TRY2.TSK QOuverlay description:

Base Tor Length

000000 021043 021044 08740,
021044 030523 007460 03888,
021044 026173 005130 02648,
021044 021377 000334 00348,
030324 030523 Q00000 00000,
030324 035313 004570 02424,
030524 038303 004560 02416,

08,008 Pade

13:17

00812,

USER

NULL

00043,

INTRO
CHATR
CRUNCH

CALCH
CALCZ

3

TRYZ2.TBK Memory allocation mar

USER 15-MAY-83

*%¥% Sedment: INTRO

R/W mem limits: 021044 030323

Co-Trees: Another Way to Save Space

007460
Disk blk limits: 000024 000033 000010

0B.006 Page

03888,
Qooos.

(continued on next page)

Figure 4-10: Excerpts from Map File for Second Build of Sample
Program (Cont.)

Memory allocation svynorsiss:

Section Title Ident File

+ BLK.:(RW,SI+LCLRELSCON) 021044 000000 00000,

BP2D0TS: (RW+ILCLsREL»CON) 021044 007272 03770,
021044 000422 00274, $IC
0214668 002004 01028, %
023472 000BSE 00430, A
024330 000642 00418,
025212 002404 01248,
Q276816 000226 00150,
030044 000202 00130, &
Q30246 000070

$ARRAY : (RW+DH»LCL »REL yCON)Y 030336 000000 00000,

+

+

+

At this point, it is useful to sketch the information shown in the map file,
listing the routines included in each overlaid piece from the library
BP20TS.OLB. Figure 4-11 is such a sketch, showing the relative sizes of the
pieces and naming the library routines built into each of the overlaid pieces.

NOTE

Library routines have also been built into the root segment,
USER, but they are of no concern. It is theoretically possible that
some of these routines could be overlaid in their own tree. How-
ever, it is difficult to know the sequence in which such routines
are called from other trees. You would have to look at an
assembly-language listing of the compiled code to determine the
sequence of calls.

That is, overlaying such routines in their own tree could, and
probably would, result in the cross-tree call problem mentioned
in Section 4.1. An overlay piece could inadvertently displace
another overlay piece in memory, causing errors at execution
time.

Figure 4-11 is the basis of the analysis for “fine-tuning” a build using co-trees
with a high-level language. Now you can see more clearly just what the Task
Builder has done and why.

First, it has built the routines $ICINI, $ICWRT, $ECONV, $ICFNS, and
$STFN1 into two paths in each of the two trees: that is, into INTRO and
CHATR in the main tree, and CALC1 and CALC2 in the co-tree. This was
indeed the most reasonable thing for the Task Builder to do; it had no way of
knowing whether to resolve the references in CALC1 and CALC2 with the
definitions in INTRO or the definitions in CHATR. So, it built the routines into
CALC1 and CALC2 again, and flagged the routines (modules) and symbols for
your examination.

Co-Trees: Another Way to Save Space 4-13

BP20TS.0LB
BP20TS.0LB
BP20TS.0LB
BP20TS.0LB
BP20TS.0OLB
BP20OTS.0LB
BP2DTS.0OLB
BPZOTS.0LB

4-14

Figure 4-11: Sketch of the Structure for Second Build of Sample

Program
USER — 8740 BYTES
INTRO CRUNCH CHATR
3888 BYTES | 348 BYTES 2648 BYTES
$ICINI $JPADD $ICINI
$ICRED $JPMOV $JPMOV
$ICWRT $JMUL $ICWRT
$STMOS $JPSUB $ECONV
$ECONV $ICFNS
$ICFNS $STFNT
$STLSS
$STFN1
[i
CALCH CALC2
2424 BYTES 2416 BYTES
$ICINI SICINI
$JPMOV $JPMOV
$ICWRT SICWRT
$ECONV $ECONV
$ICFNS $ICFNS
$STFNT $STFN1

MK-01050-00

To save space, then, you can build one copy of each of these routines into
the root, where they would be accessible from all branches of all trees (as
shown in Section 4.4.6.). First, however, continue with the analysis.

The only other routine that appears in more than one path on more than one
tree is $JPMOV, appearing in CRUNCH, CHATR, CALC1, and CALC2. Now
— look at the structure from the viewpoint of “overlaid pieces should be about
the same size.” CRUNCH is quite small at 348 bytes. CHATR and CRUNCH
together about equal the size of INTRO. You can link CRUNCH and CHATR
together using the following ODL commands:

USERML : FCTR USER-LIB-#(INTWL »CRUNWL)

CRUNRML = FCTR CRUNCH-CHATR-LIBR

v+ e e e e s e e s e e

Co-Trees: Another Way to Save Space

This combination has the advantage in that it also consolidates the references
to $JPMOYV from two paths in the main tree to only one path. The Task Builder
can then resolve the references to $JPMOV in CALC1 and CALC2 with the
routine built into the branch in the main tree. Since in this branch, CRUNCH
and CHATR both call CALC1 and CALC2, and since CALC1 and CALC2 will
not make calls to any other paths in the main tree, you will not have any
problem with inadvertently displaced pieces at run-time.

4.4.6 Third Build for Sample Program: Restructured Tree and Library
Routines in Root

You are ready to build the program again using the structure shown in Figure
4-12.

Figure 4-12: Structure for Third Build of Sample Program

INTRO CRUNCH CALCH CALC2

CHATR

MK-00586-03

In addition to specifying the main program and subprograms, you also want to
build the library routines $ICINI, $SICWRT, $ECONV, $ICFNS, and $STFN1
into the root. Do this by using the /LB switch, followed by specific routine
names separated by colons. For example:

+NAME NULL
+ROOT USERWL sCOTRWL
COTRUL : +FCTR NULL-#(CALC1-LIBRCALC2-LIBR)
USERMWL = +FCTR USER-LIB-*(INTWL sCRUNWL)
INTWL : +FCTR INTRO-LIBR
CRUNMWL = +FCTR CRUNCH-CHATR-LIBR
LIB: +FCTR LIB1-LIBR
LIB1: +FCTR LB:BPZ2OTS/LB:$ICINI:$ICWRT:$ECONV :$ICFNS:$5TFN1
LIBR: +FCTR LB:BPZ20OTS/LB
+END

In general, you can specify up to eight routines as modifiers to one /LB switch.
Calling this file OVER3.0ODL, the build process is:

RUN $TKB
TKB:>TRY3»TRY3I=0UVER3/MP

ENTER OPTIONS:

TKB*UNITS=12
TKB>ASG=8Y:15:6:7:8:9:10:11:12
TKBEXTTEK=512

TKB>//

Co-Trees: Another Way to Save Space 4-15

4-16

The build proceeds without error. The first page of the map file TRY3.MAP is
shown in Figure 4-13. As shown, the total amount of virtual address space
taken by the program is 6400 words, smaller than the first build without co-
trees, which took 6528 words. And, as can be determined by typing RUN
TRY3.TSK, the program runs.

Figure 4-13: First Page of Map File for Third Build of Sample Program

TRY3, TEK Memory allocation mar TKB 08,008 Page 1
15-MAY-B3 15:24

Partition name : GEN

Identification : 000708

Task UIC : [1,19613

Stack limitss: 001000 001777 Q01000 00312,
PRG xfr address: 022252

Total address windows: 1.

TasKk extension : 512, words

_TaéK~ imade «size 1 BAOO, words

Total task size : B912., words
Task address limits: 000000 030773
R-W disk blK limits: OQOQOO00OZ 000037 000036 00D030.

TRY3.TSK Overlay descrirtion:

Base Tor lLendgth

QOOO00 028253 025254 10924, USER

025254 0308513 003240 01696, INTRO

025254 026603 001330 00728, CRUNCH
030514 030513 000000 GO000, NULL

030514 030773 000280 00176, CALCH

030514 030763 000250 00168, CALCZ

4.4.7 Further Tips

The example program discussed in the previous sections is a simple one. For a
complex program having many overlays in many co-trees, some of the steps
described above are harder to follow. If you have a screen terminal, for example,
it may be very tedious to write down all the routine names in the diagnostic
error messages resulting from a “first-try” co-tree build.

One way to get around this problem is to eliminate all library references in
your preliminary build. The routines and symbols will then show up on the map
file listing as “undefined symbols,” and you can work from there.

4.4.8 Using Co-Tree Techniques with the Default Library

You can use the techniques discussed in this chapter for default library
routines. However, you must be even more careful than you were with the
language libraries. Routines in the default library were coded in the MACRO

Co-Trees: Another Way to Save Space

assembly language using expert manipulation of program sections (see Chapter
6). For example, a routine may use a data section that can be overlaid in low
virtual address space while instruction sections are built into separate paths of
the tree. Unless you are a MACRO programmer, aware of these program sec-
tions and capable of dealing with them, you should not try overlaying routines
from the default library.

If you do want to try it, you will find the /MA and /FU switches useful. These
switches are described in detail in Chapter 9.

Briefly, the /MA switch appended to the map file specification calls for more
detail in the listing on routines built into the program from the default library.

Appending the /FU switch to the executable program file (default extension
TSK) tells the Task Builder make a “full search” during its second pass to
resolve undefined symbols from the default library. Suppose, for example, that
the Task Builder builds a definition from the default library into one path on
the main tree to resolve an undefined symbol. If this symbol is referred to from
a path on a co-tree and the /FU switch has been used, the Task Builder
resolves the reference in the co-tree with the definition in the main tree.

Note that if the symbol were referred to in more than one path on more than
one tree, the Task Builder proceeds as it does when it searches through library
references specified with a general-purpose /LB switch. That is, it builds the
piece into all paths on all trees and flags the symbols as multiply or ambigu-
ously defined. You can specify where you want individual program sections by
using the Task Builder’s .PSECT command (Chapter 6).

Again, you should not try to overlay pieces from the default library unless you
are experienced in MACRO and can determine that cross-tree calls will not
inadvertently displace portions of the overlay structure.

Co-Trees: Another Way to Save Space 4-17

Chapter 5
The Autoload Indicator

Now that you understand the rules for specifying an overlay structure, it is
necessary to better understand the autoload indicator (*). The asterisk tells
the Task Builder to generate “autoload vectors” for pieces of your overlaid
program. Autoload vectors are necessary for the pieces to be loaded prop-
erly. As mentioned in Section 3.2.1, the easiest way to use the autoload
indicator is to put an asterisk (*) before the outermost parenthesis of the
main tree and call co-trees, and before any non-null co-tree roots (Figure
5-1).

This chapter tells what is happening when you use the autoload indicator,
and why. It also explains how you can save a small amount of space in your
program by using autoload indicators judiciously.

Figure 5-1: The Easiest Way to Use Autoload Indicators

ROOT A—x(A1,A2,A3—(A31,A32))
(BEFORE THE OUTERMOST PARENTHESIS)
FOR A CO-TREE STRUCTURE:

.ROOT MAIN, COTRE1, COTREZ2

MAIN: FCTR A-A1,A2,A3,)
.NAME NULL (BEFORE OUTERMOST LEFT PARENTHESIS
COTRE1: .FCTR NULL-+(B1,B2) IN MAIN TREE AND
COTRE2: .FCTR «C- r\(C1 ,C2—(C21,C22)) EACH CO-TREE)
i

END (BEFORE A NON-NULL CO-TREE ROOT)

MK-00588-00

5-1

5.1 What Are Autoload Vectors?

5-2

When overlays are not requested, the Task Builder resolves references to
symbols in transfer-of-control statements by figuring out the location
(address) where the symbol will reside when the program is executing. The
Task Builder then puts this address in the transfer-of-control instruction.
For example, consider the simple build:

RUN $TKB
TKB>0BJ=MAIN,SUB1,LB:F4POTS/LB
TRB>//

As described in Chapter 2, the Task Builder concatenates MAIN and SUB1
and resolves undefined references by concatenating modules from the
library. When MAIN calls SUB1, the Task Builder resolves the reference
by substituting the address it has calculated for the entry point for SUBI.

With overlays, the Task Builder does not assume that such direct substitu-
tions will work. When a call is made to a piece further away from the root,
there is no guarantee that the piece referenced will be in memory when
the call is executed. So, you must tell the Task Builder to generate auto-
load vectors for global symbols outside the root that are referenced in
transfer-of-control statements by a piece closer to the root. And, where such
a reference is made to a global symbol, the Task Builder will then
substitute the address of the autoload vector instead of the direct address
reference.

The generated autoload vectors are stored in every piece of your program
that calls another piece further away from the root. The general form of an
autoload vector is the four-word structure shown here.

Autoload Vector Entry

JSR PC (usub

Offset to pointer to autoload code

Segment descriptor address

Entry point address

MK--01055-00

The JSR instruction passes control to the autoload processor, $AUTO.
These two words are followed by the address of the descriptor for the seg-
ment to be loaded as well as the direct address calculated for the entry
point of the piece to be loaded, if necessary.

Thus, when your program executes a call to a piece of your program further
away from the root, control transfers to the autoload vector address and on
to the autoload routine (inserted as a part of your program by the Task
Builder). The autoload routine checks to see if the piece referred to is
already in memory. If so, control is transferred to the location where the
called routine resides, that is, to the entry point specified in the last word of
the autoload vector.

The Autoload Indicator

If the desired piece is not currently in memory, the autoload routine loads
the piece from disk (using information from the segment descriptor pointed
to by the third word of the autoload vector). Once the appropriate piece is
loaded, control is transferred to the entry point specified in the last word of
the autoload vector.

5.2 Where Are Autoload Vectors Really Needed?

You can request autoload vectors for all the pieces of your program, if you
want to. If you use the easiest rule (described on the first page of this
chapter) each global symbol referred to in a transfer-of-control statement
closer to the root will have an autoload vector. But autoload vectors are
only necessary when a transfer of control is made to a piece that is not
currently in memory, so that it can be properly loaded. You can save four
words for each unnecessary autoload vector you eliminate by using the
autoload indicator only where it is really needed.

To understand how to request specific autoload vectors, you must under-
stand how the Task Builder has stored the pieces of your program on disk,
and how and when the appropriate pieces are loaded. This was discussed in
Section 3.5.2; that information is reviewed here with a more complex
example.

When you request overlays, the Task Builder constructs your executable
program file such that pieces will be loaded in the most efficient manner. It
does this by analyzing your ODL file. Pieces connected by a hyphen (-) are
stored such that they will be loaded in one disk access. Pieces separated by
a comma are stored such that they require a separate disk access for each
piece.

For example, consider the following overlay structure:

CNTRL
A0 |
| B1
| —l B2
B3
A2
A1l B4
‘—k——] B5
A21 A22
MK—00589-00

This structure can be represented (including the FORTRAN library
F4POTS.OLB) by the following ODL file. Note that only the structure is
shown — no autoload vectors for the moment, although they would be
needed.

The Autoload Indicator 5-3

5-4

+ROOT CNTRL-LIBR-(AFCTRBFCTR)

AFCTR: +FCTR AQUWLIB~(AIWLIB AZWLIB- (A21WLBAZZWLIB)
BFCTR: +FCTR B1-BZ2-B3-B4-B53-LIBR
AOWLIB: +FCTR AO-LIBR
ALWLIB: +FCTR A1-LIBR
AZWLIB: +FCTR AZ-LIBR
AZ1IWLE: +FCTR AZ1-LIBR
AZZWLEB: +FCTR AZZ-LIBR
LIBR: +FCTR LB:F4POTS/LB
+END

Ignoring the factors needed to include the FORTRAN library, note that B1
through B5 are connected by hyphens. Hence, they are stored on disk as
one segment. Suppose that the root, CNTRL, contains a call to B3. As long
as an autoload vector has been generated for B3, it and B1, B2, B4, and B5
are loaded when the call is made, since these pieces have been stored as one
segment on disk.

Once they are all loaded, B3 can call B1, B2, B4 and/or B5 using direct
references (without autoload vectors). Likewise, they can all call each other
using direct address references. The only piece you must request an auto-
load vector for is B3; you could have eliminated autoload vectors for B1, B2,
B4, and B5. (Or, if CNTRL had called B5 first, you need have requested
autoload vectors only for B5 — the call sequence is as important a consider-
ation as the fact that the items are connected by hyphens.)

For items separated by commas, the loading sequence is different. The Task
Builder stores items separated by commas in separate segments on disk. At
execute time, a reference to a piece “further out” (away from the root of the

tree) causes all pieces between the calling piece and the called piece to be
loaded.

Suppose that in the above example, CNTRL calls A21. Assuming that an
autoload vector exists for the reference to A21, the pieces A0 and A2 are
loaded along with A21. At this point, any routine in that path can call any
other routine using a direct reference. That is, CNTRL could call A0, A2, or
A21; A21 could call A2 or AO. A2 could call A21 or A0, and AO could call A2
or A21 using direct references. So, as long as A21 is called first, it is the
only piece along that path that needs an indirect reference, an autoload
vector, to ensure that it is loaded when a piece closer to the root calls it.

Suppose, on the other hand, that CNTRL calls A0 first. Only AO is loaded
when that particular call is made. AQ needs an autoload vector. If A0 then
called A22, A22 would also need an autoload vector. However, at that point,
A2 and A22 will be loaded into memory. CNTRL could call A0, A2, and
A22; A22 could call A2, A2 could call A0, and A0 could call A2 and A22
using direct references. No autoload vector is necessary for A2 in this case.

The Autoload Indicator

5.3 How to Request Specific Autoload Vectors

You request autoload vectors for a specific piece of the overlay by using an
asterisk (%) in your ODL commands. For example, the following command
causes autoload vectors to be generated for global symbols in A and C that
are referred to in transfer-of-control statements from segments closer to the
root. No autoload vectors are generated for such global symbols in B, how-
ever. (No autoload vectors are necessary for CNTRL since it is loaded by
the run-time system when the program is first executed.)

+ROOT CNTRL-(*AB-*C)

You can put the asterisk before any item in an ODL .ROOT or FCTR
command.

5.3.1 Asterisk Before File Names and Program Sections

If you put an asterisk before a file name or a program section name with
the I (instruction) attribute*, an autoload vector is generated for each
global symbol in the file or section (such as an entry point) referred to in a
transfer-of-control statement from another piece closer to the root.

5.3.2 Asterisk Before Items in Parentheses

If you put an asterisk before items enclosed in parentheses, autoload vec-
tors are generated for each item within the parentheses.

For example:

BRNCH1: FCTR A-%(B,C,D)
Autoload vectors are generated for B, C, and D.

5.3.3 Asterisk Before Names Defined in .FCTR Commands

If you put an asterisk before a name later defined in a .FCTR command, an
autoload vector is generated for the first item in the . FCTR command. If the
first item in the FCTR command is preceded by a left parenthesis, all items
within the parentheses in the .FCTR command will have autoload vectors,
as long as they are referred to in transfer-of-control statements from pieces
closer to the root.

For example:

+ROOT MAIN- (#AFCTR#BFCTR)

AFCTR: +FCTR AOQO-ASUB1-ASUBZ
BFCTR: +FCTR (BO-(B1.,B2))
+END

* Program sections are units processed by the Task Builder; they are described in Chapter 6.

The Autoload Indicator 5-5

Autoload vectors are generated for A0, BO, B1, and B2, as long as they are
referred to in transfer-of-control statements from pieces closer to the root.
Autoload vectors are not generated for ASUB1 and ASUB2.

5.3.4 Asterisk Before Names Defined in .NAME Command

As mentioned in Section 3.5.2, the NAME command assigns a name to a
piece of the overlay structure. The piece, as it turns out, is the “segment”
defined immediately following the name when the name is used in a .ROOT
or .FCTR command. (Remember that we defined a segment as loadable
with one disk access, see Section 3.5.2.)

For example, consider the following (unlikely) ODL file:

+NAME WECAN

+NAME ONLY

+NAME WONDER

+ROOT CNTRL-(WECAN-(AB) yBFCTRCFCTR)

BFCTR: +FCTR *ONLY-BO-B1-BZ-B3
CFCTR: +FCTR Cl-(*WONDER-C2-(E3:C4))
+END

The name WECAN applies to a null segment; this is how the .NAME com-
mand would be used to define a null root for a co-tree, as described in
Section 3.5.2. There is no reason to generate an autoload vector for a null
segment.

The name ONLY applies to the segment formed by the pieces B0, B1, B2,
and B3. Hence, the asterisk before ONLY means that autoload vectors are
generated for each of these pieces.

The name WONDER applies to the segment formed by C2. Hence, the
asterisk before WONDER means that autoload vectors are generated for
C2.

5.4 Example of Specific Autoload Vector Requests

Now that you understand how autoload indicators apply to the various
elements possible in an ODL file, return to the specific example in Section
4.2. To repeat, the structure is represented in the following diagram and

ODL file:
CNTRL
AO I
| B1
I 1 B2
B3
A2
A1 B4
l—‘—l B5
A21 A22 MK—00589-00

5-6 The Autoload Indicator

+ROOT CNTRL-LIBR-(AFCTRBFCTR)

AFCTR: +FCTR AOWLIB-(ALWLIB +AZWLIB-(AZ1WLB +AZZWLIB)
BFCTR: +FCTR B1-B2-B3-B4-B5-LIBR
AQWLIB: +FCTR AO-LIBR
AlWLIB: +FCTR A1-LIBR
AZWLIB: +FCTR AZ-LIBR
AZ1KWLB: +FCTR AZ1-LIBR
AZZWLB: +FCTR AZ2-LIBR
LIBR: +FCTR LB:F4POTS/LB
+END

Suppose that CNTRL calls B3, which makes various calls to B1, B2, B4,
and B5 before it returns control. CNTRL then calls A21 which calls A2 and
AOQ. Control returns to A21, which returns control to CNTRL. CNTRL then
calls Al and A22.

Thus, you need apply the autoload indicator only to B3 in the “B” branch of
the structure. In the “A” branches, you must supply an autoload indicator
for A21, Al, and A22. You can accomplish this with the following ODL file:

+ROOT CNTRL-LIBR-(AFCTRBFCTR)

AFCTR: +FCTR AOWLIB-(ALWLIB +AZWLIB-(AZ1WLE +AZZWLIB)
BFCTR: +FCTR B1-BZ-*B3-B4-B5-LIBR
AQWLIB: LFCTR AO-LIBR
AlWLIB: JFCTR *A1-LIBR
AZWLIB: JFCTR A2-LIBR
AZ1WLEB: +FCTR *AZ1-LIBR
AZZWLEB: +FCTR *AZZ2-LIBR
LIBR: +FCTR LB:FAPOTS/LB
+END

5.5 The Effects if You Make a Mistake

If you make an error in placing asterisks, your program is in trouble. Sup-
pose you leave out an asterisk so that an autoload vector is not generated
for a piece of your program. That piece will then be called with a direct
reference, and if it is not actually in memory, control passes to whatever
happens to be there. The Task Builder cannot diagnose the error at build
time, because it does not attempt to analyze the sequence of calls in your
program.

So, be very careful in requesting that the Task Builder generate autoload
vectors for only part of the pieces making up your program.

The Autoload Indicator 5-7

Chapter 6
Working with Program Sections

So far, overlay techniques have been discussed in terms of units you are
familiar with: files consisting of (1) separately compiled or assembled pro-
grams or subprograms or (2) library files. This chapter discusses the units
these files consist of — the units the Task Builder actually works with —
program sections.

6.1 What is a Program Section?

All the language translators produce program sections. With MACRO, you
work directly with program sections. The .PSECT directive of the MACRO
language lets you name and define exactly what goes into these units. With
the higher-level languages, the compiler handles most aspects of generat-
ing and assigning attributes to program sections for you (Figure 6-1).

Figure 6-1: The Task Builder Works with Program Sections

COMPILER

PSECT B
PSECTC

PSECT D
PSECTE

MAIN.OBJ

MK—-00590-00

6-1

The Task Builder allocates space differently for different parts of a program
or subprogram, depending on certain attributes. With program sections,
you can take full advantage of these attributes. A case where you would
need program sections involves common areas, a programming feature
of all languages. (COBOL programmers will recognize common areas as
the LINKAGE SECTION of the DATA DIVISION in their program or
subprogram.)

Common areas are areas in memory that are shared between programs and
subprograms. A program can place data in a common area and pass control
to another program or subprogram that uses the data in the common area
for processing. This example implicitly illustrates one of the most obvious
attributes of a program section: whether it consists of instructions or data.

Another attribute inherent in common areas is that the space allocated in
both the program and subprogram should be overlaid, rather than conca-
tenated. For example, suppose two FORTRAN programs define a common
area named A. In each compilation, the compiler defines a program section
named A with the “overlay” attribute. The Task Builder, when requested to
build an executable program file from the two object files, can allocate one
area of memory to A. It can resolve references to A such that both programs
refer to the same area. (Note the word “can.” Whether the Task Builder
actually uses the same area or not depends upon whether the two defini-
tions reside along the same path of the overlay structure, as described in
Section 6.2.)

This illustrates yet another attribute of a program section: whether it is
local or global. The compiler defines common areas as global; that is, they
can be referred to by other separately compiled programs or subprograms.
(MACRO programmers, again, state the attributes of program sections
directly.) That is, global program section names can be referred to by other,
separately compiled, programs or subprograms.

A program section has two other attributes: (1) whether it can be accessed
read /write or read-only and (2) whether its address is absolute or relocata-
ble. See the PDP-11 MACRO-11 Language Reference Manual if you are
interested in further detail about program section attributes.

6.2 Allocating Space for Global Program Sections

6-2

As mentioned in section 6.1, one of the attributes of a program section is
whether it is local or global. The Task Builder must determine where to
allocate space for global program sections. If a FORTRAN program and
subprogram both define a common area A, for example, where is the space
for A to be allocated?

Figure 6-2 shows two examples. The common block COMA is defined in the
pieces A2 and A21. The Task Builder allocates the space for COMA in A2
because that segment is closer to the root. The common block COMB, how-
ever, is defined in A0 and B0. These pieces are not on the same path, so the
Task Builder allocates space for COMB in both A0 and B0O. Note that A0
and BO cannot communicate through COMB. When the overlay containing
B0 is loaded, for example, any data stored in COMB by AO is lost.

Working with Program Sections

Figure 6-2: Allocating Space for Global Program Sections

ROOT

| ! | '
. A0 | . BO !
/| DEF coms | !\ DEF coMB |1
e Pl e ——— X
‘\\ SPACE FOR COMB ALLOCATED
S IN BOTH A0 AND BO BECAUSE
' | THEY ARE ON DIFFERENT PATHS
A1 | A2 !
1
|| DEF COMA | |
U ===1===L""" SPACE FOR COMA ALLOCATED
IN A2 BECAUSE IT IS
CLOSER TO THE ROOT
A21 A22
DEF COMA
MK—00591-00

6.3 How the Task Builder Orders Program Sections

As discussed in Chapter 3, the Task Builder creates the executable file in
segments such that each segment is loaded with one disk access. It also
orders program sections within each segment.

The Task Builder groups the program sections according to access code.
Read/write program sections are assigned the lower addresses; read-only
program sections follow in higher address space. Within these groups, pro-
gram sections are ordered alphabetically. The higher-level language trans-
lators are designed to create names for program sections to take advantage
of this feature of the Task Builder. (If you are programming in MACRO and
for some reason do not want alphabetic ordering of program sections, you
can use the /SQ switch (Section 9.20) to request sequential ordering of
program sections.)

As an example, suppose that the Task Builder is working with a segment
consisting of three pieces named IN1, IN2, and IN3, specified in the ODL
file as follows:

FCTR1: LFCTR IN1-INZ-IN3

Table 6-1 shows the program sections each file contains and their access
codes and allocation codes.

Working with Program Sections 6-3

Table 6-1: Program Sections for IN1, IN2, AND IN3

Program
Section Access | Allocation Size
File Name Name Code Code (octal)
IN1 B RW CON 100
A RW OVR 300
C RO CON 150
IN2 A RW OVR 250
B RW CON 120
IN3 C RO CON 50

The Task Builder first determines the amount of space to allocate for each
program section. Program section A appears in two files and has the over-
lay (OVR) attribute. The OVR attribute causes the Task Builder to allocate
the largest of the two sizes, or 300 bytes, for A. Program section B appears
twice and has the concatenate (CON) attribute. Thus, the total allocation
for B is the sum of the lengths of each occurrence, or 220 bytes. The portion
allocated for IN1 (100 bytes) is assigned the lowest addresses, since it
appears first in the input file list. Program section C appears twice and,
since it has the concatenate attribute, is allocated 200 bytes.

The Task Builder then groups the program sections according to their
access codes, with the read/write sections being allocated the lowest
addresses, followed by the read-only sections (Figure 6-3).

Figure 6-3: Allocation of Program Sections for IN1, IN2, and IN3

A(300) READ /WRITE
B(220) READ /WRITE
C(200) READ—ONLY
MK-00592-00

The only other factor contributing to how the Task Builder allocates and
orders program sections is whether the section consists of instructions or
data. The Task Builder always allocates address space for a program sec-
tion beginning on a word boundary. If the program section has the instruc-
tion (I) and concatenate (CON) attributes, the Task Builder appends the
space so that each piece begins on a word boundary. (This eliminates the
possibility of an odd-address transfer.) If the program section has the data
(D) and concatenate (CON) attributes, however, and the space contributed
by a piece ends on a byte rather than a word boundary, the space for the
next piece is appended starting with the next byte.

64 Working with Program Sections

6.4 The Task Builder’'s .PSECT Command

6.5 Using

You can direct the placement of program sections at build time with the
PSECT command. Suppose, for example, that you wanted to place the com-
mon block COMB from the example in Figure 6-2 in the root section of the
program. This would make the area accessible from both A0 and BO; they
would be able to pass data in the common area, as desired. This could be
accomplished with the following ODL commands:

+PSECT COMBsRW,GBL sREL,OVR D
+ROOT ROOT-COMB-LIBR-*(AQWL ~-*(ALWL »AZWL-*(AZ1WL +AZ2WL)Y)

+

+

+END

In the .PSECT command, you specify the program section name first, fol-
lowed by its attributes in any order. The attributes shown here are typical
for a common block: read/write (RW), global (GBL), relocatable (REL),
overlaid (OVR), and data (D).

.NAME to Make a Data PSECT Autoloadable

You can construct an object file consisting only of data and make that file
autoloadable. For example, suppose that, using MACRO, you constructed a
file consisting of a program section containing error messages. Suppose
further that you wanted to overlay this file, because it was needed only
when a certain subprogram was running. Such overlaying can be accom-
plished, and is perhaps best explained by example.

Consider the subprogram ERDAT.OBJ, which processes an error value. If
the value is 0, the subprogram calls a routine named ALRIT.OBJ. If the
value is not 0, however, it displays one of the error messages contained in
the file MSG.OBJ, consisting of a program section with the D attribute,
using, say, the MACRO language .ASCII command to define each particu-
lar error message.

There is no reason why ALRIT and MSG must be in memory at the same
time. You can overlay ALRIT and MSG, by using the .NAME directive to
define a name and attributes for the file MSG. For example:

+RODT MAIN-%(OTHER +ERMSG- (ALRITMEG))
+NAME MESAGE »GBL

MSGF: +FCTR MESAGE-MSG
+END

That is, you must include a .NAME command defining a global name
(MESAGE in this case) for the data file (MSG in this case). The Task
Builder generates the global symbol MESAGE and enters it into the sym-
bol table for segment MESAGE. Since this segment is included for the
generation of autoload vectors, an autoload vector is created for the seg-
ment referred to by the global symbol MESAGE. Because it consists only of

Working with Program Sections 6-5

a program section with the data (D) attribute, however, the Task Builder
constructs a special autoload vector. The last word, normally an “entry
point address” for an autoloaded segment, instead refers to the symbol
$$RTS (generated by the Task Builder, and containing a simple return
instruction).

So, program ERMSG includes a CALL MESAGE statement or JSR
PC,MESAGE instruction to load the error message file MSG. At execution
time, the CALL or JSR would transfer control to the autoload vector, which
would call the $AUTO routine to load the necessary segment, if necessary,

and then transfer control inline (back to the statement or instruction in
ERMSG following the CALL or JSR).

In short, to make a data segment autoloadable:

1. Use a NAME command with the GBL attribute to define a global
name for the segment.

2. Make sure that an autoload vector is generated for the segment by
using the autoload indicator as appropriate.

3. Load the segment by using a control instruction, such as CALL or
JSR, referencing the name defined in the NAME command.

Section 11.4 describes the .NAME command in detail.

6.6 More About Program Sections: Deciphering the Map

The first time you look at a memory map file, particularly if you use one of
the higher-level languages, you may wonder “What has happened to my
program?” The listing for even a small program is lengthy, and contains
symbols that you never saw before.

The Task Builder presents a rather dazzling array of information in the
memory map. You have seen parts of a map file in previous chapters deal-
ing with overlays. Now that you understand what program sections are,
and how the Task Builder orders them, more of the pieces can be fit
together.

The following pages show a BASIC-PLUS-2 program consisting of a main
program and three subroutines. (This program is a slight simplification of
the one used to describe co-trees in Chapter 4.) USER simply calls three
subroutines; INTRO accepts user input from the terminal; CRUNCH per-
forms numeric computation; and CHATR prints the results.

Following the source listing, the ODL file for building the compiled object
files USER.OBJ, INTRO.OBJ, CRUNCH.OBJ, and CHATR.OBJ is shown
as a root segment with three overlaid segments.

Next, you see the map produced from the build. Note that this is a “short”
map; you can request more information and more detail by using the /MA
and /—SH switches on the map file name (see Sections 9.10 and 9.18).
Section 9.18 also gives a complete description of all the information given
in a map file, organized for easy reference.

6-6 Working with Program Sections

Using the /~WI switch produced the 80—olumn listing, to make it easier to
put in this manual. If you use a typical line printer for your mabp file, you
would probably want to produce a 132—column listing (the default).

In this chapter, the focus is on the information contained in a map for each
segment. This information is interesting and may be helpful if you are
trying to debug a program at the machine-language level. The Task
Builder provides complete information on the structure of each segment it
constructs.

Page 2, for example, shows the start of the information for the segment
USER (the root segment of the program). Note the memory allocation
synopsis; each program section in the segment USER is listed (under the
heading SECTION), continuing to page 3 of the map.

The three columns of numbers to the right give the starting address (in
octal) and length (in octal and decimal) of each program section or piece of a
program section in the root. Note that the starting address of the first
program section in the root segment is 2000[8]. The starting address is not
0 (even though you are dealing with relocatable addresses) because the
Task Builder uses the first 2000{8] bytes in your program for some special-
purpose information.

The run-time systems that your program can run under use the first
1000[8] bytes of this space to pass information to the RSTS/E monitor.
MACRO programmers may be interested in this area (described in the
RSTS/E System Directives Manual). Note that programmers in other lan-
guages cannot access this area as easily as MACRO programmers.

Likewise, the second 1000[8] bytes are allocated for what is called the
stack. It is an area which can be used by assembly-language programmers
to pass values between programs or subprograms. A value can be “pushed
on the stack” by one program and “popped from the stack” by another.
Assembly-language programmers may be interested to know that you can
allocate more (or less) than 1000[8] bytes for the stack by using the STACK
option, as described in Section 10.22. Higher-level programmers should not
try to save space by reducing the amount of space taken by the stack; the
compiler may well have generated code in your program to push data on
the stack. Trying to decrease the size can cause unpredictable results when
your program is executed.

In any case, the first program section listed in segment USER is named
“. BLK” — this is the name given by the assembler and compilers to what is
called the blank common area. MACRO, FORTRAN, and BASIC pro-
grammers may recognize this; it is simply the area assigned to common
areas that you do not define a specific name for in your program. In this
case, no common areas are used, and so the program section shows a length
of 00000. bytes.

Next, the BP20TS section shows the library routines that the Task Builder
has inserted into the root segment from the BP20TS library. The routine
names are listed in the “TITLE” column.

Working with Program Sections 6-7

The program sections whose names begin with $ have been generated by
the compiler. They contain the code and data generated by the compilation
of the source files. It is interesting to note, for example, that the program
section named $CODE is the only program section with the instruction (I)
attribute. Logically enough, this is the name that the compiler gives to the
machine instructions it generates from the source code, in this case for the
USER program. If you look on following pages, you see this same $CODE
section appearing in all the segments, and can begin to understand how the
compilers have been designed to generate names to take advantage of the
Task Builder’s alphabetic ordering of program sections.

The program sections whose names begin with $$ have either been gener-
ated by the Task Builder itself or are routines supplied from the default
‘library SYSLIB.OLB. For example, $$ALVC is the name of the program
section containing the autoload vectors for each segment. (Appendix D lists
this and other symbols reserved for use by the Task Builder.) Likewise,
$$AUTO is the autoloading code needed to load overlay segments outside
the root. It is supplied from the default library. The PSECT $$RTS is
another example. This is the return instruction, mentioned in section 6.5,
which can be used to load a data segment.

Following this listing of program sections and their memory allocations is a
list of global symbols defined or used in each segment. Note that the only
global symbols recognizable from the source program are USER, INTRO,
CRUNCH, and CHATR, assigned to the entry point of each routine by the
compiler. The rest have been assigned by the compiler, or belong to the
library routines that have been inserted into the segment.

The last page of the listing contains Task Builder statistics on the build.
These statistics are mainly useful in analyzing Task Builder performance
on your system, as described in Appendix C.

Source for Program USER

10 CALL INTRO(AL1%ZB1%)

20 CALL CRUNCH(AL1%B1%4,»SUMMZLPRODUCTZ DIFFERY)
30 CALL CHATR(A1Y%+B1%,SUMMY PRODUCTY DIFFER%)
40 END

Source for Subprogram INTRO

10 SUB INTRO(ARAZ sBAL)
20 INPUT “INPUT TWO NUMBERS"IiAAYLBAY
30 SUBEND

Source for Subprogram CRUNCH

10 SUB CRUNCH(ABY sBB%.CAY%:CBY CC%)
20 CA% = ABYZ + BB

30 CB% = AB%Z * BB

40 CC% = ABY% - BB

50 SUBEND

6-8 Working with Program Sections

Source for Subprogram CHATR

10 s5UB CHATR(ACY .BC%:CA%.,CBY%Z . CC%)

20 PRINT "THE SUM OF "3AC%43" AND "iBCLi" IS "3iCAZ

30 PRINT "THE PRODUCT OF “SAC%3i" AND "sBCxs" IS "iCBZ%

40 PRINT "THE DIFFERENCE OF "3ACY%3i" AND "iBCxi" IS "iCC%
50 SUBEND

Overlay Description File FRED.ODL

+ROOT USWL-*(INTRWL sCRUNWL sCHATUWL)
USWL 2 +FCTR USER-LIBR
INTRWL: LFCTR INTRO-LIBR
CRUNWL: +FCTR CRUNCH-LIBR
CHATWL: JFCTR CHATR-LIBR
LIBR: +FCTR LB:BP2OTS/LB
+END

Task Builder Command File

USER »USER=FRED/MP
UNITS=12
ASG=8Y:5:6:7:8:9:10:11:12
EXTTSK=512

/7

Task Builder Listing

USER.,TGK Memory allocation mar TKB 08,006 Pagde 1
15-MAY-83 14:00

Partition mame : GEN

Identification : 0QO0708

Task UIC : [30,2113

Stack limits: QOLO00 001777 001000 00512,
PRG xfr address: 016030

Total address windows: 1.

Task extension : 512, words

Task imade size : B304, words

Total task size : BB16, Words

Task address limits: 000000 030453

R-W disK blk limits: Q00002 000041 000040 00032,

USER.TSK DOverlay descrirption:

Base Tor Lendth

000000 020773 020774 08700, USER
020774 030433 007460 03888, INTRO
020774 021427 000434 00Z84, CRUNCH
020774 026023 005030 02584, CHATR

(continued on next page)

Working with Program Sections 6-9

TKB
14:00

USER.,TSK 08,008

USER

Memory allocation marp
15-MAY-83

*%¥% Rpot sedment: USER

limits: 000000 020773 020774
Q00002 000022 000021

QB700.,
aoot7,

R/W mem
DisK blK limits:

Memory ‘allocation synopsis:

Section
v BLK s (RW T sLECLAREL »CON)

BPZ20TS: (ROI+LCL+REL,CON) 002000 014030
000352
0o0026
000460
000132
000746

001114

002332
002400
Q03060
003212
Q04160
003274
Q03274
007030
007520
QlOB22
0loBcdd
Q13022
Q13204
013600
014060
014142
014364
014614
014614
014730
013172
0135176
015266
015554
013636
015672
016004
016030
Q16030
016030
016030
016234
0162234
016234
016234
016244
016244
016244
016244
016244

001554
0O04S0
001102
Q00022
02156
000162
000374
QOOZB0
QO00B2
QOOZ222
000230
QQO0O0
noolid
QOO242
Qo004
QOO070
QOQZEE6E
QOO0B2
0000234
000112
QQ00z4
$ARRAY : (RW 4D LCL yREL SCONY

$CODE :(RO.,I,LCL,REL +CON)

$FLAGR : (RW D +GBL +REL »CON)
$FLAGS: (RW D +GBL »REL »CON)
$FLAGT: (RW D +GBL sREL »CON)

$ICI00: (RW.DGBL »REL»OVR)

Q00030

6-10 Working with Program Sections

. 002000 000000 V0000,

0B168.
00234,
00022,
00304,
QQ090,
00486 .
00588,
Q0876.
00296,
aos578.
oonlg,
01134,
aoiid.
QO232.,
Qoi76.
QoOsS0,
G146,
QO152.,
OO0,
00076,
00162,
00004,
00056,
00182,
00080,
00028,
00074,
00020,

Q0132
0132,

o0008,
000072,

O0ao0o0,
00024,

onoz24,

Pade 2

$CALLS
$ICEND
S$ERTHR
$JMOUS
SIEULT
$TVOPN
$ICIN0
$BINIT
$CNTRL
$5TMEC
$CALLR
$ERRDR
$ICRCL
$IMALG
$ICF5S
$ICCRL
$S5TGTA
$ICEOL
$BFPEI
$ERROT
ROLCB

$BFPER
$PROCT
$JCONY
$BHTRA
$BBTKS
$ICULT
SAVRG

USER

USER

USER

USER

USER

USER
$ICI0O

Ident

Z1CM
O7CM
70CM
05CH
31RE
BORE
04CH
71RE
14CM
25CH
OGCM
7GRE
16CM
12CM
27RE
QOCM
Q4CM
21CM
OGLCH
71RE
69CM
OGCM
OOCHM
03CM
O3RE
O1RE
O4CM
GICM

co0708

000708

QO0708

QDO708

Qoo708

Q00708
Q4CcH

File

BP20TS.0LB
BPZOTS.0LB
BP20TS.0LB
BP20TS.0LB
BP20TS.0LB
BP20TS.0LB
BPZ0OTS.0LEB
BP20TS.0OLB
BPZOTS.0LB
BPZOTS.0LB
BPZOTS.0LB
BPZOTS.0LB
BP20TS.0LB
BPZOTS.0LB
BPZ2OTS.0OLB
BP20TS.0LB
BPZOTS.OLB
BPZOTS.0LB
BPZ207TS.0LB
BP207S5.0LB
BPZOTS.OLB
BP20OTS5.0LB
BPZ20TS.0LB
BP20TS.0OLB
BP20TS.0LB
BP20TS.0LB
BP20TS.0LB
BP20TS5.0LB

USER.OBJ

USER.OB.J

USER.OBJ

USER.OBJ

USER.O0BJ

USER.0BJ
BP20TS.0LB

(continued on next page)

USER, TSK Memory allocation map TKB 08.006 Padge 3

USER 15-MAY-83 14:00
$ICI0L1:(RW,D+GBL »REL »OUR) Q16274 Q00200 00128,
016274 000200 00128, USER 000708 USER.OBJ
$IDATA: {RWD+LCL +REL »CON) 016474 000012 00010,
0168474 000012 00010, USER GO0708 USER.OBJ
$PDATA: (RODSLCL »REL sCON) 018506 000000 00000,
Q162068 Q00000 0Q000, USER 000708 USER.OBJ
$STRNG: (RW D +LCL »REL +CON) 016306 000000 0000,
01B506 000000 00000, USER 000708 USER.OBJ
$TDATA: (RW D +LCL sREL »CON) Q16506 CO0OQ00 00000,
) i o 016306 0QOOO00 00000, USER 000708 USER.OB.J
$$ALER: (RO L LUL yREL sCON) 016506 000024 00020,
$$ALVC: (RD+I sLCL sREL +CON) 016932 000030 00024,
$$AUTO: (ROHI JLCL »REL »CON) 016362 000142 00098,
$$BPZ :(RW:D+GBL sREL »OVUR) Q16724 001440 00800,
016724 001440 00800, USER 000708 USER.OBJ
$EMRKS s (RO +I +LCL sREL +OUR) Q20364 000076 000B2.
$$0WDTs(RWDLCL s REL +OUR) 020462 000024 00020,
$$0VRS s (RW+I »LCL +ABS +CON) QOO00O0 QOOO0O0 00000,
$$PDLS: (RO +I»LCL +REL sOUR) 020306 000002 QQ00Z2,
$$RDSG: (RO I +LCL sREL QUR) Q20510 000144 QO0L100,
$SRESL: (RO I »LCL +REL »CON) 020654 000034 00028,
$$RGDS: (RW»D»L.CL +REL +CON) 020710 000000 GO000,
$$RTQ :(RO,I+GBL +REL :CVR) QZ0710 Q00000 QO000,
$$RTR :(RO:+I ,GBL s REL +OUR) 020710 000000 00000,
$$RTS (RO ,GBL +REL »OUR) 020710 000002 00002,
$$5CGD0: (RW D sLCL »REL +OVR) 020712 000000 00000,
$4$5GD1: (RW+D»LCL s+ REL +CON) 020712 000060 00048,
$$5GD2: (RW D +LCL +REL +OVR) Q20772 QOO0O0Z 00002,
$EWNDS: (RW D LCL +REL +CON) Q20774 GO0000 Q0000,

BEQ$ 007202-R ERTS$ 002612-R MSI$IM 003100-R ULK$ DO3212-R
BGES$ 007212-R ERT$X 00Z626-R NOBRA 007204-R $ABNEX 011416-R
BGT$ 007210-R FLN$ 002400-R NOI$A 0QO03204-R $AFTS1 010634-R
BLE® 007200~k FPUERR 01B272-R NOI$M 003176-R $ATLIN 012260-R
BLT# 0O7222-R FG5% 014CC2-R NOI$S 003170-R $ATOI O015266-K
BNE® 007220-R GSCs 00706B6B-R OEA% 002646-R $BALBF 013474-R
BRA$ 007214-r GEUS 007050-R OEGH% 002634-R $BALMP 013456-R
CAL% DOZ000-R INTRO 016332-R 0CGB%$ 002706-R $BCL OO3032-R
CBR% 0i10G622-R JIMCS 007130-R 0GS% Q02736-R $BINPT 003760-R
CHATR 01B5352-R LINS% 002400-R ONI$A 0QO03162-R $BOFS O004220-R
CLBs5 003132-R LYNS$ 002562-R ONI$M 0(003154-R $BOP 004160-R
CLI$A 003142-R MAD% Q10G02-R ONI%$S 003146-R $BOPX 004176-R
CLI%M ©003136-R MOI$IA 003104-R RCL% 013022-R #$BOUTP 003342-R
CLI$5 003132-R MOI$IM 003100-R REGH% 007164-R $BREAD 00347G-R
CRUNCH 016542-R MOI$IS 003074-R RLI$M 003074-R $BRTBF 013562-R
DPI% 003060-R MOI$MA 003126-R RLI$P 003116-R $BRTMP 013542-R
END%$ 002332-R MOI$MM O003122-R RSI$M 003116-R $CALFP 004114-R
EOL%$ 014364-R MOI$MS 003116-R RSI$P 003110-R $CALIN 01224G-R
ERLS$ OOZ562-R MOI$S5A 003070-R REM% 002414~k sCCHDL 014844-R
ERNS$ 002542-R MOI$EM 0030B4-R RSU% 002424-R $CCXIT 01472B-R
ERRS$ OO2600-R MOI$55 0030B0-R SBE$ 00Z2102-R $CHKRL 0140B0-R

(continued on next page)

Working with Program Sections 6-11

USER.TSK Memory allocation mae
USER 15-MAY-83

$CLFQ@B 003720-R $FPHSK O15172-R
$CLOSR 013034-R $FPUER 014614-R
$CLSAL 013164-R $FRCER 014B34-R
$CLSFQ 004106-R $FSS 004030-R
$CLSHD 013152-R $FSSCN 013B00-R
$CLSTK 010220-R $FSSCZ 013B02-R
$CLXRB 003742-R $GSACM 013204-R
$CNVIA 013456-R $GTPTN 007734-R
$DATRC 00BG2ZB-R $GTPTR 010022-R
$DATRS 00BB04-R $GTROM QO73520-R
$D0IT O01247B6-R $GTRO1 014142-F
$DOITL 012520-R $GTRZ3 014246-R
$ERRTR 014G14-R $GTSTN 007724-R
$ERRT1 010660-R $GTSTR 010010-R
$ERTXT 011332-R $ICI00 01G8244-R
$EXTSP 007B66-R $ICJMP 015754-R
$FLEAL 014426-R $ICJM1 015754-R
$FLSFR 014436-R $INITM 0Q05274-R
$FLSNL 014454-R $INITS Q0OZ270-R
$FLUSH 0144B4-F $INTCM QO0B43Z2-R
$FPASX 015174-R $I0ERS 0QOGB724-R

USER . TSK Memory allocation mar
INTRO 15-MAY-83

*%% Segment: INTRO

TKB 08,

14:00

$I0ERY
$I0TST
$MEMPR
$MEMP1
SMNIUS
$MNSUB
$MREST
$NOREX
$0DDAD
$0DDA1L
$ONERG
$0TSVA
$POMSK
$PROCT
$PEMSK
$PEME2
$PSMS53
$RELCB
$REQCHB
$REUZ

$5AVRE

006

DOB710-R
004124-R
014630-R
011674-R
010436-R
010522-R
011004-R
O1I1320-R
014624-R
011654-R
011126-R
016724-R
QO7440-R
015176-R
007242-R
007234-R
007226-R
014730-R
015032-R
010644-R
016004-R

TKB 08.006

14:00

R/W mem limits: 020774 030453 007480 03888,

DisK blK limits: 000023 000032 000010 00008,
Memory allocation synopsiss
Section
+ BLKs:(RW I LCL sREL +CON) 020774 Q00000 00000,
BP20TS:(ROI sLCL +REL »CON) 020774 Q07272 03770,
020774 000422 00274,
021416 002004 01028,
023422 000BS8 00430,
024300 000642 00418,
025142 002404 01284,
027546 000226 00150,
027774 000202 00130,
030176 000070 O00SE.,
$ARRAY : (RW D LCL »REL +CON) 030266 000000 QOQO000,
D30266 000000 00000,
$CODE :(RO+ILCLRELCON) Q30266 000134 00092,
030266 000134 00092,
$FLAGR: (RW D »GBL +REL sCON) 0168234 Q00000 00000,
016234 Q00000 0Q00C0,
$FLAGS: (RW+D »GBL »REL »CON) 01B234 000010 00008,
Q1BZ36 000002 00002,
$FLAGT: (RW+D»GBL sREL »CON) 018244 000000 QQOOQO0,

016244

6-12 Working with Program Sections

QOOOO0 00000,

Pade 4

$SETSC
$5PEC

$STCRE
$STCRX
$5TMOV
FSTMUX
$5YSHD
SYALDC
$UALTID
$UREAD
SRWRT

$EMAXC
++B2TK
++CRLF
++ PMD

W PTHT
++RSTT
+ +BUFQ

Pade ©

$ICINI
$ICRED
$ICHWRT
$S5TMOS
SECONY
$ICFNS
$6TLES
$STFN1

INTRO

INTRO

INTRO

INTRO

INTRO

0OGZ36-R
003224-R
0i0116-R
010122-R
010150-R
0101B62-R
011274-R
0183710-R
013B72-R
003252-R
004002-R
0oQoL7

015640-R
015576-R
0153874-R
015602-R
015554-R
004136-R

Ident File

23CH BP20TS.0LB
S3CM BP20DTS.0LB
40CM BP20TS5.0LB
16CH BP20TS5.0LB
Z24CHM BP20TS5.0LB
11RE BP20TS.0LB
08CM BP20TS.0LB
OGCH BP207T5.0LB

000708 INTRO.O0BJ
000708 INTRO.OBJ
Q00708 INTRO.OBJ
0006708 INTRO.O0BJ

000708 INTRO.OBJ

(continued on next page)

$IDATA: (RWDLECL »REL »CON) 030422 000004 00004,
Q30422 000004 00004, INTRO 000708 INTRO,DBJ

$PDATA: (RO .D,LCLREL +CON) 030426 Q00026 00022,

0304268 0000268 00022, INTRO 000708 INTRO.OBJ
$STRNG: (RW DL CLREL »CON} 030454 000000 00000,

030454 000000 0000, INTRO 00070B INTRO.OBJ
$TDATA: (RWsD,LCLREL +CON) 030434 000000 00000,

030434 000000 00000, INTRO 000708 INTRO.0BJ
$$ALVC:

(RO +1,LCLJREL ,CON) 030454 000000 00000,

$SRTS 1/GBLREL,OVRY 020710 000002 00002,

Global svmbols:

ASCH 030234-R IPT$ 021246-R LITH 0211B6-R MOS4AP 024516-R
BUF % 0277%2-R IRD® 021002-R LMA%1 O0O30070-R MOS$AS 0Z4300-R
CCP% 027630-R IVF$A 02141B6-FR LSS$AA Q30000-R MOS$MA QZ4GEZZ-R

CHR$ 030256-R IVI$A 0Z1524-R LSS$AM 030020-R MOS5$MM 0Z47536-R
III% 021226-R IUS4A 0OZ15B4-R LES$AP 0Z7774-R MOS$MP OZ2471G-R
TIN$ 021120-R LAM$1 0O30022-R LSS$MA 030050-R MOS$MS 024340-R
ILI% 021206-FR LAM$Z O030026-R LSS$PA 030044-R MOS$PA OZ4B2G-R

ILS% 021102-FR LENS$ 030224-R MOS$AA 024556-R MOS$PM 024510-R
INTRO O302BB-R LIS% 021064-R MOS$AM 0Z24502-R MOB$PP 0Z4712-R
USER.TSK Memory allocation marp TKEB 0B.006 Pade B

INTRO 15-MAY~-83 14:00

MOS$PS 024330-R NSS$PA 030156-R §TS$ 027616-R $FTOAX 02B256-R
MOS$5A 024554-R PUDHSI O23422-R TAB$ 027346-R $INPTT 022170-R
MOS$SM 024444-R PUF4SI 023432-R WAT$ 027732-R $ISETP 022034-R
MOS$SP 024374-R PYI&SI 0Z3572-R $ATOD 025142-R $I4ER 0Z213504-R
MOS$85 024360-R PUSHAT 023442-R $CRLF 023724-R $POS 027646-R
MOS$01 0250856-R RCT# 0276804-R $DMAXD 027544-R $PRNSP 0Z4060-R
MS1$01 024334-R RGSTS$ 020774-R $DTOA 02B320-R $PRNTL QZ4076-R
NMA%1 030172-R SPC% 030176-R $DTOAX 026324-R 4$SETUP 0Z23772-R
NSS$AA 030136-FR SPC%01 030176-R $FMAXD 0Z7542-R

NES$MA 030162-R GSTR$ 030204-R $FTOA 026232-R

USER.TSK Memory allocation mar TKB 08B.006 Pade 7
CRUNCH 15-MAY-83 14:00

#%% Sedment: CRUNCH

R/W mem limits: 020774 021427 000434 00284,
Disk blK limits: QOQOO33 000033 000001 00001,

Memory allocation svynopsis:

Section Title Ident File
s BLK.:(RW+IsLCLsRELCON) 020774 000000 00000,
BPZ20TS: (RO I LCL +REL +CON) 020774 000234 00156,

020774 000046 00038, $JPADD O1ICH BPZOTS.0LB
021042 000074 00060, $JPMOV 0OZCM BPZOTS.0LB
021136 000024 00020, $JMUL OLICM BRZ0TS.0LDB
021162 000046 00038. $JPSUB 0OL1CH BPZ20TS.0LB

(continued on next page)

Working with Program Sections 6-13

021230
021230

$ARRAY 1 (RW D +LCL »REL »COND

$CODE :(ROILCL+REL:CON) 021230
021230
$FLAGR: (RW+D»GBL »REL +CON) 016234
016234
$FLAGS: (RW+D»GBL +REL sCON) 016234
016240
$FLAGT : (RW,D,GBL +REL »CON) 016244
016244
$IDATA: (RW+DLCL +REL +CON) nzi1404
21404
$PDATA: (RO D LCL »REL »CON) 021416
021416
$STRNG: (RW D sL.CL +REL »CON) 021430
021430
$TDATA: (RW D L.CL +REL +CON) 021430
021430
$$ALVC: (RO I SLCL »REL +CON) 021430
$$RTS :(RO,I,GBL sREL +OUR) 020710
Global svmbols:
ADI$IP 020774-R CRUNCH 0Z1230-R MU
ADISMP C0Z21010~-R MOISIP OZ21042-R MU
ADI$PA 0O21034-F MOI$MP 0O21056-R MU
ADISPM 021026-R MOI%PA OZ21074-R MU
ADISPP 021004-FR MOI%PM 021102-R NO
ADIS$PS 021020-kR MOI%PP 0210852-R ON
ADISSP 020776-R MOI$PS 0210B6-R SU
CLI$P 021130-FR MOI%S5P 021044-R SU
USER+ TEK Memory allocation mae
CHATR 15-MAY-83 14:
*#%% Segment: CHATR
R/W mem limits: Q20774 026023

Disk blKk limits: 0QO0CO34 000041 Q0000

Memorvy allocation svnorsis:

Section

+ BLK+:{(RW,I LCL REL +CON)
BRZOTS:(ROI LCL sREL »CON)

020774
020774
0zZ0774
0214186
021512
022370
024774
025222

025312

025312

$ARRAY 1 (RW+DsLCL +REL »CON)

$CODE :(RO+I+LCLRELCON) 025312
025312
6-14 Working with Program Sections

000154
noo134

aQoQ1?
Qooolz
o001z
QQ0017

1418
I$MS
I$PS
1458
I$P

IsP

I$IP
I$MP

02
0z
02
0z
02
0z
02

02

Qo0

00006

004316
000422
Go0074
000OBSE6
002404
DOOZZ26
000070
00Q00Q0
0QQao0
000352
Q00382

00108,
00108,

00010,
00010,
o010,
00010,

00Q02,

1150-R
1144 -R
1136-R
1152-R
1120-R
1110-R
1162~R
1176-R

TKB 0B.006

Q05030 02584,

+

00000,
02254,
0o274.
OO0B0,
Q0430,
01284,
00130,
Q003G
00000,
00234,
00234,

CRUNCH

CRUNCH

CRUNCH

CRUNCH

CRUNCH

CRUNCH

CRUNCH

CRUNCH

CRUNCH

SUI$PA
SUT$PM
SUI$PP
SUI$PS
SUT&SP

Pade 8

$ICINI
$JPMOY
$ICHWRT
$ECONY
$ICFNS
$8TFN1

CHATR

CHATR

000802 CRUNCH.OBJ

000B0OZ CRUNCH.OBJ

0O0BOZ CRUNCH.OBJ

000802 CRUNCH.OBJ

000802 CRUNCH.OBJ

000802 CRUNCH.OBJ

000802 CRUNCH.OBJ

000802 CRUNCH.OBJ

000802 CRUNCH.OB.

OZ1222-R
021214-R
021172-R
02120B6-R
021164-R

Ident File

23CHM BP20TS.0LB
O2CHM BP20TS,0LB
4OCM BP20TS.0LB
24CM BP20TS.0LB
11RE BP20TS.0LB
OBCM BPZ0OTS.0LB
Q00BOZ2 CHATR.OBJ

0ooBoz2 CHATR.OBJ

(continued on next page)

$FLAGR: (RW,D »GBL »REL »CON)
$FLAGS: (RW D +GBL +REL +CON)
$FLAGT: (RW D +GBL sREL »CON)
$IDATA: (RW D LCL »REL +COND
$PDATA: (RDO+D+LCL »REL sCON)
$STRNG: (RW D +LCL »REL +CON)
$TDATA: (RW D LCL sREL +CON)

$$ALYVC: (ROISLCL sREL +CON)
$$RTS :(RDO,IGBLREL sOVR)

016234
016234
0168234
016242
0igz2d4
016244
0253664
QL8664
02538676
025676
026024
0z6024
0Z6024
026024
026024
020710

000012
GOOo12
oo0iz26
000126

Working with Program Sections

000G,
00008,
QO002Z,

oQoio,
ono10,
00086,
00086,

QaO0z2,

Globkal svmbols:
ASCH Q25260-R 021002-R NOI$P 021474-R
BUF$ 025200-R O25250-R ONI$P 0O214B4-R
CCP% Q23086-R O21064-R PYD$SI 0Z1512-R
CHATR 02531Z2-R O21166-FR PUF$SI 021522-R
CHR$ 023302-R MOI$IP 0OZ1416-R PUI$SI 021BB2-R
CLI$P 0Q218504-R MOI$MP 021432-R PUS$AI 021532-R
I11% 021226-R MOI$PA O21480-R RCT$ O25032-R
TIN% 021120-R MOI$PM 0Z21456-R RST% O20774-R
ILI% 021206-R MOI$PP 021426-R SPC% Q23222-R
ILS$ 021102-R MOI$PS 021442-R SPC%$01 0Z5222-R
IPT% 021246-R MOI$SP 0Z21420-R S5TR$ 025230-R
USER., TSK Memory allocation mar TKB 0OB,QO0G
CHATR 15-MAY-B3 14:00
$P0OS 025074-R $PRNSP O0ZZ2150-R $PRNTL 02216G-F
#%% Task builder statistics:

Total work file references: 25363,

Work file readss: 0O,

WorkK file writes: 0O,

Size of core pool: 9630, words (37. pades)

Bize of work file: BO9G0O. words (35. rPades)

Elarsed time:QQ:0Q0:286

CHATR

CHATR

CHATR

CHATR

CHATR

CHATR

CHATR

5TG¢
TAB%
WAT®
$ATOD
$CRLF
SDMAXD
$DT0OA
$DTOAX
SFMAXD
SFTOA
$FTOAX

Pade 9

$SETUP

Q0O0BOZ

000802

000802

000802

oQo8Qe

QO0802

0O0BO2

025044 -
024774 -

CHATR.,DBJ

CHATR.0OBJ

CHATR.,0BJ

CHATR.OBJ

CHATR.OBJY

CHATR.0BJ

CHATR.OB.

R
R

025160-R

022370-
022014~
024772-
023546-

R
R
¢
R

023552-R
024770-R

023500-
0Z3504-

R
R

022082 -R

6-15

PART Il
System Aspects

Chapter 7
Building Your Own Memory-Resident Areas

Chapter 2 describes how to link a program to a resident library. This chap-
ter describes how to build your own resident area of routines or data.

7.1 What is a Resident Area?

A resident library (see Section 2.2.2) is one type of resident area. A resident
library, when in memory, can be shared by many programs. It can consist
of data or reentrant subroutines and is generally mapped read-only. (The
term “reentrant” means that the program does not change any values
within itself during execution. Thus the same code can be executed by one
Job while another job is also executing it; it can be “reentered” before the
first job finishes.)

Resident common is another type of resident area. A resident common pro-
vides a way for two or more programs to communicate. One program can
store data in the resident common for another program to retrieve at a later
time. The resident common area is accessible to both. Resident common
areas are generally mapped read/write.

7.2 The Steps in Creating a Resident Area

There are three steps in creating a resident area: the first involves the Task
Builder. You must build the resident area and create a symbol table file
that later allows other executable programs to link to the resident area.
The symbol table file contains the global symbols defined in the library or
common and either relative or absolute addresses for the symbols. This
symbol table file is later used by the Task Builder when other builds refer-
ence the resident library or common.

The steps in building a resident area are described in Section 7.2. The other
steps in creating a resident library are:

1. Using the MAKSIL utility to format Task Builder output to produce
suitable input to the RSTS/E monitor. This step is described in the
RSTS/E Programmer’s Utilities Manual.

2. [Establishing the area as memory-resident. You can perform this
operation with the UTILTY system program, as described in the
RSTS/E System Manager’'s Guide.

7.3 How to Build Memory-Resident Areas

7-2

Building a memory-resident area is similar to building an executable pro-
gram. The differences are:

1. You must declare that the task file* is not to contain a “header.” The
header on a task file contains information that is used by the loader
in the run-time system when it loads an executable program. The
information is used to set certain areas in the low 1000[8] bytes of
address space in the user job area. Since resident areas do not occupy
this low address range, you do not need (and should not have) a
header for the task file. You omit the header by appending the switch
/-HD or /NOHD to the task file specification in the command line.

2. You must declare that no space is to be allocated for the “stack.” The
stack is an area of memory that can be used for temporary storage.
The stack is accessed by the user program in low virtual address
space (see Section 10.22). It should not be built into a resident area,
which will occupy high virtual address space. You omit the stack by
using the option STACK =0 in the build.

3. You must request a symbol table file as well as a task file. As
described in Section 7.2, this file is used by the Task Builder when it
links the resident area to a program that references the resident
area.

4. You must declare whether the area is to be position-independent
(have relative addresses, so that it can be loaded anywhere in the job
area) or absolute (have absolute addresses, so that it must be loaded
into the same place in the job area each time it is used). The next two
sections tell how to do this.

7.3.1 Building Position-Independent Resident Areas

A resident area can be either position-independent or absolute. Position-
independent areas can be placed anywhere in the user job area.

* The term “task file” is used instead of “executable file,” since a memory-resident area is
not executed with a RUN command. Rather, it is eventually linked to an executable
program in a later build. The task file is the first file that you specify in a Task Builder
command line, with default file type .TSK.

Building Your Own Memory-Resident Areas

Declaring an area to be position-independent causes the Task Builder to:

1. Include definitions for each root segment program section in the sym-
bol table (.STB) file. A program can later reference this shared stor-
age by program section name.

2. Generate relative addresses for the resident area, such that the resi-
dent area can be located anywhere in the user job area when it is
linked to a program that references it. (This allows you to choose the
automatic selection of the highest APR, or to select an APR in the
LIBR, RESLIB, COMMON, or RESCOM option.)

You should declare an area to be position-independent if:

1. The area contains code that executes correctly regardless of its posi-
tion in the address space of the program that references it.

2. The area contains data that is not address-dependent.

3. The area contains data that is referenced by a program (such data
must reside in a named common block).

Because the program section name is preserved in a position-independent
area, you should observe the following precautions when building and
referring to such an area:

1. No code or data in the area should be included in the blank
(unnamed) program section.

2. No code or data in a program that refers to the area should have a
program section with the same name as a program section in the
resident area.

3. The order in which address space is allocated to program sections
(alphabetic or sequential) must be the same for the resident area and
the program that refers to it.

To make an area position-independent, you use the /PI switch on the task
or symbol table file name and specify the PAR option just to name a “parti-
tion” that the area is to occupy. (Do not use PAR to indicate a starting
address and length in this case.) The partition name must be the same as
the filename portion of the task and symbol table files.

Example

The following command line builds a position-independent area from the
input files DAT1.DAT, DAT2.DAT, and DAT3.DAT:

RUN $TKB
TKB>DATLIB/-HD/PI,+:DATLIB=DATL.DAT+DATZ.DATDAT3.DAT
TKB =/

ENTER OPTIONG:

TKB>PAR=DATLIB

TKB>*STACK=0

TKB>//

The /-HD and /PI switches are described in Chapter 9.

Building Your Own Memory-Resident Areas 7-3

7.3.2 Building Absolute Resident Areas

Absolute resident areas must always occupy the same place in the user job
area when linked to a program. If you build this type of area, only one
program section, named .ABS., is included in the symbol table file. All
references to code or data in such an area must be by global symbol name.
Further, when you link a program to an absolute resident area, you must
use the APR parameter to specify the correct location where the area is to
be linked.

Use the PAR option to build an absolute resident area. The PAR option is
described in Chapter 10. Briefly, the format is:

PAR = pname:base:length

where pname is the “partition name”; this must be the same as the file
name portion of the task file and symbol table file in the command line. The
base argument is the base address, in octal, that the resident area is always
to occupy. The length argument is the octal number of bytes of the area. If
you omit the length argument, the length of the task file is used.

For example:

RUN $TKB

TKB*MYLIB/-HD,sMYLIB=CODE! ,CODEZ2,CDDE3
TKB*>/

ENTER OPTIONS:

TKB>PAR=MYLIB:140000

TKB>STACK=0

TKB>//

The area above would always have to be linked as follows:

RUN &TKB
TKB>PROG=PROG

TKB>/

ENTER OPTIONG:
TKB>LIBR=MYLIB:RO:G6
TKB»//

That is, since it was built to begin at location 140000, it must always be
linked using APR 6. Note also that MYLIB.TSK and MYLIB.STB must be
on the device in the account denoted by the system logical LB:, because
LIBR was used rather than the RESLIB option.

7.4 Resident Areas with Memory-Resident Overlays

7—4

The Task Builder lets you construct what are called “memory-resident
overlays” for resident areas. Memory-resident overlay segments are loaded
from disk when your program is loaded; thereafter, they reside in memory
as long as any other program in memory is using them. Memory-resident
overlays share virtual address space, just as the disk-resident overlays do.
Unlike disk-resident overlays, memory-resident overlays do not share
actual memory. Instead, they reside in separate areas of actual memory.
The virtual address space is shared by the mapping technique described in
Chapter 2.

Building Your Own Memory-Resident Areas

For example, consider Figure 7-1. At time 1, the job area in virtual address
space contains OVLY1, one segment of a resident area with memory-
resident overlays. At time 2, the job area in virtual address space contains
OVLY2, the other segment of the resident area with memory-resident over-
lays. Both segments OVLY1 and OVLY2 reside in physical memory; they
are mapped into the virtual address space at different times.

Figure 7-1: Memory-Resident Overlays

VIRTUAL 1 PHYSICAL
ADDRESS SPACE i MEMORY |
o _PROGRAM

LIBRARY

oviYy2

LIBRARY

B) TIME2: USER PROGRAM REFERS TO OVLY2.

MK~-00593-00

7.4.1 Specifying Memory-Resident Overlays

You can use many of the same techniques in doing memory-resident
overlays for resident areas as you use for disk-resident overlays. As with
disk-resident overlays, the branches of an overlay tree must be logically
independent (see Section 3.6). In the example in Figure 7-1, OVLY1 cannot
call or refer to data in OVLY2, or vice versa.

Building Your Own Memory-Resident Areas 7-5

7-6

In the ODL file, use an exclamation point to specify memory-resident over-
lay segments. Memory-resident overlay segments are indicated by placing
an exclamation point immediately before the left parenthesis enclosing the
desired segments. For example:

«+RODOT A-1(BC)

In this example, segments B and C are declared resident in separate areas
of memory. The Task Builder determines the addresses for the resident
area (relative or absolute, depending on whether the resident area is built
as position-independent or absolute) as follows. The starting address of seg-
ment A is 0 (position-independent) or as specified in the PAR option. The
length of segment A is rounded up to the next 4K—word boundary; this
determines the starting address for B and C. The length of B and C are
rounded up to the next 32—word boundary to determine the total memory
required by the area.

The exclamation point applies only to segments at the first level inside a
pair of parentheses; segments nested within the first level are not affected.

Note the significance of rounding up to the next 4K—word boundary; the
least amount of space that a memory-resident overlay can occupy is 4K
words. Likewise, each segment occupies some multiple of 4K words. An
overlay segment of 4097 words (one word over the 4096—word limit) will
take 8K words of virtual address space.

There is another consideration for memory-resident overlays. The user
program that is eventually linked to the resident area in the example in
Figure 7—1 can make calls to A, B, or C and they will be mapped properly.
However, A cannot call B or C. The reason is that the Task Builder does not
build the necessary autoloading code into the resident area; it (eventually)
builds it into the root segment of the user program to which the resident
area is linked. A cannot call B or C, because there is no way to tell whether
B or C has been mapped at any given time. B or C can call A, however,
because it is known that A will be resident in the next-lower 4K of virtual
address space, regardless of whether B or C is currently mapped.

7.4.2 Building Memory-Resident Overlays

As described above, a resident library containing memory-resident overlays
must define the overlay structure in an ODL file. The build for such an
overlay structure proceeds somewhat differently than for disk-resident
overlays.

Specifically, the Task Builder does not include the overlay data base (seg-
ment descriptions, autoload vectors, and so forth) or the code for loading
overlays as part of the resident area task file. Rather, the data base is made
part of the symbol table file. This data base is later built into the program
that refers to the resident area. Note that this increases the size of the
program that refers to a resident area.

Building Your Own Memory-Resident Areas

The symbol table file contains global definitions for only those symbols that
are defined or referenced in the root segment of the area. Such symbols
consist of the following:

1. Entry points to routines and data elements that are in the root.

2. Autoload vector addresses that point to definitions within a memory-
resident overlay.

3. Definitions of symbols defined in a memory-resident overlay and
referenced in the root.

That is, no global symbol appears in the symbol table file unless it is either:

1. Defined in the root segment, or

2. Referenced in the root segment and defined elsewhere in the overlay
structure.

You can force the inclusion of a global reference in the root segment of the
resident area by using the GBLREF option (Section 10.13). Thus, the neces-
sary autoload vectors and definitions can be generated without explicitly
including such references in a segment. The syntax of the GBLREF option
is:

GBLREF =name

where name is the one- to six-character global symbol name. If the defini-
tion for the symbol resides within an autoloadable segment, the Task
Builder creates an autoload vector, and includes it in the symbol table file.
If the definition is not in an autoloadable segment, the real value is
obtained and defined in the root segment.

You need to include in the GBLREF option all global symbols that will be
used in transfer-of-control statements but are not defined or referenced in
the root segment of the resident overlay area.

For example, suppose you are building a resident library out of the pro-
grams ADD, SUB, MULT, and DIV and that you want these four routines
to be memory-resident overlays. The ODL file would be specified as follows:

+NAME NULL
+ROOT NULL-*1(ADDSUB «MULTDIW)
+END

ADD, SUB, MULT and DIV are entry points that will surely be called by
any program that references the resident library, and none of these are
defined or referred to in the root segment of the overlay structure. So, you

Building Your Own Memory-Resident Areas 7-7

want to include these four global symbols in the GBLREF option when the
library is built, so that data for these symbols will be included in the sym-
bol table file. For example:

RUN $TKB

TKB*MATHLB/-HD/PI+ sMATHLB/PI=0VERLY/MP
TKB»/

ENTER OPTIONG:
TKB*GBLREF=ADD,5UB sMULT DIV
TRB>PAR=MATHLB

TKB>STACK=0

TKB>//

Any program can then later refer to ADD, SUB, MULT, and DIV, and the
Task Builder will resolve the references properly from the information in
the library’s symbol table file. For example:

RUN $TKB

TRB>MYPROG=MYPROG

TRB >/

ENTER OPTIONS:
TKB*RESLIB=DRO:[1,210IMATHLE
TKB>//

Note that the RESLIB option is used, so it includes the device and account
where the files MATHLB.TSK and MATHLB.STB reside.

7.5 Building Your Own Clusterable Libraries

7-8

This section assumes that you already know how to build a resident library.
It is more difficult to build cluster libraries than non-cluster libraries
because of the additional rules imposed, as described in the rest of this
chapter.

As discussed in Section 2.3.5, resident libraries that have been built to take
advantage of the “clustering” feature of the Task Builder can be mapped to
occupy the same virtual address space, taking less space in the user job
area than they would otherwise.

You can build your own resident libraries to take advantage of the cluster-
ing feature. It requires that you follow the rules summarized below. Follow-
ing subsections discuss these rules in detail.

1. All libraries in a cluster must be position-independent or built for the
same address.

2. All libraries except the default library in a user’s CLSTR option must
use memory-resident overlays.

3. A called library routine must not require parameters on the stack by
the caller.

4. No library may be entered using synchronous or asynchronous sys-
tem traps.

5. A library should not call routines from other libraries in the same
cluster directly.

Building Your Own Memory-Resident Areas

7.5.1 Rule 1: Position-Independent or Built for Same Address

The Task Builder must be able to place each library in a cluster at the
same virtual address. To do this, the libraries must be built as position-
independent or be built to the exact address specified in a user’s CLSTR
option.

7.5.2 Rule 2: Use Memory-Resident Overlays

If you want your library to be referenced as other than the default library
in a user’'s CLSTR option, it must use memory-resident overlays. Further-
more, the root of the memory-resident overlay structure must be null (of
zero length).

If your library does not require overlays, you can still build it so it seems
that resident overlays are being used. This will build the code necessary for
cross-library linkage into your resident library.

For example, suppose you have a disk library file LB:US1LIB.OLB that
requires 7K words of memory that you wish to make into a clusterable
library. You do not wish to use memory-resident overlays; the library will
simply use two APRs when it is linked with a user’s program. To build the
necessary linkage into the library, you can specify an ODL file with a “null
root” and a “null branch” (Figure 7-2).

Figure 7-2: Using a “Null” Memory-Resident Overlay

NULL

I 1

US1LIB
ROUTINES

NULL

MK-00831-00

The ODL file for such a structure could be:

+NAME USI1CLS
+ROOT USICLS-#! (NULLAUSIFAC)

NULLA: +FCTR LB:SYSLIB/LB:NULL
USLIFAC: +FCTR LB:UBILIB/LB
+END

Building Your Own Memory-Resident Areas 7-9

7-10

7.5.3 Rule 3: No Required Parameters on the Stack

This rule applies to routines contained in libraries other than the default
library. A routine in a cluster library should not expect to receive informa-
tion from the caller that was pushed on the stack. This is because the Task
Builder autoload routines ($AUTO) may have used the stack for its own
purposes in remapping to the called library. There is no way for your
library routine to determine at run-time whether the autoload code has or
has not placed mapping information on the stack. So, the best way to
handle this type of information exchange is to pass the address of call
parameters in general-purpose registers, for example, RO. If parameters
must be passed on the stack, then the calling program can push the infor-
mation on the stack, and save the contents of the stack pointer register (SP)
to another register, for example, RO. The called library routine can then use
RO to find the information it needs from the stack.

NOTE

Assembly language programmers must use a JSR PC
instruction to transfer control to the desired library routine,
and the library routine must use an RTS PC instruction to
return control to the caller.

7.5.4 Rule 4: No Trap or Asynchronous Entry

A routine built as part of a library that is to be used in a cluster cannot be
specified as the service routine for a synchronous trap or for asynchronous
entry as a result of a CTRL/C, for example. This is because the library may
not be the one that is mapped at the time of the trap. For example, if the
default library contains the service routine to display an error message
upon odd address trap, and the odd address fault occurs within one of the
other libraries of the cluster, the routine will not be available to service the
trap.

7.5.5 Rule 5: No Calls to Routines in Another Cluster Library

A resident library routine cannot directly call a routine in another resident
library in the same cluster. The called resident library may not be in
memory when the call is made. There are rather elaborate techniques for
routing the call through autoload vectors that must be built into the user
program in the low segment. These techniques are described in Appendix F;
however, DIGITAL recommends that you do not make calls between resi-
dent libraries that may be in the same cluster.

Building Your Own Memory-Resident Areas

PART IV
Reference Section

Chapter 8
Task Builder Command Line Format

8.1 Running the Task Builder

To run the Task Builder, type:
RUN $TKB

or, if the system manager has installed TKB as a concise command lan-
guage (CCL) command, you can type:

TKB

The Task Builder responds with the prompt TKB> and you type a com-
mand. If TKB has been installed as a CCL command, you can type TKB and
the command on the same line:

TKB command

8.1.1 Command Line

The Task Builder produces up to three files as output from its analysis of
the object files you specify as input. The general form of the command is:

task-ﬁle,map-ﬁle,symbol-ﬁle = input-ﬁle,...,input-ﬁle

task-file The file specification you give to the executable file
produced by the Task Builder. If you do not want this file
produced, type the comma delimiter. If you leave off the file
type from the file specification, the Task Builder supplies a
default type of .TSK.

map-file The file specification you give to the memory map file
produced by the Task Builder. If you do not want this file
produced, type the comma delimiter. If you leave off the file
type from the file specification, the Task Builder supplies a

default type of MAP.

8-1

82

symbol-file The file specification you give to the symbol-table file
produced by the Task Builder. If you do not want this file
produced, simply leave out the file specification. If you leave
off the file type from the file specification, the Task Builder
supplies a default type of .STB.

input-files The input to the Task Builder. For a simple (nonoverlaid)
build, these are the object files produced from the assembly
or compilation of your program and subroutines, plus disk
library files containing subroutines needed to complete the
program.

ﬂou signify disk library files by appending the switch /LB
to the file specification. This notifies the Task Builder that
. the file named is a library to be searched. The Task Builder
. searches the library for any unresolved references in the
. object files appearing to the left of the library file in the
. command line.
it
If you do not specify file types, the Task Builder assumes a
default type of .OBJ for object files and a default type of
.OLB for object libraries.

For an overlaid build, the input file is an ODL file, signified
with a /MP switch. The Task Builder assumes a default file
type of .ODL for files with the /MP switch.

If you give a device designator or a project-programmer
number in a file specification in the input list (to the right
of the equal sign), they apply to all file specifications to the
right in the list that do not have a device designator or a
project-programmer number.

For a build using MACRO object programs, for example, a suitable com-
mand line is:

TKB EXE1EXE1,EXE1=0B.J1,0BJZLB:RMSLIB/LB

The Task Builder constructs the executable file EXE1.TSK, the map file
EXE1.MAP and the symbol table file EXE1.STB from the files OBJ1.0BJ,
OBJ2.0BJ, and relevant modules from the library RMSLIB.OLB. (The rele-
vant modules are those referenced in your program. You may have referred
to them in source statements, or the MAC assembler may have translated
source statements into calls referring to this library.)

To omit the map file, type:

TRKB EXELl+»EXEL1=0BJ1,0BIZLB:RMSLIB/LB

To produce only the executable file, type:

TKB EXE1=0BJ1,0BJZ,LB:RMSLIB/LB

Task Builder Command Line Format

To produce no output files, type:

TKB=0BJ1,0BJ2;LB:RMSLIB/LE

The example above is useful if you are running the Task Builder only to see
error messages; that is, for a diagnostic run. Note how project-programmer
numbers and device designators work when given for a file specification:

TKB=DBJ1:[2,ZQBJDBJZsDBJBaLB:RMSLIB/LB’MYLIB/LB

For this command, the Task Builder would search for the file OBJ1.0BJ in
the user’s account. It would attempt to find the files OBJ2.0BJ and
OBJ3.0BJ on the public disk structure in the account [2,243]. The project-
programmer number also applies to the libraries. That is, the Task Builder
would look on the system library disk for a file RMSLIB.OLB under the
account [2,248]. Likewise, since the device name LB: also applies to
MYLIB, the Task Builder would look on the system library disk in account
[2,243] for the library file MYLIB.OLB.

If you do not want this to happen, you must respecify the project-
programmer number and device that you want to apply to remaining files.
The simplest way to accomplish this is to assign a logical name to the
account [2,243] and use the system-wide logical SY: to “go back to” your
account on the public disk structure. For example:

ABSIGN SY:[2,2431 JOHN
Readvy
TKB=JDHN:FILE1pSY:FILEZpFILEB,LB:RMSLIB/LB,SY:MYLIB/LB

This can also be accomplished using multiple command lines, as shown in
the following section.

8.1.2 Multiline Command

Because you can specify any number of input files to the Task Builder, it is
sometimes necessary to enter a command on more than one line.

If you run the Task Builder such that it prompts with TKB>, it continueé
prompting for input until it receives a line consisting only of two slash
characters (//). For example:

RUN $TKB

TKB>IMGL »IMG1 »IMG1=8Y:[2,2431FILE!L
TKB>FILEZ sFILE3,LB:RMSLIB/LB
TKB>MYLIB/LB

TKB>//

This sequence produces the same result as the single line command:

TKB IMGI9IMG1:IMG1=JDHN:FILE178Y:FILE2’FILEB,LB:RMSLIB/LB,SY:MYLIB/LB

Task Builder Command Line Format 8-3

In addition, it produces all three output files.

You must specify the output file specifications and the equal sign on the
first command line. You can begin or continue input file specifications on
subsequent lines.

8.2 Options

You may need to specify options to build a particular program. An option
modifies the action taking place during the build. To include options, you
must use the multiline format. If you specify a line consisting of a single
slash (/), the Task Builder assumes that the last input file has been entered
and prompts for options by displaying “ENTER OPTIONS:” and another
TKB> prompt. You then enter the options you want and terminate the
build with the double slash. For example:

RUN $TKB
TKB>command
TKB>continued-command
TKB>/

ENTER OPTIONS:
TKB>option

TKB>//

8.3 Multiple Builds in One Run

If you want to build more than one program, you can use the single slash
after typing options for the preceding program. The Task Builder stops
accepting input, builds the program, and then requests information for the
next build. For example:

RUN &TKB
TKB>IMG1=IN1INZ+IN3
TKB>/

ENTER OPTIONG:
TRKB>UNITS=4
TKB>ABG=8Y:0:1 yMTO:3KkB:4d
TKB>COMMON=JRNAL : RO

TKB>/

TKB>IMG2=5UB1

TKB>//

The Task Builder accepts the input for the first build; it then stops accept-
ing input when you type the single slash after the COMMON option. The
Task Builder builds IMG1.TSK and then prints TKB> to accept the input
for building IMG2.TSK. '

8.4 Indirect Command Files

84

The descriptions of Task Builder commands, up to this point, assume that
you are entering them from the keyboard. You can also create indirect
command files containing Task Builder commands that you want executed.
Later, when you run the Task Builder, you type an at sign character (@)
followed by the name of the indirect command file. This capability is very
useful if you repeat the same build operation often.

Task Builder Command Line Format

For example, you can use a text editor to create a file called AFIL.CMD,
which contains:

IMGl;IMG1=IN1,IN2,IN3
/

UNITS=4
ASG=SY:O:1’MTO:39KB:A
CDMMDN=JRNAL:RD

/7

Later, you can type:

RUN $TKB
TKB>@AFIL
TKB>

Or, if TKB is installed as a CCL command, you can type:

TKB BAFIL

When the Task Builder finds a line consisting of two slashes, it stops pro-
cessing the indirect command file, builds the program, and exits.

When the Task Builder finds a single slash on a line, and the slash is the
last character in the file, the Task Builder displays a prompt for input and
lets you finish the command from the terminal. For example, suppose the
file AFIL.CMD in the last example is changed to read:

IMGloIMG1=IN1»IN2:IN3
/

You run the command file as usual. The Task Builder accepts the command
file input, and displays the prompt for options:

RUN $TKB
TKB:BAFIL
ENTER OPTIONS:
TKB>

From this point, processing 1s as usual for keyboard input.

Using a single slash after options in indirect command files is a handy way
to return control to your terminal between successive builds. For example,
suppose you create two indirect command files. The first, AFIL.CMD,
contains:

IMGI:IMG1=IN1,IN2,IN3
/

COMMON=JRNAL 1RO

/

Task Builder Command Line Format 85

8-6

The second, AFIL2.CMD, contains:

IMGZ ,IMG2=IN4 »INS+ING
/

LIBR=RMSRES

//

The terminal interaction to build these two programs is:

RUN $TKB
TKB>BAFIL
TKB*BAFILZ

Note that you cannot use the CCL form to run the Task Builder to enter
two indirect command files. You must use the multiline format.

You can use an indirect command file reference within an indirect com-
mand file. The Task Builder allows two levels of indirection. For example,
you could put standard options in an indirect command file, and refer to
that file from another command file. Suppose the file AFIL.CMD contains:

IMGL »IMGI=IN1»INZ,IN3
/

COMMON=JRNAL : RO

BBFIL

/7

You must put the indirect file reference on a separate line. Now, suppose
the file BFIL.CMD contains:

STACK=100
UNITS=5
ASG=DT1:5

To build using these files, you type:

RUN $TKB
TKB:BAFIL

Note that you can also use an indirect command file to enter options only.
For example:

RUN &TKB
TRB>IMG1I=IN1,INZ2+IN3
TRB >/

TKB>@OPTIONS

Task Builder Command Line Format

; Comments in Lines

You can put comments anywhere in the command sequence. You begin 2
comment with 2 semicolon () and terminate it with a carriage return. For
example, you could add comments to the indirect command file in the previ-
ous section as follows:

%BUILD 327

%THE puTRPUT FILES ARE
iMGl?IMG2=

;THE INPUT FILES ARE

3
IN111N291N3

L]

3
;OPTIONS ARE

L]

/
CDMMDN=JRNAL:RD IRATE TABLES
3

/1

8.6 File Specifications

You use the standard RSTS/E conventions for file specifications. In general,
the format 1s:

device:[ppn]ﬁlename type/swl/ sw2.../swn

If you do not specify a device, the public disk structure is usually assumed.
The default for project-programmer number 18 usually your account. The
exception is when you specify a device or project-programmer number for a
file in a list of files. Such a device designator OF project-programmer num-
ber “sticks” to all file speciﬁcations to the right. For example, consider the
following input list:

TKEB =OBJ1i[z1243]DBJ27DBJ3?LB:RMSLIB/LB

The Task Builder looks for the file OBJ1.0BJ in the user’s account. It looks
for the files 0BJ2.0BJ and OBJ 3.0BJ on the public disk structure in
account [2,243]. 1t looks for the file RMSLIB.OLB on the system library
disk in account [2,2431.

The default for file type depends on the switch you apply to the file specifi-
cation. If no switches are used, the defaults are:

file. TSK file MAP file.STB= file.OBd,... file.OBJ

Defaults assumed when you use various switches aré described in Chapter
9. For example, the default file type when you use the /LB switch is .OLB.

Task Builder Command Line Format 817

Chapter 9
Task Builder Switches

The Task Builder lets you modify the action taken on a file by appending a
switch to the file specification. A switch is a slash (/) followed by a two- to
four-character code. In general, you can precede the two- to four-character
code with a minus sign (-) or the letters “NO”, and the Task Builder
negates the function of the code. For example, the Task Builder recognizes
the following settings for the switch /MP.

/MP The file is an ODL file.
/-MP The file is not an ODL file.
{INOMP The file is not an ODL file.

The Task Builder assumes a default setting for each switch. For example, if
you do not specify any setting for the /MP switch, the Task Builder
assumes /—MP (that the file is not an ODL file). In the switch descriptions
in this chapter, note that the “Syntax” section shows where the switch is
placed by using the opposite of the default setting. (There is no need to
specify a switch if you want to use the default.)

Table 9-1 lists the Task Builder switches available on RSTS/E systems.
They are described in following subsections in alphabetical order.

Table 9-1: Task Builder Switches

Applies
Switch Meaning to File | Default

/CC Input file consists of concatenated programs .OBJ /1CC
or subprograms.

/CO Causes the Task Builder to build a shared .TSK, /CO
common. STB

/DA Executable program contains a debugging TSK, /-DA
aid. .OBJ

{continued on next page)

9-1

Table 9-1: Task Builder Switches (Cont.)

Applies
Switch Meaning to File | Default
/DL Specified library file is a replacement for the .OLB /-DL
default system library.
/FP Program uses Floating Point processor. TSK /FP
/FU All co-tree overlay segments are searched for .TSK /-FU
matching definition or reference when
subroutines from the default system library
are processed.
/HD Task file (executable program) includes a .TSK, /HD
header. .STB
/LB Input file is a library file. .OLB /-LB
/LI Informs the Task Builder to build a shared .TSK, /-L1
library. STB
/MA Memory map file contains information about | MAP, *
the file. .OBJ
/MP Input file is an ODL (memory map) file. .ODL /-MP
/MU Program is a multiuser program. .TSK /-MU
/NM No diagnostic messages on screen. TSK /-NM
/P1 Resident area is position-independent. .TSK, /-P1
.STB
/PM Post-mortem dump requested. .TSK /-PM
/RO Memory-resident overlay operator (!) is TSK /RO
enabled.
/SG Allocates task program sections alphabeti- TSK /SG
cally by access code (RW followed by RO).
/SH Short memory-map file is produced. .MAP /SH
/SP Spool map file to line printer. .MAP /SP
/5Q Program sections are allocated sequentially, TSK /-85Q
rather than alphabetically.
/SS Selective search for global symbols. .OBJ /-SS
/TR Executable program is to be traced. .TSK /-TR
/W1 Memory map file is printed at width of 132 .MAP /WI
characters (for /—WI, 80 characters).
/[XT:n Task Builder exits after n diagnostics. TSK /-XT

* The default is /MA for an input file, and /~MA for system and resident area symbol
table (.STB) files.

9-2 Task Builder Switches

/CC

9.1 /CC — Concatenated Programs and Subprograms

File

Input

Syntax

file. TSK =file.OBJ /-CC

Description

This switch controls the way the Task Builder extracts programs and
subprograms from your input file. Your input file can contain more
than one program or subprogram. One way to achieve this is by conca-
tenating more than one object module.

By default, the Task Builder includes all the programs and subpro-
grams in your input file when it builds the executable program file. If
you negate this switch (as in the “Syntax” section above), the Task

Builder includes only the first program or subprogram of your input
file.

This switch will not affect library files. If you try to use /CC and /LB,
or /-CC and /LB, in an attempt to limit or expand the Task Builder’s

normal processing of libraries, the /LB simply overrides the /CC or
/—-CC.

Default

/CC

Example

RUN $TKB
TKB*FIRST1=BUNCH/-CC,LB:F4POTS/LB
TKB>/7/

Task Builder Switches 9-3

/CO

9.2 /CO—B
File

uild a Common Block Shared Region

Task image
.STB file

Syntax

file. TSK/CO={ile.OBJ
or

,,file.STB/CO = file. OBJ

Description

The /CO switch informs the Task Builder that a shared common is
being built. If you build a shared common, you should use the /CO
switch and the /—HD switch.

If you use the /—PI switch for an absolute shared common, all the
program sections in the common are marked absolute. Using the
/—PI1/-HD switches without the /CO switch causes the Task Builder to
build a shared library.

If you use the /PI switch for a relocatable shared common, all program
sections in the common are marked relocatable.

In either case, the .STB file contains all the program section names,
attributes, lengths, and symbols. The Task Builder links common
blocks by program sections. Therefore, the .STB file of a shared region
built with the /CO switch contains all defined program sections.

Using the /PI/-HD switches without the /CO switch causes the Task
Builder to build a shared common.

The /CO switch does not have a /—CO form.

Effect

This switch causes the Task Builder to include all program section dec-
larations in the .STB file.

Defaults

Exa

94 Task Buil

/1CO
mple
RUN $TKB
TKB>VAL/CO/-HD=VAL.0BJ
TKB >/ /
NOTE
Commons (read/write libraries) must still be processed using

the MAKSIL utility. See the RSTS/E Programmer’s Utilities
Manual for more details about MAKSIL.

der Switches

/DA

9.3 /DA — Debugging Aid

File

Executable program file or input file

Syntax

file. TSK /DA =file.OBJ

or

file. TSK =file.OBJ file.OBJ /DA

Description

If you use the /DA switch on the executable program file, the Task
Builder automatically includes the system debugging aid LB:ODT.OBJ
in the executable program.

If you use this switch on one of your input files, the Task Builder
assumes that the file is a debugging aid that you have written.

In either case, /DA has the following effects:

1.

The transfer address of the debugging aid overrides the execut-
able program transfer address.

The Task Builder initializes the header of the program so that,
when your program is loaded, register RO through R4 contain the
following values:

RO
R1

R2
R3

R4

Transfer address of program.

Task name in Radix—50 format (word 1). The Task Builder
derives this name from the TASK = option. If no TASK = is
supplied, this value will be 0.

Second word of task name.

The first three of six RAD50 characters representing the
version number of your program. The Task Builder derives
this number from the first .IDENT directive it encounters
in your program. If no .IDENT directives appear, this
value will be 0.

The second three RAD50 characters representing the ver-
sion number of your program.

Refer to your specific language reference manual for more information
about debugging aids.

Task Builder Switches 9-5

/DA

Default
{-DA
Example

RUN $TKB
TKB»PROG/DA=0BJ0BJ2+LB:FA4POTS/LB
TRB>//

96 Task Builder Switches

/DL

9.4 /DL — Default Library
File
Input

Syntax
file. TSK =file.OBJ file. OLB /DL

Description

The library file you specify replaces the file LB:SYSLIB.OLB as the
library file that the Task Builder searches to resolve undefined global
references. This file is searched only when undefined symbols remain
after all the files you specify have been processed. The /DL switch can
be used with only one input file.

Default
/-DL
Example

RUN $TKB
TKB*PROG=PROG +LB:F4POTS/LB yNEWLIB/DL
TKB3//

Task Builder Switches 9-7

/FP

9.5 /FP — Floating Point

File
Executable program file

Syntax
file. TSK/FP =file.OBJ

Description

Setting the /FP switch causes the RSTS/E monitor to save the state of
the floating-point processor when the program is run. You must set this
switch on systems that have the floating-point processor so that the
run-time system can trap floating-point errors properly. Setting or
negating this switch has no effect on systems without a floating-point
processor.

Default
/FP

Example

RUN $TKB
TKB -PROG/FP=0BJ1 ,0BJ2:,LB:FA4PDTS/LB

TKB=//

9-8 Task Builder Switches

/FU

9.6 /FU — Full Search

File

Executable program file

Syntax

file. TSK/FU =file. ODL/MP

Description

The /FU switch affects how the Task Builder inserts code from the
default library when your overlay structure has co-trees. Normally,
when the same code (program section) is called or referenced from dif-
ferent co-trees, it is built into both co-trees unless it can be resolved
from code already built into the main root. This prevents the problem of
run-time errors caused by unintentionally displacing segments with
cross-tree calls, as described in Chapter 4.

If you use this switch, the Task Builder can resolve undefined global
references with code from the default library that is already built into
other co-trees. This can be useful if you want to try to cut down on the
space taken by code inserted into co-trees from the default library, as
described in Section 4.4.8.

Default

Exa

/-FU

mple

RUN $TKB
TKB*PROG/FU=0VERLY/MP
Envnter OrPtions:

TKB://

Task Builder Switches 9-9

/HD

9.7 /HD — Header

9-10

File

Executable program file or symbol definition file

Syntax

file.TSK /-HD,,file.STB =file. OBJ
or

file.TSK,,file.STB /-HD =file.OBJ

Description

The /HD switch causes the Task Builder to generate a header for your
executable program file. This header is used by the run-time system
when it loads your program for execution. The run-time system takes
certain values from the header and inserts them in the low 1000 bytes
of your program. (This area is used by the RSTS/E monitor, the run-
time system, and — with a few languages — your program itself. For
example, this area contains the “core common” area accessible to
BASIC-PLUS-2 programs and the FIRQB and XRB areas used by
MACRO programs. The contents of this area may be of interest to you if
you are programming in MACRO. The area is described in the RSTS/E
System Directives Manual.)

In any case, you must have a header for executable program files (this is
the default). If you are building a resident library or common, or a run-
time system itself, you must negate this switch.

Default

/HD

Example

RUN $TKB
TKB*DATLIB/-HD/PI++DATLIB/PI=DAT1.DAT+DAT2.DAT+DATI.DAT
TRB >/

ENTER OPTIONS:

TKB*PAR=DATLIB

TRB:>//

Task Builder Switches

9.8 /LB — Li
File

/LB

brary File

Input file, or any file in an ODL command.

Syntax

file. TSK =file.OBJ,file. OLB/LB

or

or
file.OBJ =file.OBJ file.OLB/LB:mod—1:mod-2,file. OLB /LB
or

(Any of the above forms in an ODL file)

Description

If you use the /LB switch, it indicates that the file is a library file. The
Task Builder’s interpretation depends upon the form you use. If you use
the switch without arguments, the Task Builder assumes that your
input file is a library file of relocatable object routines. The Task
Builder searches the file to resolve undefined references in any files you
have specified preceding the library specification. It extracts necessary
routines (which contain definitions for undefined references) and
includes them in your executable program file.

If you use the switch with the mod-i arguments (mod—1:mod-2:...and so
forth), the Task Builder extracts from the library the routines named as
arguments regardless of whether or not they contain definitions for
unresolved references.

If you want the Task Builder to search a library both to resolve global
references and to select named routines, you must name the library
twice: once, with the routines named (/LB switch with modifiers) and a
second time with the general form (/LB switch without modifiers).

The position of the library file in the command line is important. The
following rules apply:

1. The library file must appear to the right of the input file(s) that
contain references to be resolved from the library. For example:

TKB>file.TSK =infile1.OBJ,infile2.0BJ,lib.OLB/LB

In the preceding command, unresolved references from
infile1.OBJ and infile2.0BJ are resolved from the library.

Task Builder Switches 9-11

/LB

9-12

TKB>file.TSK = infile1.0BJ,lib.OLB/LB,infile2.0BJ

In the preceding command, unresolved references from
infile1.OBJ are resolved from the library, but references from
infile2.0BJ are not.

2. When you are building an overlay structure, you specify the
library within the ODL file. You use the hyphen to indicate con-
catenation; unresolved references from the segment to the left of
the hyphen are resolved from the library specified to the right.

For example:

+ROOT AFCTR-(BFCTRCFCTR)

AFCTR: +FCTR A-LIBR
BFCTR: +FCTR B-LIBR-(B1-LIBR.BZ2-LIBR)
CFCTR: +FCTR C-C1-LIBR-(CO1-LIBRsCOZ-LIBR)
LIBR: +FOTR LB:F4POTS/LEB

+END

Notice that in this example, there is no —LIBR entry after C. Since C
and C1 are constructed as one segment, putting a —~LIBR entry after
C would only cause an unecessary and time-consuming search. Only
one search is needed for each segment; you can place the ~LIBR entry
at the end of the segment, after Cl. Section 3.7.3 explains how
routines are inserted into segments from libraries.

Default
/-LB

Example
See Description, above.

Task Builder Switches

/LI

9.9 /LI — Build a Library Shared Region

File

Task Image
.STB file

Syntax
file. TSK /LI = file.OBJ

or

,,file.STB /LI =file.OBJ

Description

The /LI switch makes the Task Builder build a shared library. How-
ever, you must use the /-HD switch with the /LI switch to build the
shared library. The /LI switch does not have a /-LI form.

Effect

The Task Builder includes only one program section declaration in the
.STB file.

If you use the /-PI switch for an absolute library, the Task Builder
names the program section .ABS, makes the library position dependent,
and defines all symbols as absolute. Also, if you use the /—PI switch
without the /LI switch, the Task Builder assumes /LI to be the default.

If you use the /PI switch for a relocatable library, the Task Builder
names the program section the same as the root segment of the library.
The Task Builder forces this name to be the first and only declared
program section in the library. The Task Builder declares all global
symbols in the .STB file relative to that program section. Also, if you
use the /PI switch without the /LI switch, the Task Builder assumes
that a shared common is to be built. (/CO is the default.)

Default

/LI
Example

RUN $TKB

TKB>PARODI/LI/-HD=PARODI.OBJ
TRB://

NOTE

Libraries must still be processed using the MAKSIL utility.
See the RSTS/E Programmer’s Utilities Manual for more
details about MAKSIL.

Task Builder Switches 9-13

/MA

9.10 /MA — Map Contents of File
File
Input or memory allocation (map) file

Syntax
file. TSK file. MAP = file.OBJ,file.OBJ /-MA

or
file.TSK, file. MAP/MA = file. OBJ

Description

If you negate this switch and apply it to an input file, the Task Builder
leaves the file off the “file contents” portion of the memory map. Fur-
thermore, it will exclude from the map all global symbols defined or
referred to in the file.

If you set this switch for the map file, the Task Builder includes in the
map the names of routines it has added to your program from the
default library (LB:SYSLIB.OLB). It also includes in the map file infor-
mation contained in the symbol definition file of any shared region
referred to by the program.

Default
/MA for input files
/~MA for system library and resident library .STB files.
/—MA for map file

Example

RUN $TKB
TKB>PROG »PROG/MP=0BJ1,0BJ2+LB:FAPOTS/LEB
TKBx>//

9-14 Task Builder Switches

/MP

9.11 /MP — Overlay Map
File
Input

Syntax
file. TSK = file. ODL/MP

Description

Your input file is an overlay map (ODL file). The file contains directions
for an overlay structure in the Overlay Description Language. When
you use the switch, it must be the only input file that you specify. The
default file type for a file with the /MP switch is .ODL.

Default
/-MP

Example

RUN &TKB

TKB:PROG sPROG=0VERLY /MP
ENTER OPTIONS:

TKB:>//

NOTE

If you use the multiline command format when you specify
an ODL file, TKB automatically prompts for option input.
Therefore, you must not use the single slash (/) to direct TKB
to switch to option input mode when you have specified /MP
on your input file.

Task Builder Switches 9-15

/MU

9.12 /MU — Multiuser Program

9-16

File

Executable program file

Syntax

file. TSK /MU = file. OBJ

Description

The /MU switch tells the Task Builder to separate the program’s read-
only and read/write program sections. On RSTS/E systems, you only
use this switch if you want to build a program so that the read-only code
from the root is accessible to multiple users. For this reason, it is recom-
mended that programs built with the /MU switch be nonoverlaid. Sev-
eral steps are involved in this procedure.

When you use /MU on the executable file, the Task Builder places the
read-only sections in your program’s upper virtual address space and
the read/write program sections in your program’s lower virtual
address space. You then have to use the MAKSIL program (described in
the RSTS/E Programmer’s Utilities Manual) to make the read-only code
accessible to multiple users, and add the read-only code as a resident
area using the ADD command of UTILTY (described in the RSTS/E
System Manager’s Guide).

Multiple users can then run the program built, causing multiple copies
of the read/write code to be executed, but with only one copy of the
read-only code taking space in memory.

Note that a program built with the /MU switch cannot be run correctly
until it has been converted by MAKSIL into a separate executable file
(consisting of the read/write code) and a resident area, which in turn
must be added with UTILTY (just like any resident area). Note also
that, when you build a program and use the /MU switch, you must also
use the HISEG option, or your system must have RSX emulation gener-
ated into the monitor. (If you build with HISEG, the Task Builder will
put the read-only code to occupy virtual address space below the run-
time system. If you do not build with HISEG, the Task Builder will put
the read-only code so that it occupies the highest possible address space
(using APR 7). In that case, the system must have RSX emulation in
the monitor, or the program will not run properly.)

Default

/-MU

Example

RUN $TKB
TKB>*PROG/MU=0BJ1 ,0BJZ ,OBJ3
TRB>//

Task Builder Switches

/NM

9.13 /NM — No Diagnostic Messages
File
Executable program file
Syntax
file. TSK/NM = file.OBJ
Description

Using the /NM switch eliminates the display of diagnostic messages
from a build.

Default
/-NM
Example
RUN $TKB

TKB:PROG/NM=0BJ1 ,0BJZ,»LB:F4POTS/LB
TRB://

Task Builder Switches 9-17

/Pl

9.14 /Pl — Position Independent
File
Executable program file or symbol definition

Syntax
file. TSK /PI =file.OBJ

or
file.TSK,,file.STB /PI=file.OBJ

Description

Use the /PI switch when you are building a resident area that is posi-
tion independent, that is, a region that can be placed anywhere in the
program’s address space. (The other option is an absolute resident area,
which is fixed in the program’s address space.) See Section 7.3.1 for a
discussion of position-independent resident areas.

Default
/—P1

Example

RUN $TKB

TKB>DATLIB/-HD/PI +sDATLIB=DAT1.DAT +DATZ2,DAT sDAT3.DAT
TKB »/

ENTER OPTIONS:

TKB>*STACK=0

TKB*PAR=DATLIB

TRB»//

9-18 Task Builder Switches

/PM

9.15 /PM — Post-Mortem Dump
File
Executable program file

Syntax
file. TSK /PM =file.OBJ

Description

Setting the /PM switch causes the Task Builder to set an indicator in
your executable program file such that, if your program terminates
abnormally when it is executed, the system automatically writes the
contents of the program in memory on a disk file. The file name for the
created file is:

PMDnnn.PMD
where: nnn is your job number.

The file must be formatted by the PMDUMP program (see the RSTS/E
System User’s Guide) before you can read it.

Default

/-PM
Example

RUN $TKB

TKB *PROG/PM=0BJ1,0BJ2 L B:FAPOTS/LB
TKB://

Task Builder Switches 9-19

/RO

9.16 /RO — Resident Overlay
File
Executable program file

Syntax
file. TSK /-RO = file. ODL/MP

Description

When you use /RO, the Task Builder processes any memory-resident
overlay operators (!) in your ODL file. That is, the Task Builder uses the
exclamation point operator to construct an executable program file that
contains one or more memory-resident overlay segments.

If you negate this switch, the Task Builder checks the syntax of the
exclamation point where it appears in the ODL commands, but does not
construct memory-resident overlay segments.

Default

/RO

Example
RUN $TKB
TKB*PRDOG/-RO=0VERLY/MP

ENTER OPTIONS:
TKB://

9-20 Task Builder Switches

/SG

9.17 /SG — Segregate Program Sections

File
Task image

Syntax
file. TSK/SG = file.OBdJ

Description

The /SG switch allocates virtual address space to all read/write (RW)
program sections and then to all read-only (RO) program sections.

Effect

The /SG switch gives you control over the ordering of program sections.
By using the /SG switch, you cause the Task Builder to order program
sections alphabetically by name within access code (RW followed by
RO). If you specify the /SQ switch with the /SG switch, the Task
Builder orders program sections in their input order by access code. (See
the description of the /SQ switch for more information.)

You use the negated switch, /—SG, to make the Task Builder interleave
the RW and RO program sections. Thus, the combination /-SG/SQ
results in a task with its program sections allocated in input order and
its RW and RO sections interleaved. Also, you can use /—-SQ/-SG to
make the Task Builder order program sections alphabetically with RW
and RO sections interleaved. However, /SG is the default.

When task building multiuser tasks, the /MU switch causes the Task
Builder to default to /SG. Therefore, to correctly build read-only tasks,
you can use the /MU switch only.

Default

/SG
Example

RUN $TKB

TKB:BARBEL/S5G=BARBEL .0OBJ
TKB://

Task Builder Switches 9-21

/SH

9.18 /SH — Short Map

File
Memory allocation (map) file

Syntax

file.TSK,file. MAP/-SH =file.OBJ

Description

Negating this switch (-SH) requests the long version of the memory
allocation map. The Task Builder produces the “file contents” section of
the map. An example of the long version of the map is shown in Figure
9-1. The numbered and lettered circles in the figure correspond to the

notes following the figure.

Default
/SH

Example

RUN $TKB

TKB>PROG:PROG/-5H=08.J1,0BJ2,LB:FA4POTS/LB

TKB>//

Figure 9-1: Memory Allocation (Map) File

ROOTM,TSK Memory allocatiown mar TKB 07,202 Pade 1

Task name
Partition name @
Identification
Task UIC

Task Priority
Stack limits:
0DT xfr address:
PRG xfr address:
Task attributes:
Total address wi

Task extension

05-MAY-83 13:50

: ROOTH @

: 010

£2,23410©

: 50,09

Q01000 CO1777 001000 OOSlZ.C)
011054
002000()
hEINII@)
ndows: 2.
128, words()

Task 1made size r 9760, mords()

Total task siz

e : 9888, words

Task address limits: 000000 045033 ()

R-W disk tlk limits:

> 000101 000100 00064.0)

R-0 disk blKk limits: 000102 000112 000011 DODOS.C)

ROOTM.TSK Overlay description:

Base Tor

000000 018027
016030 031247
016030 032043

032044 046033
032044 045667

Length
0168030 07192, rOQTM
013220 03776, mMuLoy
014014 OQGB156. ADDOW
013770 0G136. SuUBov
013624 0GO36. DIvoY

9-22 Task Builder Switches

o

PAGE HEADER

TASK ATTRIBUTES
SECTION

OVERLAY
DESCRIPTION

(continued on next page)

/SH

Figure 9-1: Memory Allocation (Map) File (Cont.)

-

ROOTM. TSK Memory allocation mar TKB 07.202 Page 2
ROOTM 05-MAY-83 13:5¢

*¥+ Root segment: ROOTM (@
R/W mem limits: 00QQ0O00 0O1BOZ7 016030 07192.@

R-0 mem limits: 180000 170577 010600 04480, ()
Disk blk limits: OO0Q02 QO0020 0QOO17 00015.()

Memory allocation svnopsis:

Section Ident File
. BLK,:(RW,ILCL+RELCON) COnZ000 3
CODE :(RW,I:LCL+RELCON) 002000 000024
Q02000 000024 (651 ROOTM. OB @
Globkal svmbols: o
ADD 170076-R DATEND ©10010-F DAT! 002024-R MUL 170066-F ,0ODTL1 010434-R @ |ROOT SEGMENT
BEG 000-R DATO 180000-F DIV 1701168-F SUB 1701068-F ,0ODTLZ 01043B-R ALLOCATION
File: ROOTM,0BJ Title: MAIN. Ident: Ol@
QOO000C QDOO0O 0ODGQ0 OOOG, O
Undefined reference: NDSYMB@
CODE OQZ000 002023 000024 O0020,
BEG Q0ZO00-R

ZDATA »: 1BO0O0O0 170041 010042 oa130.()
ERERRERREERE
Undefined references: @

NOSYMB —_—
ROOTM,TER Memory allocation map TKB 07,202 Pade 4
MuLOu 05-MAY-B3 13:50
*%% Sedment: MULOY
R/W mem limits: 016030 031247 013220 05776,
Disk blk limits: OO00QZ1 000034 000014 00012,
Memorv allocation svnopsis:
Sectian Title Ident File
. BLK.:{RWI,LCL/RELCON} 01030 013220 05776, e

016030 MuLov.o8d

$$ALVC: (RO+ILCL»REL ,COND 0312530 TREE SEGMENT
$$RTS : (RO .1 .GBLsREL ,OVR) 170570 DESCRIPTION

Global svymbols:

MUL 01B030~R

File: MULOW.0BJ Title: MAIN, Ident:
<, BLK.,>: 01B030 031247 013220 03776.
MUL 01B030-R

|

**¥% TasKk builder statistics:

Total waork file references: ZIGBB.@
Work file reads: 0, e
Work file writes: O, @

Size of core pool: 4814, words (18, PZ\SEEJ@ TASK BUILDER
Size of work files: 3072, words (12, PaseeJ@ STATISTICS
Elapsed time:OO:OO:lT’@ —

MK-01051-00

Task Builder Switches 923

/SH

9-24

Notes to Figure 9—1

The page header shows the name of the executable program file and the overlay
segment name (if applicable), along with the date, time, and version of the Task
Builder that created the map.

e The task attribute section contains the following information:

@ Task Name. The name specified in the TASK option. If you do not use the
TASK option, the Task Builder suppresses this field.

@ Partition Name. The partition specified in the PAR option. If you do not specify
a partition, the default is a partition named GEN.

Identification. The version as specified in the .IDENT assembler directive. If
you do not specify, the default is the same as the version of the Task Builder.

User Identification Code. The project-programmer number used to create the
executable program file.

Priority. (On RSTS/E systems, this field is ignored.) Priority is suppressed if you
do not use the PRI=option.

Stack Limits. The low and high octal addresses of the stack, followed by its
length in octal and decimal bytes.

ODT Transfer Address. The starting address of the ODT debugging aid. If you
do not specify the ODT debugging aid, this field is suppressed.

©@ 0 60 ® 06

Program Transfer Address. The starting address of your program. For MACRO
programmers, this is the address of the symbol specified in the .END directive
of the source code of your program. (The compilers generate a starting address
automatically.) If you do not specify a transfer address for your program, the
Task Builder automatically establishes a transfer address of 000001 for it. The
Task Builder also suppresses this field in the map if no transfer address is
specified.

@ Attributes. Using certain switches indicates that your program has certain
attributes. Such switch settings are shown only if they differ from the defaults.
For example, the following could be displayed:

DA — the program contains a debugging aid.

MU — the program is broken into RO and RW sections for processing by
MAKSIL. See the description of the /MU switch in Section 9.12 of this manual,
and the MAKSIL chapter in the RSTS/E Programmer’s Utilities Manual, for
more information.

@ Total Address Windows. The number of window blocks allocated to the
program.

G)

Task Extension. The increment of physical memory (in decimal words) allocated
through the EXTTSK or PAR option.

@ Task Image Size. The amount of memory (in decimal words) required to contain
your program’s code. This number does not include physical memory allocated
through the EXTTSK option.

Task Builder Switches

@

®
©

®

/SH

Total Task Size. The amount of memory (in decimal words) allocated to your
program, including the physical memory allocated through the EXTTSK option
or PAR option.

Task Address Limits. The lowest and highest virtual addresses allocated to the
program, exclusive of resident areas.

Read/Write Disk Block Limits. From left to right: the first octal relative disk
block of the program’s read/write region; the last octal relative disk block
number of the read/write region; the total contiguous disk blocks required to
accomodate the read/write region in octal and decimal.

Read-Only Disk Block Limits. From left to right: the first octal relative disk
block of the multiuser program’s read-only region; the last octal relative disk
block number of the read-only region; the total contiguous disk blocks required
to accomodate the read-only region in octal and decimal. This field appears only
when you are building a multiuser program with the /MU switch.

The Overlay Description shows, for each overlay segment in the tree structure of an
overlaid program, the beginning virtual address (the base), the highest virtual
address (the top), the length of the segment in octal and decimal bytes, and the
segment name. Indenting is used to illustrate the ascending levels in the overlay
structure. The Task Builder prints the Overlay Description only when an overlaid
program is created.

° The Root Segment Allocation. This section has the following elements:

®
©

Root Segment. The name of the root segment. If your program has only one
segment, the entire program is considered to be the root segment.

Read/Write Memory Limits. From left to right: the beginning virtual address of
the root segment (the base), the virtual address of the last byte in the segment
(the top), the length of the segment in octal and decimal bytes.

Read-Only Memory Limits. From left to right: the beginning virtual address of
the root segment (the base), the virtual address of the last byte in the segment
(the top), the length of the segment in octal and decimal bytes. This field
appears only when you are building a multiuser program with the /MU switch.

Disk Block Limits. From left to right: the first relative block number of the
beginning of the root segment, the last relative block number of the root seg-
ment, total number of disk blocks in octal, and the total number of disk blocks
in decimal.

Memory Allocation Synopsis. From left to right: the program section name, the
program section attributes, starting virtual address of the program section,
total length of the program section in octal and decimal bytes.

Contributor. This field lists the pieces that have contributed to each program
section. In this example, the program section ANS was defined in the file
ROOTM.OBJ. The identification in this case is 01 as a result of an .IDENT
assembler directive. If the program section ANS had been defined in more than
one piece (for example, in more than one routine in a library ((OLB) file), each
contributing piece and the file from which it was extracted would have been
listed here.

Global Symbols. This section lists the global symbols defined in the segment.
Each symbol is listed along with its octal value. ~R is appended to the value if
the symbol is relocatable. The list is alphabetized in columns.

Task Builder Switches 925

/SH

9-26

The File Contents Section (composed of the four fields listed below) is produced only if
you specify the /—SH switch in the Task Builder command sequence. The Task
Builder then creates this section for each segment in an overlay structure. It lists the
following information:

@ Input File. The file name, the name established by a .TITLE assembler direc-
tive, and the version as established by an IDENT assembler directive.

@ Program Section. Program section name, starting virtual address of the pro-
gram section, ending virtual address of the program section, and length in octal
and decimal bytes.

@ Undefined Reference. This section provides the names of undefined symbols in
the preceding program section.

® Global Symbol. Global symbol names within each program section and their
octal values. If the segment is autoloadable (see Chapter 5), this value will be
the address of an autoload vector. The autoload vector in turn will contain the
address of the symbol. —R is appended to the value if the symbol is
relocatable.

@ Program Section. This field is identical to the field described in note i.

The following sections in the map file appear regardless of whether you use the /-SH
switch or not.

Undefined References. This field lists the undefined global symbols in the
segment.

The Tree Segment Description is printed for every overlay segment in an overlay
structure. Its contents are the same for each overlay segment as the Root Segment
Allocation is for the root segment.

Task Builder Statistics list the following information, which can be used to evaluate
Task Builder performance:

@ Work File References. The number of times that the Task Builder accessed data
stored in its work file.

@ Work File Reads. The number of times that the work file device was accessed to
read work file data.

Work File Writes. The number of times that the work file device was accessed
to write work file data.

@ Size of Pool. The amount of memory that was available for work file data and
table storage.

®

Size of Work File. The amount of device storage that was required to contain
the work file.

@ Elapsed Time. The amount of wall-clock time required to construct the execut-
able program and memory allocation (map) file. Elapsed time is measured from
when you entered the last option to the completion of map output. This value
excludes the time required to process the overlay description and parse the list
of input file names.

See Appendix D for a more detailed discussion of the work file.

Task Builder Switches

/SP

9.19 /SP — Spool Map Output
File
Memory allocation (map) file

Syntax
file.TSK,file. MAP/SP = file.OBJ

Description

This switch determines whether your map file is automatically queued

to the line printer for output. If you use this switch, the Task Builder

creates a map file and queues it for printing. The default (if you specify

a map file) is to create the map file but not to queue it for printing.
Default

/—SP
Example
RUN $TKB

TKB:>PROG+PROG/SP=0BJ1 ,0BJ2LB:F4POTS/LB
TRBx//

Task Builder Switches 927

/SQ

9.20 /SQ — Sequential

9-28

File

Executable program file

Syntax

file. TSK/SQ=file.OBJ

Description

If you set the /SQ switch, the Task Builder does not reorder program
sections alphabetically. Instead, it collects all the references to a given
program section from your input files, groups them according to their
access code (read-only or read/write), and within these groups, allocates
memory for them in the order that you input them.

You use this switch to satisfy requirements that certain program sec-
tions be adjacent. Using this feature is otherwise discouraged because
standard library routines (such as FORTRAN I/0O handling routines
and File Control System (FCS) routines from SYSLIB) will not work

properly.

You can also make program sections adjacent by selecting their names
alphabetically to correspond to the desired order.

Default

/-8Q

Example

RUN $TKB
TKB:>PROG/S0=0BJ1 ,0BJ2 ,0BJ3
TKB://

Task Builder Switches

/S8

9.21 /SS — Selective Search

File
Input file

Syntax
file. TSK = file.OBJ /SS

or
file. TSK =file.OBJ file.STB/SS

or

file. TSK =file.OBJ,file. OLB/LB/SS

Description

Setting the /SS switch tells the Task Builder to include in its internal
symbol table only those global symbols for which it has already encoun-
tered an undefined reference.

When processing an input file, the Task Builder normally includes into
its internal symbol table each global symbol it encounters within the
file whether or not there are references to it. When you attach the /SS
switch to an input file, the Task Builder checks each global symbol it
encounters within that file against its list of undefined references. If the
Task Builder finds a match, it includes the symbol into its symbol table.

Default
/=SS
Example

Suppose that you are building a program consisting of input files con-
taining global entry points and references (calls) to them, as shown in
Table 9-2.

Table 9-2: Input Files for /SS Example

Input
File Name | Global Definition Global Reference
IN1.OBJ A
IN2.0BJ A
B
C
IN3.OBJ C
IN4.OBJ A
B
C

Task Builder Switches 9-29

/S8

9-30

Files IN2 and IN4 contain definitions for global symbols of the same
name. Assume that the global symbols represent entry points to differ-
ent routines within these files.

Suppose that you want the Task Builder to resolve the reference to A in
IN1 with the definition of A in IN2. Further, assume that you want the
reference to global symbol C in IN3 to be resolved with the definition of
C in IN4. You can accomplish this by ordering the input files and using
the /SS switch. For example:

TKB>SELECT=IN1,IN2/55,IN3+IN4/SS

The Task Builder processes input files from left to right. Thus, the Task
Builder processes file IN1 first and finds the reference to symbol A.
Since there is no definition for A within IN1, the Task Builder marks A
as undefined and moves on to process IN2. Because IN2 has the /SS
switch, the Task Builder limits its search of IN2 to symbols it has
already marked as undefined, namely A. The Task Builder finds a defi-
nition for A and puts A in its symbol table.

The Task Builder moves on to IN3, and encounters the reference to
symbol C. Since the Task Builder did not include symbol C from IN2 in
its symbol table, it marks C as undefined and moves on to IN4. When
the Task Builder processes IN4, it finds the definition for C, and
includes that symbol in the table. Again, since the /SS switch is
attached, only symbol C is included in the Task Builder’s internal sym-
bol table.

Thus, the reference to A in IN1 is resolved with the definition in IN2,
and the reference to C in IN3 is resolved with the definition in IN4.
Note that the /SS switch affects only the Task Builder’s internal sym-
bol table. The routines for which symbols B and C are entry points will
be included in the executable program file even though there are no
references to them.

Task Builder Switches

/TR

9.22 /TR — Traceable Program

File

Executable program file

Syntax

file. TSK/TR =file.OBJ

Description

When this switch is set, the Task Builder sets the T-bit in the initial
program status word (PSW) for your program. When your program is
executed, a trace trap occurs when each instruction is completed.

The system library (SYSLIB.OLB) contains a trace routine
(TRACE.OBJ) that processes the trap. You must explicitly build this
routine into your executable file if you want to use it. To do this, you
must use the LBR utility (see the RSTS/E Programmer’s Utilities
Manual) to remove TRACE.OBJ from the system library. You then
build TRACE.OBJ into your program using the /DA switch. The
example below shows TRACE.OBJ in the user’s account on the public
structure.

Default

Exa

/-TR

mple

RUN $TKB
TKB:PROG/TR=0BJ1,0B.J2,0BJ3TRACE/DA
TKB://

Task Builder Switches 9-31

/WI

9.23 /WI — Wide Listing Format
File
Memory allocation (map) file

Syntax
file.TSK file MAP/-WI =file.OBJ

Description

Negating this switch causes the Task Builder to format the map file 80
columns wide. Setting the switch or accepting the default causes a map
132 columns wide. Note that some systems are installed such that even
if you negate the /WI switch, you still get 132 columns. See your system
manager for details.

Default
/WI

Example

RUN $TKB
TKB:PROG +PROG/-WI=0BJ1,0BJ2,LB:FA4POTS/LB
TKB:=//

9-32 Task Builder Switches

/XT

9.24 /XT[:n] — EXxit on Error
File
Executable program file

Syntax
file.TSK/XT:n =file.OBJ

Description

Setting the /XT:n switch causes the Task Builder to exit after it finds n
errors. The number of errors can be specified in decimal or octal:

n. Decimal number (decimal point must be there).

#norn Octal number.

If you do not specify n, the Task Builder assumes a value of 1.
Default

/-XT
Example

RUN $TKB
TKB>PRDG/XT:10.,=0BJ1,0BJ2,LB:F4POTS/LB
TKB>//

Task Builder Switches 9-33

Chapter 10
Task Builder Options

The options you specify to the Task Builder modify the action taken during
the build. The options available to RSTS/E users are listed in Table 10—1.
Complete descriptions of the options follow, in alphabetical order.

Table 10-1: Task Builder Options

Option Meaning

ABORT Terminates command input and allows you to restart the input of com-
mand lines.

ABSPAT Declares absolute patch values.

ACTFIL Declares number of files that program can have open simultaneously.
ASG Declares device assignment to logical units, or RSTS/E channels.
COMMON | Declares a resident common area on LB: to be accessed by the program.

CLSTR Declares a series of resident libraries to be clustered in one space in the
user job area.

EXTSCT Declares extension of a program section.
EXTTSK Declares extension of the program itself.

FMTBUF Declares extension of buffer used by FORTRAN for processing format
strings at run time.

GBLDEF Global symbol definition.

GBLINC Includes a definition for a global symbel in the symbol table (.STB) file.
GBLPAT Declares a series of object-level patch values.

GBLREF Declares a global symbol reference.

GBLXCL Excludes a definition for a global symbol from the symbol table (.STB) file.

(continued on next page)

10-1

10-2

Table 10-1: Task Builder Options (Cont.)

Option Meaning

HISEG Associates an executable program with a high segment or run-time
system.

LIBR Declares a resident library on LB: to be accessed by the program.

MAXBUF Declares an extension to the FORTRAN record buffer.

ODTV Declares the address and size of the debugging aid SST vector.

PAR Used to build resident area; defines the partition that the resident area is
to occupy.

RESCOM Declares a resident common area to be accessed by the program.

RESLIB Declares a resident library to be accessed by the program.

STACK Defines the size of the stack.

TASK Names the executable program for SYSTAT.

TSKV Declares the address of the program’s SST vector.

UNITS Declares the maximum number of units (channels).

WNDWS Declares the number of additional address windows to be used by the

program.

Task Builder Options

ABORT

10.1 ABORT — Abort the Build

The ABORT option is useful when you discover that you made an error on
an earlier line of Task Builder input. When you type the ABORT=n in
response to a TKB> option prompt, the Task Builder stops accepting input
for the current build and prepares to accept input for a new build operation.
You can then restart the same or another command sequence.

Syntax
ABORT=n

where n is any integer. (You must specify =n to satisfy the general
form of the syntax for options, but the value is ignored.)

Note that typing a CTRL/Z (pressing the CTRL and Z keys at the same
time) causes the Task Builder to stop accepting input and start building
the current program. ABORT is the only way to restart the Task
Builder if you find an error and do not want a build to take place.

Default
None

Example

RUN $TKB
TKB>»PROG,PROG=0VERLY/MP
ENTER OPTIONS:
TKB>*RESLIB=RMSRES
TKB:>ABORT=1

PTKB -- #FATAL* -- TASK BUILD ABORTED WIA REQUEST
ABORT = 1
TKB >

Task Builder Options 10-3

ABSPAT

10.2 ABSPAT — Absolute Patch

You use the ABSPAT option to declare a series of object-level patch values
starting at a specific base address. You can specify up to eight patch values.

Note that all patches must be within the segment address limits or the
Task Builder will generate a fatal error:

TKB—+DIAG*—LOAD ADDRESS OUT OF RANGE IN file-name
Syntax

where:

seg-name is the one- to six-character name of the segment.

address is the octal address of the first patch. The address can be on
a byte boundary; however, two bytes are always modified
for each patch: the addressed byte and the following byte.

vall is an octal number in the range of 0 through 177777 to be
stored at the address.

val2 is an octal number in the range of 0 through 177777 to be
stored at the address plus 2.

Default

Example

val8 is an octal number in the range of 0 through 177777 to be
stored at the address plus 14.

None

RUN $TKB

TKB»PROG »PROG=0BJ1 ,0BJZ +LB:F4POTS/LB

TKB>/

ENTER OPTIONS:
TRKB>ABSPAT=MYRTN:012156:143672: 027001
TRB>//

The ABSPAT option sets the word at location 012156 in segment
MYRTN to 143672, and the word at location 012160 in segment
MYRTN to 027001.

104 Task Builder Options

ACTFIL

10.3 ACTFIL — Number of Active Files

You use the ACTFIL option to declare the number of files that your pro-
gram can have open simultaneously. For each active file that you specify,
the Task Builder allocates approximately 512 bytes.

If you specify less than four active files (the default), the ACTFIL option
saves space. If you want your program to have more than four active files,
you must use the ACTFIL option to make the additional allocation.

You must include a language library (object time system or OTS), and
record I1/0 service routines (such as RMS-11) in your program for the
extension to take place. The program section that is extended has the
reserved name $$FSR1.

Syntax
ACTFIL=n
where n is a decimal integer indicating the maximum number of files
that can be open at the same time.
Defauit
ACTFIL=4

Example

RUN $TKB

TKB>PROG=0BJ1 ,0BJ2+LB:F4POTS/LB
TKB:>/

ENTER DPTIONS:

TRKB>ACTFIL=2

TKB>//

Task Builder Options 10-5

ASG

10.4 ASG — Assign Devices

10-6

The ASG option declares physical devices assigned to one or more logical
units. (A logical unit corresponds to a channel number in RSTS/E terminol-
ogy). Note that you cannot assign a unit number higher than the maximum
number of units declared in the UNITS option (Section 10.25).

Syntax

ASG =dev-name:unit-1:unit-2:...,dev-name:unit-n:...
where:

dev-name is a two-character alphabetic device name followed by an
optional one- or two-digit decimal unit number.

unit-i are decimal integers indicating the logical unit numbers
(channels).
Default
ASG=8Y:1:2:3:4,TI1:5,TT:6
Example
RUN $TKB
TKB»PROG1=0BJ1,0BJ2,LB:F4POTS/LB
TKB >/

ENTER OPTIONS:
TKB*UNITS=8
TKB>*ASG=5Y:1:2:3:4:5:6:7,LP0O:8

The above example declares a maximum of 8 logical units (the UNITS
option should be given before the ASG option). The channels 1-7 are
allocated to the public disk structure, and channel 8 is allocated to line
printer unit 0. Note that in order to assign more than 8 logical units
(channels) to a single device, you must respecify the device name fol-
lowed by the additional units to be assigned. For example:

RUN $TKB
TKB>»PROG1=0BJ1,:0BJ2,LB:FA4POTS/LB

TKB >/

ENTER OPTIONS:

TKB>UNITS=11
TKB>A8G=8Y:1:2:3:4:5:6:7:8,8Y:9:10:11

Task Builder Options

CLSTR

10.5 CLSTR — Cluster Libraries

The CLSTR option lets you declare that multiple resident libraries are to
share the same virtual address space in your program. (See Section 2.3.5 for
a general discussion of how cluster libraries work.)

Syntax

CLSTR =default-library library-2,...,library—5:access-code[:apr]

where:

default-library

library—5

The first library listed in the CLSTR option is the
default library. Because of the way clustering works,
only certain libraries can be default libraries. If you
want to build libraries to be clusterable, the tech-
niques are described in Chapter 7. If you simply want
to use libraries in a resident library cluster, the
DIGITAL~supplied libraries are designed so the lan-
guage library can always serve as the default library.
Note that not all resident libraries that are available
with RSTS/E take advantage of the -clustering
feature. Those that can are:

BP2RES Clusterable resident library for
BASIC-PLUS-2 programs.

BP2SML Clusterable resident library (a subset
of BP2RES) for BASIC-PLUS-2
programs.

C81CIS Clusterable resident library for

COBOL-81 programs compiled with
/CIS switch (the normal default if
your system has the Commercial
Instruction Set option).

C81LIB Clusterable resident library for
COBOL-81 programs compiled with
/—CIS switch (the normal default if
your system does not have the Com-
mercial Instruction Set option).

FDVRDB Clusterable resident library for the
form driver for FMS (the Form Man-
agement System), with debug mode
support.

Task Builder Options 10-7

CLSTR

10-8

access-code

Task Builder Options

FDVRES Clusterable resident library for the
form driver for FMS (the Form Man-
agement System), without debug mode
support.

RMSRES Clusterable resident library for
RMS-11 that supports sequential, rel-
ative, and indexed file operations.

DAPRES Clusterable resident library for net-
work record access through RMS.

Thus, you can use C81CIS or C81LIB (for COBOL-81
programs) as the default library, and FDVRES
and/or RMSRES as a secondary library in the cluster.
Likewise, you can use BP2RES or BP2SML as the
default library, and FDVRES and/or RMSRES as a
secondary library in the cluster. (See the reference
manual for your specific language for more
information.)

Up to five resident libraries can form a cluster on
RSTS/E systems. As described below, a cluster for
DIGITAL-supplied libraries must occupy the upper
8K of your address space. If your site builds its own
clusterable libraries, however, these libraries can
occupy their own separate cluster, as long as the limit
of five resident libraries for each task build is not
exceeded. (You can have no more than five libraries
involved in clusters.)

For example, you can cluster either of two variations
of the COBOL-81 library (C81CIS or C81LIB) with
the FMS library (FDVRES) and/or the RMS-11
library (RMSRES), and two or three of your own
clusterable libraries either in the same cluster or in a
separate cluster in lower virtual memory.

is either RW (read/write) or RO (read-only). This code
indicates how your program intends to access the
library. (It will be RO for DIGITAL-provided resident
libraries such as BP2RES, FDVRES, C81CIS, etc.)
For example:

TKB>CLSTR=CBICIS+FDVRES:ROD

apr

Default
None

Example
RUN $TKB

CLSTR

is an integer in the range of 1 to 7 that specifies the
first Active Page Register (APR) reserved for the
clustered libraries. (See Section 2.3.4 if you are unfa-
miliar with APRs.) If you leave this parameter off,
the Task Builder assigns the highest APRs it can to
the cluster (APRs 6 and 7 for the above command
line).

Currently, DIGITAL-supplied libraries are built to
use APRs 6 and 7. That is, they are built to occupy 8K
words at the highest end of the user job area. This
means that, if you use the DIGITAL—supplied cluster
libraries, your system must be generated with RSX
directive emulation in the monitor. (Remember that
RSX directive emulation in the monitor means that
the run-time system can “disappear” from the high
address space in the user job area.)

TKB*PROG,PROG=PROG,LB:CEBICIS/LB

TKB >/
ENTER OPTIONS:

TRB*CLSTR=CBICIS »FDVURES: RO

TRKB>//

Task Builder Options 10-9

COMMON

10.6 COMMON — Access System Common Block

By convention, the COMMON option indicates a resident library that con-
tains data. The function of the COMMON option is the same as the LIBR
option (Section 10.16).

Syntax
COMMON = name:access-code[:apr]
See the description of the LIBR option (Section 10.16) for a discussion of
the parameters.

Example

RUN $TKB

TKB*PROG »PROG=0OVERLY/MP
ENTER DPTIONS:
TKB>COMMON=MYCOM:RMW:3
TRB>//

10-10 Task Builder Options

EXTSCT

10.7 EXTSCT — Extend Program Section

The EXTSCT option extends the size of a program section. If the program
section has the concatenated (CON) attribute, its size is extended by the
length specified. If the program section has the overlay (OVR) attribute, its
size is set equal to the length specified, if the length specified is greater
than the current size. (If the length is less than the current size, the current
size is allocated.)

Syntax
EXTSCT = psect-name:length

where:

psect-name is the one- to six-character name of the program section
to be extended.

length is the octal number of bytes to extend the program
section.

Default
None

Example

RUN $TKB

TRB>PROG=0BJ1 ,0BJ2+LB:F4POTS/LB
TKB >/

ENTER OPTIONS:
TRBEXTSCT=BUFF:250

TKB://

Suppose that BUFF is initially 200[8] bytes long. After the above option

is specified, it will be allocated 450[8] bytes if it is concatenated (CON),
or 250[8] bytes if it is overlaid (OVR).

Task Builder Options 10-11

EXTTSK

10.8 EXTTSK — Extend Task Memory

You use the EXTTSK option to direct the system to allocate additional
memory for your executable program, up to a maximum of (32K—32) words,
or 28K words if RSX emulation is not installed in the monitor.

The amount of memory available to the program is the sum of the pro-
gram’s size plus the increment you specify in the EXTTSK option, rounded
up to the next 32-word boundary.

Syntax
EXTTSK = length
where length is a decimal number specifying the increase in memory
allocation, in words.

Default
The program is extended to the next multiple of 1K words.

Example

RUN $TKB
TKB>PROG=DBJ1 s0BJZ2 L B:F4POTS/LB
TKB >/

ENTER OPTIONS:

TRBXEXTTSK=4096

TKB>//

10-12 Task Builder Options

FMTBUF

10,9 FMTBUF — Format Buffer Size

The FMTBUF option declares the length of the internal working storage
that you want the Task Builder to allocate within your program for the
compilation of format specifications at run time. The length of this area
must equal or exceed the number of bytes in the longest format string to be
processed.

Run-time compilation occurs whenever an array is referred to as the source
of formatting information within a FORTRAN I/0 statement. The program
section that the Task Builder extends has the reserved name $$OBF1.

Syntax
FMTBUF =n
where n is a decimal integer, larger than the default (132), that speci-
fies the number of characters in the longest format specification.
Defauit
FMTBUF =132

Example

RUN $TKB

TKB:>PROG=0BJ1 ,0BJZ+LB:F4POTS/LB
TKB/

ENTER OPTIONS:

TRB:FMTBUF=140

TRB>//

Task Builder Options 10-13

GBLDEF

10.10 GBLDEF — Define a Global Symbol

With the GBLDEF option, you can define a global symbol and its value.
The Task Builder considers this symbol definition to be absolute. It over-

rides any definition in your object program files.

Syntax
GBLDEF = symbol-name:symbol-value

where:

symbol-name is the one- to six-character name assigned to the global
symbol.

symbol-value is an octal number in the range of 0 through 177777
assigned to the defined symbol.

Default
None

Example

RUN $TKB

TKB:>PROG=0BJ1 +0BJZ2,F4POTE/LB
TRKB>/

ENTER OPTIONS:
TRKB>GBLDEF=LITVAL=1357
TRB>//

10-14 Task Builder Options

GBLINC

10.11 GBLINC — Include Global in .STB File

The GBLINC option includes a global symbol in the .STB file that would
not otherwise be there. This option is used in DIGITAL-supplied resident
libraries that may need to call routines in other resident libraries in a
cluster. It is also useful if you are building your own clusterable resident
libraries.

Syntax
GBLINC = symbol
where symbol is the global symbol name to be included in the symbol
table file being built for the resident library.
Default
None

Example

RUN $TKB

TKB>»PROG»PROG +PROG=0VERLY /MP
Enter Options:
TKB>GBLINC=,FCSJT
TKB>GBLINC=USER

TKB=>//

The GBLINC option includes the symbols named ((FCSJT and USER) in
the symbol table file (PROG).

Task Builder Options 10-15

GBLPAT

10.12 GBLPAT — Global Relative Patch

10-16

You use the GBLPAT option to declare a series of object-level patch values
starting at an offset relative to a global symbol. You can specify up to eight
patch values.

Note that all patches must be within the segment address limits or the
Task Builder will generate a fatal error.

Syntax

where:
seg-name is the one- to six-character name of the segment.

sym-name is the one- to six-character name specifying the global
symbol.

offset is an octal number specifying the offset from the global
symbol.

vall is an octal number in the range of 0 through 177777 to be
stored at the address of the global symbol plus or minus
the offset.

val2 is an octal number in the range of 0 through 177777 to be
stored at the address of the global symbol, plus or minus
the offset, plus 2.

val8 is an octal number in the range of 0 through 177777 to be
stored at the address of the global symbol, plus or minus
the offset, plus 14.

Default
None

Example

RUN $TKB

TRB>PROG +PROG=0VERLY/MP
ENTER OPTIONS:
TKB>GBLPAT=IN1:MRTN+4:10001
TKB>//

The GBLPAT option sets the word at location MRTN +4 in segment IN1
to 010001.

Task Builder Options

GBLREF

10.13 GBLREF — Global Symbol Reference

You use the GBLREF option to declare a global symbol reference. The
reference originates in the root segment of the executable program.

Syntax
GBLREF =symbol-name
where symbol-name is the one- to six-character name of a global
symbol.

Default
None

Example

RUN $TKB
TKB>PROG»PROG=0VERLY /MP
ENTER OPTIONG:
TKB*GBLREF=MRTN

TRB>//

Task Builder Options 10-17

GBLXCL

10.14 GBLXCL — Exclude Global from .STB File

The GBLXCL option excludes a global symbol from the .STB file that would
otherwise be there. This option is used in DIGITAL-supplied resident
libraries that may need to call routines in other resident libraries in a
cluster. It is also useful if you are building your own clusterable resident
libraries.

Syntax
GBLXCL = symbol
where symbol is the global symbol name to be excluded from the symbol
table file being built for the resident library.
Default
None

Example

RUN $TKB
TKB*PROG,,PROG »PROG=0VERLY /MP

Enter Options:
TKB»GBLACL=.FCBJT
TKB*GBLYCL=USER
TKB=//

The GBLXCL option excludes the symbols named (FCSJT and USER)
from the symbol table file (PROG).

10-18 Task Builder Options

HISEG

10.15 HISEG — Define High Segment

Use the HISEG option primarily, to associate an executable program with a
user-written high segment, or run-time system. If there are global defini-
tions within the high segment that resolve references in the input files you
specify, the Task Builder links them correctly. The symbol-table file (.STB
file) for the named run-time system must be in the account specified by the
system logical name LB:. If the HISEG option is not specified:

1. The run-time system associated with the executable program is the
same as that associated with the Task Builder itself.

2. No global references to symbols in that high segment are resolved.

Note that the HISEG option is sometimes used when you build a multiuser
program with the /MU switch (See Section 9.12). In addition, the HISEG
option is also used with the RESLIB option when you do not have RSX
emulation code installed in the monitor.

Syntax
HISEG =high-segment-name
where high-segment-name is a one- to six-character name specifying
the run-time system.

Default
If no high segment is specified, the run-time system associated with the
Task Builder is assumed.

Example

RUN $TKB
TKB>PROG=0BJ1 ,0BJ2
TRB >/

ENTER OPTIONS:
TKB*HISEG=USRTS
TRB>//

Task Builder Options 10-19

LIBR

10.16 LIBR — Access System-Owned Resident Library

10-20

The LIBR option

declares that your program intends to access a system-

owned resident library.

Syntax

LIBR =name:access-code[:apr]

where:

name

access-code

apr

Task Builder Options

is the one- to six-character name specifying the library.
The Task Builder expects to find a symbol table file and
task image file of the same name (name.STB and
name.TSK) on the device and under the account specified
by the system logical name LB:.

The easiest way to find out if the files exist on LB: is to do
a directory:

DIR LB:RMSRES.STB
Name Typ Bize Prot DR3I:zL1+11]
RMSRES.STB 4 < 403

DIR LB:RMSRES.,TSK
Name Tvyep Size Prot DR3:L01,111
RMSRES ., TSK 18 < 403

(If the files do not exist on LB:, you must use the RESLIB
option, Section 10.21.)

is the code RW (for read/write) or RO (for read-only),
indicating the type of access required by your program.

is an integer in the range of 1 to 7 that specifies the first
Active Page Register (APR) reserved for the library.

It is not really necessary to understand Active Page
Registers to use this modifier. Think of your 32K-word
user job area as divided into 8 parts of 4K words each,
numbered from 0 through 7. Your program occupies one
or more of the lowest-numbered segments. The run-time
system occupies the highest-numbered segment.

You can “map” a resident library into an area in between
these two. The map must begin on a 4K-word boundary.
For example, suppose your program takes 6K words and
the run-time system takes 4K words of memory. You can
map up to 20K words of resident library into your job,
beginning with APR 2.

LIBR

APR

RUN-TIME SYSTEM

MK-01047-00

Default
None

Example

RUN $TKB
TKB>PROGsPROG=0VERLY /MP
ENTER OPTIONS:
TKB*LIBR=RMBREGS:R0O:5
TKB>//

This example causes the RMSRES library in LB: to be mapped through

APRs 5 and 6. The run-time system is to be mapped through APRs 4
through 7.

Task Builder Options 10-21

MAXBUF

10.17 MAXBUF — Maximum Record Buffer Size

The MAXBUF option declares the maximum record buffer size required for
any file used by the program. If your program requires a maximum record
size that exceeds the default buffer length (133 bytes), you must use this
option to extend the buffer.

You must also include a language library (object time system, or OTS),

such as FORTRAN’s F4POTS, in your executable program for the exten-

sion to take place. The program section that is extended has the reserved
name $$I0B1.

Syntax
MAXBUF=n

where n is a decimal integer, larger than 133, that specifies the maxi-
mum record size in bytes.

Default
MAXBUF=133

Example

RUN $TKB
TKB>PROG=0BJ1 ,0BJZ +LB:F4POTS/LB
TKB =/

ENTER OPTIONS:

TKB>MAXBUF =166

TKB>//

10-22 Task Builder Options

oDTV

10.18 ODTV — ODT SST Vector

The ODTYV option declares that a global symbol is the address of the ODT
Synchronous System Trap vector table. You must define the global symbol
in the main root segment of your program.
Syntax

ODTYV = symbol-name:vector-length

where:
symbol-name is a one- to six-character name of a global symbol.

vector-length is a decimal integer in the range of 1 through 32, speci-
fying the length of the SST vector in words.

Default
None

Example

RUN $TKB
TKB:>PROG/DA=0BJ1 ,0BJZ
TKB >/

ENTER OPTIONS:
TKB>0DTV=TRPVEC: B
TKB>//

For related information, refer to the RSTS/E System Directives Manual
for the SVDBS$ (Set SST Vector Table for Debugging Aid) macro.

Task Builder Options 10-23

PAR

10.19 PAR — Partition for Resident Area

10-24

You must use the PAR option when building a resident area. The option
identifies a “partition” for the resident area: the amount of space the resi-
dent area will occupy when linked into user programs in the user job area
(and its location, if the resident library is to occupy absolute addresses).

Syntax
PAR = pname[:base:length]

where:

pname is the name of the partition. This name must be the same as
the file name portion of the executable and symbol table files
in the command line. For example:

RUN $TKB
TKB*LIBRES/-HD+»LIBRES/PI=LIBRES
TKB >/

ENTER OPTIONS:

TKB>PAR=LIBRES

TKB:>//

base is the octal byte address that defines the start of the partition.
If the library is position-independent (see Section 7.3.1), the
base address is zero. If the library is absolute, the base
address must be on a 4K word boundary. For example, if the
library is always to be positioned beginning at APR 6, you
would specify an octal address of 140000.

length is the octal number of bytes contained in the partition. If zero
or omitted, the length is the size of the executable file.

If length is nonzero, and greater than the size of the execut-
able file produced from the build, the Task Builder automati-
cally extends the size of the resident area to make up the
difference.

If the executable file size is greater than the partition size
given here, the Task Builder issues the following error
message:

%TKB—+*DIAG*-TASK HAS ILLEGAL MEMORY LIMITS

Default
PAR=GEN

Example
See parameter description, above.

Task Builder Options

RESCOM

10.20 RESCOM — Access Resident Common Block

By convention, the RESCOM option indicates a resident area that contains
data; the resident common option does the same thing as the RESLIB
option (Section 10.21).

Syntax
RESCOM =file-spec/access-code[:apr]

Task Builder Options 10-25

RESLIB

10.21 RESLIB — Access Resident Library

The RESLIB option declares that your program intends to access a resident

10-26

library.
Syntax

RESLIB =filespec/access-code[:apr]

where:

filespec

access-code

apr

Task Builder Options

is the file specification identifying the library. The Task
Builder expects to find a symbol table file and task image
file with the same filename (filename.STB and
filename. TSK) on the device and account specified. You
must omit the file type from the file specification.

is the code RW (for read/write) or RO (for read-only),
indicating the type of access required by your program.

is an integer in the range of 1 to 7 that specifies the first
Active Page Register (APR) reserved for the library.

It is not really necessary to understand Active Page
Registers to use this modifier. Think of your 32K—word
user job area as divided into 8 parts of 4K words each,
numbered from 0 through 7. Your program occupies one
or more of the lowest-numbered segments. The run-time
system occupies the highest-numbered segment.

You can “map” a resident library into an area in between
these two. The library must begin on a 4K—word bound-
ary. For example, suppose your program takes 6K words
and your system has disappearring RSX. You can map up
to 24K words of resident library into your job, beginning
with APR 2.

RESLIB

APR

MK-01052-00

Default
None

Example

RUN $TKB
TKB*PROG=0BJ1,0BJ2
TKB>/

ENTER OPTIONS:
TKB>RESLIB=DRZ:MYLIB/RO
TKBX//

This example causes the library MYLIB on DR2: in the user’s account

to be mapped through APR 7 (or APRs 2 through 7, or some subset of
APRs 2 through 7 depending on the size of MYLIB).

Task Builder Options 10-27

STACK

10.22 STACK — Declare Stack Size

The STACK option declares the maximum size of the “stack” required by
the executable program.

The stack is an area of memory used for temporary storage, subroutine
calls, and other system functions. The stack is referenced by hardware reg-
ister 6 (the stack pointer). The default stack size is 256[10] words, or
1000[8] bytes. The Task Builder allocates space for the stack immediately
following the low 1000[8] bytes of memory used by the RSTS/E monitor,
your program, and the run-time system. (That is why, if you look at the
Task Builder memory map file, the first location of your program begins at
address 2000, unless you specify a different stack size with this option.)

CAUTION

Decreasing the size of the stack to less than the default size
can cause unpredictable results for programs written in cer-
tain higher-level languages.

Syntax
STACK=n

where n is a decimal integer specifying the number of words required
for the stack. '

Default
STACK =256

Example

RUN $TKB

TKB:>PROG=0BJ1 ,0BJ2,0BJ3
TKB >/

ENTER OPTIONS:
TKB>STACK=312

TKB://

10-28 Task Builder Options

TASK

10.23 TASK — Program Name for SYSTAT

The TASK option lets you specify the name of the program being built. This
name is displayed by the SYSTAT program. You can use this option if you
want to give a name to a program other than the name of the executable
program file.

Syntax
TASK = program-name
where program-name is the one- to six-character name to identify the
program in SYSTAT. The characters within the name must be letters
(A to Z), numbers (0 to 9), periods (.), or dollar signs ($).
Default
TASK =executable file name

Example

RUN $TKB
TKB>*PROGsPROG=0OVERLY/MP
ENTER OPTIONS:
TRB>TASK=USER

TKB:>//

Task Builder Options 10-29

TSKV

10.24 TSKV — Task SST Vector

10-30

The TSKYV option declares that a global symbol is the address of the pro-
gram Synchronous System Trap (SST) vector table. You must define the
global symbol in the main root segment of your program.
Syntax

TSKYV =symbol-name:vector-length

where:

symbol-name is a one- to six-character name of a global symbol.

vector-length is a decimal integer in the range of 1 through 32 speci-
fying the length of the SST vector in words.

Defaulit
None

Example

RUN $TKB
TKB*PROG=0BJ1 ,0BJ2
TKB>/

ENTER OPTIONG:
TKB>TSKV=UECNAM: B
TRKB>//

For related information, refer to the RSTS/E System Directives Manual
for the SVTK$ (Set SST Vector Table for Task) macro.

Task Builder Options

UNITS

10.25 UNITS — Maximum Number of Units or Channels

The UNITS option declares the maximum number of logical units (often
called channels in RSTS/E documentation) that are used by the program.
The default number is 6.

NOTE

If you want to use more than 6 channels, specify the UNITS
option before the ASG option (Section 10.4) that defines the
devices for the units.

Syntax
UNITS = max-units

where max-units is a decimal number from 0 to 14 specifying the maxi-
mum number of logical units. (The Task Builder allows you to specify
more than 15 channels, but RSTS/E ignores all channels above 15.)

Default
UNITS=6

Example

RUN $TKB

TKB>PROG=0BJ1 »0BJZLB:F4POTS/LB
TKB>/

ENTER OPTIONS:

TRKB*UNITS=4
TRB>ASG=5Y:0:1,4L.P0O:3,TI:4
TKB*//

Task Builder Options 10-31

WNDWS

10.26 WNDWS — Number of Address Windows

The WNDWS option declares the number of address windows required by
the program in addition to those needed to map the program and any
declared (with CLSTR, RESLIB, LIBR, RESCOM, or COMMON) resident
area. In other words, you use this option to tell the Task Builder what
windows your program will access directly using the mapping directives
(see the RSTS/E System Directives Manual). The number specified is equal
to the number of such simultaneously mapped regions the program will
use.

Syntax
WNDWS=n

where n is an integer in the range 0 to 7.

Default
WNDWS=0

Example

RUN $TKB
TKB>PROG=0BJ1 ,0BJ2
TKB >/

ENTER OPTIONG:
TKBXWNDWG=2

TRB>//

10-32 Task Builder Options

Chapter 11
Overlay Description Language (ODL)

The Task Builder provides a language, called the Overlay Description
Language (ODL), that allows you to describe the overlay structure of a
program. You construct a text file containing a series of ODL commands,
one command per line. You then refer to this file in a Task Builder com-
mand line, with an /MP switch, as described in Chapter 3. For example:

RUN ®TKB
TKB=0UT sMAP=0VERLY/MP

The ODL command file is named OVERLY.ODL (.ODL is the default file
type).

11.1 ODL Command Line
An ODL line takes the form:
label: directive argument-list ;comment
A label is required only for the .FCTR command (see Section 11.3).

The ODL commands are listed below and described in alphabetical order in
Sections 11.1 — 11.5.

ROOT specifies the entire overlay structure in terms of (1) your sepa-
rately compiled or assembled program and subprogram files, (2)
library files, (3) program sections, and (4) names defined in
.NAME or .FCTR commands. These elements are connected by
operators, which show the way the elements are to be linked.
Operators include the symbols:

JFCTR defines a “substructure” within the entire overlay structure. As
with .ROOT, the substructure is specified in terms of object files,
library files, program sections, and names defined in .NAME or
other .FCTR commands. These elements are connected by the
same operators used in the .ROOT command.

PSECT allows you to directly specify the placement of a global program
section in an overlay structure. Thus, you can indicate the seg-
ment to which the program section will be allocated.

11-1

NAME allows you to define a name and attributes for an overlay seg-
ment. An overlay segment is a piece of the overlay structure that
is stored on disk such that it is loaded with one disk access.

.END is used to end the overlay description.

11.2 The .END Command

Use the . END command as the last line in the ODL file. The .END com-
mand tells the Task Builder where the input ends. The format of the .END
command is:

.END

11.3 The .FCTR Command

The .FCTR command lets you build large, complex overlay structures and
represent them clearly. The format of the .FCTR command is:

label: .FCTR structure

where:

label at the beginning of the line is used as a part of the structure of a
.ROOT or another FCTR command. The label must be unique with
respect to file names and other labels. The structure portion of the
JCTR command can be made up of the same components as the
structure of a .ROOT command.

The .FCTR command lets you extend the overlay tree description beyond
the one line possible in a .ROOT command. For example:

+ROOT AFCTR,BFCTR

AFCTR: +FCTR A-LIB-(A1-LIB»AZ-LIB)
BFCTR: +FCTR B-LIB-(B1i-LIB:B2FCTR)
BZFCTR: +FCTR B2-LIB(B21-LIB.B22-LIB.,B23-LIB)
LIB: +FCTR LB:F4POTS/LB
+END

In the example above, the AFCTR and BFCTR items in the .ROOT com-
mand are expanded in following .FCTR commands. Likewise, B2FCTR and
LIB are defined in the third and fourth FCTR commands. The B2FCTR
item is defined in a “nested” .FCTR command (that is, the B2ZFCTR item is
defined by a .FCTR command nested within the BFCTR item’s defining
JFCTR command. The .FCTR command can be nested in this manner to 16
levels.

11.4 The .NAME Command

11-2

The .NAME command lets you give a name to a segment and then assign
attributes to a segment. As described in Chapter 3, a segment is a piece of
your overlay structure that can be loaded in one disk access.

Overlay Description Language (ODL)

The name you assign must be unique; that is, it must be different than file
names, program section names, .FCTR labels, and other segment names
used in the overlay description.

The chief purpose of the command is to assign a name to a null co-tree root
(Section 4.2), and to make a data segment autoloadable (Section 6.5).

The format of the NAME command is:

NAME segment-name[,attr][,attr]

where:

segment-name

attr

is a one- to six-character name consisting of the charac-
ters A-Z, 0-9, and $. The name applies to the segment
defined immediately following the name when it is used
in a .ROOT or FCTR command. A segment is formed by
pieces connected by a dash (-) without intervening
parentheses. (Pieces connected by a comma are overlaid
and are stored as separate segments.)

is one of the following:

GBL

NOGBL

NODSK

DSK

Defines the segment-name as a global
symbol. As such, it can be referred to in
transfer-of-control statements from other pieces
of the overlay structure. When such a transfer of
control is executed, the segment is loaded, and
control is returned to the statement or instruc-
tion immediately following the call. Used chiefly
in making data segments autoloadable (see
Section 6.5).

Does not define the segment-name as a global
symbol. Hence, the name cannot be refered to in
transfer-of-control statements from other pieces
of the overlay structure. If the GBL attribute is
not specified, NOGBL is assumed. You would
use this attribute when using .NAME to define
a null segment as a co-tree root (see Section 4.2).

No disk space is allocated to the named segment
in the executable file. If a data overlay segment
has no initial values but will be generated by
the running program, there is no need to reserve
space for it. If you request this option, and the
code in your program assigns initial data values
to the segment, the Task Builder terminates the
build with a fatal error:

LOAD ADDR OUT OF RANGE IN MODULE

file-name

Disk space is allocated to the named segment in
the executable file. If you do not specify
NODSK, DSK is assumed.

Overlay Description Language (ODL) 11-3

If more than one name is applied to a segment, the attributes of the last
name given take effect.

11.5 The .PSECT Command

114

You use the PSECT command to define the name and attributes of a pro-
gram section that you want to place in the structure of a .ROOT or .FCTR
command. In other words, you can directly specify the placement of a pro-
gram section named in a .PSECT command.

The general form of the .PSECT command is:
.PSECT p-namel,attrl][,attr2]...[,attr4]

where:

p-name is the name of the program section (a one- to six-character
name consisting of the character A-Z, 0-9, or $).

attr(i] can be any of the following:

GBL A global program section, or

LCL A local program section.

RW A read/write program section, or

RO A read-only program section.

REL A relocatable program section, or

ABS An absolute program section.

OVR An overlaid program section, or

CON A concatenated program section.

SAV A program section with the save attribute.
D A program section contains data.

I A program section contains instructions and/or data.

For example, suppose a program consists of the file CNTRL as a root, with
overlays A, B, and C. Suppose that CNTRL calls A, B, C, and A again, and
that A contains a common block named DATA3. The first execution of A
stores data in DATAS3, and the second execution of A needs this data. The
common block DATA3 must be moved to the root segment, where it will not
be overlaid with the old values when A is read in from disk for its second
execution. This is accomplished by the following ODL file:

+PSECT DATA3sRW,GBL sREL sOUR

+ROOT CNTRL-DATA3-LIB-#(A-LIB:B-LIB.C-LIB)
LIB: +FCTR LB:F4PDTS/LB

+END

See the PDP-11 MACRO-11 Language Reference Manual for more infor-
mation about .PSECTs.

Overlay Description Language (ODL)

11.6 The .ROOT Command

Each overlay description must have one, and only one .ROOT command.
The .ROOT command defines the overlay structure. The general format of
the command is:

.ROOT structure

where structure is a series of file specifications for your separately compiled
object programs, library files, program section names, or names defined in
FCTR or .NAME commands. These items are connected by the following
operators:

1. The hyphen (-) operator indicates the concatenation of two items. For
example, X—Y means that sufficient virtual address space will be
allocated to contain the items X and Y simultaneously. The Task
Builder allocates X and Y in sequence.

2. The comma (,) operator, appearing within parentheses, indicates the
overlaying of virtual address space. For example, (Y,Z) means that
the virtual address space can contain either Y or Z; they overlay each
other. Parentheses can be nested to 16 levels.

The comma operator outside of parentheses is used to define multiple
tree structures.

3. The exclamation point (!) operator indicates memory-resident over-
lays in a resident area (see Chapter 7).

4. The asterisk operator (*) indicates that autoload vectors are to be
generated for the following piece or pieces of the overlay structure.
Unless you want to save space by carefully applying autoload indica-
tors (Chapter 5), the simplest way to use the asterisk is immediately
before the outermost left parenthesis in your ODL file. And, for
co-trees, put additional asterisks before a non-null co-tree root seg-
ment and any co-tree’s outermost left parenthesis.

For example:

+ROOT R-%(Y 2 Z(Z21,22))
+END
The .ROOT command in this ODL file describes the following overlay tree.

X
|

I 1
Z1 z2 MK--01053-00

The units Y and Z overlay each other, as do Z1 and Z2.

Overlay Description Language (ODL) 11-5

11.7 Indirect Command Files

11-6

The ODL processor can accept ODL text specified in an indirect command
file. If an at sign (@) appears as the first character in a line, the processor
reads text from the file specified immediately after the at sign character.

For example, suppose you create a file, called BIND.ODL, that contains the
text:

B +FCTR B1-(BZ2,B3)

This text can be inserted by a line beginning with @BIND in another ODL
file:

+ROODT A-*(B,C)
C: +FCTR C1-(C2,C3)
BBIND

+END

This has the same effect as an ODL file with the following commands:

+ROOT A-*(B,C)
+FCTR C1-(C2,C3)
+FCTR B1-(BZ,B3)
+END

oy

The Task Builder allows two levels of indirection. That is, you can place a
reference to an indirect command file in an indirect command file. (How-
ever, note that excessive use of indirect command files will degrade Task
Builder performance.)

Overlay Description Language (ODL)

Appendixes

Appendix A
Error Messages

This appendix lists the error messages produced by the Task Builder. Error
messages are printed in two forms:

* %TKB — *DIAG*—error-message
¢ 7TKB — *FATAL#*—error—-message

When you give commands to the Task Builder from a terminal (rather than
from a command file), you can correct some errors as you go along. These
errors are noted with the *DIAG+* heading. Correct the error and the build
will proceed. Indeed, some of the errors merely tell you about an unusual
condition. If you can live with the condition, or consider it to be normal to
your program, you can go ahead with the build and run the executable file
produced.

The errors headed by *FATAL#* abort the build; you have to start over.

Messages and their explanations are listed below. If the explanation refers
to a system error, or says that the error should not occur on RSTS/E sys-
tems, please send a Software Performance Report (SPR) to DIGITAL.

ALLOCATION FAILURE ON FILE filename

The Task Builder could not find enough disk space to store the execut-
able program file or did not have write access to the account or disk that
was to contain the file.

BLANK P-SECTION NAME IS ILLEGAL odl-line

The overlay description line printed contains a .PSECT command that
does not have a program section name.

COMMAND 1/0 ERROR

An I/0 error occurred for an input file in a Task Builder command. The
device may not be online, or there may be a hardware error.

A-2

COMMAND SYNTAX ERROR command-line

The command line given is specified incorrectly. See the Reference Sec-
tion for the correct syntax for the command.

COMPLEX RELOCATION ERROR - DIVIDE BY ZERO: MODULE filename

A zero divisor was detected in a complex expression. The result of the
division was set to zero. (A probable cause is division by a global symbol
whose value is undefined. You can set a value for a global symbol with
the GBLDEF option to correct this.)

FILE filename ATTEMPTED TO STORED DATA IN VIRTUAL SECTION

You should not get this error running the Task Builder on RSTS/E
systems. It diagnoses an error for a capability not used on RSTS/E.

FILE filename HAS ILLEGAL FORMAT

The file named is in an invalid format. This can occur if you try to build
a text file, such as a source file. Input files must be compiled or
assembled object program files or library files containing compiled or
assembled object routines.

ILLEGAL APR RESERVATION

An APR parameter specified in a COMMON, LIBR, RESCOM, or
RESLIB option is outside the range 0-7.

ILLEGAL DEFAULT PRIORITY SPECIFIED

Note that this error relates to the PRI option which is ignored on
RSTS/E systems. The error is returned if you specify an illegal value in
the use of the PRI option.

ILLEGAL ERROR-SEVERITY CODE octal-list

System error (no recovery). Please send DIGITAL a Software Perform-
ance Report (SPR) with a copy of the message containing the octal-list
as printed.

ILLEGAL FILENAME invalid-line

The invalid line printed contains a wildcard (*) in a file specification.
You cannot use wildcards in file specifications for the Task Builder.

ILLEGAL GET COMMAND LINE ERROR CODE
System error (no recovery). Please send an SPR to DIGITAL.

ILLEGAL LOGICAL UNIT NUMBER invalid-line

You tried to assign a device (ASG option) to a logical unit number
larger than the available number of logical units (UNITS option or the
default of 6 if the UNITS option is not specified).

ILLEGAL MULTIPLE PARAMETER SETS invalid-line

You tried to specify more parameters for an option than the option
format calls for. See Chapter 10 for the correct format for options.

ILLEGAL NUMBER OF LOGICAL UNITS invalid-line
You cannot specify a logical unit number greater than 14.

Error Messages

ILLEGAL ODT OR TASK VECTOR SIZE

You should not get this error on RSTS/E systems; it diagnoses an error
for an option not processed by RSTS/E.

ILLEGAL OVERLAY DESCRIPTION OPERATOR invalid-line

The invalid line printed is an ODL line that contains an operator that
the Task Builder does not recognize. This error occurs if the first char-
acter in a program section or segment name is a period (.).

ILLEGAL OVERLAY DIRECTIVE invalid-line

The invalid line printed contains an unrecognizable overlay command.

ILLEGAL PARTITION/COMMON BLOCK SPECIFIED

You tried to specify a partition option (PAR) or resident area access
option (LIBR, RESLIB, COMMON, RESCOM) defining a resident area
as starting not on a 32-word boundary.

ILLEGAL P-SECTION/SEGMENT ATTRIBUTE

You tried to define an attribute for a program section or segment that is
not recognizable to the Task Builder. See the description of the .PSECT
command or .NAME command in Chapter 11.

ILLEGAL REFERENCE TO LIBRARY P-SECTION psect-name

Your program attempts to refer to a program section name that exists
in a run-time system or resident area but has not named the run-time
system or area in a HISEG, RESLIB, LIBR, RESCOM, or COMMON
option.

ILLEGAL SWITCH file-specification
The file specification printed contains an illegal switch or switch value.

INCOMPATIBLE REFERENCE TO LIBRARY P-SECTION psect-name

Your program attempts to refer to more storage in a run-time system or
resident library than exists in the run-time system or resident library
definition.

INCORRECT LIBRARY MODULE SPECIFICATION invalid-line

The invalid line printed names a library routine name with an invalid
character. Valid characters are A-Z, 0-9, space, dollar sign ($), or
period (.).

INDIRECT COMMAND SYNTAX ERROR invalid-line

The invalid line printed is a command from an indirect file. You must
correct the syntax of the command in the indirect file.

INDIRECT FILE OPEN FAILURE invalid-line

The invalid line printed refers to a command input file that could not be
located.

INSUFFICIENT PARAMETERS invalid-line

The invalid line printed contains too few parameters. See the Reference
Section for the correct format for command lines, switches, and options.

Error Messages A-3

A4

INVALID APR RESERVATION invalid-line

You specified an APR on an option dealing with an absolute resident
area. An absolute resident area is built to occupy the same virtual
address space each time it is used; you do not specify an APR in this
case.

INVALID KEYWORD IDENTIFIER invalid-line

The invalid line printed contains an unrecognizable option.

INVALID PARTITION/COMMON BLOCK SPECIFIED

The base address of a partition defined in a PAR option is not on a 4K
boundary or is not O, or the memory bounds for the partition overlap a
run-time system or other resident area.

INVALID REFERENCE TO MAPPED ARRAY BY MODULE filename

You should not get this error when running the Task Builder on
RSTS/E systems. It diagnoses an error for a capability not used on
RSTS/E.

INVALID WINDOW BLOCK SPECIFICATION

The number of extra address windows requested with the WNDWS
option cannot exceed 7.

I/0 ERROR LIBRARY IMAGE FILE

An I/0O error occurred during an attempt to open or read the symbol
table file (.STB file type) for a run-time system or resident area.

1/0 ERROR ON INPUT FILE filename

An I/0 error occurred during an attempt to open or read an input file in
the Task Builder command line. This error message can also occur if
your command line is too long (greater than 80 characters).

1/0 ERROR ON OUTPUT FILE filename

An I/0 error occurred during an attempt to open or write to an output
file in the Task Builder command line.

LABEL OR NAME IS MULTIPLY DEFINED invalid-line

The invalid line printed defines a name that has already appeared in a
.FCTR, .NAME, or .PSECT directive.

LIBRARY FILE filename HAS INCORRECT FORMAT

A module has been requested from a library file that has an empty
module name table. (The specified library has no routines.)

LIBRARY REFERENCES OVERLAID LIBRARY invalid-line

An attempt was made to link the resident library being built to a resi-
dent area that has memory-resident overlays.

Error Messages

LOAD ADDR OUT OF RANGE IN MODULE filename

An attempt has been made to to store data in the executable file outside
the address limits of the segment. This problem is usually caused by one
of the following:

1. An attempt to initialize a program section contained in a run-
time system or resident area.

2. An attempt to initialize an absolute location outside the limits of
the segment or in the header.

3. A patch outside the limits of the segment it applies to.
4. An attempt to initialize a segment having the NODSK attribute.

LOOKUP FAILURE ON FILE filename invalid-line
The invalid line printed contains a file name that cannot be located.

LOOKUP FAILURE ON SYSTEM LIBRARY FILE

The Task Builder cannot find the system library file to resolve unde-
fined symbols. The system library is LB:SYSLIB.OLB unless defined
otherwise with a /DL switch.

LOOKUP FAILURE RESIDENT LIBRARY FILE invalid-line

No symbol table (.STB) file or executable file (.TSK) can be found for the
run-time system or resident area.

MAXIMUM INDIRECT FILE DEPTH EXCEEDED invalid-line

The invalid line printed gives the file reference that exceeded the per-
missible indirect file depth (2).

MODULE filename AMBIGUOUSLY DEFINES P-SECTION psect-name

The program section named has been defined in two pieces of the over-
lay structure that are not on a common path and is referred to by a
segment that is common to both paths.

MODULE filename AMBIGUOUSLY DEFINES SYMBOL sym-name

The file named refers to or defines a symbol. The symbol definition
exists on two different paths but is referenced by a segment common to
both paths.

MODULE filename ILLEGALLY DEFINES XFR ADDRESS psect-name addr
This error is caused by one of the following:
1. The start address printed is odd (it must be even).

2. The file containing the start address is in an overlay segment.
The start address must be in the root segment of the main tree.

3. The address is in a program section that has not yet been defined.
Please send an SPR to DIGITAL if this is caused by
DIGITAL—-supplied software.

Error Messages A-5

MODULE filename MULTIPLY DEFINES P-SECTION psect-name
The program section named has been defined more than once in the
same segment with different attributes.

Or, a global program section has been defined more than once with
different attributes in more than one segment along a common path.

MODULE filename MULTIPLY DEFINES SYMBOL sym-name
Two definition for the relocatable symbol sym-name have occurred on a
common path.

Or, two definitions for an absolute symbol with the same name but two
different values have occurred.

MODULE filename MULTIPLY DEFINES XFR ADDR IN SEG segment-name
More than one file making up the root has a start address.

MODULE routine-name NOT IN LIBRARY

The Task Builder could not find the routine named on the /LB switch in
the library specified.

NO DYNAMIC STORAGE AVAILABLE

The Task Builder needs additional storage for a symbol table and can-
not find it. Refer to Appendix E for ways to optimize Task Builder
performance.

NO MEMORY AVAILABLE FOR LIBRARY library-name

The Task Builder could not find enough free virtual memory to map the
specified run-time system or resident area. Refer to Appendix E for
ways to optimize Task Builder performance.

NO ROOT SEGMENT SPECIFIED
You must specify one .ROOT command in the overlay description file.

NO VIRTUAL MEMORY STORAGE AVAILABLE

The maximum allowable size of the Task Builder work file was
exceeded. See Appendix F for suggestions on reducing the size of the
work file.

ONLY ONE HISEG MAY BE SPECIFIED

You attempted to specify more than one high segment. The command
that generated this error is ignored.

OPEN FAILURE ON FILE filename

An I/0 error occurred while the Task Builder was attempting to open
the specified file. Try the build again. If you get the same error, see your
system manager and report the I/0 error.

OPTION SYNTAX ERROR invalid-line

The invalid line printed contains an option that the Task Builder can-
not process because it is specified incorrectly. See Chapter 10 for the
correct syntax for options.

A-6 Error Messages

OVERLAY DIRECTIVE HAS NO OPERANDS
All overlay commands except .END require operands.

OVERLAY DIRECTIVE SYNTAX ERROR invalid-line

The invalid line printed contains a syntax error or refers to a line that
contains an error.

PARTITION par-name HAS ILLEGAL MEMORY LIMITS

The partition named is longer than the available address space.

PASS CONTROL OVERFLOW AT SEGMENT segment-name

System error. Please send an SPR to DIGITAL with a copy of the ODL
file associated with the error.

PIC LIBRARIES MAY NOT REFERENCE OTHER LIBRARIES

You have tried to build a position-independent resident area that refers
to another resident area.

P-SECTION psect-name HAS OVERFLOWED

You have tried to create a program section larger than (32K-32) words.
REQUIRED INPUT FILE MISSING

At least one input file is required for a build.

REQUIRED PARTITION NOT SPECIFIED

You should not get this error on RSTS/E systems. It diagnoses an error
for a capability not used on RSTS/E.

RESIDENT LIBRARY HAS INCORRECT ADDRESS ALIGNMENT invalid-line

The invalid line printed specifies a resident area that has one of the
following problems:

1. The library refers to another library with invalid address bounds
(that is, not on 4K word boundary).

2. The library has invalid address bounds.

RESIDENT LIBRARY MAPPED ARRAY ALLOCATION TOO LARGE invalid-line

You should not get this error on RSTS/E systems. It diagnoses an error
for a capability not used on RSTS/E.

RESIDENT LIBRARY MEMORY ALLOCATION CONFLICT option
One of the following problems has occurred. You tried to specify:

1. More than 7 resident areas.
2. The same resident area more than once.

3. Absolute resident areas whose memory allocations overlay.

ROOT SEGMENT IS MULTIPLY DEFINED invalid-line

The invalid line printed contains the second .ROOT command encoun-
tered in an ODL file. Only one .ROOT command is allowed.

Error Messages A-7

A-8

SEGMENT seg-name HAS ADDR OVERFLOW: ALLOCATION DELETED

Within a segment, the program attempted to allocate more than
(32K-32) words. A map file is produced if it was specified, but no exe-
cutable file is produced.

TASK HAS ILLEGAL MEMORY LIMITS

You have tried to build a program whose size exceeds the allowable
memory size. (This may be the size defined in a PAR option.) If an
executable file was produced, delete it.

TASK HAS ILLEGAL PHYSICAL MEMORY LIMITS
mapped-array executabie-program program extension

The sum of the values displayed — mapped array size, executable pro-
gram size, and program extension size — exceeds 2.2 million bytes. The
quantities are shown as octal numbers in units of 64—byte blocks.
Delete any resulting executable program file.

TASK IMAGE FILE filename IS NON-CONTIGUOUS

This error will only occur if your disk is so full that RSTS/E cannot find
contiguous space for your program. The file is therefore created non-
contiguous; you can otherwise ignore the error message.

TASK REQUIRES TOO MANY WINDOW BLOCKS

The number of address windows required by the program and any resi-
dent areas is more than 8. Only 8 are available.

TASK-BUILD ABORTED VIA REQUEST option-line

The option-line printed contains your request to abort the build. You
can now retype commands to rerun the Task Builder.

TOO MANY NESTED .ROOT/.FCTR DIRECTIVES invalid-line

The invalid line printed contains a .FCTR command that exceeds the
maximum of 16 nested .FCTR commands.

TOO MANY PARAMETERS invalid-line

The invalid line printed contains an option with more parameters than
required.

TOO MANY PARENTHESES LEVELS invalid-line

The invalid line printed contains nested parentheses that exceed the
maximum of 16 nested parentheses.

TRUNCATION ERROR IN MODULE filename

You tried to load a global value greater than +127 or less than —128
into a byte. Only the low-order eight bits are loaded.

UNABLE TO OPEN WORK FILE

This error can result from several conditions. For example, the device is
full, or the work file is assigned to a private pack where you do not have
an account, or the work file device is either not mounted or is mounted
read-only.

Error Messages

UNBALANCED PARENTHESES invalid-line

The invalid line printed contains unbalanced parentheses. The number
of left parentheses must equal the number of right parentheses.

n UNDEFINED SYMBOLS SEGMENT seg-name

The segment named contains n undefined symbols. If you did not
request a memory map file, the symbols are also printed at your
terminal.

VIRTUAL SECTION HAS ILLEGAL ADDRESS LIMITS option

This error should not occur on RSTS/E systems. It diagnoses an error for
an option not available on RSTS/E.

WORK FILE 1/0 ERROR

An I/0 error occurred during an attempt to refer to data stored by the
Task Builder in its work file.

Error Messages A-9

Appendix B
Task Builder Input Data Formats

A compiled or assembled program (.OBJ file) — hereafter called an object
module — consists of variable-length record information. Six record (or
block) types are included in the object language. These records guide the
Task Builder in the translation of the object language into a task image.

The six record types are:
® Type 1~ Declare Global Symbol Directory (GSD)
® Type 2 — End of Global Symbol Directory

Type 3 — Text Information (TXT)

Type 4 — Relocation Directory (RLD)
® Type 5 — Internal Symbol Directory (ISD)
® Type 6 — End of Module

Each object module must consist of at least five of the record types. The only
record type that is not mandatory is the internal symbol directory. The
appearance of the various record types in an object module follows a defined
format. See Figure B-1.

An object module must begin with a GSD record and end with an end-of-
module record. Additional GSD records can occur anywhere in the file but
must appear before an end-of-GSD record. An end-of-GSD record must
appear before the end-of-module record, and at least one relocation directory
record (RLD) must appear before the first text information record (TXT).
Additional RLDs and TXTs can appear anywhere in the file. The internal
symbol directory records (ISDs) can appear anywhere in the file between the
initial GSD and end-of-module records.

B.1

B-2

Object module records are of variable length and are identified by a record
type code in the first byte of the record. The format of additional information
in the record depends on the record type.

Figure B-1: General Object Module Format

GSD

RLD

GSD

TXT

TXT

RLD

\—/’\/\/\
N/\/\/\

GSD

END GSD

ISD

ISD

TXT

TXT

TXT

END MODULE

Global Symbol Directory

INITIAL GSD

INITIAL RELOCATION DIRECTORY

ADDITIONAL GSD

TEXT INFORMATION

TEXT INFORMATION

RELOCATION DIRECTORY

ADDITIONAL GSD

END GSD

INTERNAL SYMBOL DIRECTORY

INTERNAL SYMBOL DIRECTORY

TEXT INFORMATION

TEXT INFORMATION

TEXT INFORMATION

END OF MODULE

MK-01056-00

Global symbol directory (GSD) records contain all the information necessary
to assign addresses to global symbols and to allocate the memory required

by a task.

GSD records are the only records processed in the first pass. You can save a
significant amount of time if you put all GSD records at the beginning of a
module, because less of the file must be read on the first pass.

Task Builder Input Data Formats

GSD records contain seven types of entries:

Type Entry

Module Name

Transfer Address

D Gtk W N = O

Control Section Name

Internal Symbol Name

Global Symbol Name
Program Section Name

Program Version Identification

There are four words in the GSD record for each entry type. The first two
words contain six Radix-50 characters. The third word contains a flag byte
and the entry type identification. The fourth word contains additional infor-
mation about the entry. See Figure B-2.

Figure B-2: GSD Record and Entry Format

0 1

RADIX-50

NAME

ENTRY TYPE FLAGS

VALUE

RADIX~50
NAME

ENTRY TYPE FLAGS

VALUE

SN AN

RADIX-50

NAME

ENTRY TYPE FLAGS

VALUE

RADIX-50
NAME

ENTRY TYPE FLAGS

VALUE

MK-01057-00

Task Builder Input Data Formats

B-3

B4

B.1.1 Module Name

The module name entry, as illustrated in Figure B-3, declares the name of
the object module. The name need not be unique with respect to other object
modules because modules are identified by file, not module name. Only one
module name entry can occur in any given object module.

Figure B-3: Module Name Entry Format

MODULE

NAME

MK-01058-00

B.1.2 Control Section Name

Control sections, which include ASECTs, blank CSECTS, and named
CSECTS, are supplanted by PSECTs. For compatibility with other systems,
Task Builder processes ASECTs and both forms of CSECTSs. Section B.1.6
details the entry generated for a PSECT statement. In terms of the PSECT
directive, ASECT and CSECT statements can be defined as follows:

® For a blank CSECT, the PSECT definition is:

+PSECT +LCLsREL +CONsRW,I »LOW

® For a named CSECT, the PSECT definition is:

+PSECT name »GBL»REL JOURsRHW T +LOW

® For an ASECT, the PSECT definition is:

+PSECT + ABS. sGBL »ABS I +0OVR R LOK

Task Builder Input Data Formats

ASECTSs and CSECTs are processed by the Task Builder as PSECTs with
the fixed attributes defined above. The entry generated for a control section
is shown in Figure B—+4.

Figure B—4: Control Section Name Entry Format

CONTROL SECTION

NAME

1 (ignored)

MAXIMUM LENGTH

MK-01058-01

B.1.3 Internal Symbol Name

The internal symbol name entry declares the name of an internal symbol
(with respect to the module). The Task Builder does not support internal
symbol tables, so the detailed format of this entry is not defined (Figure
B-5). Any internal symbol entry encountered while the Task Builder reads
the GSD is ignored.

Figure B-5: Internal Symbol Name Entry Format

SYMBOL

NAME

UNDEFINED

MK-01059-00

B.1.4 Transfer Address

The transfer address entry, as illustrated in Figure B-6, declares the trans-
fer address of a module relative to a PSECT. The first two words of the entry
define the name of the PSECT, and the fourth word defines the relative off-
set from the beginning of that PSECT. If no transfer address is declared in a
module, a transfer address entry either must not be included in the GSD or a
transfer address 000001 relative to the default absolute PSECT (. ABS.)
must be specified.

Task Builder Input Data Formats B-5

Figure B—6: Transfer Address Entry Format

PSECT

NAME

OFFSET

MK-01059-01

NOTE

If the PSECT is absolute and OFFSET is not 000001, then
OFFSET is the actual transfer address.

B.1.5 Global Symbol Name

The global symbol name entry, as illustrated in Figure B-7, declares either
a global reference or a definition. All definition entries must appear after
the declaration of the PSECT they are defined in and before the declaration
of another PSECT. Global references can appear anywhere within the GSD.

The first two words of the entry define the name of the global symbol. The
flag byte declares the attributes of the symbol, and the fourth word declares
the value of the symbol relative to the PSECT it is defined in.

The flag byte of the symbol declaration entry has the following bit
assignments:

Bit 0 — Weak Qualifier

0 = Symbol is a strong definition or reference and is resolved in the nor-
mal manner.

1 = Symbol is a weak definition or reference. A weak reference (Bit
3=0) is ignored. A weak definition (Bit 3=1) is ignored unless a
previous reference has been made.

Bit 1 — Not used

Bit 2 — Definition Type
0 = Normal Definition of reference.

1 = Library definition. If the symbol is defined in a resident library .STB
file, the base address of the library is added to the value, and the
symbol is converted to absolute (bit 5 is reset); otherwise, the bit is
ignored.

Bit 3 — Reference or Definition
0 = Global symbol reference.

1 = Global symbol definition.
Bit 4 — Not used

B-6 Task Builder Input Data Formats

Bit 5 — Relocation
0 = Absolute symbol value.

1 = Relative symbol value.

Bit 6 — 7 - Not used

Figure B-7: Global Symbol Name Entry Format

SYMBOL

NAME

4 FLAGS

VALUE

MK-01059-02

B.1.6 PSECT Name

The PSECT name entry, as illustrated in Figure B—8, declares the name of a
PSECT and its maximum length in the module. It also declares the attri-
butes of the PSECT in the flag byte.

GSD records must be constructed such that, once a PSECT name has been
declared, all global symbol definitions pertaining to it must appear before
another PSECT name is declared. Global symbols are declared in symbol
declaration entries. Thus, the normal format is a series of PSECT names
each followed by optional symbol declarations.

The flag byte of the PSECT entry has the following bit assignments:

Bit 0 — SAV PSECT

0 = Normal PSECT.

1 = PSECT is forced into the root of the task.
Bit 1 — Library PSECT

0 = Normal PSECT.

1 = Relocatable PSECT that references a resident library or common
block.

Bit 2 — Allocation
0 = PSECT references are to be concatenated with other references to
the same PSECT to form the total memory allocated to the PSECT.

1 = PSECT references are to be overlaid. The total memory allocated to
the PSECT is the largest request made by individual references to
the same PSECT.

Task Builder Input Data Formats B-7

Bit 3 — Reserved for the Task Builder

Bit 4 — Access
0 = PSECT has read/write access.

1 = PSECT has read-only access.

Bit 5 — Relocation
0 = PSECT is absolute and requires no relocation.

1 = PSECT is relocatable, and references to the control PSECT must
have a relocation bias added before they become absolute.

Bit 6 — Scope
0 = The scope of the PSECT is local. References to the same PSECT are
collected only within the segment in which the PSECT is defined.

1 = The scope of the PSECT is global. References to the PSECT are col-
lected across segment boundaries. The segment in which a global
PSECT is allocated storage is determined either by the first module
that defines the PSECT on a path or by direct placement of a PSECT
in a segment by the .PSECT directive.

Bit 7 — Type
0 = The PSECT contains instruction (I) references.

1 = The PSECT contains data (D) references.

Figure B-8: PSECT Name Entry Format

PSECT
NAME
5 FLAGS
MAX LENGTH
MK~01060--00
NOTE

The length of all absolute PSECTSs is zero.

B-8 Task Builder Input Data Formats

B.1.7 Program Version Identification

The program version identification entry, as illustrated in Figure B-9,
declares the version of the module. The Task Builder saves the version iden-
tification of the first module that defines a nonblank version. This identi-
fication is then included on the memory allocation map and is written in the
label block of the task image file.

The first two words of the entry contain the version identification. The flag
byte and fourth words are not used and contain no meaningful information.

Figure B-9: Program Version Identification Entry Format

VERSION

IDENTIFICATION

MK-01060-01

B.2 End of Global Symbol Directory

The end-of-global-symbol-directory record, as illustrated in Figure B-10,
declares that no other GSD records are contained farther on in the module.
Exactly one end-of-GSD record must appear in an object module. Its length
is one word.

Figure B-10: End-of-GSD Record Format

MK-01060-02

B.3 TextInformation

The text information record, as illustrated in Figure B—11, contains a byte
string of information that is to be written directly into the task image file.
The record consists of a load address followed by the byte string.

Text records can contain words and/or bytes of information whose final con-
tents have not been determined yet. This information will be bound by a
relocation directory record that immediately follows the text record (see Sec-
tion B.4). If the text record does not need modification, then no relocation
directory record is needed. Thus, multiple text records can appear in
sequence before a relocation directory record.

Task Builder Input Data Formats B-9

The load address of the text record is specified as an offset from the current
PSECT base. At least one relocation directory record must precede the first
text record. This directory must declare the current PSECT.

Figure B-11: Text Information Record Format

0 3
LOAD ADDRESS
TEXT TEXT
TEXT TEXT
TEXT TEXT
NN
TEXT TEXT
TEXT TEXT
TEXT TEXT
TEXT TEXT
TEXT TEXT
MK-01061-00

The Task Builder writes a text record directly into the task image file and
computes the value of the load address minus four. This value is stored in
anticipation of a subsequent relocation directory that modifies words and/or
bytes that are contained in the text record. When added to a relocation direc-
tory displacement byte, this value yields the address of the word and/or byte
to be modified in the task image.

B-10 Task Builder Input Data Formats

B.4 Relocation Directory

Relocation directory records (see Figure B—12) contain the information nec-
essary to relocate and link the preceding text information record. Every
module must have at least one relocation directory record that precedes the
first text information record. The first record does not modify a preceding
text record but rather defines the current PSECT and location. Relocation
directory records contain 15 types of entries. These entries are classified as
relocation or location modification entries. The following types are defined:

Types Definition

1 Internal Relocation

2 Global Relocation

3 Internal Displaced Relocation

4 Global Displaced Relocation

5 Global Additive Relocation

6 Global Additive Displaced Relocation
7 Location Counter Definition

10 Location Counter Modification

11 Program Limits

12 PSECT Relocation

13 Not used

14 PSECT Displaced Relocation

15 PSECT Additive Relocation

16 PSECT Additive Displaced Relocation
17 Complex Relocation

20 Additive Relocation

Each type of entry is represented by a command byte (specifies type of entry
and word/byte modification), followed by a displacement byte, and then by
the information required for the particular type of entry. The displacement
byte, when added to the value calculated from the load address of the preced-
ing text information record (see Section B.3), yields the virtual address in
the image that is to be modified. The command byte of each entry has the fol-
lowing bit assignments:

Bits0—6
Specify the type of entry. Potentially, 128 command types can be speci-
fied, although only 151¢ are implemented.
Bit 7 — Modification
0 = The command modifies an entire word.
1 = The command modifies only one byte. The Task Builder checks for
truncation errors in byte modification commands. If truncation is

detected, that is, if the modification value has a magnitude greater
than 255, an error occurs.

Task Builder Input Data Formats B-11

Figure B-12: Relocation Directory Record Format

0 4
DISP CMD
INFO iNFO
INFO INFO

SRS
CMD INFO
INFO DISP
INFO INFO
INFO INFO
DISP CMD
INFO INFO
INFO INFO
INFO INFO

MK-01062-00

B.4.1 Internal Relocation

The internal relocation entry illustrated in Figure B—13 relocates a direct
pointer to an address within a module. The current PSECT base address is
added to a specified constant, and the result is written into the task image
file at the calculated address. (That is, a displacement byte is added to the
value calculated from the load address of the preceding text block.)

For example:
At MQu #A 1RO
or

+WORD A

B-12 Task Builder Input Data Formats

Figure B-13: Internal Relocation Entry Format

DISP B 1

CONSTANT

MK—01063-00
B.4.2 Global Relocation

The global relocation entry in Figure B—14 relocates a direct pointer to a
global symbol. The definition of the global symbol is obtained and the result
is written into the task image file at the calculated address.

For example:
MO #GLOBAL »RO
or

+WORD GLOBAL

Figure B-14: Global Relocation Entry Format

DISP B 2

SYMBOL
NAME

MK—-01063-01

B.4.3 Internal Displaced Relocation

The internal displaced relocation entry in Figure B—15 relocates a relative
reference to an absolute address from within a relocatable control section.
The address plus 2 that the relocated value is to be written into is subtracted
from the specified constant. The result is then written into the task image
file at the calculated address.

For example:
CLR 177550

or

MOU 177550 R0Q

Figure B—-15: Internal Displaced Relocation Entry Format

DISP B 3

CONSTANT

MK-01063-02

Task Builder Input Data Formats B-13

B-14

B.4.4 Global Displaced Relocation

The global displaced relocation entry in Figure B—16 relocates a relative ref-
erence to a global symbol. The definition of the global symbol is obtained,
and the address plus 2 that the relocated value is to be written into is sub-
tracted from the definition value. The result is then written into the task
image file at the calculated address.

For example:
CLR GLOBAL

or

Moy GLOBAL sRO

Figure B-16: Global Displaced Relocation Entry Format

DISP B 4
SYMBOL
NAME
MK-01063-03

B.4.5 Gilobal Additive Relocation

The global additive relocation entry in Figure B-17 relocates a direct
pointer to a global symbol with an additive constant. The definition of the
global symbol is obtained, the specified constant is added, and the resultant
value is then written into the task image file at the calculated address.

For example:
MO #GLOBAL+2 RO

or

+WORD GLOBAL-4

Figure B-17: Global Additive Relocation Entry Format

DISP B 5
SYMBOL
NAME
CONSTANT
MK~01064-00

Task Builder Input Data Formats

B.4.6 Global Additive Displaced Relocation

The global additive displaced relocation entry in Figure B—18 relocates a
relative reference to a global symbol with an additive constant. The defini-
tion of the global symbol is obtained, and the specified constant is added to
the definition value. The address plus 2 that the relocated value is to be
written into is subtracted from the resultant additive value. The result is
then written into the task image file at the calculated address.

For example:
CLR GLOBAL+Z

or

Mow GLOBAL-5RO

Figure B-18: Global Additive Displaced Relocation Entry Format

DISP B 6

SYMBOL
NAME

CONSTANT

MK-01064-01

B.4.7 Location Counter Definition

The location counter definition in Figure B-19 declares a current PSECT
and location counter value. The control base is stored as the current control
section, and the current control section base is added to the specified con-
stant and stored as the current location counter value.

Figure B-19: Location Counter Definition

0 B 7

PSECT
NAME

CONSTANT

MK-01064-02

Task Builder Input Data Formats B-15

B-16

B.4.8 Location Counter Modification

The location counter modification entry in Figure B-20 modifies the current
location counter. The current PSECT base is added to the specified constant
and the result is stored as the current location counter.

For example:
v =4 +N
or

+BLKB N

Figure B-20: Location Counter Modification

0 B 10

CONSTANT

MK-01065-00

B.4.9 Program Limits

The program limits entry in Figure B-21 is generated by the .LIMIT assem-
bler directive. The first address above the header (normally the beginning of
the stack) and highest address allocated to the task are obtained and written
into the task image file at the calculated address and at the calculated
address plus 2 respectively.

For example: JLIMIT

Figure B-21: Program Limits Entry Format

DISP B 11

MK-01065-01

Task Builder Input Data Formats

B.4.10 PSECT Relocation

The PSECT relocation entry in Figure B-22 relocates a direct pointer to the
beginning address of another PSECT (other than the PSECT in which the
reference is made) within a module. The current base address of the speci-
fied PSECT is obtained and written into the task image file at the calculated
address.

For example:

+PSECT A
B:
+ PSECT [
Maw #B 3RO
or
s WORD B

Figure B-22: PSECT Relocation Entry Format

DISP B 12
PSECT
NAME
MK-01065-02

B.4.11 PSECT Displaced Relocation

The PSECT displaced relocation entry in Figure B—23 relocates a relative
reference to the beginning address of another PSECT within a module. The
current base address of the specified PSECT is obtained and the address plus
2 that the relocated value is to be written into is subtracted from the base
value. The result is then written into the task image file at the calculated
address.

For example:

+PSECT A

B
+PSECT C
MOy B RO

Task Builder Input Data Formats B-17

Figure B-23: PSECT Displaced Relocation Entry Format

DISP B 14

PSECT
NAME

MK-01066—-00

B.4.12 PSECT Additive Relocation

The PSECT additive relocation entry in Figure B-24 relocates a direct
pointer to an address in another PSECT within a module. The current base
address of the specified PSECT is obtained and added to the specified con-
stant. The result is written into the task image file at the calculated address.

For example:

+PSECT A
B
C:
+PSECT D
Mo #B+10,4RO
MOy #C RO
or
+WORD B+10
+HWORD C

Figure B-24: PSECT Additive Relocation Entry Format

DISP B 15

PSECT

NAME

CONSTANT

MK-01066-01

B-18 Task Builder Input Data Formats

B.4.13 PSECT Additive Displaced Relocation

The PSECT additive displaced relocation entry in Figure B—25 relocates a
relative reference to an address in another PSECT within a module. The
current base address of the specified PSECT is obtained and added to the
specified constant. The address plus 2 that the relocated value is to be writ-
ten into is subtracted from the resultant additive value. The result is then
written into the task image file at the calculated address.

For example:

+PSECT A
B
Cs
+PSECT D
MOV B+10,yR0O
Moy CsRO

Figure B-25: PSECT Additive Displaced Relocation Entry Format

DiSP B 16

PSECT

NAME

CONSTANT

MK-01066-02

B.4.14 Complex Relocation

The complex relocation entry in Figure B-26 resolves a complex relocation
expression. In such an expression, any of the MACRO-11 binary or unary
operations are permitted. Any type of argument is permitted, regardless of
whether the argument is unresolved global, relocatable to any PSECT base,
absolute, or a complex relocatable subexpression.

The RLD command word is followed by a string of numerically-specified
operation codes and arguments. Each operation code occupies one byte. The
entire RLD command must fit in a single record. The following operation
codes are defined:

0 — No operation.

1 - Addition (+).

2 — Subtraction (—).
3 — Multiplication (*).

Task Builder Input Data Formats B-19

4 — Division (/).
5 — Logical AND (&).
6 — Logical inclusive OR ().
10 — Negation (—).
11 — Complement (N\C).
12 — Store result (command termination).
13 — Store result with displaced relocation (command termination).

16 — Fetch global symbol. It is followed by four bytes containing the sym-
bol name in Radix-50 representation.

17 — Fetch relocatable value. 1t is followed by one byte containing the
sector number and two bytes containing the offset within the sector.

20 — Fetch constant. It is followed by two bytes containing the constant.

21 — Fetch resident library base address. If the file is a resident library
.STB file, the library base address is obtained; otherwise, the base
address of the Task Image is fetched.

The STORE commands indicate that the value is to be written into the task
image file at the calculated address.

All operands are evaluated as 16-bit signed quantities using two’s com-
plement arithmetic. The results are equivalent to expressions that are eval-
uated internally by the assembler. Note the following rules:

1. An attempt to divide by zero yields a zero result. The Task Builder
issues a nonfatal diagnostic message.

2. All results are truncated from the left in order to fit into 16 bits. No
diagnostic message is issued if the number was too large. If the result
modifies a byte, the Task Builder checks for truncation errors as
described in Section B.4.

3. All operations are performed on relocated (additive) or absolute 16-bit
quantities. PC displacement is applied to the result only.

For example:
+PSECT ALPHA
+PSECT BETA

+
+

+

Moy #A+B ~<GI/GER"CIL1771Z201G3 x5 sR1

B-20 Task Builder Input Data Formats

Figure B-26: Complex Relocation Entry Format

DISP B 17

COMPLEX

\/\/\/\/\/\/
~ N A

STRING

12 or 13

MK-01067-00

B.4.15 Additive Relocation

The shared run-time system (SRTS) additive relocation entry in Figure
B-27 relocates a direct pointer to an address within an SRTS.

If the current file is a symbol table file (STB), the base address of the SRTS is
obtained and added to the specified constant. The result is written into the
task image file at the calculated address. If the file is not associated with an
SRTS, the task base address is used.

Figure B-27: Additive Relocation Entry Format

DISP B 20

CONSTANT

MK-01067-01

B.5 Internal Symbol Directory Record

The Internal Symbol Directory (ISD) record declares definitions of all sym-
bols that are defined in the module. In addition to looking for global symbol
definitions in the input object modules, TKB must look for ISD records.
Some of these require no relocation and TKB can copy them directly into
the .STB file. Others will require modification; after being modified, ISD
records can be written to the .STB file. In addition, TKB may need to
generate some ISD records of its own in the .STB file.

Task Builder Input Data Formats B-21

B-22

Except for autoloadable library entry points, TKB puts ISD records into the
.STB file only if the /DA switch is used in the TKB command line. When
TKB outputs the .STB file, it writes one of three major types of ISD records:

® Type 1 records, where TKB generates ISDs in language-independent
form.

e Type 3 records, written for any type 2 records in an input object module.
TKB does this after adding data and then changing the ISD record type to
3. Type 2 relocatable/relocated records are those that contain both
language-dependent and independent sections. Language processors gen-
erate these records and TKB modifies them. They contain information
that can be used to find the absolute task image address of source pro-
gram entities (for example, variables, program statements, and so on).

e Type 4 records, written to the .STB file without modification. Type 4
records are literal records that contain language-dependent information.
Apart from the first few bytes, TKB ignores the rest of the record.

The following sections describe the record formats.

B.5.1 Overall Record Format

ISD records have the same basic structure as all object language records.
Because of the variety of different types, the skeleton structure must
include additional fields that are common to all ISD record types. The gen-
eral format of all ISD records is shown in Figure B-28.

Figure B-28: General Format of All ISD Records

MUST BE O RECORD TYPE = 5

RESERVED (0) ISD RECORD TYPE

RECORD TYPE DEPENDENT

MK-01068-00

ISD record types fall into these general categories:
0 Illegal.
1 TKB-generated.
2 Compiler-generated relocatable.
3 Relocated (type 2 after TKB processing).
4-127 Not defined, reserved for future use.

128-255 Literal records. (The type code identifies the generating lan-
guage processor, and thus, the internal structure.)

Task Builder Input Data Formats

B.5.2 TKB-Generated Records (Type 1)

The content of this record type is a string of individual items, each with its
own format. The items are either start-of-segment items, task identification
items, or autoloadable entry point items. The TKB—generated record is
similar to the structure of an RLD or GSD record. The general format is
shown in Figure B-29.

Figure B-29: General Format of a TKB—Generated Record

LENGTH (BYTES) ITEM TYPE

CONTENT DEPENDS ON ITEM TYPE

MK-01069-00

B.5.2.1 Start-of-Segment Item Type (1) — The format of the start-of-segment
item type is shown in Figure B-30.

Figure B-30: Format of TKB—Generated Start-of-Segment Item (1)

LENGTH = 8 ITEM TYPE = 1

— SEGMENT NAME —_—

SEGMENT DESCRIPTOR ADDRESS

MK-01070-00

B.5.2.2 Task Identification Item Type (2) — The task identification item type
ensures that an .STB file and the task image being debugged were
generated at the same time. Otherwise, symbols that are found may not
correspond to the actual task.

The task identification item type exists to make the correlation between
the .STB file and its related task possible. The contents of this item type
correspond exactly to the first ten words of an area in a task image file,
which is in the TKB—created PSECT called $$DBTS.

The format of the task identification item type is shown in Figure B-31.

Task Builder Input Data Formats B-23

Figure B-31: Format of TKB-Generated Task Identification
Item (2)

LENGTH = 22 ITEM TYPE = 2

EIGHT-WORD TIME STAMP (1)

TWO-WORD NUMBER (2)

(1) Its form is that which is returned by RSX directive
GTMS.

(2) TKB generates this number as an additional check on
correspondence. Currently always zero.

MK-01071-00

B.5.2.3 Autoloadable Library Entry Point ltem Type (3) — TKB outputs the
autoloadable library entry point item into an .STB file when building over-
laid resident libraries. The ISD record contains the information needed by
TKB to dynamically generate autoload vectors for entry points in the
library. Autoload vectors appear for only those entry points that are refer-
enced by the task. Unlike the other items, the autoloadable library entry
point item is not for use by debuggers.

The format of the autoloadable entry point item is shown in Figure B-32.

Figure B-32: Format of an Autoloadable Library Entry Point

Item (3)
LENGTH = 12 ITEM TYPE = 3
SYMBOL
NAME
0 FLAGS BYTE

ENTRY POINT OFFSET FROM LIBRARY BASE

SEGMENT DESCRIPTOR OFFSET IN $$SGD1

MK-01072-00

B-24 Task Builder Input Data Formats

B.5.3 Relocatable/Relocated Records (Type 2)

These records are the central part of TKB’s involvement in debugger com-
munication. Every item type in these records must be standardized, and
only standard items can appear. The general format is the same as that
shown in Figure B-28.

A language processor outputs these record types as type 2. When TKB
processes them, it changes the type to type 3. It also fills in or modifies
some fields. In the following descriptions, fields that are filled in by TKB
are marked with an asterisk (). They should be left as zero in language
processor output.

B.5.3.1 Module Name Item Type (1) — A module name item should be the
first ISD entry of each object module. A debugger can assume that all
following ISD information up to the next module name item relates to this
module.

The language code is included so that a debugger for a specific language
can determine whether to ignore a module if it is written for another
language. The language code has the same range of values as that of a
language-dependent ISD record (128-255) and has the same meanings.

The format of the module name item type is shown in Figure B-33.

Figure B-33: Format of a Module Name Item Type (1)

LENGTH ITEM TYPE = 1

MUST BE 0 LANGUAGE CODE

MODULE NAME (1)

(1) A counted ASCIl string of the required length. (A
counted ASCII string is a byte string in which the first
byte indicates the number of bytes to follow.)

MK-01073-00

B.5.3.2 Global Symbol Item Type (2) — One type 2 item should appear for
each global symbol definition that the language processor wants the
debugger to understand. It need not, for example, include definitions gener-
ated for the language processor run-time system.

The format of the global symbol item type is shown in Figure B—34.

Task Builder Input Data Formats B-25

Figure B-34: Format of a Global Symbol Item Type (2)

LENGTH ITEM TYPE = 2

SYMBOL NAME
(RADIX—=50)

VALUE*

DESCRIPTOR ADDRESS FOR CONTAINING
OVERLAY SEGMENT*

MUST BE ZERO FLAGS

FULL SYMBOL NAME (1)

(1) Counted ASCII string of the required length. (A
counted ASCII string is a byte string in which the first
byte indicates the number of bytes to follow.)

MK-01074-00

B.5.3.3 PSECT ltem Type (3) — A concatenated PSECT has two base
addresses: one for the whole PSECT, and the other for the part of it that
belongs to this module. It is the base address for the part that belongs to
this module that may be used by a debugger to convert local symbol values
to absolute addresses.

The segment descriptor address is necessary because a PSECT may move to
segments other than the one in which it is placed. This address is relevant
to languages that provide semi-automatic overlay generation, like
COBOL-11. This word may be zero if the PSECT has not moved to another
segment.

The flag word is a copy of the flag word built by TKB. It allows for identifi-
cation of VSECTs.

Some languages may need the full PSECT name.
The format of a PSECT item type is shown in Figure B-35.

B-26 Task Builder Input Data Formats

Figure B-35: Format of a PSECT Item Type (3)

LENGTH ITEMTYPE = 3

PSECT NAME

BASE ADDRESS OF PSECT IN THIS SEGMENT*

BASE ADDRESS OF PSECT FOR THIS MODULE*

LENGTH OF PSECT FOR THIS MODULE*

DESCRIPTOR ADDRESS FOR CONTAINING
SEGMENT*

FLAG WORD*

FULL PSECT NAME (1)

(1) A counted ASCIl string of the required length. (A
counted ASCII string is a byte string in which the first
byte indicates the number of bytes to foliow.)

MK-01075-00

B.5.3.4 Line-Number Or PC Correlation Iltem Type (4) — This item provides the
information needed to translate a source line-number into a task image
address, or a task image address into a source line-number.

The format of a line-number or PC correlation item type is shown in Figure |
B-36.

Figure B-36: Format of a Line-Number or PC Correlation Item
Type (4)

LENGTH ITEMTYPE = 4

PSECT

NAME

START PC (1)

DESCRIPTOR ADDRESS OF CONTAINING
OVERLAY SEGMENT*

START PAGE NUMBER

START LINE NUMBER

STRING OF ONE-BYTE ITEMS

(1) Offset into PSECT in type 2 records; absolute

address in type 3 records.
MK—-01076-00

Task Builder Input Data Formats B-27

B.5.3.5 Internal Symbol Name ltem Type (5) — It is necessary to allow for the
fact that a name may have more than one associated address. For example,
a COBOL variable may have three associated addresses: the address of the
area that actually contains the data, the address of a CIS descriptor, and
the address of a picture string.

The internal symbol name item, which meets these requirements, is shown
in Figure B-37.

Figure B-37: Format of an Internal Symbol Name Item Type (5)

LENGTH ITEM TYPE = 5

OFFSET TO NAME OFFSET TO DATA

NUMBER OF
ADDRESSES

MUST BE ZERO

ADDRESS 1: PSECT

NAME

TASK IMAGE ADDRESS/OFFSET (1)

SEGMENT DESCRIPTOR ADDRESS*

ADDRESS 2: PSECT

NAME

TASK IMAGE ADDRESS/OFFSET (1)

SEGMENT DESCRIPTOR ADDRESS*

ADDRESS n:

LANGUAGE-DEPENDENT DATA

SYMBOL NAME (2)

(1) Modified by TKB.

(2) A counted ASCII string of the required length. (A
counted ASCI! string is a byte string in which the first
byte indicates the number of bytes to follow.)

MK-01077-00

B-28 Task Builder Input Data Formats

B.5.4 Literal Records (Type 4)

Literal records may take any form except for the two-byte header shown in
Figure B-38.

Figure B-38: Format of a Literal Record Type

RESERVED (0) ISD RECORD TYPE 4

MK-01078-00

B.6 End of Module

The end-of-module record in Figure B—39 declares the end of an object
module. Exactly one end-of-module record must appear in each object mod-
ule. It is one word in length.

Figure B-39: End-of-Module Record Format

MK—01067-02

Task Builder Input Data Formats B-29

Appendix C

Executable File Structure

The executable file as it is recorded on the disk appears in Figure C-1.

Figure C-1: Task Image on Disk

AUTOLOAD VECTORS
CO-TREE OVERLAY

AUTOLOAD VECTORS
CO-TREE ROOT

AUTOLOAD VECTORS

MAIN TREE
OVERLAY

AUTOLOAD VECTORS
SEGMENT TABLES

ROOT SEGMENT
CODE & DATA

STACK FP/EA
SAVE AREA HEADER

CHECKPOINT AREA

LABEL

MK-01079-00

BLOCK

BLOCK

BLOCK

BLOCK

BLOCK

C.A

C-2

Label Block Group

The label block group shown in Figure C-2 precedes the task on the disk and
contains data that need not be resident during task execution. This group is
composed of two elements:

® Task and resident library data (Label Block 0)
® Table of LUN assignments (Label Block 1)

The task and resident library data elements are described in the following

paragraphs.

The table of LUN assignments contains the name and logical unit number of

each device assigned.

Task and resident library data are described as follows:

L$BTSK

L$BPAR

L$BSA

L$BHGV

L$BMXV

L$BLDZ

L$BMXZ

L$BOFF
L$BWND

L$BSYS

L$BSEG

Executable File Structure

Task name consisting of two words in Radix-50 for-
mat. This parameter is set by the TASK keyword.

Partition name consisting of two words in Radix-50
format. This parameter is set by the PAR keyword.

Starting address of task. Marks the lowest task vir-
tual address. This parameter is set by the PAR
keyword.

Highest virtual address mapped by address window 0.

Highest task virtual address. This value is set to
L$BHGYV.

Task load size in units of 64-byte blocks. This value
represents the size of the root segment.

Task maximum size in units of 64-byte blocks. This
value represents the size of the root segment plus any
additional physical memory needed to contain task
overlays.

Task offset into partition in units of 64-byte blocks.
Number of task windows (excluding SRTS). v

System I.LD. 1 = RSX-11M.
4 = RSX-11M—Plus.

Size of overlay segment descriptors (in bytes).

Figure C-2: Label Block Group

Label

L$BTSK

L$BPAR

L$BSA

L$BHGV

LEBMXV

L$BLDZ

L$BMXZ

LSBOFF
LSBWND/L$BSYS
L$BSEG

L$BFLG

L$BDAT

L$BLIB

LEBPRL

L$BXFR
LSBEXT
L$BSGL
L$BHRB
L$BBLK

LEBLUN
L$BROB
L$BROL
L$BRDL
L$BHDB
L$BDHV
L$BDMV
L$BDLZ

L$BDMZ

Offset

10
12
14
16
20
22

26
30
32
34
36
40
42
44
46
50
52
54
56
60
62
64
66
70
72

344 /664
346/666
350/670
352/672
354/674
356/676
360/700
362/702
364/704
366/706
370/710
372/712
374/714
376/716
400/720
402/722

Task

Name

Task

Partition

Base address of task

Highest window 0 virtual address

Highest virtual address in task

Load size in 64—byte biocks

Maximum size in 64—byte blocks

Task offset into partition

System D { Number of window blocks*

Size of overlay segment descriptors

Task flag word

Task creation date — Year

— Month

— Day

Library /common

Name

Base address of fibrary

Highest address in first library window

Highest address in library

Library load size (64-byte blocks}

Library maximum size (64—byte blacks)

Library offset into region

Number of library window blocks

Size of library segment descriptors

Library flag word

Library creation date — Year

- Month

- Day

0

Task priority

Task transfer address

Task extension {64-byte blocks}

Biock number of segment load list

Block number of header

Number of blocks in label

Number of logical units

Relative block of R-O image

R/O load size

R/0 data size in 32—word blocks

Relative block number of data header

High virtual address of data window 1

High virtual address of data

Load size of data

Maximum size of data

fo

ASLNAM
R$LSA
R$LHGV
RSLMXV)
Library
R$LLDZ Request
(maximum
RSLMXZ of 7 or 15
14-word
RSLOFF entries)
RSLWND
RSLSEG
R$LFLG
R$LDAT

*Less library window blocks.

Executable File Structure

MK-01080-00

C3

CH4

L$BFLG

L$BDAT

L$BLIB
L$BPRI

L$BXFR
L$BEXT

L$BSGL

L$BHRB
L$BBLK
L$BLLUN
L$BROB
L$BROL
L$BRDL
L$BHDB
L$BDHV
L$BDMV
L$BDLZ
L$BDMZ

Executable File Structure

Task flags word. The following flags are defined:

Bit Flag Meaning When Bit = 1

15 TS$PIC Task contains position-independent code
(PIC).

14 TS$NHD Task has no header.
12 TS$PMD Task generates Postmortem Dump.,

7 TS$CMP Task is built in compatibility mode.
6 TS$CHK Task is not swappable.
5 TSSRES Task has memory-resident overlays.

Three words containing the task creation date as two-
digit integer values:

Year (since 1900)

Month of year

Day of month
Resident library entries.

Task priority set by the PRI keyword (ignored by
RSTS/E).

Task transfer address. (Not used by RSTS/E.)

Task extension size in units of 64—byte blocks. This
parameter is set by the EXTTSK keyword.

Relative block number of segment load list. Set to
zero if no list is allocated.

Relative block number of header.
Number of blocks in label block group.
Number of logical units.

Relative block number of R/O image.
R /O load size in 32—word blocks.

Size of R/0O data in 32—word blocks.
Relative block number of data header.
High virtual address of data window 1.
High virtual address of data.

Load size of data.

Maximum size of data.

The contents of the SRTS/common name block are described below. This
block is constructed by referencing the disk image of the SRTS/common
block. The format is identical to words 3 through 16 of the label block.

R$LNAM

R$SLSA
RSLHGV
RSLMXV
R$LLDZ
R$LMXZ
R$LOFF
RSLWND
RSLSEG
RSLFLG

R$LDAT

C.2 Header

Library/common name consisting of two words in
Radix—50 format.

Base virtual address of library or common.

Highest address mapped by first library window.
Highest virtual address in library or common.
Library/common block load size in 64-byte blocks.
Library maximum size in units of 64—byte blocks.
(Not used by RSTS/E.)

Number of window blocks required by library.

Size of library overlay segment descriptors in bytes.

Library flags word. The following flags are defined:

Bit Meaning

15 LD$ACC — Access intent (1 =read/write,
0 =read-only)

14 LD$RSV — APR was reserved
13 LD$CLS — Library is part of a cluster
3 LD$SUP — Supervisor-mode library (1 =yes)

2 LD$REL — Position-independent code (PIC)
flag (1=PIC)

Three words containing the library/common block
creation date in the following format:

WORD 0: Year since 1900

WORD 1: Month of year

WORD 2: Day of month

The task header starts on a block boundary and is immediately followed by
the task image. The task is read into memory starting at the base of the root
segment. Because the root segment is a set of contiguous disk blocks, it is
loaded with a single disk access.

The header is divided into two parts: a fixed part, as shown in Figure C-3,
and a variable part, as shown in Figure C-—4.

Executable File Structure C-5

C-6

Figure C-3: Task Header Fixed Part

H.CSP 0 Current Stack Pointer (R6)
H.HDLN 2 Header length
H.EFLM 4 Event flag mask
6 Event flag address

H.CUIC 10 Current UIC
H.DUIC 12 Default UIC
H.IPS 14 Initial PS
H.IPC 16 Initial PC (R7)
H.ISP 20 Initial Stack Pointer (R6)
H.ODVA 22 ODT SST vector address
H.ODVL 24 ODT SST vector length
HTKVA 26 Task SST vector address
H.TKVL 30 Task SST vector length
H.PFVA 32 Power fail AST control block
H.FPVA 34 Floating Point AST control block
H.RCVA 36 Receive AST control block
H.EFSV 40 Address of event flag context
H.FPSA 42 Address of floating point context
H.WND 44 Pointer to number of window blocks
H.DSW 46 Directive Status Word
H.FCS 50 Address of FCS impure storage
H.FORT 52 Address of language impure storage
H.OVLY 54 Address of overlay impure storage
H.VEXT 56 Address of impure vectors
H.SPRI 60 Swapping priority
H.NML 61 Mailbox LUN
H.RRVA 62 Receive by reference AST control block

64 Reserved

66 Reserved

70 Reserved
H.GARD 72 Header guard word pointer
H.NLUN 74 Number of LUNs

Executable File Structure

MK-01081-00

Figure C—4: Task Header Variable Part

H.LUN LUN Table (2 words/LUN)
Number of Window Blocks Oftsets
Partition Control Block Address W.BPCB
Low Virtual Address Limit W.BLVR
High Virtual Address Limit W.BHVR
Address of Attachment Descriptor W.BATT
Window Size (in 32-word blocks) W.BSIZ
Offset into Partition (in 32—word blocks) W.BOFF
First PDR Address W.BFPD
Number of PDRs to Map W.BNPD
Contents of Last PDR W.BLPD
Current PS
Current PC INITIAL VALUES
Current RS nu::lt?;irv sfbrizg‘:ier
Current R4 indent word #2
Current R3 indent word #1
Current R2 task name word #2
Current R1 task name word #1
Current RO prog;&:jrcrj\r;rsasnsfer
Header Guard Word

MK-01082—-00

Executable File Structure C-7

C-8

The variable part of the header contains window blocks that describe the
following:

® The task’s virtual-to-physical mapping
® Logical unit data
® Task context

The task header is used by RSTS/E mainly for setting the intitial condi-
tions of the task. Only locations 46 through 56 have identical meanings as
in RSX.

NOTE

To save the identification, the initial value set by the Task
Builder should be moved to local storage. When the pro-
gram is fixed in memory and being restarted without
reloading, the reserved program words must be tested for
their initial values to determine whether the contents of R3
and R4 should be saved.

The contents of RO, R1, and R2 are set only when a debug-
ging aid is present in the task image.

C.2.1 Low Core Context

The low core context for a task consists of the Directive Status Word and the
Impure Area vectors. The Task Builder recognizes the following global
names:

FSRPT File Control Services work area and buffer pool vector
$OTSV Language OTS work area vector
N.OVPT Overlay Runtime System work area vector
$VEXT Vector extension area pointer
The only proper reference to these pointers is by symbolic name.

The Impure Area Pointers contain the addresses of storage used by the reen-
trant library routines described above.

The address contained in the vector extension pointer locates an area of
memory that can contain additional impure area pointers.

The format of the vector extension area is shown in Figure C-5. Each loca-
tion within this region contains the address of an impure storage area that
is referenced by subroutines that must be reentrant. Addresses below
$VEXTA, referenced by negative offsets, are reserved for DIGITAL appli-
cations. Addresses above this symbol, referenced by positive offsets, are allo-
cated for user applications.

.PSECTs $$VEXO0 and $$VEX1 have the attributes D, GBL, RW, REL, and
OVR.

Executable File Structure

The .PSECT attribute OVR facilitates the definition of the offset to the vec-
tor and the initialization of the vector location at link time, as shown by the

following example:

+GLOBL

+ PSECT
BEG=.,

+BLKHW
LABEL: +WORD

OFFSET==LABEL-BEG

+ PSECT

IMPURE:

Figure C-5: Vector Extension Area Format

.PSECT

IMPURE:

$VEXTA 3

MAKE SURE VECTOR AR A IS LINKED

$$VEXL D GBL sROYREL »OUR

¥

POINT TO BASE OF POINTER TABLE

-

IMPURE i

DFFSET TO CORRECT LOCATION
IN VECTOR AREA

SET IMPURE AREA ADDRESS
DEFINE OFFSET

SVEXT

SVEXTA

Y

.PSECT $$VEXO

Reserved for
DIGITAL use

.PSECT $$VEXT

Reserved for
user applications

MK-01083-00

Executable File Structure C-9

C.3 Overlay Data Structure

C-10

Figure C-6 illustrates the structure and principal components of the task-
resident overlay data base.

Figure C-6: Task-Resident Overlay Data Base

AUTOLOAD > SEGMENT > >
VECTOR DESCRIPTOR REGION
DESCRIPTOR
WINDOW -
DESCRIPTOR
AUTOLOAD »| SEGMENT >
VECTOR DESCRIPTOR
AUTOLOAD .| SEGMENT WINDOW
VECTOR | DESCRIPTOR ~ | DESCRIPTOR
MK-01084-00

Autoload vectors are generated whenever a reference is made to an auto-
loadable entry point in a segment located farther away from the root than
the referencing segment.

One segment descriptor is generated for each overlay segment in the task or
shared region. The segment descriptor contains information on the size, vir-
tual address, and location of the segment within the task image file. In addi-
tion, it contains a set of link words that point to other segments. The overlay
structure determines the link word contents.

The following sections describe the composition of each element.

C.3.1 Autoload Vectors

The autoload vector table consists of one entry per autoload entry point in
the form shown in Figure C-7.

Figure C-7: Autoload Vector Entry

JSR PC @sub

Offset to pointer to autoload code

Segment descriptor address

Entry point address

Executable File Structure

The autoload vector contains a JSR to the autoload processor, $AUTO, fol-
lowed by a pointer to the descriptor for the segment to be loaded and the real
address of the entry point.

C.3.2 Segment Descriptor

The segment descriptor is composed of a six-word fixed-length portion. Seg-
ment descriptor contents are shown in Figure C-8.

Figure C-8: Segment Descriptor

15 12 11 0

STATUS REL. DISK ADDRESS

LOAD ADDRESS

LENGTH IN BYTES

LINK UP

LINK DOWN

LINK NEXT

SEGMENT
NAME

MK-01085-00

Word O contains the relative disk address in bits 0-11 and the segment
status in bits 12-15. Each segment in the task image file begins on a disk
block boundary. The relative disk address is the block number of the seg-
ment relative to the start of the root segment.

The segment flags are defined as follows:

Bit 156 Alwajrs set to 1.
Bit 14 0 = Segment loaded and mapped.
1 = Segment is either not loaded or not mapped.
Bit 13 0 = Segment has disk allocation.
1 = Segment does not have disk allocation.
Bit 12 0 = Segment not loaded from disk.
1 = Segment loaded from disk.

Word 1 contains the load address of the segment. This address is the first
virtual address of the area where the segment will be loaded.

Word 2 specifies the length of the segment in bytes.

Executable File Structure C-11

The next three words point to the following segment descriptor:

Link Up

Link Down

Link Next

Points to the next segment away from the root. Link
Up equals 0 if you are already at the leaf.

Points to the next segment toward the root. Link
Down equals 0 if you are already at the root.

Points to the adjoining segment. Link Next equals
the address of the current segment if there are no
others on the same level with the same Link Down.
Link Next links all segments on the same level that
have the same Link Down in a circular fashion. Thus,
in Figure C-10, Link Next in A3 points to Al, but
Link Next in A1l points to Al1 itself and Link Next
in AO points to AQ itself.

When a segment is loaded, the overlay run-time system follows the links to
determine which segments are being overlaid and should therefore be
marked out of memory.

Using the tree in Figure C-9 as an example:

Figure C-9: Sample Tree

A21 A22
A1l l
Al A2 A3
A0 (ROOT)
MK-01088-00

The segment descriptors are linked as in Figure C-10.

Figure C-10: Segment Linkage Directives

A1t A21 A22 A1 A21 A22 A1l A21 €——— A2
—_—
y ' 1 | i
i 1 i i
' I I |]]
______ 4 T : L-___-_T______J
] : i
I J———
Al A2 A3 Al A2 A3 Al A2 A3
A] i | T |
]]] i]
|] I | J | t §
______ e = =d , L.______I_,______.l______-l
lll :
]
| " m
A0 A0 AOD
LINK UP LINK DOWN LINK NEXT
MK-01089-00

C-12

Executable File Structure

If there is a co-tree, the Link Next for the root segment descriptor points to
the co-tree root segment descriptor.

Words 6 and 7 contain the segment name in Radix-50 format.
Word 8 points to the window descriptor used to map the segment (0 =

none).

C.3.3 Window Descriptor

TKB allocates window descriptors only if you define a structure containing
memory-resident overlays. Figure C—11 illustrates the format of a window
descriptor.

Figure C-11: Window Descriptor

Base Active Page Register Window ID

Virtual base address

Window size in 64-byte blocks

Region ID

Offset in partition

Length to map

Status word

Send/receive buffer address (always 0)

Flags word

Address of region descriptor

MK-01087-00

Words 0 through 7 constitute a window descriptor in the format required by
the mapping directives (the Program Logical Address Space (.PLAS) Map-
ping Directives — see the RSTS/E System Directives Manual for more
information). The overlay loading routine fills in the region ID at run time.

Words 8 and 9 contain additional data that the overlay routines refer to.
Bit 15 of the flags word, if set, indicates that the window is currently
mapped into the task’s address space.

Word 9 contains the address of the associated region descriptor.

Executable File Structure C-13

C.3.4 Region Descriptor
Figure C-12 illustrates the format of a region descriptor.

Figure C-12: Region Descriptor

Region 1D

Size of region

Region

name

Region

partition

Region status

Protection codes (always 0)

Flags

MK-01086-00

Words 0 through 7 constitute a region descriptor in the format required by
the mapping directives. Word 8, the flags word, is referred to by the overlay
load routine. Bit 15 of the flags word, if set, indicates that a valid region
identification is in word 0.

C.4 Root Segment

The root segment is written as a contiguous group of blocks. The root seg-
ment is the first segment loaded and remains in memory for the entire life
of the program execution.

C.5 Overlay Segments

Each overlay segment begins on a block boundary. The relative block num-
ber for the segment is placed in the segment table. Note that a given over-
lay segment occupies as many contiguous disk blocks as it needs to supply
its space request. The maximum size for any segment, including the root, is
28K words.

C-14 Executable File Structure

Appendix D
Reserved Symbols

All symbols and PSECT* names containing a period (.) or dollar sign ($) are
reserved for DIGITAL-supplied software. Several global symbols and
PSECT* names are reserved for use by the Task Builder. Special handling
occurs when a definition of one of these names is encountered in a task
image.

The definition of a reserved global symbol in the root segment causes a word
in the task image to be modified with a value calculated by the Task
Builder. The relocated value of the symbol is taken as the modification
address.

*PSECTS are created by .ASECT, .CSECT, or .PSECT directives. The .PSECT directive eliminates the
need for either the .ASECT or .CSECT directive, both of which are retained only for compatibility with
other systems. In this document all sections are referred to as PSECTS unless the specific character-
istics of .ASECT or .CSECT apply.

Table D-1 shows global symbols reserved by the Task Builder.

Table D-1:

Task Builder Reserved Global Symbols

Global
Symbol

Modification
Value

FSRPT
.MBLUN
.MOLUN
.NLUNS

.NOVLY
N.OVPT
.NSTBL

.ODTL1
.ODTL2
.SUML1
PTLUN
$0TSV
.TRLUN
USLU1
.USLU2
$VEXT

Address of file storage region work area (FSRCB).
Mailbox logical unit number.
Error message output device.

The number of logical units used by the task, not including the message
output and overlay units.

The overlay logical unit number.
Address of overlay run-time system work area (NOVLY).

The address of the segment description tables. This location is modified
only when the number of segments is greater than one.

Logical unit number for the ODT terminal device TI:.
Logical unit number for the ODT line printer device CL:.
P/0OS standard utility module LUN.

Logical unit number for plotter/graphics software.
Address of Object Time System work area (JOTSVA).
The trace subroutine output logical unit number.

Logical unit number for special purpose user software.
Logical unit number for special purpose user software.

Address of vector extension area ($VEXTA).

The PSECT names in Table D-2 are reserved by the Task Builder. In some
cases, the definition of a reserved PSECT causes the PSECT to be extended
if the appropriate option is specified.

Table D-2: PSECT Names Reserved by the Task Builder
Source Section
Location Name Description

TKB $$ALER Contains code to process or trap Overlay Run-time sys-
tem segment load errors. Provides named areas in the
task for the FORTRAN Object Time System and the
RSX Overlay Run-time System.

TKB $SALVC Contains the segment autoload vectors for tasks without
I- and D-space.

TKB $$ALVD Contains the D-space portions of the segment autoload
vectors in an I- and D-space task.

D-2 Reserved Symbols

(continued on next page)

Table D-2: PSECT Names Reserved by the Task Builder (Cont.)

Source
Location

Section
Name

Description

TKB

TKB

Input
Module

SYSLIB

SYSLIB

SYSLIB

TKB

TKB
TKB

SYSLIB

TKB

$3ALVI

$$SAUTO

$$DBTS

$$DEVT

$$FSR1

$$10B1

$$I0B2

$$LOAD
$3MRKS

$30BF1

$$OBF2

Contains the I-space portions of the segment autoload
vectors in an I- and D-space task.

Contains code to determine if a called subroutine in an
overlay segment is already in memory or if that overlay
segment should be read into memory before control is
passed to the subroutine that is called.

This symbol should appear in the debugger input mod-
ule with the symbol $DBTS as follows:

PSECT $$DBTS
$DBTS::
.PSECT

The task builder extends $$DBT'S and fills it with time
stamp information followed by the filename information
of the .STB file.

The extension length (in bytes) is calculated from the
formula:

EXT = (S.FDB +52)*UNITS

The definition of S.FDB is obtained from the root seg-
ment symbol table, and UNITS is the number of logical
units used by the task, excluding the message output,
overlay, and ODT units.

The extension of this section is specified by the ACTFIL
option.

The extension of this section is specified by the
MAXBUF option.

A zero length .PSECT containing a label, IOBFND, that
is stored in the work area offset, W.BEND, representing
the upper bound of the I/0 buffer, $$10B1. TKB uses
$$I0B2 as a boundary value to determine whether the
1/0 buffer has overflowed.

Overlay manual load routine.

Contains code to properly mark those segments that are
not needed any longer or have been overlaid by another
segment as being out of memory. This ensures that a
fresh copy of the overlay segment will be read in the
next time the overlay segment is needed.

FORTRAN OTS uses this area to parse array type for-
mat specifications. This section can be extended by the
FMTBUF keyword.

A zero length .PSECT containing a label, OBFH, that is
stored in the work area offest, W.OBFH, which repre-
sents the upper bound of the run-time format buffer,
$$0OBF1. TKB uses $$OBF2 to determine if the run-
time format buffer has overflowed.

(continued on next page)

Reserved Symbols D-3

D4

Table D-2: PSECT Names Reserved by the Task Builder (Cont.)

Source
Location

Section
Name

Description

TKB

TKB

TKB

TKB

TKB

TKB

TKB

TKB

TKB

TKB

TKB
TKB

FORTRAN-77

TKB

$$OVDT

$$OVRS

$$PDLS

$$SRDSG

$$RGDS

$$RTQ

$$RTR

$$RTS
$$SLVC

$$SGDO

3SGD1
$$SGD2

$$TSKP

$$WNDS

The Overlay Run-time System impure data area. The
symbo! N.OVPT in low memory points to this area. This
area defines the operational parameters with which the
Overlay Run-time system operates on disk-resident and
memory-resident overlay structures.

The .ABS. program section that redefines the Overlay
Run-time System impure data area with different sym-
bols, defined as offsets and relative to zero. These offsets
are necessary for proper linkages between the
subroutines in the Overlay Run-time System. This pro-
gram section is never included in the memory allocation
of the task because of its absolute program section
attribute.

Cluster library service routine.

Contains the code that reads into memory the overlay
segment selected by the code contained in the programs
section $$AUTO.

Contains the region descriptors for resident libraries
referred to by the task.

Defines the PSECT used for selective enabling of AST
recognition in the Overlay Run-time System. $$RTQ is
0 in length if $AUTOT is not included.

Defines the PSECT used for selective disabling of AST
recognition in the Overlay Run-time System. $$RTR is
0 in length if $AUTOT is not included.

Contains the return instruction.

Supervisor-mode library transfer vectors
(RSX-11M—PLUS only).

Contains the program section adjoining the task seg-
ment descriptors.

Contains the task segment descriptors.

Contains a .WORD 0 following the task segment
descriptors.

TKB fills in the following words in the PSECT:
¢ APR bit map in word $APRMP
e Task offset into region in word $LBOFF

e Maximum physical read/write memory needed for
task in word $MXLGH

e Maximum physical read-only memory needed for
task in word $MXLGH +2

e Task extension in 32—word blocks in word $LBEXT

Contains task window descriptors.

Reserved Symbols

Appendix E
Improving Task Builder Performance

This appendix contains procedures and suggestions to help you maximize
Task Builder performance. Procedures are given for:

e Evaluating and improving Task Builder throughput

® Modifying command switch defaults to provide a more efficient user
interface

E.1 Evaluating and Improving Task Builder Performance

Task Builder throughput is determined by these factors:
e The amount of memory available for table storage
® The amount of disk latency due to input file processing

The discussion in the following paragraphs outlines methods for improving
throughput in each case. The methods approach their goals through
judicious use of system resources and Task Builder features.

E.1.1 The Task Builder Work File

The largest factor affecting Task Builder performance is the amount of
memory available for table storage. To reduce memory requirements, the
Task Builder uses a work file to store symbol definitions and other tables. If
the total size of these tables is within the limits of available memory, the
work file is kept in core and not shunted to a disk. If the tables exceed the
amount of memory available, some information must be moved to the disk,
which degrades performance.

E-1

E-2

Work file performance can be gauged by consulting the statistics portion of
the Task Builder map. The following parameters are displayed:
Number of work file references:

Total number of times that work file data was referenced.

Work file reads:

Number of work file references that resulted in disk accesses to read
work file data.

NOTE

If work file reads and writes equal zero and the number of
work file references is greater than zero, you can be sure
that the work file remained in memory.

Work file writes:
Number of work file references that resulted in disk accesses to write
work file data.

Size of Core Pool:

Amount of in-core table storage in words. This value is also expressed in
units of 256-word pages (information is read from and written to disk in
blocks of 256 words).

Size of Work File:

Amount of work file storage in words. If this value is less than the core
pool size, the number of work file reads and writes is zero. That is, no
work file pages are removed to the disk. This value is also expressed in
pages (256-word blocks).

Elapsed Time:

Amount of time required to build the task image and produce the map.
This value excludes ODL processing, option processing, and the time
required to produce the global cross-reference.

The overhead for accessing the work file can be reduced in one or more of the
following ways:

® By increasing the amount of memory available for table storage
® By placing the work file on the fastest random access device

® By decreasing system overhead required to access the file

® By reducing the number of work file references

The Task Builder automatically increases its size up to the maximum job
size, which may be as large as 32K words. See the RSTS/E System Manager’s
Guide for information on how to change the maximum job size.

Improving Task Builder Performance

The size of the work file can be reduced by:

® Linking your task to a core-resident run-time system containing com-
monly used routines (for example, BASIC-PLUS-2 object time system)
whenever possible

¢ Including common modules, such as components of an object time system,
in the root segment of an overlaid task

¢ Using an object library of file of concatenated object modules if many
modules are to be linked

In the last two cases, system overhead is also significantly reduced because
fewer files must be opened to process the same number of modules.

The number of work file references can be reduced by eliminating unneeded
output files and cross-reference processing or by obtaining the short map. In
addition, selected files, such as the default system object module library, can
usually be excluded from the map. In this case, a full map can be obtained at
less frequent intervals and retained.

Try the following procedures to improve work file performance:

¢ Include RSX directive emulation in the monitor. This allows a 32K Task
Builder instead of a 28K Task Builder.

¢ Increase maximum task size by raising the swap maximum to the maxi-
mum of 32K.

® Decrease work file size by using resident run-time systems, concatenated
object files, and object libraries.

¢ Decrease work file size by moving common modules into the root segment
of an overlaid task.

¢ Decrease the number of work file references by eliminating the map and
global cross-reference, obtaining the short map, or excluding files from
the map.

¢ Place the work file on the fastest possible device. If the system manager
installs a system-wide logical “device:OV”, the Task Builder uses a device
other than SY: as the work file device.

If the device is a private pack, all accounts of any user wishing to use the
Task Builder must be entered on the private pack while the system-wide
logical is in effect. Otherwise, a protection violation error occurs for those
users without accounts when the Task Builder tries to create its work file.

Again, make sure the device is mounted so users without access privi-
leges will not obtain fatal errors when the Task Builder tries to create its
work file.

e Use the CCL/SIL:## to increase size to maximum immediately. This may
reduce swapping when TKB must increase in size.

Improving Task Builder Performance E-3

E.1.2 Input File Processing

The suggestions for minimizing the size of the work file and number of work
file accesses also drastically reduce the amount of input file processing.

A given module can be read up to three times when building the task:
1. To build the symbol table
2. To produce the task image
3. To produce the long map

Files that are excluded from the long map are read only twice. The third
pass is completely eliminated for all modules when a short map is
requested. So, if you do not need the long map, use the /SH switch
(described in Section 9.18) to eliminate the third pass.

E-4 Improving Task Builder Performance

Appendix F
Revectoring Cluster Libraries

This appendix describes some techniques for making calls between resident
libraries that may be in the same cluster. A cluster library cannot directly
call a routine in another library in the cluster. The general technique
involves indirect references, routing calls through the user program in the
“low segment,” so that control eventually passes through the correct auto-
load vectors to the desired routine in the called library. Thus, the called
library can be loaded from disk and, if necessary, mapped. The called rou-
tine is then executed, and eventually control is returned to the calling
library.

The approach involves including a “vector table” in the calling library, and
a corresponding “jump table” in the user program in the low segment.
Ideally, the code necessary for the vector table and jump table would be
included in the system library, so this is what our example shows.

The vector table defines as entry points the desired entry points in the
called library. Each definition in the calling library defines an offset for the
entry point. The offset defines the location in the jump table for the address
of the desired autoload vector into the called library. The vector table also
includes common dispatch code to transfer control. This code transfers con-
trol through the jump table, through the appropriate autoload vector in the
user program, to the entry point in the called library (see Figure F-1).

Figure F-1: Overview of How Inter-Cluster-Library Calls Work

CALLING LIBRARY CALLED LIBRARY

/—). .OPEN::

(Vector Table)

— 'OPEN:: (offset 30)

DISPAT: k

USER PROGRAM

ESRPT 3 Pointer to index
table
>—— AJUMP — | Pointer to jump table

Jump table for
called library

Autoload vector for
.OPEN in called lib

- /

MK-01054-00

F-2 Revectoring Cluster Libraries

F.1 Sample Vector Table Code

The code below illustrates part of a sample vector table.

+OPEN:: MDY #30,-(5P) iPUT OFFSET INTO USER PROGRAM
iJUMP TABLE ON THE STACK

BR DISPAT iJOIN COMMON DISPATCH

DISPAT: MOV RO -(5P) iSAVE REGISTER
Moy @#,FSRPT RO JGET POINTER TD DATA AREA
ADD A JUMP(RO)Y s2(8P) iADD VECTOR BABE TO OFFSET
Moy (BP)+ RO FRESTORE REGISTER
MOV B(SPY+-(5P) FPICK UP ADDRESS OF TARGET
JMP B(SP)+ FAND TRANSFER TO TARGET

In the example above, the code at .OPEN pushes the known offset into the
jump table (30) onto the stack and transfers control to dispatch code, com-
mon for all the revectored entry points. The code at DISPAT:

Pushes the contents of RO onto the stack, to save it.

Moves the address of the base of the data area into RO.

Adds the base address of the jump table to the index onto the stack.
Restores RO.

A

Puts the address of the desired routine’s autoload vector onto the
stack.

6. Jumps to the autoload vector for the desired routine ((OPEN).

F.2 GBLXCL and GBLINC Options

In the preceding example, notice that both the calling library and the called
library contain an entry point named .OPEN. You must exclude global
symbols for such revectored entry points from the calling library’s symbol
table (.STB) file, or the Task Builder has a hard time figuring out which
one to use when the libraries are referenced during a user program’s build.
To do this, use the GBLXCL option when you are building the calling
library.

Another aspect of building the calling library is ensuring that the needed
jump tables are built into the user program when the calling library is
referenced there. This involves placing the code for the jump tables in the
system library, or a library always referenced by the user program, and
ensuring that such code is always included in the user program when the
calling library is referred to in the user program. You use the GBLINC
option in the calling library to do this.

Revectoring Cluster Libraries F-3

The example below shows the build for the “calling library,” called
US1CLS.

RUN &TKB
TKB>USICLS/-HD»UBICLS/CR/-8P/MAUSICLS=USILIB.OBY
TKB>LB:SYSLIB/LB:FCSBVEC

TKB>/

ENTER OPTIONS:

TKB>STACK=0

TKB:>PAR=US1ICLS:140000:4000

TKB:>GBLINC=,FCSJT

TKB>GBLXCL=,0PEN

TRB>//

The example above shows the vector table (FCSVEC) as a module in the
system library. Building such a vector table as part of a commonly used
library, such as SYSLIB, makes it easier for more than one library to access
the called library.

The GBLINC option shown forces the Task Builder to add a global refer-
ence entry for . FCSJT in the library’s .STB file. This ensures that the Task
Builder links the jump table modules required by the library into the user
program. These modules should be in the system library, or in a library
always referenced by the user program. Thus, this forced loading mecha-
nism is invisible to the user.

F+4 Revectoring Cluster Libraries

Index

before .FCTR names, 5-5
before .NAME names, 5-6
for co—trees, 4-3
easiest use of, 4-3, 5-1, 11-5
errors in using, 5-7
before file names, 5-5
before items in parentheses, 5-5
not for null co-tree roots, 4-5
ODL operator, 11-5
before program sections, 5-5
for simple overlays, 3—4

/ (to end command line), 84

// (to end TKB), 84

A

ABORT option, 10-3
ABS attribute, 114
Absolute Patch (ABSPAT), 104
Absolute resident area, 7-2, 74
ABSPAT option, 10-4
Access code (resident library), 2—12
Access code in CLSTR option, 10-8
Access code in cluster libraries, 2-15
Access Resident Common Block (RESCOM),
10-25
Access Resident Library (RESLIB), 10-26
Access System—Owned Resident Library
(LIBR), 10-20
ACTFIL option, 10-5
Active files, 10-5
Active Page Register, 2-12, 10-20
Additive relocation, B—21
Address space, 2-2 to 2-3
Addresses

absolute, 7-2

relative, 7-2
$$ALVC, 6-8
Ambiguously defined symbols

in a simple overlay, 3—-12

in co—trees, 4-6
APR, 2-3, 2-12, 10-9, 10-20

with cluster libraries, 2-15 to 2-16

Area, memory-resident, 7-1 to 7-8, 10-24
ASECT, B4
ASG option, 10-6
example, 2-17
Assembler (MAC), 2-9
used with TKB, 1-1
Assembly language and cluster libraries,
7-10
Assigning Devices, 10-6
Asterisk
before . FCTR names, 5-5
before .NAME names, 5-6
before file names, 5-5
before items in parentheses, 5-5
before program sections, 5-5
easiest use of, 4-3, 5-1, 11-5
errors in using, 5-7
for co-trees, 4-3
for simple overlays, 3—4
not for null co—tree roots, 4-5
Attribute
CON, 10-11
OVR, 10-11
Attributes, 6-3 to 64, 11-3 to 114
$$AUTO, 6-8
$AUTO, 5-2
Autoload indicator, 5—1 to 5-7, 11-5
for co-trees, 4-3
for simple overlays, 3—4
not for null co-tree roots, 4-5
Autoload processor, 5-2
Autoload routines (JAUTO), 7-10
Autoload vector, 3—4, 11-5, B-24, C-10
definition, 5-2
how to request specific, 5-5
specific examples, 5-6
where needed, 5-3
Autoloadable library entry point item
type, B-24
Autoloading a data PSECT, 6-5

.B2S file, 4-8
BASIC Object Time System, 2-7

Index-1

BASIC-PLUS-2, 1-1
disk libraries for, 2—4t
example build, 2-16 to 2-17
resident libraries for, 27
run—time system for, 2-2
libraries in a cluster,
10-7
Blank common area, 6-7
BLDODL utility, 3-2
.BLK, 6-7
BP20TS.OLB, 2—4t, 2-7
BP2RES library, 2-7, 2-13, 107
BP2SML library, 2-7, 2-13, 10-7
Branch (overlay structure), 3—10
Buffer
format, 10-13
record, 10-22

Build a common block shared region (/CO),

9-4
Build a library shared region (/LI), 9-13

C
C81CIS library, 2-13, 10-7
C81CIS.OLB, 2-5t
C81LIB library, 2-13, 10-7
C81LIB.OLB, 2-5t
Call structure, 3-2, 4-2
with co—trees, 4-8
Calls
between cluster libraries, F-1
cross—tree, 4-3
logical independence of, 3-2, 3-8, 3—-10
/CC switch, 9-3
CCL command, 2—-8
Characters within the SYSTAT program
name, 10-29
CIS option, 2-5t
CLSTR option, 2-13, 10-7
format, 2-15
Cluster libraries, 2-14f
and assembly language, 7-10
and calls between libraries, 7-10
and memory-resident overlays, 7-9
and the CLSTR option, 2-13, 107
building your own, 7-8
GBLINC option, 10-15
GBLXCL option, 10-18
limitations of use, 2—-15
revectoring, F-1
trapping or asynchronous entry, 7-10
.CMD files, 84
/CO switch, 9—4

Index-2

Co—trees, 4-1 to 4-17, 9-9
and high-level languages, 4-6 to 4-17
fine~tuning, 4-13
how loaded during execution, 4-3, 4-4f
most space—saving, 4-5 to 4-6
sample program, 47
structure, 4-2
COBLIB.OLB, 2-5t
COBOL (PDP-11), 1-1
disk libraries for, 2-5t
example build, 2-17
run-time system for, 2-2
COBOL-81, 1-1
disk libraries for, 2-5t
example build, 2-17 to 2-18
libraries in a cluster, 10-7
run—time system for, 2—2
symbolic debugger, 2-9
COBOVR.OLB, 2-5t
Code, sharable, 2-7
Comma
ODL operator, 3—4, 11-5
ODL operator (co-trees), 4-3
Command
CCL, 2-8,
multiline, 2—-10, 8-3
Command line
ending TKB, 8-4
ODL, 11-1
TKB, 2-8, 8-1
Comments, 8-7
Commercial instruction set option, 2-5t
Common area
allocating space for, 62
blank, 6-7
definition, 6-2
resident, 7-1, 10-25
COMMON option, 10-10
Comparison of disk and resident libraries,
2-7
Compilers, used with TKB, 1-1
Compiling (BASIC-PLUS-2 sample), 4-8
Complex relocation, B-19
CON attribute, 6-4, 10-11, 11-4
Concatenated programs and subprograms
(/CC), 9-3
Concatenation, 3-4, 3-13, 11-5
Context (low—core), C—8
Control section, B—4
Core common, 9-10
Cross~tree calls, 4-3
CSECT, B4

D

D attribute, 64 to 6-5, 11-4

/DA switch, 9-5, B-22

DAPRES library, 2-13

Dash. See Hyphen

Data PSECT, 6-5

DBLLIB.OLB, 2-5t

DBRLIB.OLB, 2-5t

DBRRES, 2-5t

$$DBTS, B-23

DCL (LINK command), 1-4

Debugger, B-25

Debugger (COBOL-81), 2-9

Debugging Aid (/DA), 9-5, B-22

Declare Stack Size (STACK), 10--28

Default library, 3-15, 9-7, 9-9, 9-14
how searched for co—trees, 4-3
in CLSTR option, 2-15, 10-7
using co—tree techniques on, 4-16

Defalult Library (/DL), 9-7

Define A Global Symbol (GBLDEF), 10-7

Define High Segment (HISEG), 10-9
Device
assigning, 10-6
Device designators, specifying, 2-10
Diagnostic
errors, A-1
messages, omitting, 9-17
run, 8-3
DIBOL, 1-1
disk libraries for, 2-5t
example build, 2-18
resident libraries for, 2—-5t
run—time system for, 2-2

DIBOL Management System, 2-5t

Directive emulation code for RSX, 2--2

Directory, internal symbol, B-21

Disappearing RSX run-time system,
2-2, 2-12

Disk access time, reducing, 3-9 to 3-10

Disk and resident libraries, comparison
of, 2-7

Disk libraries, 2—4, 2—6f, 2-9, 9-11

/DL switch, 9-7

DMS, 2-5t

DSK attribute, 11-3

Dump, 9-19

E

Emulation code for RSX directives, 2-2
.END, 3-3 to 3-6, 11-2
End-of-module record, B-29

Enter Options prompt, 8-4

Error messages, A-1 to A—9
diagnostic, A-1
fatal, A-1
Exclamation point, 7-6, 9-20, 11-5
Executable program
extending size of, 10-12
file, 2-8
file format, C-1
patching, 104
Exit on Error (/XT), 9-33

Extend Program Section (EXTSCT), 10-11

Extend Task Memory (EXTTSK), 10-12
EXTSCT option, 10-11
EXTTSK option, 10-12

example, 2-17

F
F4POTS.OLB, 2-5t
F4PRMS.OLB, 2-5t
Fatal errors, A-1
FCS, 9-28
FCTR, 3-3 to 3-6, 11-2
FDVDBG.OLB, 2-5t
FDVLIB.OLB, 2-5t
FDVRDB library, 2-13, 10-7
FDVRES library, 2-13, 10-8
File
Control System, 9-28
declaring maximum open, 10-5
executable, 2-8, 7-2, C-1
indirect command, 84 to 8-5
input to TKB, 8-2
library, 9-11
map, 2-8, 8-1
memory map, 9-14
object, 2-4, 2-9
specifications, 8-7
symbol table, 2-9, 7-2, 8-2, 10-19
task, 2-8, 7-2, 8-1

FIRQB, 9-10
Floating—point processor, 9-8
FMS

disk libraries for, 2-5t
libraries in a cluster, 10-7
FMTBUF option, 10-13
Format Buffer Size (FMTBUF), 10-13
FORTRAN-77, 1-1
disk libraries for, 2-5t
example build, 2-18
run—time system for, 2-2
/FP switch, 9-8
.FSRPT, C-8
/FU switch, 4-17, 9-9
Full Search (/FU), 9-9

Index-3

G

GBL attribute, 6-5, 11-4
segment name, 11-3
GBLDEF option, 10-14
GBLINC option, 10-15, F-3
in cluster library example, F-4
GBLPAT option, 10-16
GBLREF option, 7-7, 10-17
GBLXCL option, 10-18, F-3
Global additive displaced relocation,
B-15
Global additive relocation, B~14
Global displaced relocation, B-14
Global relocation, B—13
Global Relative Patch (GBLPAT), 10-16
Global symbol item type, B-25
Global Symbol Reference (GBLREF), 10-17
Global symbols
ambiguously defined, 3-12, 46
autoload vectors for, 5-2
defining, 10-14
definition, 3-11
excluding from .STB file, 10-18
forcing reference in root, 7—7
general discussion, 1-3
in internal file, 9-29
including in .STB file, 10-15
multiply defined, 3-12, 46
name entry, B-6
reference from root, 10-17
reserved, D-2
undefined, 3-12, 46
GSD, B-1 to B-3, B-5, B-7, B-9

H

/HD switch, 9-10

Header, 9-10, C-5 to C-8

High segment, 1-3, 10-19

HISEG option, 10-19

Hyphen, 3-13
in .ROOT and .FCTR commands, 3—4
ODL operator, 3—4, 11-5
with library files, 3-5

I attribute, 64, 114
Impure area, C—8
Include Global in .STB File (GBLINC), 10-15
Indirect command files
ODL, 11-6
TKB, 84 to 85
Input files, 8-2
Inter—cluster-library calls, F-2f

Index—4

Internal
displaced relocation, B-13
relocation, B-12
symbol directory, B-21
symbol name, B-5
Internal symbol name item type, B-28
$$I0B1, 10-22
ISD record, B-1
description, B-21
general format, B-22
types, B-22

J

Job area, 2-2 to 2-3

JSR PC instruction, 7-10
Jump table, F—1

L

L$BBLK, C+4

L$BDAT, C—4

L$BDHV, C4

L$BDLZ, C-4

L$BDMV, C—4

L$BDMZ, C—4

L$BEXT, C-4

L$BFLG, C—+4

L$BHDB, C-4

L$BHGV, C-2

L$BHRB, C-4

L$BLDZ, C-2

L$BLIB, C4

L$BLUN, C—4

L$BMXV, C-2

L$BMXZ, C-2

L$BOFF, C-2

L$BPAR, C-2

L$BPRI, C4

L$BRDL, C-4

L$BROB, C4

L$BROL, C-4

L$BSA, C-2

L$BSEG, C-2

L$BSGL, C4

L$BSYS, C-2

L$BTSK, C-2

L$BWND, C-2

L$BXFR, C4

Label block group, C-2 to C-3

Languages used with TKB, 1-1

/LB switch, 2-9, 3-5, 9-11
naming specific routines, 3—14, 4-15,

9-11
LB:, 2-11 to 2-12
LBR utility, 9-31

LCL attribute, 11-4
LD$ACC, C-5
LD$CLS, C-5
LD$REL, C-5
LD$RSV, C-5
LD$SUP, C-5
/LI switch, 9-13
LIBR option, 2-11 to 2-12, 10-20
example, 2-19
Libraries, 1-2, 2-1 to 2-19
BP2RES, 2-13, 10-7
BP2SML, 2-13, 10-7
C81CIS, 2-13, 10-7
C81LIB, 2-13, 10-7
clustering resident, 2-13, 2-14f
DAPRES, 2-13
default, 3-15
default in CLSTR option, 10-7
disk, 2-4, 2-4t, 2-6f, 2-9
FDVRDB, 2-13, 10-7
FDVRES, 2-13, 10-8
indicating in ODL files, 3—13
object, 2—4
resident, 2—4 to 2-5, 2-6f, 2-7, 2-11,
7-1, 10-20, 10-26
RMSRES, 2-13, 10-8
routines inserted in co—trees, 4—6
routines inserted in overlays, 3-13
rules for building cluster, 7-8
Library (/LB), 9-11
Library account (LB:), 2-11
Library file, 9-11
LIMIT (MACRO directive), B-16
Line-number or PC correlation item type,
B-27
LINK command, 1-4
Linking, general discussion, 1-2 to 1-3
Literal record type, B-29
Local symbols, 3-11
Location counter, B-15 to B-16
Logical independence, 3-2, 3-8, 3-10
Logical units
assigning, 10-6
declaring maximum number of, 10-31
Low—core context, C-8

/MA switch, 4-17, 6-6, 9-14
MAC assembler, 1-1, 2-9
MACRO programs, 2-19
run—time system for, 2-2
MAKSIL, 7-2, 94, 9-13, 9-16

Map, 6-6
132 columns, 9-32
80 columns, 9-32
detailed description, 9—-22
file, 3-6, 6-6, 8-1, 9-14
first 1000 bytes in, 6-7
long, 9-22
overlay description, 3—7f
sample, 4-10f, 6-9
sample with co—trees, 412, 4-16
short, 9-22
spooling, 9-27
Map contents of file (/MA), 9-14
.MAP file, 2-8
Mapping, 2-5, 2-12
MAXBUF option, 10-22
Maximum Number of Units (UNITS), 10-31
Maximum Record Buffer Size (MAXBUF),
10-22
Maximum size, 2—2
Memory map, 3-6, 6-6
132 columns, 9-32
80 columns, 9-32
detailed description, 9—22
file, 8-1, 9-14
long, 9-22
overlay description, 3—7f
sample listing, 6-9
short, 9-22
spooling, 9-27
Memory-resident overlays, 74, 7-5f, 7-6,
9-20
Memory-resident overlays in cluster
libraries, 7-9
Module, B-1
end—of-module record, B—29
general discussion, 1-2 to 1-3
general format, B-2
name, B—4
Module name item type, B-25
/MP switch, 3-6, 8-2, 9-15
MRG utility, 3-2
/MU switch, 9-16
Multiline command, 2-10, 8-3
Multiple builds in one run, 84
Multiply defined symbols
in a simple overlay, 3—12
in co-trees, 4-6
Multiuser program, 9-16

N
N.OVPT, C-8

Index-5

.NAME :
for null co—tree root, 4—4
to make data PSECT autoloadable,
6-5
.NAME command, 11-2
Nested .FCTR commands, 3-5, 11-2
Nested parentheses, 3-9, 11-5
/NM switch, 9-17
No Diagnostic Messages (/NM), 9-17
NODSK attribute, 11-3
NOGBL attribute, 11-3
Null root for co-tree, 44
Number of Active Files (ACTFIL), 10-5
Number of Address Windows (WNDWS),
10-32

o
$$0BF1, 10-13
.OBJ file, 2-9, 8-2, B-1
general format, B-2
Object files, 2-9
Object library file type, 2—4
ODL file, 3—-1, to 3-6, 11-1
ODL operators, 3-4, 4-3, 4-5, 5-5 to 5-7,
11-5
ODT, 9-5, 10-23
ODT SST Vector (ODTV), 10-23
ODTYV option, 10-23
.OLB file, 24, 2-9, 8-2
Option
ABORT, 10-3
ABSPAT, 104
ACTFIL, 10-5
ASG, 10-6
CLSTR, 2-13, 10-7
COMMON, 10-10
EXTSCT, 10-11
EXTTSK, 10-12
FMTBUF, 10-13
GBLDEF, 10-14
GBLINC, 10-15, F-3
GBLPAT, 10-16
GBLREF, 10-17
GBLXCL, 10-18, F-3
HISEG, 10-19
LIBR, 10-20
MAXBUF, 10-22
ODTV, 10-23
PAR, 10-24
RESCOM, 10-25
RESLIB, 10-26
STACK, 10-28
SVDBS$, 10-23
SVTKS$, 10-30

Index—6

Options (cont.)
TASK, 10-29
TSKV, 10-30
UNITS, 10-31
WNDWS, 10-32
Options, 2-11, 84, 10-1 to 10-32
summary, 10-1 to 10-2
Ordering program sections, 9-21
$0TSV, C-8
Overlay Description Language, 3-1, 3-3
to 3-6, 11-1
Overlay Map (/MP), 9-15
Overlays
brief discussion, 1-3
co—trees, 4-1 to 4-17
data structure, C-10
definition, 3-2
description of memory map, 3—7f
designing, 3—7
for COBOL programs, 3-2
memory—-resident, 74, 7-5f, 7-6, 9-20
memory-resident, in cluster libraries,
7--9
ODL file, 9-15
overlay tree, 3-10
simple, 3-1 to 3-15
using the /MP switch, 9-15
OVR attribute, 6—4 to 6-5, 10-11, 11-4

P
PAR option, 7-3 to 7—4, 10-24
Parentheses

nesting, 3-9

ODL operators, 3—4, 11-5
Partition, 7-3 to 7—4
Partition for Resident Area (PAR), 10-24
Patching, 10-4

offset from global, 10-16
Path (overlay structure), 3—10 to 3-12
PDP-11 COBOL, 1-1

disk libraries for, 2-5t

example build, 2-17

run-time system for, 2-2
Performance, improving TKB, E-1
Physical memory, 2—-3
/PI switch, 7-3, 9—18
PIC. See Position—independent code
/PM switch, 9-19
PMDUMP, 9-19
Position— Independent (/PI), 9-18
Position-independent code, 7-2 to 7-3,

9-18
and cluster libraries, 7-9

Post-mortem dump, 9-19
Program Name for SYSTAT (TASK), 10-29
Program sections, 61 to 64
absolute, 114
allocating space for global, 6-2 to 6-3
appearing in map, 6—6
attributes, 6-3 to 64, 114
changing order of, 9-28
concatenated, 64, 11-4
data, 64
definition, 6-1
extending size of, 10~11
global, 6-3, 11-4
in default library, 4-17
in SYSLIB.OLB, 3-15
instruction, 6—4
local, 114
overlaid, 6-4, 114
placing with .PSECT, 6-5
read—only, 6-3 to 64, 9-16, 9-28, 114
read/write, 6-3 to 64, 9-16, 9-28, 114
relocatable, 114
Program size, 2-2, 3-1
Program status word, 9-31
Program version ID, B-9
Project—programmer numbers, specifying,
2-10
.PSECT, 6-5, 11-4
PSECT, B—4 to B-8
additive displaced relocation, B-19
additive relocation, B-18
displaced relocation, B-17
item type, B-26
relocation, B-17
reserved names, D-2
PSECT directive (MACRO), 6-1
PSW, 9-31

R

R3LDAT, C-5

R3LFLG, C-5

R$LHGV, C-5

R$LLDZ, C-5

RSLMXV, C-5

R$LMXZ, C-5

R$LNAM, C-5

RSLOFF, C-5

R3LSA, C-5

RSLSEG, C-5

RSLWND, C-5

Read-only resident library, 2-12
Read/write resident library, 2-12
Record Management Services, 2—-4t, 2-7

Region descriptor, C-14
REL attribute, 6-5, 11-4
Relative addressing, 1-3, 7-2
Relocatable /Relocated records, B-25
Relocation
additive, B-21
complex, B-19
directory format, B-12
entry, B-12
global, B-13
global additive, B-14
global additive displaced, B-15
global displaced, B-14
internal, B-12
internal displaced, B-13
PSECT, B-17
PSECT additive, B-18
PSECT additive displaced, B-19
PSECT displaced, B-17
Relocation directory, B-11
RESCOM option, 10-25
Reserved symbols, D-1 to D-2
Resident area, 7-1 to 7-8, 9-18, 10-10,
10-24
absolute, 7-2, 7-4
position—independent, 7-2 to 7-3
Resident common, 10-10, 10-25
building your own, 7-1
definition, 7-1
Resident libraries, 2-5, 2—-6f, 10-20, 10-26
building your own, 7-1
clustering, 2-13
definition, 7-1
limit in a cluster, 10-8
maximum number, 2-7, 2-11
read-only, 2—-12
read/write, 2—-12
system—owned, 2—-11
user—owned, 2-11
Resident overlay (/RO), 9-20
RESLIB option, 2-11 to 2-12, 10-26
example, 2-19
Revectoring cluster libraries, F—1
RLD record, B-1
RMS, 2-4t
RMS resident libraries, 2—7
RMS-11 libraries in a cluster, 10-8
RMSDAP.OLB, 24t
RMSLIB.OLB, 2-4t
RMSRES library, 2-13, 10-8
RO attribute, 2-12, 6-4, 114
in CLSTR option, 10-8
in cluster libraries, 2—-15

Index-7

/RO switch, 9-20
.ROOT, 3-3 to 3-6, 11-5
Root, 3-2, 3-8
co—tree structure, 4-2
null for co—tree, 4—4
putting libraries at end of, 3-13
simple overlay structure, 3—10
Routines
library (in co—trees), 4—6
library (in simple overlays), 3—-13
RSX directive emulation, 2-2
RSX run—time system, 2-2, 2—-12
$$RTS, 6-8
RTS PC instruction, 7-10
Run, diagnostic, 8-3
Run-time system, 22 to 2-3
RSX, 2-12
Running the Task Builder, 2-8, 81 to
87
RW, 2-12, 6-4 to 6-5, 114
in CLSTR option, 10-8
in cluster libraries, 2—15

S

Sample program

first build, 4-9

second build, 4-10

third build, 4-15

using co—trees, 4-7
SAV attribute, 114
Segment

as described in map, 6-7

definition, 3-10, 5—-4

descriptor, C—11

linkage, C-12

overlay format, C-14

putting libraries at end of, 3—13

root, 3-8

root format, C-14
Segmentation facility, 3—-2
Segregate program sections, 9-21
Selective Search (/SS), 9-29
Sequential (/SQ), 9-28

Set SST Vector Table for Debugging Aid

10-23
Set SST Vector Table for Task, 10-30
/SG switch, 9-21
/SH switch, 66, 9-22
Sharable code, 2—7
Short Map (/SH), 9-22
/SP switch, 9-27
Spool Map Output (/SP), 9-27

Index-8

/8Q switch, 9-28
/SS switch, 9-29
SST vector, 10-23, 10-30
Stack, 10-28
changing size, 6—7
definition, 6-7
for memory-resident areas, 7-2
STACK option, 7-2, 10-28
Start—of-segment item type, B—23
STB file, 2-9, 2-12, 7-2, 10-19, B-21,
B-23
SVDBS$ option, 10-23
SVTK$ option, 10-30
Switch
/CC, 9-3
/CO, 94
/DA, 9-5
/DL, 9-7
/FP, 9-8
/FU, 9-9
/HD, 9-10
/LB, 9-11
/LI, 9-13
/MA, 9-14
/MP, 9-15
/MU, 9-16
/NM, 9-17
/PI, 9-18
/PM, 9-19
/RO, 9-20
/8G, 9-21
/SH, 9-22
/SP, 9-27
/8Q, 9-28
/88, 9-29
/TR, 9-31
/WI, 9-32
/XT, 9-33
Switches, 9—1 to 9-33
overview, 9-1 to 9-2
Symbol table file, 2-9, 7-2, 8-2, 10-19
Symbol table, Task Builder’s internal,
9-29
Symbolic debugger, 2-9
Symbols
ambiguously defined, 3-12, 4-6
global, 3-11
local, 3-11
multiply defined, 3-12, 4-6
reserved, D-1 to D-2
undefined, 3-12, 46, 4-16
Synchronous system trap, 10-30

SYSLIB.OLB, 2-4t, 3-15, 9-7, 9-14, 9-28,
9-31
SYSTAT, 10-29
System Common Block (COMMON), 1010
System default library, 3-15, 9-7, 9-9,
9-14
how searched for co-trees, 4-3
using co—tree techniques on, 4-16
System—owned resident library, 2-11

T
T-bit, 9-31
Table
jump, F-1
vector, F-1
Task Builder
aborting run, 10-3
command line, 2-8, 8-1
data formats, B-1
exit on error, 9-33
improving performance, E-1
options, 10-1 to 10-32
running, 8-1 to 87
switches, 9-1 to 9-33
work file, E-1
Task file, 2-8, 8-1
Task identification item type, B-23
TASK option, 10-29
Task, extending memory for, 10-12
Text information record format, B-10
Time (reducing disk access), 3-9
TKB-generated record, B-23 -
/TR switch, 9-31
Trace, 9-31
TRACE.OBJ, 9-31
Traceable Program (/TR), 9-31
Transfer address, B-5
Trap, synchronous, 10-30
Tree
co-tree structure, 4-2
simple overlays, 3-10

TSK file, 2-8, 2-12, 7-2
TSKYV option, 10-30
TXT record, B-1

U

Undefined symbols, 4-16
in a simple overlay, 3—12
in co-trees, 46
UNITS option, 10-31
example, 2-17
User—owned resident library, 2-11
UTILTY, 7-2, 9-16

v

Vector
autoload indicator, 3-4
definition of autoload, 5-2
extension area, C—9
revectoring cluster libraries, F-1
SST, 10-23, 10-30
table, F-1
table code sample, F-3

$VEXT, C-8

Virtual address space, 2-3

w

/WI switch, 6-7, 9-32

Wide Listing Format (/WI), 9-32
Window descriptor, C-13

Windows, declaring number of, 10-32
WNDWS option, 10-32

Work file, E-1

X

XRB, 9-10
/XT switch, 9-33

Index-9

HOW TO ORDER ADDITIONAL DOCUMENTATION

DIRECT TELEPHONE ORDERS

In Continental USA In Canada In New Hampshire,
and Puerto Rico call 800—-267—6146 Alaska or Hawaii
call 800-258-1710 call 603—-884—6660

DIRECT MAIL ORDERS (U.S. and Puerto Rico*)

DIGITAL EQUIPMENT CORPORATION
P.O. Box CS2008
Nashua, New Hampshire 03061

DIRECT MAIL ORDERS (Canada)

DIGITAL EQUIPMENT OF CANADA LTD.
940 Belfast Road
Ottawa, Ontario, Canada K1G 4C2
Attn: A&SG Business Manager

INTERNATIONAL

DIGITAL EQUIPMENT CORPORATION
A&SG Business Manager
c/o Digital’s local subsidiary
or approved distributor

Internal orders should be placed through the Software Distribution Center (SDC), Digital
Equipment Corporation, Northboro, Massachusetts 01532

*Any prepaid order from Puerto Rico must be placed
with the Local Digital Subsidiary:
809-754-7575

RSTS/E

Task Builder
Reference Manual
AA-5072C-TC

Reader’'s Comments

Note: This form is for document comments only. DIGITAL will use comments submitted on this
form at the company’s discretion. If you require a written reply and are eligible to receive
one under Software Performance Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

[J Assembly language programmer

(0 Higher-level language programmer

[J Occasional programmer (experienced)

[J User with little programming experience

[J Student programmer

[J Other (please specify)
Name Date
Organization
Street

Zip Code

City State R r

0
Country

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN: Commercial Engineering Publications MK01-2/E06
RSTS/E Documentation

DIGITAL EQUIPMENT CORPORATION

CONTINENTAL BOULEVARD

MERRIMACK, N.H. 03054

No Postage
Necessary
if Mailed in the
United States

| ——— ——— — — —— A ——— —— —— ————— i — W ————— - ——— T — ——> ——

Cut Along Dotted Line

