December 1977

This manual describes six utility programs. supplied with
the FORTRAN IV compiler under the RSTS/E operating
system. These programs are required for full utilization
and maintenance of the compiler.

RSTS/E FORTRAN v
Utilities Manual

Order No. AA-2140B-TC

SUPERSESSION/UPDATE INFORMATION: This document completely supersedes the document
of the same name, Order No. DEC-11-LRUMA-A-D,
for Version 2 of PDP-11 FORTRAN IV,
DEC-11-LRUMA-A-D is still valid for Version 1C
of FORTRAN IV,

OPERATING SYSTEM AND VERSION: RSTS/E V06C

SOFTWARE VERSION: FORTRAN 1V V02

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, December 1977

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1977 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM=-20 TMS-11
ASSIST-11 RTS-8 ITPS~-10

CONTENTS

Page
PREFACE ix
- CHAPTER 1 INTRODUCTION 1-1
1.1 RSTS/E FORTRAN IV UTILITY PROGRAMS 1-1
1.2 CALLING THE UTILITY PROGRAMS 1-2
1.3 COMMAND STRING SPECIFICATIONS 1-2
CHAPTER 2 MACRO 2-1
2.1 INPUT AND OUTPUT 2-1
2,2 CALLING MACRO 2-2
2,2.1 Command String Specification 2-2
2.3 OPTIONS 2-4
2.3.1 Command String Specification 2-5
2.3.2 Listing Control Options 2-5
2.3.3 . Function Control Options 2-7
2.3.4 Cross-Reference Table Generation Option 2-8
2.3.4.1 Restrictions 2-9
2.3.4.2 The CREF File Listing 2-9
2,3.5 Assembly Pass Option 2-12
2.3.6 Macro Library File Designation Option 2-12
2.4 ERROR CODES AND MESSAGES 2-13
2.4.1 Programming Level Error Codes 2-13
2.4.2 I/0 Level Error Messages 2-14
CHAPTER 3 LINKER (LINK) 3-1
3.1 CALLING AND USING THE LINKER 3-1
3.2 OPTIONS 3-3
3.3 MEMORY ALLOCATION 3-5
3.4 GLOBAL SYMBOLS 3-8
3.5 INPUT AND OUTPUT 3-9
3.5.1 Object Modules 3-10
3.5.2 Load Module 3-10
3.5.3 Load Map 3-11
3.5.4 Library Files 3-11
3.6 USING OVERLAYS 3-13
3.7 USING LIBRARIES 3~-20
3.8 OPTION DESCRIPTION 3-23
3.8.1 Alphabetize Option (/A) 3-23
3.8.2 Bottom Address Option (/B:n) 3-23
3.8.3 Continue Option (/C) or (//) 3-24
3.8.4 Extend Program Section Option (/E:n) 3-24
3.8.5 Default FORTRAN Library Option (/F) 3-25
3.8.6 Highest Address Option (/H:n) 3-25
3.8.7 Include Option (/I) 3-26
3.8.8 Memory Size Option (/K:n) 3-26
3.8.9 LDA Format Option (/L) 3-26
3.8.10 Modify Stack Address Option (/M[:n]) 3-26
3.8.11 Overlay Option (/0O:n) 3-27
3.8.12 Library List Size Option (/P:n) 3-28

iii

CONTENTS (Cont.)

Page
3.8.13 Symbol Table Option (/S) 3-29
3.8.14 Transfer Address Option (/T[:n]) 3-29
3.8.15 Round Up Option (/U:n) 3-30
3.8.16 Map Width Option (/W) 3-30
3.8.17 Bitmap Inhibit Option (/X) 3-30
3.8.18 Zero Option (/Z:n) 3-30
3.9 LINKER PROMPTS 3-30
3.10 LINKER ERROR MESSAGES 3-31
CHAPTER 4 ON-LINE DEBUGGING TECHNIQUE (ODT) 4-1
4.1 CALLING ODT 4-1
4.2 RELOCATION 4-2
4.3 COMMANDS AND FUNCTIONS 4-3
4,3.1 Printout Formats 4-3
4.3.2 Opening, Changing, and Closing Locations 4-4
4.3.2.1 The Slash (/) 4-4
4.3.2.2 The Backslash (\) 4-5
4.3.2.3 The LINE FEED Key (LF) 4-5
4.3.2.4 The Circumflex or Up-Arrow () 4-5
4,3.2.5 The Underline or Back-Arrow (_) 4-5
4.3.2.6 Open the Addressed Location (@) 4-6
4.3.2.7 Relative Branch Offset (>) 4-6
4.3.2.8 Return to Previous Sequence (<) 4-6
4,3.3 Accessing General Registers 0-7 4-6
4,3.4 Accessing Internal Registers 4-7
4.3.5 Radix-50 Mode (X) 4-8
4.3.6 Breakpoints 4-9
4.3.7 Running the Program (r;G and r;P) 4-9
4.3.8 Single Instruction Mode 4-11
4.3.9 Searches 4-11
4.3.9.1 Word Search (r;W) 4-12
4,3.9.2 Effective Address Search (r;E) 4-12
4.3.10 The Constant Register (rC) 4-13
4.3.11 Memory Block Initialization (;F and ;I) 4-13
4,.3.12 Calculating Offsets (r;O) 4-14
4.3.13 Relocation Register Commands 4-14
4,3.14 The Relocation Calculators, nR and n! 4-15
4,3.15 ODT Priority Level, $P 4-16
4.3.16 ASCII Input and Output (r;nh) 4-16
4.4 PROGRAMMING CONSIDERATIONS 4-16
4.4.1 Functional Organization 4-16
4.4.2 Breakpoints 4-17
4,4.3 Searches 4-19
4.5 ERROR DETECTION 4-20
CHAPTER 5 LIBRARIAN 5=-1
5.1 CALLING AND USING LIBR 5-1
5.2 OPTION COMMANDS AND FUNCTIONS FOR OBJECT
LIBRARIES 5-2
5.2.1 Command Continuation Options (/C and //) 5-3
5.2.2 Creating a Library File 5-4
5.2.3 Inserting Modules into a Library 5-4
5.2.4 Delete Option (/D) 5-5
5.2.5 Extract Option (/E) 5-6
5.2.6 Delete Global Option (/G) 5-6

iv

APPENDIX

APPENDIX

e e e e .

WNNNMNNNNN
. Ll . . . L) . L]
FHPFRFFO®J
B WN o

(SRS S, oo,
> w W

. .

O

NNNNNNNNNa
. L] .
NN

e o o r o o @

U b W=

~
.
W

A
A.l
A.2
B

N e

CONTENTS (Cont.)

Include Module Names Option (/N)
Include P~section Names Option (/P)
Replace Option (/R)
Update Option (/U)
Wide Option (/W)
Listing the Directory of a Library File
Merging Library Files
Combining Library Option Functions
OPTION COMMANDS AND FUNCTIONS FOR MACRO
LIBRARIES
Command Continuation Options (/C or //)
Macro Option (/M[:n])
LIBR ERROR MESSAGES

PATCH

CALLING AND USING PATCH
PATCH Options
Checksum
PATCH COMMANDS
Patching a New File (F)
Exiting from PATCH (E)
Examining and Changing Locations in the File
Translating and Indirectly Modifying
Locations with a File
Setting Values in the Overlay Handler
Tables of a Program
Including the 0l1d Contents Into the Checksum
Setting the Bottom Address
Setting Relocation Registers
PATCH EXAMPLES
Patching a Non-Overlaid File
Patching an Overlaid File
PATCH ERROR MESSAGES

OBJECT MODULE PATCH UTILITY (PAT)

CALLING AND USING PAT

HOW PAT APPLIES UPDATES
The Input File
The Correction File
Creating the Correction File
How PAT and the Linker Update Object Modules
Overlaying Lines in a Module
Adding a Subroutine to a Module
Determining and Validating the Contents of
a File

PAT ERROR MESSAGES

CHARACTER CODES

ASCII CHARACTER SET
RADIX-50 CHARACTER SET

FILENAME EXTENSIONS

g
o]
Q
[0

11

U'lUlLﬂlfU'IU'lU'IU'I
HEWO0O®ON~I

1
HHE e
-

1

[l) M We) We) WeWe) =3}
1
BB WNN | and

=2}
1
(8]

[e W e e We W)
I I T T T I |

1111 |
SV dWHE H HEHEWYWO00

~N
1
@

A-1
A~4

B-1

oo

w

CONTENTS (Cont.)

Page
APPENDIX C OPTION SUMMARY c-1
c.1l MACRO OPTIONS c-1
c.1l.1 Arguments for Listing Control Options Cc~-1
c.1l.2 Arguments for Function Control Options Cc=-2
c.l.3 Arguments for the Cross-Reference Option Cc-2 *
c.2 LINK OPTIONS c-3
C.3 LIBR OPTIONS Cc-4
Cc.4 PATCH OPTIONS c-5
APPENDIX D ERROR MESSAGE SUMMARY D-1
D.1 MACRO ERROR CODES AND ERROR MESSAGES D-1
D.1.1 MACRO Error Codes D-1
D.1l.2 MACRO Error Messages D=2 -
D.2 LINK ERROR MESSAGES . D-4]
D.3 LIBRARY ERROR MESSAGES D-11
D.4 PATCH ERROR MESSAGES D-15
D.5 PAT ERROR MESSAGES D-17
INDEX Index~-1
FIGURES
-~
FIGURE 2-1 Example of an Assembly Listing 2-6
2-2 Cross-Reference Listing 2-11
3-1 Linker Load Map 3-12
3-2 An Overlay Structure for a FORTRAN Program 3~14
3-3 Specifying An Overlay Structure With /0O 3-15
3-4 The Run-Time Overlay Handler 3-15
3-5 Sample Subroutine Calls and Return Paths 3-17
3-6 Memory With Overlays 3-20
3-7 Library Searches 3-22
7-1 Updating a Module Using PAT 7-2 Ay,
7-2 Processing Steps Required to Update a Module ’
Using PAT 7-3
TABLES
TABLE 1-1 Protection Codes 1-4
2-1 Default File Specification Values 2-4
2-2 MACRO Options 2-5 -
2-3 Valid Arguments for /L and /N Options 2-7
2-4 valid Arguments for /E and /D Options 2-7
2-5 /C Option Arguments 2-10
3-1 Linker Defaults 3-3
3=2 Linker Options 3-3
3-3 P-section Attributes 3-6
3-4 Section Attributes 3-8
3-5 Global Reference Resolution 3-9 -

vi

CONTENTS (Cont.)

Page
TABLES (Cont.)

TABLE 3-6 Linker Prompting Sequence 3-31
4-1 Forms of Relocatable Expressions (r) 4-3
4-2 Internal Registers 4-7
4-3 Radix-50 Terminators 4-8
4-4 Single Instruction Mode Commands 4-11
4~5 ASCII Terminators 4-16
5~1 LIBR Object Options 5-3
5-2 LIBR Macro Options 5-11
6~1 PATCH Options 6-2
6-2 PATCH Commands 6-3
6-3 PATCH Control Characters 6-5
A-1 Radix-50 Character Set A-5

vii

PREFACE

This manual describes the RSTS/E FORTRAN IV Utilities, a set of six
programs supplied with the FORTRAN IV compiler. These utilities will
enable you to use the FORTRAN IV compiler and other system resources
more efficiently when running FORTRAN programs. Two of these
utilities are needed to maintain the compiler and the other utilities.

0.1 MANUAL OVERVIEW

This manual presents an overview of all the wutilities in Chapter 1
(INTRODUCTION) . It then describes the wutilities for assembling
MACRO-11 subprograms (Chapter 2, MACRO), 1linking object modules
(Chapter 3, LINK), debugging assembly language subprograms (Chapter 4,
ODT), creating and maintaining libraries (Chapter 5, LIBR), patching
the wutilities (Chapter 6, PATCH), and making code modifications to
object modules (Chapter 7, PAT). The appendices include the ASCII and
RADIX-50 character sets, RSTS/E filename extensions, an option summary
and an error message summary.

0.2 READER ASSUMPTIONS

This manual assumes that you are familiar with the RSTS/E operating
system and the FORTRAN IV language in general, as implemented on the
PDP-11. 1If you are not, you should read the RSTS/E System User's
Guide and the PDP-11 FORTRAN Language Reference Manual. Then use this
utilities manual In conjunction with the RT-11/RSTS/E FORTRAN IV
User's Guide to efficiently write and execute FORTRAN programs under
the RSTS/E system.

Additionally you should have had some exposure to assembly language
subprogramming to use this utilities manual. Chapter 2, MACRO, which
describes usage of the MACRO assembler, contains no MACRO language
reference material. Therefore use in conjunction with Chapter 2 the
PDP-11 MACRO-11 Language Reference Manual.

NOTE

The MACRO assembler as supplied with the
RSTS/E FORTRAN IV compiler is suitable
for subprogram processing only. Digital
does not support I/0 or monitor service
requests with MACRO programming under
RSTS/E.

ix

0.3 ASSOCIATED DOCUMENTS

RSTS/E System User's Guide

RT-11/RSTS/E FORTRAN IV User's Guide

PDP-11 FORTRAN Language Reference Manual

PDP-11 MACRO-11 Language Reference Manual

RSTS/E Documentation Directory

0.4 DOCUMENTATION CONVENTIONS

The documentation conventions used throughout this manual include the
following items:

1.

Actual computer output is used in examples wherever possible.
Where necessary, computer output is underlined to
differentiate it from user responses.

Unless the manual indicates otherwise, terminate all commands
and command strings with a carriage return. Where necessary,
this manual uses the symbol RET to represent a carriage
return, LF to represent a line feed, SP for a space, and TAB
to represent a tab.

Terminal, console terminal, and teleprinter are general terms
used throughout this manual to represent any one of the
following: LA30 or LA36 DECwriter, VTO05 or VT50 Display,
LT33 or LT35 Teletype*.

To produce several characters in system commands you must
type a combination of keys concurrently. For example, hold
down the CTRL key and type O at the same time to produce the
CTRL/O character. Key combinations such as this one are
documented as CTRL/0, CTRL/C, SHIFT/N, etc. Note that you do
not type the slash. It is included for documentation
purposes only.

In descriptions of command syntax, capital letters represent
the command name, which you must type as shown. Lower case
letters represent a variable, for which you must supply an
appropriate value.

The ellipsis symbol (...) indicates repetition. You can
repeat the item that precedes the ellipsis symbol.

* Teletype is a registered trademark of the Teletype Corporation.
X

CHAPTER 1

INTRODUCTION

1.1 RSTS/E FORTRAN IV UTILITY PROGRAMS
The utility programs provided with the RSTS/E FORTRAN IV compiler are:

® Macro Assembler (MACRO)
MACRO processes assembly language subprograms, producing
object modules for later combination with FORTRAN programs
using the LINK utility. You can obtain from MACRO
formatted 1listings of your source (input) code as well as
cross~reference, symbol table, and table of contents
listings.

® Linker (LINK)
LINK combines FORTRAN object programs (output from the
RSTS/E FORTRAN IV compiler) with any necessary library and
assembly language subroutines to create a runnable
program.

e Online Debugging Technique (ODT)
ODT is a tool for debugging assembly language subprograms
under RSTS/E. It provides the capability of stopping
program execution at various points to examine or modify
the contents of variables. You combine ODT with the
subprogram to be debugged using the LINK utility.

e Librarian (LIBR)
LIBR lets you build and maintain object libraries of your
frequently used FORTRAN or MACRO routines. The librarian
organizes the 1library files so that the 1linker and
MACRO-11 assembler can access them rapidly.

e Patch Program (PATCH)
PATCH is primarily used to incorporate any system patches
published by DIGITAL into the utilities. However, you can
use PATCH to modify runnable program (.SAV) files.

e Object Module Patch (PAT)
PAT lets you modify code in a relocatable binary object
(.OBJ) module. This means you can change previously
assembled code for which the source file is no 1longer
available. PAT can also be used to update library files
(as can LIBR) and to patch the compiler and FORTRAN Object
Time System (OTS).

1-1

INTRODUCTION

1.2 CALLING THE UTILITY PROGRAMS

To call a RSTS/E FORTRAN IV utility program you respond to the
monitor's READY prompt by typing a command of the form:

RUN $prog RET

where prog represents a utility name. When the utility you called is
ready to accept a command string, it prompts you with an asterisk (*).

Note that ODT 1is not invoked in this way. Chapter 4 explains
procedures for calling and using ODT.

1.3 COMMAND STRING SPECIFICATIONS

When a utility is ready to accept a command string, it prompts you
with an asterisk. The first command string you can enter in response
has the general format:

output = input

where output represents the output filename
specifications. Zero to three
filenames are allowed describing
the output files to be produced.

input represents the input filename
specifications. Zero to six
filenames are allowed describing
the input files to be used.

(PATCH requires you to enter this information slightly differently.
Complete instructions are provided in Chapter 6.)

Each filename specification has the form:
dev:filnam.ext[p,pn]<prot>/fop/option

where dev: represents an optional 2- to
3~character logical or physical
device name. Explicit keyboard
specifications cannot be used
(i.e., KB: is legal, but KB13: is
not) . Table 1-3 in the RT-11/
RSTS/E FORTRAN IV User's Guide
Iists acceptable physical device
names.

filnam is any 1- to 6—-character
alphanumeric filename.

.ext is any 0-. . to 3-character
alphanumeric extension.

[p,pn] is any RSTS/E-. project (p) .
programmer number (pn) and is used
to identify the owner of a file.
If the number 1is specified, then
the file being sought must exist
under that number. If no [p,pn] is
given, the file will first be
sought in the current user's

INTRODUCTION

directory. If the file cannot be
found in the directory, a search
will be made of the system library
([p,pn] = 1,2).

<prot> is a protection code that uses
decimal values to restrict access
to a file. The degree of

restriction is determined by a code
or combination of codes as shown in
Table 1-1. Protection codes have
effect only when given to output
files; they are ignored on input
files.

/fop represents an optional RSTS/E file
specification option. Refer to the
RSTS/E System User's Guide or the
RSTS/E Programming Manual for more
information.

/option represents one oOr more utility
program options whose functions
vary according to the wutility you
are using. valid options for a
particular utility are 1listed in
tabular form in the appropriate
chapter. (Do not confuse utility

program options with file
specification options mentioned
above. They are two different
items.)

The device name you specify for the first file in a list of input or
output files applies to all the files in that input or output list
until you supply a different device name. If you do not supply a
device name, the system uses the default device DK:. For example:

*DT1:FIRST.OBJ,LP:=TASK.1,DK1:TASK.2,TASK.3
This command is interpreted as follows:
*DT]1:FIRST.OBJ,LP:=DK:TASK.1,DK1:TASK.2,DK1:TASK.3
File FIRST.OBJ is stored on device DTl:. File TASK.l is stored on
default device DK:. Files TASK.2 and TASK.3 are stored on device
DK1l:. Notice that file TASK.l is on device DK:. It is the first file
in the input file 1list and the system uses the default device DK:.
Device DTl: applies only to the file on the output side of the
command .
Some options for certain utilities are of the form:
/oz:arg
where o represents the option name and arg represents an argument or
value. Ranges for the values of option arguments are given in the

appropriate chapters. Generally, options and their associated values,
if any, should follow the device and filename to which they apply.

1-3

INTRODUCTION
If the same option is to be repeated several times with different
values, you can abbreviate the command string. For example,
/L:MEB/L:TTM/L:CND
can be abbreviated as
/L:MEB:TTM:CND.
The equal sign (=) used to separate the output and input fields is

optional. You can use the < sign in place of the = sign. You can
omit the separator entirely if there are no output files.

Table 1-1
Protection Codes

Code Meaning
1 read protect against owner
2 write protect against owner
4 read protect against owner's project number
8 write protect against owner's project number
16 read protect against all others who do not

have owner's project number

32 write protect against all others who do not
have owner's project number

64 compile, run-only files

128 privileged program

These codes can be used singularly or combined to provide greater
degrees of protection. For example, a protection code of <60> is a
combination of codes <32>, <16>, <8>, and <4>. This combination of
codes allows only the user to read and write the file.

1-4

CHAPTER 2

MACRO

MACRO is a two pass assembler used to process subprograms written in
MACRO-11, the PDP-11 assembly language. MACRO is provided as a RSTS/E
FORTRAN IV utility for the programmer who wishes to combine FORTRAN
routines and assembly 1language routines. Note that the MACRO
assembler as supplied with the FORTRAN IV compiler 1is suitable for
subprogram processing only. Digital Equipment Corporation does not
support I/O or monitor service requests with MACRO programming under
the RSTS/E operating system.

Routine calculations or operations that you use often are prime
candidates for coding in MACRO-11. If you do elect to write MACRO-11
subprograms use the programming rules defined in the PDP-11 MACRO-11
Language Reference Manual. Then, using the commands described in this
chapter, you can submit your subprogram to MACRO for processing.

The Online Debugging Technique, ODT, can be used to debug MACRO-11
subprograms. ODT is provided as a RSTS/E FORTRAN IV utility and is
described in Chapter 4.

To combine¢ MACRO subprograms with a FORTRAN main program you use the
LINK utility. From your subprograms, main program, and any other
FORTRAN or library routines that are needed, the linker creates a load
module which is ready for execution under a RSTS/E system.

LINK is also provided as a RSTS/E FORTRAN IV utility. Chapter 3
describes LINK.

To ensure that your subprograms are effectively called, certain
programming considerations must be made. These are described in
Section 2.3 of the RT-11/RSTS/E FORTRAN IV User's Guide.

2.1 INPUT AND OUTPUT
Input to the MACRO assembler is up to six ASCII source files
containing MACRO-11 statements. These are the files to be processed
by MACRO. Source files can be input from any legal RSTS/E file
structured device.
During an assembly process MACRO can create the following files:

1. object

2. listing

3. <cross-reference

The object file contains the machine language code generated by the

2-1

MACRO

MACRO assembler as a result of processing your source (input) files.
The object file is in relocatable binary object format. This file can
be output to any legal RSTS/E device except TT: or LP:.

The listing file can contain a source (input) program listing, a
symbol table, and a table of contents. When output to a printing
device this file provides listings that contain useful reference and
debugging information. The 1listing file can be output to any legal
RSTS/E device.

The cross-reference file is a temporary file that MACRO automatically
deletes following an assembly process. It is created on the default
device DK: unless you specify otherwise. The cross-reference file is
a set of tables that, like the listing file, can contain information
useful for debugging and reference. You can obtain from MACRO a
listing of the cross-reference file.

You determine which of these output files will be <created during an
assembly process by including specifications for the desired files in
the MACRO command string, as described in Section 2.2.1. A set of
MACRO options 1let you control the exact form and content of each
output file. The MACRO options are described in Section 2.3.

2.2 CALLING MACRO
To call MACRO, respond to the system's READY message by typing:
RUN SMACRO RET

MACRO prints an asterisk (*) when it is ready to accept command string
input.

Typing CTRL/C at this point will return control to the monitor, which
prompts you with a READY message. If an assembly is in process, you
must type two CTRL/Cs to return control to the monitor.

2.2.1 Command String Specification

In response to the * printed by MACRO, you can enter a command line
consisting of the output file specifications followed by an equal sign
or left angle bracket, and then by the input file specifications.
Format this command line as follows:

*dev:obj,dev:list,dev:cref/o:arg=dev:sourcei,...,devisourcen/o:arg

where dev: represents the 2- or 3-character code
for a physical or logical device name

obj represents the file specification for
the relocatable binary object (output)
module

list represents the file specification for

the listing file

cref represents the file specification for
the temporary cross-reference file

MACRO

sourcei, represents the file specifications for

.+ ,80UrCenN the ASCII source (input) files that are
to be assembled. A maximum of six
source files is allowed.

/oz:arg represents an option and argument as
explained in Section 2.3.

In the command string above, dev: must be a legal RSTS/E
file-structured device for input files. For output files dev: can be
any legal RSTS/E device with one exception; the device for the object
file cannot be a terminal or line printer.

The format for an output file specification is as follows:
dev:filename.ext[p,pn]<prot>

However, the file specification for a listing file can be abbreviated

to include only the device code if the listing file is to be output

directly to a printing device such as TTn: or LPn:.

The format for an input (source) file specification is:

dev:filename.ext([p,pn]

Here the protection codes can be omitted since MACRO ignores them on
input files.

Object and listing files are output by MACRO only when a file
specification for them is included in the command string.

Cross-reference file listings are output by MACRO when an option
(/C:arg) 1is included in the command string. The cross-reference file
specification is needed only when you want a device other than the
default device DK: to contain the file. Section 2.4 explains
procedures for handling the temporary cross-reference file.

When omitting an output file specification from the command string you
must include leading commas. Trailing commas need not be included.

For example, the following command produces a listing file and a
cross-reference file listing but no object file:

*,LP:/C=DK1:DEMO.MAC[240,129]

The next command produces an object £file but no 1listing file or
cross-reference listings. 1Input files are on the default device.

*DK1:BINF.OBJ[240,129]<40>=SRC1.MAC, SRC2.MAC
MACRO assumes certain default values when you do not specify devices

and file extensions in the command string. These default values are
listed in Table 2-1.

MACRO

Table 2-1
Default File Specification Values

File Default Default Default File
Device Filename Extension
object DK: must specify .OBJ
listing same as for must specify .LST
object file
cref DK: CREF . TMP
sourcel DK: must specify +MAC
source?2 same as for must specify .MAC
. preceding source
. file
sourcen
User DK: if first must specify .MAC
MACRO file, otherwise
Library same as preceding

source file

The CCL (Concise Command Language) option provides an alternative
procedure for invoking MACRO. For information on this option, see
Chapter 5 of the RT-11/RSTS/E FORTRAN IV User's Guide.

2.3 OPTIONS

Seven MACRO options are provided to give you some degree of control
over the assembly process.

Four of the options let you override certain MACRO directives
appearing in the source code. These are the listing control options
(/L:arg and /N:arg) and the function control options (/E:arg and
/D:arg). These options and their possible arguments are described in
Section 2.3.2 and Section 2.3.3, respectively.

The CREF Table Generation Option, /C:arg, and its possible arguments
allow you to obtain from MACRO detailed cross-reference file listings.
This option is described in Section 2.3.4.

Two options (/P:arg and /M) direct MACRO on the handling of certain
input files. These options are described in Sections 2.3.5 and 2.3.6,
respectively.

Table 2-2 lists the options and describes generally the effect of
each.

MACRO

2.3.1 Command String Specification

With some options you may want to specify more than one argument, or
value. Where legal, multiple arguments may be specified for a
particular option by separating each argument from the next by a
colon. For example:

/N:TTM:CND

The /M and /P options affect only the particular source file
specification to which they are directly appended in the command
string. The other options are unaffected by their placement in the
command string.

Table 2-2
MACRO Options

Option Usage

/L:arg Listing control, overrides source program
directive .LIST

/N:arg Listing control, overrides source program
directive .NLIST

/E:arg Object file function enabling, overrides
source program directive .ENABL

/D:arg Object file function disabling, overrides
source program directive .DSABL

/M Indicates input file is MACRO library file

/C:arg Control contents of cross-reference
listing

/P:arg Specifies whether input source file is to

be assembled during pass 1 or pass 2

2.3.2 Listing Control Options

There are two listing control options, /L:arg (list) and /N:arg (no
list). By specifying these options with a set of selected arguments
you override at assembly time the arguments of .LIST and .NLIST
directives 1in the source code. In doing so you can control the
content and format of assembly listings.

Table 2-3 lists and explains the listing control options.

An assembly listing of a small program is shown in Figure 2-1. This
listing shows the more important listing features. The features are
labeled with the argument from Table 2-3 that caused their appearance
on the listing.

MACRO

DIST-—~ COMFUTE DISTANCE MACRO V03,01 14-NOV-77 15134:29 FAGE 1

SRC
—

LTITLE DIST-- COMFUTE DISTANCE
THIS ROUTINE COMFUTES THE DISTANCE BETWEEN TWO FOINTS
ON A FLANE, IT REQUIRES THE FF1l-B FLOATING FOINT
FROCESSOR »

N

THE FORTRAN CALL IS OF THE FORM?

A = DISTC X1y Y1y X2¢ Y2)

ﬂm\l&f.’lbumﬁ“ﬂ

- W e R e W e e ws N

10 WHERE! X1y Y1 ARE THE COORIINATES OF THE 1ST FOINT

11 X2y Y2 ARE THE COORDINATES OF THE 2NDI POINT

12 A IS THE RETURNED DISTANCE

13 /»—’”\-\ JGLOEL DISTy SORT

14 000000 RO= %0 $DEFINE THE REGISTERS

15 000001 Ri= %1

16 000002 R2= %2

17 000003 R3= %3

18 000004 R4= %4

19 000005 RS= %5

20 000006 gp= %6

21 000007 FC= %7

22 Mo 000000 FO= %0 $DEFINE FFil~F REGISTERS

23 000001 Fi= %1

24 000002 F2= %2

25 000003 F3= %3

26 000000 005725 DIST: TST (RS)+ $SKIF # OF ARGUMENTS

27 000002 172435 LDF @(R5)+sFO JFO = X1

28 000004 172535 LDF B(RS)+sF1 PF1 = Y1

29 000006 173035 SUEF B(RS)+sFO PFO = X1-X2

30 000010 173135 SUBF B(RS)+sF1 PF1 = Yi-Y2

31 000012 171000 MULF FOsFO FFO = (X1-X2)%%2

32 000014 171101 MULF FisFi PF1 = (Y1-Y2)%%2

33 000016 172001 ADLF FiyFO FFO = (X1-X2)%kX2 + (Y1-Y2)kk2

34 000020 174046 STF FOy-(SF) $STORE THE VALUE FOR THE CALL

35 000022 010600 MOV SFyRO $GET THE ADDRESS OF VALUE

36 000024 010046 MOV ROy~(SF) $AND' BUILD ARG LIST

37 000026 012746 MOV #1y-(8F) $COUNT OF ARGS (=1)
000001

38 000032 010605 MOV SPyRS $RS=> ARG LIST FOR SORT

39 000034 004767 JSK FCySORT $CALL SQRT
0000006

40 000040 062706 AL #10ySF FFOF ARG LIST AND VALUE
000010

41 000044 000207 RTS FC $AND RETURN (SQRT LEFT

42 $VALUE IN ROsR1)

43 000001 +END

IIST-- COMFUTE DISTANCE MACRO V03,01 14-NOV-77 153134129 PAGE 1-1
SYMEOL TARLE

nIsT 000000RG Fi =%000001 F3 =%000003

SYM Fo =%000000 F2 =%000002 SQRT = XkkKXk G
. AES. 000000 000
000046 001

ERRORS LETECTELD?! O

VIRTUAL MEMORY USED: 283 WORDS (2 PAGES)
OYNAMIC MEMORY AVAILARLE FOR 70 FAGES
GYIDIST.ORJy TT:=DIST MAC/L IMERITTM <—————{ COPY OF MACRO COMMAND STRING

ERRORS DETECTED:! O

Figure 2-1 Example of an Assembly Listing

The /N option with no argument causes MACRO to list only the symbol
table, table of contents and error messages.

The /L option with no arguments causes MACRO to ignore .LIST and
.NLIST directives in the source code that have no arguments.

MACRO

The following example lists binary code throughout the assembly using

the 132-=column
listing.

*I,LP:/L:MEB/N:SYM=FILE

line

printer format, and suppresses the symbol table

Table 2-3
Valid Arguments for /L and /N Options
Argument | Default Controls listing of

SEQ list Source line sequence number

LoC list Address Location counter

BIN list Generated binary code

BEX list Binary extensions

SRC list Source code

CcoM list Comments

MD list Macro definitions, repeat
range expansion

MC list Macro calls, repeat
range expansion

ME nolist Macro expansions

MEB nolist Macro expansion binary code

CND list Unsatisfied conditonals, .IF and
.ENDC statements

LD nolist List control directives with no
arguments

TOC list Table of Contents

TTM nolist 132 column line printer format
when not specified

terminal mode when specified
SYM list Symbol table

2.3.3 Function Control Options

The function control options (/D:arg and /E:arg) allow you to override
ENABL and DSABL directives in the source code.

A summary of the arguments which are valid for use with the
control options is provided in Table 2-4.

function

Table 2-4
Valid Arguments for /E and /D Options
Argument | Default Enables or Disables
Mode
ABS Disable Absolute binary output
AMA Disable Assembly of all absolute addresses
as relative addresses
CDR Disable Source columns 73 and greater to be
treated as comments

(continued on next page)

MACRO

Table 2-4 (Cont.)
Valid Arguments for /E and /D Options

Argument | Default Enables or Disables
Mode
CRF Enable Cross-reference listing. /D:CRF

inhibits CREF output even if /C
is specified.

FPT Disable Floating point truncation

GBL Disable Undefined symbols treated as
globals

LC Disable Accepts lower case ASCII input

LSB Disable Local symbol block

PNC Enable Binary output

REG Enable Mnemonic definitions of registers

Use of either the function control or 1listing control options and
arguments at assembly-time will override any corresponding listing or
function control directives and arguments in the source program. For
example, assume the following appears in the source program:

.NLIST MEB

. (MACRO References)
.LIST MEB

In this example, you disable the listing of macro expansion binary
code (MEB) for some portion of the subprogram and subsequently resume
MEB listing. However, if you indicate /L:MEB in the assembly command
string, the system ignores both the .NLIST MEB and the .LIST MEB
directives. This enables MEB listing throughout the program.

Sections 6.1.1 and 6.2 of the PDP-11 MACRO-1l1 Language Reference
Manual contain more detailed information on the arguments for both the
listing control and function control options. The material is
presented in the context of arguments for the assembler directives
.LIST and .NLIST, ENABLE and DSABLE.

2.3.4 Cross-Reference Table Generation Option

MACRO outputs a cross-reference file (CREF) listing when you include
in your command string the /C:arg option. CREF is a temporary file
that lists various types of symbols used in your source code and
identifies the statements that referenced the symbols. CREF listings
can be very useful when debugging a subprogram.

A CREF listing can contain up to six sections. Each section
cross-references a different type of symbol. The arguments you
specify with the /C option determine which sections are produced.
valid arguments for /C are described in Section 2.3.4.2.

MACRO

2.3.4.1 Restrictions - When /C:arg is specified to MACRO you must
also include a listing file specification in the command string. (The
cross-reference listing you request from MACRO is generated at the end
of the MACRO assembly listing.) The /C:arg option is usually appended
to the listing file specification, but it is just as effective
anywhere in the command string.

Unless you specify otherwise CREF is created on the default device.
If you wish to have CREF.TMP created on some other device (because of
space considerations, for example), you must include the CREF file
specification (dev:name.TMP) in the input command string. Note that
you still must specify the /C:arg option to get a CREF file listing.

Another way to assign an alternative device for the CREF file is by
the monitor ASSIGN command. Enter this command before calling MACRO
(via RUN SMACRO) as follows:

READY
ASSIGN dev:CF

If you later include a CREF file specification in a command string
after entering the ASSIGN command, the CREF file specification will
prevail for that particular assembly only.

Note that regardiess of where a CREF file 1is created it 1is always
deleted by MACRO following the assembly process.

2.3.4.2 The CREF File Listing - A complete CREF file listing contains
the following six sections:

1. A cross reference of program symbols; that is, labels used
in the program and symbols followed by the "=" operator.

2. A cross reference of register equate symbols. These are
symbols defined in the source code by the construct:

symbol=%n
with 0s<n=27.

%n represents the eight general registers of the PDP-11
processor. MACRO-11 assigns the following default symbols to
%$0-%7 (register 0 through register 7):

RO, R1l, R2, R3, R4, R5, SP, PC

3. A cross reference of MACRO symbols; that is, those symbols
defined by .MACRO and .MCALL directives.

4., A cross reference of permanent symbols. These include
operation mnemonics and assembler directives.

5. A cross reference of program sections. These symbols include
the names specified as the operand of a .CSECT or .PSECT
directive. The blank .CSECT and the absolute section . ABS.
are cross-referenced also.

MACRO

6. A cross-reference of errors. Certain types of programming
and syntax errors in your source code are detected by MACRO
and flagged with a one-letter error code. In the error
section of a CREF Table, MACRO groups and lists the errors by

type.

The one-letter error codes also appear on the assembly
listings.

Error codes and error messages are explained in Section 2.4.
Any or all of the above sections may be included in the cross

reference listing by specifying the appropriate arguments with the /C
option. These arguments are described in Table 2-5.

Table 2-5
/C Option Arguments
Option
Argument CREF Section
] User-defined symbols
R Register symbols
M MACRO symbolic names
P Permanent symbols including
instructions and directives
C Program sections
E Error codes
<no arg> Equivalent to /C:S:M:E

Figure 2-2 contains a cross-reference 1listing produced by the
following command line:

*SY:DIST.OBJ,TT:=DIST.MAC/L:MEB:TTM/C:S:R:P:C

An explanation of the listing follows the figure.

MACRO

DIST=~ COMPUTE DISTANCE MACRO V03.01 14-NOV-77 15:129!56 FAGE S5-1
CROSS REFERENCE TARLE (CREF V01-0%5)

nIST 1-13 1-26%

FO 1-22% 1-27% 1-29% 1-31 1-31% 1-33% 1-34
F1 1-23% 1-28% 1-30% 1-~-32 1-32% 1-33

F2 1-24%

F3 1-25#%

SART 1-13 1-39

DIST~~ COMPUTE DISTANCE MACRO VO03.01 14-NOV-77 15129156 FPAGE R-1
(CROSS REFERENCE TARLE (CREF V01-03)

rC 1-21% 1-39% 1-41%

RO 1-14% 1-35% 1-36

R1 115+

R2 1-16%

R3 1-17%

K4 1-18%

RS 1~19#% 1-26 1-27 1-28 1-29 1-30 1-38%
8P 1-20% 1-34% 1-35 1-36x% 1-37% 1-38 1-40%

DIST-- COMPUTE DISTANCE MACRO V03,01 14-NOV-77 15329356 FAGE P-1
CROSS REFERENCE TARLE (CREF V01-05)

+ENI 1-43
+GLOEL 1-13
+TITLE i-1

ADD 1-40

ADLF 1-33

JBR 1-39

LDF 1-27 1-28

MOV 1-35 1-36 1-37 1-38
MULF 1-31 1-32

RTS 1-41

8TF 1-34

SURF 1-29 1-30

8T 1-26

BIST-—~ COMFUTE DISTANCE MACRO V03,01 14-NOV-77 15:29!56 FPAGE C-~1
CROSS REFERENCE TAERLE (CREF V01-05)

Figure 2-2 Cross-Reference Listing

MACRO

Cross reference tables you request from MACRO are generated at the end
of the MACRO assembly listing. Each table begins on a new page (the
tables in Figure 2-2 have been consolidated to save space).

Symbols, program section names, and error codes are listed at the left
margin of the page. References to each symbol are listed on the same
line across the page from left to right. A reference is of the form
p-n, where p 1is the page on which the symbol appears, and n is the
line number within the page.

A number sign (#) next to a reference indicates a symbol definition.

An asterisk (*) next to a reference indicates an operation was made
that altered the contents of an addressed 1location (called a
destructive reference).

2.3.5 Assembly Pass Option

The /P:arg option is meaningful only if appended to a source input
file specification. You must specify either of two arguments with it:
1 or 2.

The specification /P:1 calls for assembly of the file during pass 1
only. Some files consist entirely of code that 1is completely
assembled at the end of pass 1. By specifying /P:1 for these files,
you can cause MACRO to skip processing of these files through pass 2.
In some cases this procedure can save considerable assembly time.

The specification /P:2 calls for assembly of the file during pass 2
only. Situations where the /P:2 option can be meaningfully employed
are unusual.

2.3.6 Macro Library File Designation Option

The /M option is meaningful only if appended to a source file
specification. It has no arguments, and it designates its associated
source file as a macro library.

When the assembler encounters an .MCALL directive in the source code,
it searches macro libraries according to their order of appearance in
the command string. When it locates a macro record whose name matches
that given in the .MCALL, it assembles the macro as indicated by -that
definition. Thus if two or more macro libraries contain definitions
of the same macro name, the macro library that appears leftmost in the
command string takes precedence.

Consider the following command string:
* (output file specification)=ALIB.MAC/M,BLIB.MAC/M,XIZ

Assume that each of the two macro libraries, ALIB and BLIB, contain a
macro called .BIG, but with different definitions. Then, if source
file XIZ contains a macro call .MCALL .BIG, the system includes the
definition of .BIG in the program as it appears in the macro library
ALIB.

2-12

MACRO

2.4 ERROR CODES AND MESSAGES

MACRO can detect errors on two levels; programming 1level and
input-output level.

Programming level errors are mistakes in source code syntax or faulty
program logic. MACRO indicates an error on this 1level with a
single~letter error code. These codes automatically appear on
assembly listings.

When output to a line printer programming level error codes appear on
the left margin of the assembly listing, preceding the source line
sequence numbers.

When output to a terminal (via /L:TTM or .LIST TTM) these error codes
appear on the assembly 1listing following a field of six asterisk
characters and precede the source 1line containing the error. For
example:

kkkkhk A
26 00236 000002' .WORD REL1+REL2

Programming level error codes also appear on the cross-reference
listing if you specify /C:E in the MACRO command string.

Section 2.4.1 describes programming level errors detected by MACRO and
their corresponding error codes.

Input-Output (I/0) level error messages appear when incorrect command
strings are specified to MACRO or when problems arise with I/0O
devices. I/0 level error messages are of one of the following
formats:

?MACRO-F-message
or
?CREF-F-message

These messages are output to the terminal.

Section 2.4.2 describes I/O level error messages produced by MACRO.

2.4.1 Programming Level Error Codes
Error Code Meaning

A Addressing or relocation error. This occurs when an
instruction operand has an invalid address, or when the
definition of a local symbol occurs more than 128 words
from the beginning of a local symbol block.

B Boundary error. The current setting of the 1location
counter would cause the assembly of instruction or word
data at an odd memory address. The system increments
the location counter by 1 to correct this.

D Reference to multiple-definition symbol. The program
refers to a non-local label that is defined more than
once.

E No END directive. The assembler has reached the end of

a source file and found no END directive. The system
generates .END and continues.

2-13

MACRO

Error Code Meaning

I Illegal character detected. The assembler has
encountered in the source file a character that is not
included in the language character set. The system
replaces each illegal character with a ? on the
assembly listing and proceeds as 1if the illegal
character were not present.

L Link buffer overflow. The assembler has encountered an
input 1line greater than 132 characters. 1In terminal
mode the system ignores additional characters.

M Multiple definition of a label. The source program is
attempting to define a label equivalent in the first
six characters to a label defined previously.

N Decimal point missing from decimal number. A number
containing the digit 8 or 9 lacks a decimal point.

0 Op-code error. A directive appears in an inappropriate
context.

P Phase error. The definition or value of a 1label
differs from one pass to another, or a local symbol
occurs more than once in a local symbol block.

0 Questionable syntax. This can have any of several
causes, as follows:

1. There are missing arguments.

2. The instruction scan is not complete.

3. A line feed or form feed does not immediately
follow a carriage return.

R Register-type error. The source program attempts an
invalid reference to a register.

T Truncation error. A number generates more than 16
significant
bits, or an expression generates more than 8
significant bits while a .BYTE directive is active.

U Undefined symbol. A symbol not defined elsewhere in
the program appears as a factor in -an expression. The
assembler assigns the undefined symbol a constant zero
value.

Z Incompatible instruction (warning). The instruction is
not defined for all PDP-11 hardware configurations.

2.4.2 I/0 Level Error Messages
Message Explanation
?CREF-F-Chain-only CUSP Programs must chain to CREF in

order to use it. Attempts to use
RUN SCREF can cause this error.
Use a language processor to invoke
CREF.

MACRO

Message Explanation

?CREF-F-CRF file error An input error occurred while
' reading DK:CREF.TMP, the temporary
input file passed to CREF. Run the
language processor again to create
& good CREF input file.

?2CREF-F-Device The language processor chaining to
CREF has specified an invalid
device, This may be a system
error. However, writing a CREF
listing to magtape or cassette
before manually loading the magtape
or cassette handler causes this
error, The error also occurs when
the input file to CREF, CREF.TMP,
is not on a random access device.
If the error persists, submit a
Software Performance Report with a
program listing and a machine

readable source program, if
possible.

?CREF-F-List file error An output error occurred while
attempting to write the
cross-reference table to the

listing file. The output volume
may not have enough free space
remaining for the listing file.

?MACRO-F~Bad option The specified option was not
recognized by the program. Check
for a typing error in your command
line.

?MACRO-F-Device full The output volume does not have
sufficient room for an output file
specified in the command string.
Delete wunnecessary files or use

- another device.

?MACRO-F-File not found An input file specified in the
command line does not exist on the
specified device, or was protected
against the current user. Correct
any file specification errors in
the command line and retype.

?MACRO-F-Illegal command The command line contains a syntax
error or specifies more than 6
input files. Correct the command
line and retype. :

?MACRO-F-Illegal device A device specified in the command
line does not exist on the system.

MACRO

Message Explanation

?MACRO-F-Input-output error on channel N : Aﬂlg

A hardware error occurred while
attempting to read from or write to
the device on the channel specified
in the message. Channels
correspond to files in the command
string as follows:

Channel File
0 .0OBJ output file
1 .LST output file
2 CREF temporary file
3 Input (source) file #1
P _—
4 Input (source) file #2
5 Input (source) file #3
6 Input (source) file #4
7 Input (source) file #5
8 Input (source) file #6
?MACRO-F-Input-output error on MACRO library _—
MACRO detected a bad record in the
MACRO library. For example, this
error occurs when the library area
is bad. Rebuild the MACRO library.
?MACRO-F-Input-output error on workfile
MACRO failed to read or write to
its workfile, WRK.TMP. Check for 4@;5
hard error conditions such as read
or write-locked, or offline
devices.
?MACRO-F-Insufficient memory There were too many symbols in the
program being assembled. .
?MACRO-F-Invalid macro library The library file has been corrupted
or it was not produced by the
librarian, LIBR. Use LIBR to
generate a new copy of the library -
file.
?MACRO-F-Output device full There was no room to continue
writing the output file.
A_,

2-16

CHAPTER 3

LINKER (LINK)

The RSTS/E linker (LINK) converts object modules produced by the
FORTRAN IV compiler or the RSTS/E MACRO assembler into a format
suitable for loading and execution. The linker processes the object
modules of the main program and subroutines to:

® relocate each object module and assign absolute addresses;

° link the modules by correlating global symbols that are
defined in one module and referenced in another;

) create the initial control block for the linked program;

° create an overlay structure if specified and include the
necessary run-time overlay handlers and tables;

e search libraries you specify to locate unresolved globals;

° automatically search a default system library to 1locate any
remaining unresolved globals;

° produce a load map showing the layout of the load module;
) produce a symbol definition file.

The RSTS/E linker requires two passes over the input modules. During
the first pass it constructs the global symbol table, including all
program section names and symbols in the input modules. After it
processes all non-library files, the linker scans the library files to
resolve undefined globals. It 1links only those modules that are
required into the root segment (that part of the program that is never
overlaid). During the final pass, the 1linker reads the object
modules, performs most of the functions listed above, and produces a
load module (which is in memory image format for execution under a
RSTS/E system or formatted binary for use with the Absolute Loader) .

3.1 CALLING AND USING THE LINKER

To call the RSTS/E linker from the system device, respond to the
monitor prompt printed by the keyboard monitor by typing:

RUN SLINK RET
LINK prints an asterisk at the left margin on the terminal when it is

ready to accept a command line. If you enter only a carriage return
at this point, the linker prints its current version number.

LINKER (LINK)

The CCL (Concise Command Language) option provides an alternative
procedure for invoking LINK. For information on this option, see
Chapter 5 of the RT-11/RSTS/E FORTRAN IV User's Guide.

Type two CTRL/Cs to halt the linker at any time (or a single CTRL/C to
halt the 1linker when it 1is waiting for terminal input) and return
control to the monitor.

The first command string you enter in response to the linker's prompt
has this syntax:

dev:bin,dev:map,dev:sym=dev:obj's/option(s)

where

- dev:bin represents the file specification to be
assigned to the linker's load module output
file.

dev:map represents the file specification of the load
map file.

dev:sym represents the file specification of the
symbol definition file.

dev:obj's represents the file specifications for the
one or more object modules (that can be a
library file) to be linked.

/option (s) represents one or more of the options from

Table 3-2.
Section 1.2 lists the correct format for a RSTS/E file specification.

In each filespec above, the device should be a random access device,
with these exceptions: the output device for the load map file can be
any RSTS/E device, as can the output device for an .LDA file if you
use the /L option. If you do not specify a device, the linker uses
the default device.

If you do not specify an output file, the linker assumes that you do
not desire the associated output. For example, if you do not specify
the load module and load map (by using a comma in place of each file
specification) the linker prints only error messages, if any occur.
Ordinarily, though, you would want at least a load module output.

Table 3-1 shows the default values for each specification.

If you make a syntax error or if you specify a non-existent file, the
system prints an error message. LINK prints an asterisk and you can
then enter a new command string.

LINKER (LINK)

Table 3-1
Linker Defaults

Device File Name File Type
Load Module DK: must assign SAV, LDA(/L)
Map Output Same as must assign MAP

load module
Symbol DK: or same must assign STB
Definition as previous
Output output device
Object Module|DK: or same must assign OBJ

as previous
object module

3.2 OPTIONS

Table 3-2 lists the options associated with the 1linker. You must
precede the letter representing each option by the slash character.
Options must appear on the line indicated if you continue the input on
more than one 1line, but you can position them anywhere on the line.
(Section 3.8 provides a more detailed explanation of each option.)

Table 3-2
Linker Options

Option Command

Name Line Section Explanation
/A first 3.8.1 Alphabetizes the entries in the
load map.
/B:n first 3.8.2 Changes the bottom address of a
program to n. i
/C any but 3.8.3 Continues input specification on
last another command line (you can use

/C also with /0; do not use /C
with the // option).

/E:n | first 3.8.4 Extends a particular program
section to a sgpecific size in
blocks.

(continued on next page)

LINKER (LINK)

Table 3-2 (Cont.)
Linker Options

Option
Name

Command
Line

Section

Explanation

/F

/1

/L

/M or
/M:n

first

first

first

first

first

first

any, but
the first

first

first

3.8.5

3.8.8

3.8.9

3.8.10

3.8.11

3.8.12

3.8.13

Instructs the linker to wuse the
default FORTRAN library,
FORLIB.OBJ, to resolve any
undefined global references.
Note that this option should not
be specified in the command line
when FORLIB has been incorporated
into SYSLIB.

Specifies the top (highest)
address to be used by the
relocatable code 1in the load
module.

Extracts the object modules which
define the global symbols you
specify from the library and
links them into the load module.

inserts the value you specify
(the valid range for n is from 1
to 28) into word 56 of block 0 of
the image file. This option
indicates that the program
requires nk words of memory.

Produces a formatted binary
output file (.LDA format).

Cause the linker to prompt Yyou
for a global symbol that
represents the stack address, or
sets the stack address to the
value n.

Indicates that the program is an
overlay structure; n specifies
the overlay region to which the
module is assigned.

Changes the default amount of
space the 1linker uses for a
library routines list.

Makes the maximum amount of space
in memory available for the
linker's symbol table. (Use this
option only when a particular
link stream causes a symbol table
overflow.)

(continued on next page)

LINKER (LINK)

Table 3-2 (Cont.)
Linker Options

Option Command

Name Line Section Explanation
/T or first 3.8.14 Causes the linker to prompt you
/T:n for a global symbol that

represents the transfer address,
or sets the transfer address to
the value n.

/U:n first 3.8.15 Rounds up the section you specify
so that the size of the root
segment is a whole number
multiple of the value you supply
(n must be a power of 2).

/W first 3.8.16 Directs the linker to produce a
wide load map listing.

/X 3.8.17 Does not output the bitmap if the
code is below 400.

/Z:n first 3.8.18 Sets unused locations in the load
module to the value n.

// first 3.8.3 Allows you to specify command
and last ‘ string input on additional 1lines.
Do not use this option with /C.

3.3 MEMORY ALLOCATION

The linker allocates the physical memory and address space that the
load module requires. The area of memory that the linker allocates
for a load module contains the following elements:

® a system communication area

e hardware vectors

® a stack

® a set of named areas called program sections (p-sections).
Section 3.5.2 describes the system communication area.

The stack is an area that a program can use for temporary storage and
subroutine linkage. General register 6, the stack pointer (SP),
references the stack.

The system communication area, the hardware vectors, and the stack
areas are all part of the 1load module area called the absolute
section. The absolute section is often called the ASECT because it is
the assembler directive .(ASECT that allows information to be stored
there. This section appears in the load map with the name . ABS. and
is always the first section in the listing. The absolute section
(ASECT) normally ends at address 1000 (octal).

LINKER (LINK)

A program section is an area of the load module that contains code or
data; you can reference it by name. The set of attributes associated
with each p-section controls the allocation and placement of the
section within the load module.

A p-section is the basic unit of memory for a program. It is composed
of the following elements:

e a name by which it can be referenced

e a set of attributes that defines its contents, mode of access,
allocation, and placement in memory

e a length that determines how much storage is reserved for the
p-section.

You create p-sections by using the COMMON statement in FORTRAN, or the
.PSECT (or .CSECT) directive in MACRO. You can use the .PSECT (or
.CSECT) directive to attach attributes to the section. Note that the
attributes that follow the p-section name are not part of the name;
only the name itself distinguishes one p-section from another. You
should make sure, then, that p-sections of the same name that you want
to link together also have the same attribute list. Do this because
the 1linker uses the first appearance of the .PSECT and its attributes
throughout the operation. If the linker encounters p-sections with
the same name that have different attributes, it prints a warning
message.

The linker collects from the input modules scattered references to a
p-section and combines them in a single area of the load module. The
attributes, which are listed in Table 3-3, control the way the linker
collects and places this unit of storage.

Table 3-3
P-section Attributes

Attribute Value Explanation

access-code¥* RW Read/Write - data can be read from,
and written into, the p-section.

RO Read Only - data can be read from,
but cannot be written into, the
p-section.

type-code D Data - the p-section contains data.

I Instruction - the p-section contains
either instructions, or data and
instructions.

scope-code GBL Global - the p-section name is

recognized across overlay segment
boundaries. The linker allocates
storage for the p-section from
references outside the defining
overlay segment.

* Not used by the linker (continued on next page)

LINKER (LINK)

Table 3-3 (Cont.)
P-section Attributes

Attribute Value Explanation
scope-code LCL Local - the p-section name is
(cont.) recognized only within the defining
overlay segment. The linker

allocates storage for the p-section
from references within the defining
overlay segment only.

reloc-code REL Relocatable - the base address of the
p-section is relocated relative to
the wvirtual base address of the

program.
ABS Absolute - the base address of the
p-section is not relocated. It is
always 0.
alloc-code CON Concatenate - all references to a
given p-section name are

concatenated. The total allocation
is the sum of the individual
allocations.

OVR Overlay - all references to a given
p-section name overlay each other.
The total allocation is the length of
the longest individual allocation.

The scope-code and type-code are meaningful only when you define an
overlay structure for the program. In an overlaid program, a global
section is known throughout the entire program. Object modules
contribute to only one global section of the same name. If two or
more segments contribute to a global, then the linker allocates that
global section to the root segment of the program. In contrast to
globals, local sections are only known within a particular program
segment. Because of this, several local sections of the same name can
appear in different segments. Thus, several object modules
contributing to a local section do so only within each segment.

The alloc-code determines the starting address and length of memory
allocated by modules that reference a common p-section. If the
alloc-code indicates that such a p-section 1is to be overlaid, the
linker places the allocations from each module at the same location in
memory. It determines the total size from the length of the longest
reference to the p-section. The last input module that stores
information in a particular 1location determines which values the
linker stores in the indicated locations of the load module. 1If the
alloc-code indicates that a p-section 1is to be concatenated, the
linker places the allocations from the modules one after the other in
the load module; it determines the total allocation from the sum of
the lengths of the references.

LINKER. (LINK)

The allocation of memory for a p-section always begins on a word
boundary. If the p-section has the D (data) and CON (concatenate)
attributes, all storage that subsequent modules contribute is appended
to the last byte of the previous allocation. This occurs whether or
not that byte is on a word boundary. For a p-section with the I
(instruction) and CON attributes, however, all storage that subsequent
modules contribute begins at the nearest following word boundary.

The .CSECT directive of MACRO is converted internally by both MACRO
and the linker to an equivalent .PSECT with fixed attributes. An
unnamed CSECT (blank section) is the same as a blank PSECT with the
following attributes: RW, I, LCL, REL, and CON.

A named CSECT is equivalent to a named PSECT with these attributes:
RW, I, GBL, REL, and OVR. Table 3-4 shows these sections and their
attributes.

The names assigned to p-sections are not considered to be global
symbols; you cannot reference them as such. For example:

MOV #PNAME, RO

This statement, where PNAME is the name of a section, is 1illegal and
generates the Undefined global error message if no global symbol of
PNAME exists. A symbol can be the same for both a p-section name and
a global symbol. The linker treats them separately.

The linker determines the memory allocation of p-sections by the order
of occurrence of the p-sections in the input modules. The absolute
section (. ABS.) always comes first, followed by the blank section of
the input file (if one exists) and the named section. 1If there is
more than one named section, the named sections appear in the same
order in which they occur in the input files. For example, the
FORTRAN compiler arranges the p-sections in the main program module so
that the USR can swap over pure code in low memory rather than over
data required by the function making the USR call.

Table 3-4
Section Attributes

access- type- scope- reloc- alloc-

code code code code code
CSECT RW I LCL REL CON
CSECT name RW I GBL REL OVR
ASECT RW I GBL ABS OVR
COMMON/name / RW D GBL REL OVR

3.4 GLOBAL SYMBOLS

Global symbols provide the 1link, or communication, between object
modules. You create global symbols with the .GLOBL or .ENABL GBL
assembler directive (or with double colon, ::, or double equal sign,
==), If the global symbol is defined in an object module (as a label
using :: or by direct assignment using ==), other object modules can
reference it. If the global symbol is not defined in the object

I

LINKER (LINK)

module, it is an external symbol and is assumed to be defined in some
other object module. If a global symbol is used as a label in a
routine, it is often called an entry point. That is, it is an entry
point to that subroutine.

As the linker reads the object modules it keeps track of all global
symbol definitions and references. It then modifies the instructions
and data that reference the global symbols. The linker prints
undefined globals on the console terminal after pass-1, if you do not
request a load map on the terminal. They also appear at the end of
the load map.

Table 3-5 shows how the linker resolves global references when it
creates the load module.

Table 3-5
Global Reference Resolution
Module Global Global
Name Definition Reference
IN1 Bl A
B2 Ll
Cl
XXX
IN2 A B2
Bl
IN3 Bl

In processing the first module, IN1l, the linker finds definitions for
Bl and B2, and references to A, L1, Cl, and XXX. Because no
definition exists for these references, the 1linker defers the
resolution of these global symbols. 1In processing the next module,
IN2, the linker finds a definition for A that resolves the previous
reference, and a reference to B2 that can be immediately resolved.

When all the object modules have been processed, the linker has three
unresolved global references remaining: Cl, L1, and XXX. A search of
the default system library resolves XXX. The global symbols Cl and Ll
remain unresolved and are, therefore, listed as undefined global
symbols.

The relocatable global symbol, Bl, is defined twice and is 1listed on
the terminal as a multiply defined global symbol. The linker uses the
first definition of a multiply defined symbol. An absolute global
symbol can be defined more than once without being listed as multiply
defined as long as each occurrence of the symbol has the same value.

3.5 INPUT AND OUTPUT

Linker input and output is in the form of modules; the 1linker uses
one or more input modules to produce a single output (load) module.

LINKER (LINK)

3.5.1 Object Modules

Object files, consisting of one or more object modules, are the input
to the linker (the linker ignores files that are not object modules) .
Object modules are created by the FORTRAN IV compiler or the MACRO-11
assembler. The 1linker reads each object module twice. During the
first pass it reads each object module to construct a global symbol
table and to assign absolute values to the program section names and
global symbols. The 1linker wuses the library files to resolve
undefined globals. It places their associated object modules in the
root. On the second and final pass, the linker reads the object
modules, links and relocates the modules and outputs the load module.

3.5.2 Load Module

The primary output of the linker is a load module that you can run
under RSTS/E. The load module is output as a save image file (SAV).
The linker can produce an absolute load module (LDA) if you need to
load the module with the Absolute Loader on a stand-alone PDP-11
system.

The load module for a memory image file is arranged as follows:

Root Segment Overlay
Segments
(optional)

The first 256-word block of the root segment (main program) contains
the memory usage bitmap and the locations the linker uses to pass
program control parameters. The memory usage bitmap outlines the
blocks of memory the load module uses; it is located in locations 360
through 377.

The control parameters are located in locations 40 through 50. They
contain the following information when the module is loaded:

Address Information
40 Start address of program
42 Initial setting of SP (stack pointer)
44 Job status word (overlay bit set by LINK)
46 USR swap address (0 implies normal location)
50 Highest memory address in program

The linker stores default values in locations 40, 42, and 50, unless
you use options to specify otherwise. The /T option affects location
40, for example, and /M affects location 42. You can also use the
_ASECT directive to change the defaults. The overlay bit is located
in the job status word. LINK automatically sets this bit if the
program is overlaid. Otherwise, the linker initially sets location 44
to 0. Location 46 also contains zero unless you specify another value
by using the .ASECT directive.

You can assign initial values to memory locations 0-476 (which include
the interrupt vectors and system communication area) by using an
.ASECT assembler directive. They appear in block 0 of the load
module, but there are restrictions on the use of ASECTs in this
region. You should not perform ASECTs of location 54 or of locations

360-377 because the memory usage map is passed in those locations.

3-10

LINKER (LINK)

You can set with an .ASECT any location that is not restricted, but be
careful 1if you change the system communication area. The program
itself must initialize restricted areas, such as the region 360-377.
There are no restrictions on ASECTs if the output format is LDA.

3.5.3 Load Map

If you request, the 1linker produces a load map following the
completion of the initial pass. This map, shown in Figure 3-1,
diagrams the layout of memory for the load module.

The load map lists each program section that is included in the
linking process. The 1line for a section includes the name and low
address of the section and its size in bytes. The rest of the 1line
lists the program section attributes, as shown in Table 3-3. The
remaining columns contain the global symbols found in the section and
their values.

The map begins with the version of the linker, followed by the date
and time the program was linked. The second line lists the file name
of the program, its title (which is determined by the first module
name record 1in the input file), and the first identification record
found. The absolute section is always shown first, followed by any
non-relocatable symbols. The modules located in the root segment of
the load module 1list next, followed by those modules that were
assigned to overlays in order by their region number (see Section
3.6). Any undefined global symbols then list. The map ends with the
transfer address (start address) and high limit of relocatable code in
both octal bytes and decimal words.

3.5.4 Library Files

The RSTS/E linker can automatically search libraries. Libraries are
composed of library files. These are specially formatted files
produced by the 1librarian program (described in Chapter 5) that
contain one or more object modules. The object modules provide
routines and functions to aid you in meeting specific programming
needs. (For example, FORTRAN has a set of modules containing all
necessary computational functions--SQRT, SIN, COS, etc.) You can use
the 1librarian to create and update libraries. Then you can easily
access routines that you use repeatedly or routines that different
programs use. Selected modules from the appropriate library file are
linked as needed with your program to produce one load module.
Libraries are further described in Section 3.7 and in Chapter 5.

NOTE

Library files that you combine with the
PIP /U or /B option are illegal as input
to both the linker and the librarian.

RT-11 LINK V05,02
AVGE +8AV Titlet?
Sectionn Addr Size
. ARS. 000000 001000
OTSs1I 001000 014642
OTS$P 015642 000050
BYS$I 015712 000000
USER$I 015712 000000
$CONE 015712 000154
0TS$0 016066 000750
SYS40 017036 000000
SOATAP 017036 000172
0TS¢ 017230 000016
OTE$S 017246 000052
5YS$8 017320 000000
$DATA 017320 000004
USERS$DI 017324 000000
JEE8%, 017324 000000
017324 000034

Transfer address

LINKER (LINK)

Load Mar Morn 14-Nov-77 153

+MAIN, Ident?: FORYOZ2
Global Value Global

(RW»IyGERL yARS»OVR)
S$USRSW 000000 $RF2A1
$NLCHN 000006 $HRDUWR
$LRECL. 000210 $TRACE

(RWsIyL.CLyRELyCON)
$$0TSI 001000 $0TI
S$$SET 002750 CMI$SS
CMI$SM 003254 CMI$IS
CMISIM 003270 CMI$MS
CMISEMM 003304 NMI$IM
RLES$ 003332 REQ$%
BGE$ 003344 EBRA%
BLT$ 003354 RET$L
RET$I 003376 RET#
MOL$SS 003434 MOI$SM
MOISIS 003450 MOL$IS
MOI$IM 003454 MOIGIA
MOI$MM 003470 MOI$MA
MOI$SOM 003504 MOI$0A
MOI$1IM 003522 MOI$1A
MOL.$RS 0035936 MOISRM
MOI$RA 003550 (CI%
$ECI 003576 0C0%
IFWs 004162 $IFW
IFR% 004300 $IFR
TUL.$ 004364 $TVL
$TVF 004372 TVD%$
TVR% 004406 $TVQ
$TUF 004414 TVIS$
$CHRER 004556 $I0EXI
EQL$ 004632 CAI%
ISNS 005004 $ISNTR
$LESNTR 005030 SAVRGH
SWATT 005344 $FUTRE
S$GETEL 006124 $EOFIL
$8TFS 006344 STF$
FOO$ 006356 $EXIT
S$INITI 006620 $CLOSE
$TTYIN 007632 $FI0
$ERRTE 011662 $ERRS
$DUMFL. 015514

(RWs Dy GEL yREL yOVR)

(RWrIsl.CLYRELyCON)

(RWrIsLCLYRELyCON)

(RW»IsLCLyRELyCON)
$$0TSC 015712

(RWsIyLCLYyRELsCON)
$$0TS0 016066 $OFEN

(RWyI+LCLsRELCON)

(RWsyDyL.CLsREL yCON)

(RW»D'y LCL yREL y CON)

(RWsIIyLCL yREL. »CON)
$A0TS 017316

(RWsIty LCLyREL y CON)

(RWsyDy LCL.yREL y CON)

(RWsDs LCLyREL yCON)

(RW»Iy GEL yREL » OVR)

(RWyIsLCLYRELsCON)
ISUM 017324

= 015712y High limit = 017340

45118

Value Glohal
000000 LVIRK
000010 $WASIZ
004737
001026 $30TI
003244 CMIS$SI
003260 CMISII
003274 CMI$MI
003310 NMI$1I
003334 RGTS
003346 ENES$
003344 RETSF
003400 MOI$8S
003440 MOI$SA
003450 REL$
003460 MOI$MS
003474 MOI%$0S
003510 MOI%1S
003530 MOI$RS
003542 MOI$RF
0035354 ICI$
003756 1CO%
004166 IFUW$$
004304 IFR%%
004364 TVUFs$
004400 $TVD
004406 TVUF$
004422 $TVI
004602 $EOL
004746 CALS
005010 LSN$%
0051464 THRD
005406 $FUTEL
006310 $EOF2
006352 $STF
006376 $FCHNL
006732 $GETRE
010526 $%FI0
011770 $SVURINT
016066

39460, words

Figure 3-1 Linker Load Map

Value

000000
000131

001030
003250
003264
003300
003322
003342
003352
003370
003434
003444
003450
003464
003500
003514
003536
003546
003562
003764
004230
004342
004372
004400
004414
004422
004430
004754
005024
005342
005714
006324
006352
006522
007576
010532
015512

LINKER (LINK)

3.6 USING OVERLAYS

The ability of RSTS/E to handle overlays gives you virtually unlimited
space for a FORTRAN program. A program using overlays can be much
larger than would normally fit in the available memory space, since
portions of the program reside on a backup storage device such as disk
or DECtape. To utilize this capability however, you must define an
overlay structure for your program.

An overlay structure divides a program into segments. For each
overlaid program there 1is one root segment and a number of overlay
segments. Each overlay segment is assigned to a particular area of
available memory called an overlay region. More than one overlay
segment can be assigned to a given overlay region. However, each
region of memory 1is occupied by one (and only one) of its assigned
segments at a time. The other segments assigned to that region are
stored on disk or DECtape. They are brought into memory when called,
replacing (or overlaying) the segment previously stored in that
region. The root segment, on the other hand, contains those parts of
the program which must always be memory resident. Therefore the root
is never overlaid.

Figure 3-2 diagrams an overlay structure for a FORTRAN program. The
main program is placed in the root segment and is never overlaid. The
various MACRO subroutines and FORTRAN subprograms are placed in
overlay segments. Each overlay segment 1is assigned to an overlay
region and stored on DECtape until called into memory. For example,
region 2 1is shared by the MACRO subroutine A currently in memory and
the MACRO subroutine B in segment 4. When a call 1is made to
subroutine B, segment 4 is brought into region 2 of memory, overlaying
or replacing segment 3.

The overlay file, shown on the DECtape in Figure 3-2, 1is created by
the 1linker when you specify an overlay structure. The overlay file
contains at all times a copy of the root segment and each overlay
segment, including those overlay segments currently in memory.

LINKER (LINK)

/

REGION 3 Region 3
segment 6

4 high

SEGMENT 6
FORTRAN subprogram

Region 3
segment 5

Region 2
segment 4

MACRO
SEGMENT 3 subroutine B

MACRO subroutineA | e
Region 2
segment 3

REGION 2

REGION 1 Region 1

segment 2
SEGMENT 2
FORTRAN subprogram

Region 1
segment 1

ROOT

FORTRAN main program ROOT

| Block O
——
low of Overlay File

memory

Figure 3-2 An Overlay Structure for a FORTRAN Program

You specify an overlay structure to the linker using the /0 option.
This option is described fully in Section 3.8.11. Figure 3-3 is an
example of using the /O option to specify an overlay structure.

LINKER (LINK)

A=A/C = Root
B/0O:1/C = Segment 1
= Region 1
c/0:1/C = Segment 2
D/0:2/C = Segment 3
= Region 2
E/0Q:2 = Segment 4
Y
D E _ Region 2
w
B [o} Region 1
A Root

Figure 3-3 Specifying An Overlay Structure With /0

The linker calculates the size of any region to be the size of the
largest segment assigned to that region. Thus, to reduce the size of
a program (that is, the amount of memory it needs), you should first
concentrate on reducing the size of the largest segment in each
region. The linker delineates the overlay regions you specify,
inserts in your program the code shown in Figure 3-4, and edits the
program to produce the desired overlays at runtime.

.3BTTL S$OVRH THE RUN-TIME OVERLAY HANDLER
;THE FOLLOWING CODE IS INCLUDED IN THE USER'S PROGRAM BY THE
; LINKER WHENEVER OVERLAYS ARE REQUESTED BY THE USER.
s THE RUN-TIME OVERLAY HANDLER IS CALLED BY A DUMMY
; SUBROUTINE OF THE FOLLOWING FORM:

H 5R R5,$0OVRH ;CALL TO COMMON CODE
; .WORD <OVERLAY #> ;# OF DESIRED SEGMENT
; .WORD <ENTRY ADDR> ;ACTUAL CORE ADDR

;ONE DUMMY ROUTINE OF THE ABOVE FORM IS STORED IN THE RESIDENT PORTION

;7OF THE USER'S PROGRAM FOR EACH ENTRY POINT TO AN OVERLAY SEGMENT.

;ALL REFERENCES TO THE ENTRY POINT ARE MODIFIED BY THE LINKER TO INSTEAD
;BE REFERENCES TO THE APPROPRIATE DUMMY ROUTINE. EACH OVERLAY SEGMENT

;IS CALLED INTO CORE AS A UNIT AND MUST BE CONTIGUOUS IN CORE. AN
;OVERLAY SEGMENT MAY HAVE ANY NUMBER OF ENTRY POINTS, TO THE LIMITS

;OF CORE MEMORY. ONLY ONE SEGMENT AT A TIME MAY OCCUPY AN OVERLAY REGION.

.ENABL SB
SOVTAB=1000+$OVRHE-SOVRH

SOVRH: MOV RO,~(SP)
MOV R1,-(SP)
MOV R2,~-(SP)
18
; MOV (R5)+,R0 sPICK UP OVERLAY NUMBER
BR 3s s FIRST CALL ONLY * * *
MOV RO,R1
SOVRHA: ADD #SOVTAB-6,R1 ;s CALC TABLE ADDR
MOV (R1)+,R2 ;GET CORE ADDR OF OVERLAY REGION
CMP RO,@R2 ;IS OVERLAY ALREADY RESIDENT?
BEQ 28 ;YES, BRANCH TO IT
.READW 17,R2, (R1l)+,(R1l)+ ;READ FROM OVERLAY FILE
BCS 58

Figure 3-4 The Run-Time Overlay Handler

3-15

LINKER (LINK)

28 MOV (SP)+,R2 s RESTORE USER'S REGS
MOV (sP)+,R1
MOV (SP)+,R0
MOV @R5,R5 ;GET ENTRY ADDRESS
RTS R5 ;:ENTER OVERLAY ROUTINE AND
;s RESTORE USER'S R5
3s$: MOV $12500,18 ;RESTORE SWITCH INSTR (MOV (R5)+,R0)
MOV (PC)+,R1 ; START ADDR FOR CLEAR OPERATION
$HROOT: .WORD 0 sHIGH ADDR OF ROOT SEGMENT
MOV (PC)+,R2 ; COUNT
SHOVLY: .WORD 0 ;HIGH LIMIT OF OVERLAYS
4$: CLR (R1)+ ;CLEAR ALL OVERLAY REGIONS
CMP R1,R2
BLO 43
BR 1s sAND RETURN TO CALL IN PROGRESS
58: EMT 376 :SYSTEM ERROR 10 (OVERLAY I/0)
.BYTE 0,373
SOVRHE :
.DSABL LSB

;OVERLAY SEGMENT TABLE FOLLOWS:
; SOVTAB: -WORD <CORE ADDR> ,<RELATIVE BLK>,<WORD COUNT>
; THREE WORDS PER ENTRY, ONE ENTRY PER OVERLAY SEGMENT.

;sALSO, THERE IS ONE WORD PREFIXED TO EACH OVERLAY REGION
; THAT IDENTIFIES THE SEGMENT CURRENTLY RESIDENT IN THAT REGION.

Figure 3-4 The Run-Time Overlay Handler (Cont.)

There is no magic formula for creating an overlay structure. You do
not need a special code or function call. However, some general
guidelines must be followed. For example, a FORTRAN main program must
always be placed in the root segment. This is true also for a global
program section (such as a named COMMON block) that is referenced by
more than one overlay segment.

The assignment of region numbers to overlay segments is crucial.
Segments that overlay each other (have the same region number) must be
logically independent; that is, the components of one segment cannot
reference the components of another segment assigned to the same
region. Segments which need to be memory-resident simultaneously must
be assigned to different regions.

When you make calls to routines or subprograms which are in overlay
segments, the entire return path must be in memory. This means that
from an overlay segment you cannot call a routine which 1is in a
different segment but in the same region. If this is done the called
routine overlays the segment making the call and so destroys the
return path.

Figure 3-5 illustrates a sample set of subroutine calls and return
paths. In the example, solid lines represent legal subroutine calls
and dotted lines represent illegal calls.
Suppose the following subroutine calls were made:

1. The root calls segment 8

2. Segment 8 calls segment 4

3. Segment 4 calls segment 3

3-16

LINKER (LINK)

Segment 3 can now call any of the following segments, in any order:
1. itself '
2. Segment 4
3. Segment 8
4. The root

Segment 3 cannot call any of the following segments since doing so
wipes out its return path to the root:

1. Segments 2 and 1
2. Segment 5
3. Segments 6 and 7

Look at what might happen if one of these illegal calls is made.
Assume that segments 3, 4 and. 5 all contain MACRO subroutines.
Suppose segment 4 calls segment 3 and segment 3 in turn calls segment
5. The subroutine in segment ‘5 executes and returns control to
segment 3. Segment 3 finishes its task and tries to return control to
segment 4. Segment 4, however, has been replaced in memory by segment
5. BSegment 4 cannot regain control and the program either 1loops
indefinitely, traps, or random results occur.

region 3
~ ~
~

region 2 N

~—
-~

- ~
. ~ .
~
regiont |] | e
\\
~
o Saa N - .

e —————T

root

Figure 3-5 Sample Subroutine Calls and Return Paths

LINKER (LINK)

The guidelines already mentioned and some additional rules for
creating overlay structures are summarizeed below.

1.

Overlay segments assigned to the same region must be
logically independent; that 1is, the components of one
segment cannot reference the components of another segment
assigned to the same region. ’ '

The root segment contains the transfer address, stack space,
impure variables, data, and variables needed by many
different segments. The FORTRAN main program unit must be
placed in the root segment.

A global program section (such as a named COMMON block or a
.PSECT with the GBL attribute) that is referenced in more
than one segment must be placed in the root segment. This
permits common access across the different segments.

Object modules that are automatically acquired from a library
file cannot be placed in an overlay segment. (This means you
cannot specify a library file on the same command line as an
overlay segment.) The linker always places library object
modules in the root segment. However, you can extract
modules from a library file using the librarian utility
program as explained in Chapter 5. Extracted object modules
can be placed in overlay segments.

All COMMON blocks that are initialized with DATA statements
must be similarly initialized in the segment in which they
are placed.

When you make calls to overlay segments, the entire return
path to the calling routine must be in memory. Observing the
following rules will ensure this:

a. You can make calls with expected return (as from a
FORTRAN main program to a FORTRAN or MACRO subroutine)
from an overlay segment to entries in the same segment,
the root segment, or to any other segment, so long as the
called segment does not overlay in memory part of your
return path to the main program.

b. You can make jumps with no expected return (as in a MACRO
program) from an overlay segment to any entry in the
program.

c. Calls you make to entries in the same region as the
calling routine must be entirely within the same segment,
not within another segment in the same region.

You must make calls or jumps to overlay segments directly to
global symbols defined in an instruction p-section (entry
points). For example, if ENTER is a global tag in an overlay
segment, the first command 1is valid, but the second is
illegal:

JMP ENTER
JMP ENTER+6

3-18

LINKER (LINK)

8. You can use globals defined in an instruction p-section
(entry points) of an overlay segment only for transfer of
control and not for referencing data within an overlay
segment. The assembler and linker cannot detect a violation
of this rule so they 1issue no error. However, such a
violation can cause the program to use incorrect data. If
you reference these global symbols outside of their defining
segment, the linker resolves them by using dummy subroutines
of four words each in the overlay handler. If such a
reference occurs, it 1is indicated on the load map by a "@"
following the symbol.

9. The linker directly resolves symbols that you define in a
data p-section. It }s your program's responsibility to load
the data into memory; before referencing a global symbol
defined in a data sec*ion.

10. You cannot use a ,CSECT name to pass control to an overlay.
It does not 1load the appropriate segment into memory. For
example, JSR PC,OVSEC is illegal if you use OVSEC as a .CSECT
name in an overlay. You must use a global symbol to pass
control from one segment to the next. ‘

11. 1In the linker command string, overlay regions are specified
in ascending order.

12. Overlay regions are read-only. Unlike USR swapping, an
overlay handler does not save the segment it is overlaying.
Any tables, variables, or instructions that are modified
within a given overlay segment are re-initialized to their
original values in the SAV file if that segment has been
overlaid by another segment. You should place any variables
or tables whose values must be maintained across overlays in
the root segment.

13. Your program cannot use channel 17 (octal) because overlays
are read on that channel.)

Refer to Chapter 1, Section 1.4.1 of the RT-11/RSTS/E FORTRAN IV
User's Guide for additional information.

The ASECT never takes part in overlaying in any way. It 1is part of
the root and is always resident.

The aforementioned sets of rules apply only to communications . among
the various modules that make up a program. Internally, each module
must only observe standard programming .- rules for the PDP-11 (as
described - in the PDP-11 Processor Handbook and in the FORTRAN and
MACRO-11 Language Reference Manuals) . T

Note that the condition codes set by your progrém ‘are not preserved
across .overlay segment boundaries. You can still use the. C-bit for
error returns, - - -

The linker provides overlay services by including a small resident
overlay handler in the same file with your program to be used at
program run-time. The linker inserts this overlay handler plus some
tables into your program beginning at the bottom address. The linker
moves your program up in memory by an appropriate amount to make room
for the overlay handler and tables, if necessary. This scheme is
diagrammed in Figure 3-6.

LINKER (LINK)

ADDRESS
0

SYSTEM AREA AND STACK
1000

OVERLAY HANDLER AND TABLES
(INCLUDED BY LINKER)

ROOT SEGMENT OF PROGRAM

(ROOT, math package, and some system dependent routines)

SEGMENT IDENTIFICATION WORD

OVERLAY REGION 1

DATE/TIME
execute edit file 1/0 error message | ..o arcion
overlay overlay overlay overlay overlay

SEGMENT IDENTIFICATION WORD
OVERLAY REGION 2
~ .) o I~
’T’ optional functions, initialization code, user area i

RT-11 RUN-TIME SYSTEM
READ/WRITE AREA

Figure 3-6 Memory With Overlays

3.7 USING LIBRARIES

You specify libraries in a command string in the same fashion as
normal modules; you can include them anywhere in the command string,
except in overlay lines. If a global symbol is undefined at the time
the linker encounters the library in the input stream, and if a module
is included in the library that contains that global definition, then
the linker pulls that module from the library and links it into the
l0ad image. Only the modules needed to resolve references are pulled
from the library; unreferenced modules are not linked.

»

LINKER (LINK)

NOTE

Modules in one library can call modules
from another library; however, the
libraries must appear 1in the command
string in the order in which they are
called. For example, assume module X in
library ALIB calls Y from the BLIB
library. To correctly resolve all
globals, the order of ALIB and BLIB
should appear in the command line as:

*72=B,ALIB,BLIB

Module B is the root. It calls X from
ALIB and brings X into the root. X in
turn calls Y which is brought from BLIB
into the root.

The linker selectively relocates and 1links object modules from
specific user libraries that were built by the librarian. Figure 3-7
diagrams this general process. During pass-1 the linker processes the
input files in the order in which they appear in the input command
line. 1If the linker encounters a library file during pass-1, it makes
note of the library in an internal save status block, and then
proceeds to the next file. The linker processes only non-library
files during the initial phase of pass-l. 1In the final phase of
pass-1 the linker processes only library files. This is when it
resolves the undefined globals that were referenced by the non-library
files.

The linker processes library files in the order in which they appear
in the input command line. The processing steps are as follows:

1. If there are any undefined globals, the linker proceeds to
step 2. Otherwise, it skips to step 5.

2. The linker reads as much of the library directory as the
buffer can hold.

3. The linker then searches the entire list of undefined globals
for a match with the 1library directory. It places any
globals that match in an internal library module list. If
more of the library directory remains to be read, the linker
proceeds to step 2.

4. The linker now processes the modules from the library that
are associated with the matching undefined globals. 1If this
processing results in new undefined globals that can be
resolved by the current library, the linker goes back to step
2.

5. The linker closes the current library and processes the next
library file, starting with step 2.

This search method allows modules to appear in any order in the
library. You can specify any number of libraries in a link, and they
can be positioned anywhere, with the exception of forward references
between libraries. The default system library, SYSLIB.OBJ, is the
last library file the linker searches to resolve any remaining
undefined globals.

LINKER (LINK)

START

IS
THERE A FILE
IN THE COMMAND
LINE

NO
EXIT PASS

OPEN FiLE

ARE

THERE

UNDEFINED

GLOBALS
?

YES

READ AS MUCH OF LIBRARY
DIRECTORY AS POSSIBLE

l

SEARCH FOR UNDEFINED
GLOBALS FROM LIBRARY

MORE

LIBRARY

DIRECTORY

TO READ
?

YES

PROCESS LIBRARY
MODULES

NEW

UNDEFINED

GLOBALS
?

REPOSITION TO
BEGINNING OF
LIBRARY FILE

NO

J—] CLOSE LIBRARY -

Figure 3-7 Library Searches

Libraries are input to the linker the same way that other input files
are. Here is a sample LINK command string:

*TASKO1l,LP:=MAIN,MEASUR

3-22

LINKER (LINK)

This causes program MAIN.OBJ to be read from DK: as the first input
file. Any undefined symbols generated by program MAIN.OBJ should be
satisfied by the library file MEASUR.OBJ specified in the second input
file. The 1linker tries to satisfy any remaining undefined globals
from the default library, SYSLIB.OBJ. The load module, TASKOl.SAV is
stored on DK: and a load map prints on the line printer.

3.8 OPTION DESCRIPTION

The options summarized in Table 3-2 are described in detail below.

3.8.1 Alphabetize Option (/A)

Specifying this option causes the linker to alphabetize the entries in
the load map.

3.8.2 Bottom Address Option (/B:n)

The /B:n option supplies the lowest address to be used by the
relocatable code in the load module. The argument, n, is a 6-digit
unsigned octal number that defines the bottom address of the program
being linked. 1If you do not supply a value for n, the linker prints

LINK-~F-/B No value
Retype the command, supplying an even octal value.

When you do not specify /B, the linker positions the 1load module so
that the 1lowest address is location 1000 (octal). If the ASECT size
is greater than 1000, the size of ASECT is used.

If you supply more than one /B option during the creation of a 1load
module, the 1linker uses the first /B option specification. /B is
illegal when you are linking to a high address (/H).

NOTE

The bottom value must be an unsigned
even octal number. If the value is odd,
the ?LINK-F-/B odd value error message

- prints. Reenter the command string
specifying an unsigned even octal number
as the argument to the /B option.

The following command causes the input file to be linked starting at
location 500 (octal).

*QUTPUT,LP:=INPUT/B:500
The bottom address determines the amount of stack (SP) space available

to the program being 1linked. The default bottom address of 1000
(octal) provides approximately 80 words of stack.

LINKER (LINK)

3.8.3 Continue Option (/C) or (//)

The continue option (/C) lets you type additional 1lines of command
string input. Use the /C option at the end of the current line and
repeat it on subsequent command lines as often as necessary to specify
all the input modules in your program. Do not enter a /C option on
the last line of input.

The following command indicates that input is to be continued on the
next line; the linker prints an asterisk.

*QUTPUT,LP:=INPUT/C
*

An alternate way to enter additional lines of input is to use the //
option on the first 1line. The linker continues to accept lines of
input until it encounters another // option, which can be either on a
line with input £file specifications, or on a line by itself. The
advantage of using the // option instead of the /C option is that you
do not have to type the // option on each continuation line. This
example shows how the librarian is linked:

*LBR, LBR=LIBRO/W//
*LIBR1/0:1
*,IBR2/0:1
*LIBR3/0:1
*LIBR4/0:1
*LIBR5/0:1
*LBREM/O:1

*//

You cannot use the /C option and the // option together in a 1link
command sequence. That is, if you use // on the first line, you must
use // to terminate input on the last line. If you use /C on the
first line, use only /C on all lines but the last.

3.8.4 Extend Program Section Option (/E:n)

The /E:n option allows you to extend a program section to a specific
size in blocks. Type the /E:n option at the end of the first command
line. After you have typed all input command 1lines, the linker
prompts with:

Extend section?

Respond with the name of the program gsection to be extended. The
resultant program section size will be equal to or greater than the

value you specify depending upon the space the object code reguires.
Note that you can extend only one section.

The following example extends section CODE to 100 (octal) blocks.

*X,TT:=LK001/E:100
Extend section? CODE

LINKER (LINK)

3.8.5 Default FORTRAN Library Option (/F)

By indicating the /F option in the command 1line, you can 1link the
FORTRAN - library (FORLIB.OBJ on.the system device SY:) with the other
object modules you specify. You do not need to specify FORLIB
explicitly. For example:

*FILE,LP:=AB/F

The object module AB.OBJ from the default device and the FORTRAN
library SY:FORLIB.OBJ are linked together to form a load module called
FILE.SAV.

The linker automatically searches a default system library,
SY:SYSLIB.OBJ. The library normally includes the modules that compose
FORLIB. - You -should not have to use /F. .

3.8.6 Highest Address Option (/H:n)

The /H:n option allows you to specify the top (highest) address to be
used by the relocatable code in the load module. The argument n
represents an unsigned even octal number. If you do not specify n,
the linker prints:

?LINK~F~/H no value

Retype the command, supplying an even octal number to be used as the
value.

If you specify an odd value, the linker responds with:
?LINK-F-/H odd value
Retype the command, supplying an even octal number.

If the value is not large enough to accommodate the relocatable code,
the linker prints:.

?LINK-F-/H value too low
Relink the program with a iarger value.

The /H option cannot be used with the /B option.

NOTE

Be careful when you use the /H option.
Most FORTRAN programs use the free core
above the relocatable code as a dynamic
working area for I/O buffers, device
handlers, symbol tables, etc. The size
of this area differs on different memory
configurations. Programs linked to a
specific high address might not run in a
system with less physical memory.

LINKER (LINK)

3.8.7 Include Option (/I)

The /I option lets you include in the linking process modules from any
library which define the global symbols you specify even when the
modules are not needed to resolve undefined globals. This provides a
method for forcing modules (which are not called by other modules) to
be loaded from the library. When you specify the /I option, the
linker prints:

Library search?

Reply with the list of global symbols to be included in the load
module; type a carriage return to enter each symbol in the list. A
carriage return alone terminates the list of symbols.

The following example includes the global $SHORT in the load module:

*SCCA=DK1:SCCA/I
Library search? $SHORT
Library search?

*°C

3.8.8 Memory Size Option (/K:n)

The /K:n option lets you insert a value into word 56 of block 0 of the
image file. The argument, n, represents the number of 1K blocks of
memory required by the program; n is an integer in the range 1-28.

3.8.9 LDA Format Option (/L)

The /L option produces an output file in LDA format instead of memory
image format. The LDA format file can be output to any device
including those that are not block-replaceable, such as paper tape or
cassette. It is wuseful for files that are to be loaded with the
Absolute Loader. The default file type .LDA is assigned when you use
the /L option. You cannot use the /L option with the overlay option
(/0). The following example links files IN and IN2 on device DK: and
outputs an LDA format file QUT.LDA to the paper tape punch and a load
map to the line printer.

*pP:0UT,LP:=IN,IN2/L

3.8.10 Modify Stack Address Option (/M{[:n])

The stack address, location 42, is the address that contains the
initial value for the stack pointer. The /M option lets you specify
the stack address. The argument, n, is an even, unsigned 6-digit
octal number that defines the stack address. After all input lines
have been typed, the linker prints the following message if you have
not specified a value for n:

Stack symbol?

In this case, specify the global symbol whose value is the stack
address. You may not specify a number. If you specify a nonexistent
symbol, an error message prints and the stack address is set to the
system default (1000 for SAV files) or to the bottom address if you
used /B.

LINKER (LINK)

Direct assignment (with .ASECT) of the stack address within the MACRO
source code takes precedence over assignment with the /M option. The
statements to do this in a MACRO subprogram are as follows:

.ASECT

.=42

.WORD INITSP ;INITIAL STACK SYMBOL VALUE
.PSECT ;RETURN TO PREVIOUS SECTION

The following example modifies the stack address.
*QUTPUT=INPUT/M

Stack symbol? BEG

3.8.11 Ovwerlay Option (/O:n)

The /O option segments the load module so that the entire program is
not memory resident at one time. This lets you execute programs that
are larger than the available memory. The argument n is an unsigned
octal number (up to six digits in length) specifying the overlay
region to which the module is assigned. The /O option must follow (on
the same 1line) the specification of the object modules to which it
applies, and only one overlay region can be specified on a command
line. Overlay regions cannot be specified on the first command line;
that is reserved for the root segment. You must use /C or // for
continuation.

You specify co-resident overlay routines (a group of subroutines that
occupy the overlay region and segment at the same time) as follows:

*OBJA,0BJB,0BJC/0:1/C
*0OBJD,0BJE/0:2/C

All modules that the linker encounters until the next /O option will
be co-resident overlay routines. If you specify, at a later time, the
/0 option with the same value you used previously, (same overlay
region), then the linker opens up the corresponding overlay area for a
new group of subroutines. The new group of subroutines will occupy
the same ‘locations in memory as the first group, but not at the same
time. For example, if subroutines in object modules R and S are to be
in memory together, but are never needed at the same time as T, then
the following commands to the linker make R and S occupy the same
memory as T (but at different times):

*MAIN,LP:=RO0OT/C
*R,5/0:1/C
*T/0:1 ‘

The example shown above can also be written as follows:

*MAIN,LP:=ROOT/C
*R/0:1/C

*S/C

*T/0:1

LINKER (LINK)

The following example establishes two overlay regions.

*QUTPUT,LP:=INPUT//
*OBJA/O:1

*OBJB/0:1

*OBJC/0: 2

*OBJD/O: 2

*//

You must specify overlays in ascending order (numbers need not be
sequential) by region number. For example:

*A=A/C
*B/0:1/C
*C/0:1/C
*D/0:1/C
*E,F/0:2/C
*G/0:2

The following overlay specification 1is illegal since the overlay
regions are not given in ascending numerical order (an error message
prints in each case):

*X=LIBRO//
*LIBR1/0:1
*LIBR2/0:0
?LINK-W-/0 ignored
*//

In the above example, the overlay option immediately preceding the
error message is ignored.

3.8.12 Library List Size Option (/P:n)

The /P:n option lets you change the amount of space allocated for the
library routine list. Normally, the default value allows enough space
for your needs. It reserves space for approximately 256 unique
library routines, which is the equivalent of specifying /P:256.
(decimal) or /P:400 (octal).

The error message ?LINK-F-Library list overflow, increase size with /P
indicates that you need to allocate more space for the library routine
list. You must relink the program that makes use of the library
routines. Use the /P:n option and supply a value for n that is
greater than 256.

You can use the /P:n option to correct £for symbol table overflow.
Specify a value for n that is less than 256. This reduces the space
used for the library routine list and increases the space allocated
for the symbol table. If the value you choose is too small, the
?LINK-F-Library list overflow, increase size with /P message prints.
In the following command, the amount of space for the library routine
list is increased to 300 (decimal).

*SCCA=RK1:SCCA/P:300.

LINKER (LINK)

3.8.13 Symbol Table Option (/S)

The /S option instructs the 1linker to allow the largest possible
memory area for its symbol table at the expense of input and output
buffer space, which makes the linking process slower. You should use
the /S option only if an attempt to link a program failed because of
symbol table overflow. Use of /S in this case often will allow the
program to link.

3.8.14 Transfer Address Option (/T[:n])

The transfer address is the address at which a program starts when you
initiate execution with a RUN command. The /T option lets you specify
the start address of the load module. The argument, n, is a six-digit
unsigned octal ' number that defines the transfer address. If you do
not specify n, the following message prints:

Transfer symbol?

In this case, specify the global symbol whose value is the transfer
address of the load module. Terminate your response with a carriage
return. You cannot specify a number in answer to this message. If
you specify a nonexistent symbol, an error message prints and the
transfer address is set to 1 so that the program traps immediately if
you attempt to execute it. If the transfer address you specify is
odd, the program does not start after loading and control returns to
the monitor.

Direct assignment (.ASECT) of the transfer address within the MACRO
source code takes precedence over assignment with the /T option. The
transfer address assigned with a /T has precedence over that assigned
with an .END assembly directive. To assign the transfer address
within a MACRO subprogram, use statements similar to -these:

.ASECT
.=40
.WORD START2 ;SYMBOL VALUE FOR TRANSFER ADDRESS
.PSECT ;RETURN TO PREVIOUS SECTION
START1: .
START2: . s SECONDARY STARTING ADDRESS
.END START1

The following example links the files LIBR0O.OBJ and ODT.OBJ together
and starts execution at ODT's transfer address, 0.0ODT.

*LBRODT , LBRODT=LIBRO,ODT/T/W//
*LIBR1/0:1

*LLIBR2/0:1

*LIBR3/0:1

*LIBR4/0:1

*LIBR5/0:1

*LBREM/O:1//

Transfer symbol? Q.O0ODT

*

LINKER (LINK)

3.8.15 Round Up Option (/U:n)

The /U:n option rounds up the section you specify so that the size of
the root segment is a whole number multiple of the value you supply.
The argument, n, must be a power of 2. When vyou specify the /U:n
option, the linker prompts:

Round section?

Reply with the name of the program section to be rounded. The program
section must be in the root segment. Note that you can round only one
program section. The following example rounds up section CHAR.

*[LKO07,TT:=LK007/U:200
Round section? CHAR

I1f the program section you specify cannot be found, the linker prints
?LINK-W-Round section not found. The linking process continues with
no rounding.

3.8.16 Map Width Option (/W)

The /W option directs the linker to produce a wide load map listing.
If you do not specify the /W option, the listing is wide enough for
three GLOBAL VALUE columns (normal for paper with 80 columns). If you
use the /W command, the listing is six columns wide, which is ideal
for a 132 column page.

3.8.17 Bitmap Inhibit Option (/X)

The /X option instructs the linker not to output the bitmap if code is
below 400. The bitmap is stored in locations 360-377 in block 0 of
the load module. The linker normally stores the program memory usage
bits in these eight words. Each bit represents one 256-word block of
memory. This information is used by the RUN command when loading the
program; therefore, use care when you use this option.

3.8.18 Zero Option (/Z:n)

The /Z:n option fills wunused locations (e.g., those locations
specified by .BLKW or .BLKB) in the load module and places a specific
value in these locations. The argument, n, represents the value to be
placed in the wunused locations. This option can be wuseful in
eliminating random results that occur when the program references
uninitialized memory by mistake. The system automatically zeroes
unused locations. However, if an entire disk block of the load module
has no code or data stored on it, the block is not zeroed. Use the
/Z:n option only when you want to store a value other than =zero 1in
unused locations.

3.9 LINKER PROMPTS

Some of the linker operations prompt for more information, such as the
names of specific global symbols or sections. The linker issues the
prompt after you have entered all the input specifications, but before
the actual linking begins. Table 3-6 shows the sequence in which the
prompts occur.

3-30

LINKER (LINK)

Table 3-6
Linker Prompting Sequence

Prompt Option
Transfer symbol? /T
Stack symbol? /M
Extend section? /E:n
Round section? /U:n
Library search? /1

The library search prompt is last because it can accept more than one
symbol and is terminated by a carriage return on a line by itself.

The following example shows how the 1linker prompts for information
when you combine options.

RUN SLINK
*LK001=LK001/T/M/E:100/0:20/1
Transfer symbol? 0.0DT

Stack symbol? ST3

Extend section? CHAR

Round section? STKSP

Library search? $SHORT
Library search?

*

3.10 LINKER ERROR MESSAGES

The following error messages can be output by the 1linker. Messages
appear on the load map if you requested a load map. Otherwise, error
messages are output to the terminal.

All messages are of the form:
?LINK-n-message

where n represents the severity code of the error. Severity codes can
be F (Fatal) or W (Warning). Fatal errors cause the current command
or statement to be ignored. You must enter another command. A
warning message indicates an error condition that may affect execution
at a later time, The condition causing the message may require some
attention.

LINKER (LINK)

Message

?LINK-F-/B No value

?2LINK~F-/B 0dd value

?LINK-F-/H Value too low

?LINK-F-/M 0dd value

?LINK-F-/T 0dd value

?LINK-F-/U or /Y value not a power

?LINK-F-ASECT too big

Explanation

‘No argument was specified to the /B

option. Reenter the command string
specifying an unsigned even octal
number as the argument to the /B
option.

The argument to the /B option was
not an unsigned even octal number.
Reenter the command string
specifying an unsigned even octal
number as the argument to /B.

The value specified as the high
address for linking was actually
too small to accommodate the code.
Obtain map output without using /H
to determine the space required and
then retry the operation.

An odd value was specified for the
stack address. Check for a typing
error in the command line. Reenter
the command specifying an even
value to the /M option.

An odd value was specified for the
transfer address. Check for a
typing error in the command line.
Reenter the command specifying an
even value to the /T option.

of 2

The value specified with /U is not
a power of 2. Reenter the command
with a value that is a power of 2.

An absolute section overlaps into
an occupied area- of memory or an
overlay region. Locate a segment
of available memory large -enough to
contain the absolute section and
substitute the appropriate starting
address.

?LINK-F-Bad complex relocation in FILNAM

A complex relocation string in the
input file was found to be invalid.
The message occurs during pass 2 of
the linker. Check for a typing
error in the command line; verify

that the <correct filenames were
specified as input. Reassemble or
recompile to obtain a good object
module and retry the operation. If
the error persists, verify that the
source code is correct.

LINKER (LINK)

Message

?LINK-F-Bad GSD in FILNAM

?LINK-F-Bad RLD in FILNAM

Explanation

There was an error in the global
symbol directory (GSD). The file
is probably not a legal object
module. Verify that the correct
filenames were specified as input;
check for a typing error in the
command line. Reassemble or
recompile the source to obtain a
good object module and retry the
operation.

An invalid relocation directory
(RLD) command exists in the input
file. The file is probably not a
legal input module. Check for a

~ typing error in the command 1line;

verify that correct filenames were
specified as input. Reassemble or
recompile and retry the operation.
If the error persists, verify that
the source code is correct.

?LINK-F-Bad RLD symbol in DEV:FILNAM,TYP

?LINK-F-Default system library not

A global symbol named in a
relocatable record was not defined
in the global symbol definition
record. Reassemble the indicated
file. If the condition persists,

-submit a Software Performance
Report (SPR).

found SYSLIB.OBJ

The linker did not find SYSLIB.OBJ
on the system device when undefined
globals existed. Obtain a copy
from your backup system volume and
relink your program, or correct the

- source files by removing the

-undefined globals 1listed on the
‘terminal.

?LINK-F-File not found DEV:FILNAM.TYP

?LINK-F-Illegal character

The input file indicated was not

found. Check for a typing error in

the command line. Verify that the
filename exists as entered in the
command line and retry the
operation.

The character specified was not
used in proper context. Characters
for symbols must be legal Radix-50
characters. Examine the command
string for errors in syntax.
Correct and retype.

LINKER (LINK)

Message Explanation

?LINK-F-Illegal device The device/volume indicated was not fg!a
available. Verify that the device '
is valid for the system in use.

?LINK-F-Illegal error An internal error occurred while
the 1linker was in the process of
recovering from a previous system
Oor user error.

Retry the operations that produced -
this error; if it recurs, report
the error to DIGITAL using an SPR

(Software Performance Report) ;

include a program listing and a .
machine-readable source program, if

possible.

?LINK-F-Illegal record type in DEV:FILNAM.TYP

A formatted binary record had a
type not in the range 1-10 (octal).
Verify that the correct filenames
were specified as input; check for
a typing error in the command line.
Reassemble or recompile and retry
the operation.

?LINK-F-Insufficient memory There was not enough memory to
accommodate the command, the symbol
table or the resultant load module. -

?LINK-F-Map device full There was no room in the directory
for the filename or there was no
room on the output device for the
map file.

?LINK-F-01d library format in DEV:FILNAM.TYP

The indicated 1library file is
formatted from an old LIBR version.

Rebuild the library file using the ~
current librarian.

?LINK-F-Read error in DEV:FILNAM.TYP

A hardware error occurred while
reading the indicated input file.
Check for read-locked or off-line
devices.

?LINK~F-SAV device full There was no room in the directory v
for the filename or there was no
room on the output device for. the
image file.

LINKER (LINK)

Message Explanation

?LINK-F-SAV read error A hardware error occurred while
reading the image file (SAV, LDA).
Check for read-locked or off-line
devices.

?LINK-F-SAV write error A hardware error occurred while
writing the image file (LDA).
Check for write-locked or off-line
devices.

?LINK-F-STB device full There was no room in the directory
for the filename or there was no
room on the output device for the
symbol table (STB) file.

?LINK-F-STB not allowed with /S and a MAP

Production of STB and MAP in the
same linking operation is
prohibited in order to maximize
space in the symbol table with /S.
Produce STB and MAP in separate
linking operations. :

?LINK~-F-STB write error A hardware error occurred while
writing the symbol table (STB)
file. Check for write-locked or
off-line devices.

?LINK-F-Storing text beyond high limit

An input object module has caused
the linker to store information in
the image file beyond the high
limit of the program; there is an
error condition in the object
module. Reassemble and/or
recompile the program.

?LINK-F-Symbol table overflow . Too many global symbols were used

in the progranm.
?LINK-W-/0 Ignored Overlays were specified in the
wrong order. Check for a typing

error in the command line. The
overlay option is ignored. Consult
the overlay restrictions in this
chapter.

?LINK-W-Additive reference of NNNNNN at segment # MMMMMM

A call or a branch to an overlay
segment was not made directly to an
entry point in the segment. NNNNNN
represents the entry point; MMMMMM
represents the segment number.

LINKER (LINK)

Message Explanation

?LINK-W~Bad option: /a The linker did not recognize the PN
option (/a) specified in the S
command line, or an illegal
combination of options was used.

If the bad option occurred in the

first command line, control returns

to LINK; enter another command.

If the bad option occurred on a

subsequent command line, the option

is ignored and processing -
continues. In a continued command

line, only /0, /C, and // are legal

options. Reexamine the command

line and check for a typing error.

?LINK-W-Bad overlay at segment # NNNNNN

An overlay tried to store text
outside its region; NNNNNN —~,
represents the segment number . ;
Check for an .ASECT in the overlay.

?LINK-W-Byte relocation error at NNNNNN
The linker attempted to relocate

and link byte gquantities, but
failed. NNNNNN represents the

address at which the error
occurred. Failure 1is defined as
the high byte of the relocated ,qa%

value (or the 1linked wvalue) not
being all zeroes. The relocated
value is truncated to 8 bits and
the linker continues processing.
Correct the source program so that
there are no relocated byte
quantities, reassemble, and relink.

?LINK-W-Complex relocation divide by 0 in DEV.FILNAM.TYP

A divide by 0 was attempted in a
complex relocation string in the
file indicated. A result of 0 |is
returned and linking continues.

?LINK-W-Conflicting section attributes AAAAAA

The program section symbol - was
defined with different attributes.

The attributes of the first Y
definition are used and the linking
process continues. The source

program should be checked to use
the desired section attributes for
that program section.

LINKER (LINK)

Message

?LINK-W-Extend section not found

?LINK-W-Map write error

Explanation

The extend section name given with

/E was not found in the modules
that were linked; or the extend
section does not exist in the root
segment. The linker continues
after the warning, without
extending the section. Check the
response to the "Extend section?"

prompt, and use the correct section
name the next time you link.

while
The
the

error occurred
writing the map output file.
map output is terminated and
linking process continues.

A hardware

?LINK-W-Multiple definition of symbol

The symbol indicated was defined
more than once. Extra definitions
are ignored.

?LINK-W-Round section not found AAAAAA

?LINK~-W-Stack address undefined or

?LINK-W-Transfer address undefined

The round program section was not
found in the symbol table to match
the symbol entered (following use
of the /0 option). Linking
continues with no round-up action.

in overlay

The stack address specified by the
/M option was either undefined or
in an overlay. For SAV files, the
stack address is set tq the default
1000. Check for a typing error in
the command line. Verify that the
stack address or global symbol is
not defined in an overlay segment.

or in overlay

The transfer address was not
defined or was in an overlay.
Check for a typing error in the
command 1line. The response to the
/T option must be either a colon
followed by an unsigned 6-digit
octal number, or a carriage return

followed by the global symbol whose
value is the transfer address of
the load module.

LINKER (LINK)

Message : Explanation
?LINK-W-Undefined globals: The globals listed were undefined. ‘!.%
Check for a typing error in the ‘
command line. The undefined

globals are listed on the terminal
and also in the 1link map when
requested. Correct the source
program. Verify that all necessary
object modules are indicated in the
command 1line or present in the
libraries specified. v

CHAPTER 4

ON-LINE DEBUGGING TECHNIQUE (ODT)

RSTS/E on-line debugging technique (ODT) is a program supplied with
the FORTRAN system that aids in debugging assembly language
subprograms and FORTRAN in line code. From your terminal you direct
the execution of your program with ODT. ODT can:

® print the contents of any location for examination or
alteration;

e run all or any portion of an object program using the
breakpoint feature;

® search the object program for specific bit patterns;

e search the object program for words that reference a specific
word;

6 calculate offsets for relative addresses;

e fill a single word, block of words, byte or block of bytes
with a designated value.

Make sure you have an assembly listing and a link map available for
the subprogram you want to debug with ODT. You can make minor
corrections to the program on line during the debugging session, and
you can then execute the program under the control of ODT to verify
the corrections. If you need to make major changes, such as adding a
missing section of code, note them on the assembly listing and
incorporate them in a new assembly.

4.1 CALLING ODT

ODT is supplied as a relocatable object module. It is "called" when
you link it with the subprogram to be debugged. You can link ODT with
your program (using the linker) for an absolute area in memory and
load it with your program. When you link ODT with your program, it is
a good idea to link ODT low in memory relative to the program. If you
link ODT high in memory, you must be sure that the buffer space for
your program is contained within program bounds. Otherwise, if your
program uses dynamic buffering, program execution may destroy ODT in
memory.

To link ODT correctly with your object module, you must use the /T
option in the LINK command string. When LINK prompts you for a
transfer address, type O.ODT. This is the global symbol representing
the normal entry address for 0.0ODT. The system uses as an absolute
address the address of the entry point 0.0DT shown in the linker load
map.

ON-LINE DEBUGGING TECHNIQUE (ODT)

NOTE

If you 1link ODT with an overlay
structured file, ODT should reside in
the root segment so that it will always
be in memory. A breakpoint inserted in
an overlay will be destroyed if it is
overlaid during program execution.

The following example shows how to link and load ODT.

RUN SLINK
*MYPROG,LP:=MYPROG,ODT,MACSUB/T
Transfer address? 0.0DT

If ODT is awaiting a command, a CTRL/C from the keyboard will call the
keyboard monitor. = The monitor responds with a READY message on the
terminal and awaits a command. 1If you type CTRL/U during a search
printout, the search terminates and ODT prints an asterisk.

4.2 RELOCATION

When the assembler produces a relocatable object module, the Dbase
address of the module is assumed to be location 000000. The addresses
of all program locations as shown in the assembly listing are relative
to this base address. After you link the module, many of the values
and all of the addresses in the program will be incremented by a
constant whose value is the actual absolute base address of the module
after it has been relocated. This constant is called the relocation
bias for the module. Since a linked program may contain several
relocated modules, each with its own relocation bias, and since, in
the process of debugging, these biases will have to be subtracted from
absolute addresses continually in order to relate relocated code to
assembly listings, ODT provides automatic relocation.

The basis of automatic relocation is the eight relocation registers,
numbered 0 through 7. You may set them to the values of the
relocation biases at different times during debugging. Obtain
relocation biases by consulting - the link map. Once you set a
relocation register, ODT uses it to relate relative addresses to

absolute addresses. For more information on the exact nature of the
relocation process, consult Chapter 3, the RSTS/E linker.

ODT evaluates a relocatable expression as a 16-bit (6-digit octal)
number. You may type an expression in any one of the three forms
presented in Table 4-1. 1In this table, the symbol n stands for an
integer in the range 0 to 7 inclusive, and the symbol k stands for an
octal number up to six digits long, with a maximum value of 177777.
If you type more than six digits, ODT takes the last six digits typed,
truncated to the low-order 16 bits. k may be preceded by. a minus
sign, in which case its value is the two's complement of the number
typed. For example:

k (number typed) Values
1 000001
-1 177771
400 000400
-177730 000050
1234567 034567

|

ON-LINE DEBUGGING TECHNIQUE (ODT)

Table 4-1
Forms of Relocatable Expressions (r)
Form r Value of r
A) k The value of k
B) n,k The value of k plus the contents of

relocation register n. (If the n part of
this expression is greater than 7, ODT uses
only the last octal digit of n.)

C) C or Whenever you type the 1letter C, ODT
C,k or replaces C with the contents of a special
n,C or register called the constant register.
c,C (This value has the same role as the k or n

that it replaces. The constant register is
designated by the symbol $C and may be set
to any value, as indicated below.)

Section 4.3.13 describes the relocation register commands in greater
detail.

4.3 COMMANDS AND FUNCTIONS

When ODT starts (as explained in Section 4.1) it indicates readiness
to accept commands by printing an asterisk on the left margin of the
terminal page. You can issue most of the ODT commands in response to
the asterisk. You can examine a word and change it; you can run the
object program in its entirety or in segments; you can search memory
for specific words or references to them. The discussion below
explains these features. In the following examples, characters
printed by ODT are underlined.

4.3.1 Printout Formats

Normally, when ODT prints addresses it attempts to print them in
relative form (Form B in Table 4-1). ODT looks for the relocation
register whose value is closest to, but less than or equal to the
address to be printed. It then represents the address relative to the
contents of the relocation register. However, if no relocation
register fits the requirement, the address prints in absolute form.
Since the relocation registers are initialized to -1 (the highest
number), the addresses initially print in absolute form. IFf you
change the contents of any relocation register, it may then, depending
on the command, qualify for relative form.

For example, suppose relocation registers 1 and 2 contain 1000 and
1004 respectively, and all other relocation registers contain numbers
much higher. In this case, the following sequence might occur (the
slash command causes the contents of the location to be printed; the
line feed command (LF) accesses the next sequential location):

*1000:1R sets relocation register 1 to 1000
*1,4;2R sets relocation register 2 to 1004
*774/000000 LF opens location 774

000776 /007665 LF opens location 776

1,000000 /000000 LF opens absolute location 1000
1,000002 /000000 LF opens absolute location 1002
2,000000 /000000 opens absolute location 1004

ON-LINE DEBUGGING TECHNIQUE (ODT)

The printout format is controlled by the format register, SF.
Normally this register contains 0, in which case ODT prints addresses
relatively whenever possible. You can open $F and change its contents
to a non-zero value, however. In that case all addresses will print
in absolute form (see Section 4.3.4, Accessing Internal Registers).

4.3.2 Opening, Changing, and Closing Locations

An open location is one whose contents ODT prints for examination,
making those contents available for change. 1In a closed location, the
contents are no longer available for change. Several commands are
used for opening and closing locations.

Any command that opens a location when another 1location is already
open causes the currently open location to be closed. You may change
the contents of an open location by typing the new contents followed

by a single character command which requires no argument (i.e., LF, ",
RET, , @, >, <).

4.3.2.1 The Slash (/) - One way to open a location is to type its
address followed by a slash. For example:

*1000/012746

This command opens location 1000 for examination and makes it ready to
be changed.

If you do not want to change the contents of an open location, press
the RETURN key to close the location. ODT prints an asterisk and
waits for another command. However, to change the word, simply type
the new contents before giving a command to close the location. For
example:

*1000/012746 012345 RET
* —

This command inserts the new value, 012345, in location 1000 and
closes the 1location. ODT prints another asterisk indicating its
readiness to accept another command.

Used alone, the slash reopens the last location opened. For example:

*1000/012345 2340 RET
*/002340

This command opens location 1000, changes its contents to 002340, and
then closes the location. ODT prints an asterisk indicating its
readiness to accept another command. The / character reopens the last
location opened and verifies its value.

Note again that opening a location while another is open automatically
closes the currently open location before opening the new location.

Also note that if you specify an odd numbered address with a slash,
ODT opens the location as a byte, and subsequently behaves as if you
had typed a backslash (see the following paragraph).

ON-LINE DEBUGGING TECHNIQUE (ODT)

4.3.2.2 The Backslash (\) = In addition to operating on words, ODT
operates on Dbytes. Typing the address of the byte followed by a
backslash character opens the byte. (On the LT33 or LT35 terminal
type \ by pressing the SHIFT key while typing the L key.) This causes
ODT to print the byte value at the specified address, to interpret the
value as ASCII code, and to print the corresponding character, if
possible, on the terminal. (ODT prints a ? when it cannot interpret
the ASCII value as a printable character.)

*1001\101 =A

A backslash typed alone reopens the last open byte. If a word was
previously open, the backslash reopens its even byte:

*1002/000004 \004 =?

4.3.2.3 The LINE FEED Key (LF) - If you type the LINE FEED key when a
location 1is open, ODT closes the open location and opens the next
sequential location:

*1000/002340 LF
001002 /012740

In this example, the LINE FEED key caused ODT to print the address of
the next location along with its contents, and to wait for further
instructions. After the above operation, location 1000 is closed and
1002 1is open. You may modify the open location by typing the new
contents.

If a byte location was open, typing a line feed opens the next byte
location.

4.3.2.4 The Circumflex or Up-Arrow (") - If you type the circumflex
(or up-arrow) when a location is open (circumflex is produced on an
LT33 or LT35 by typing SHIFT/N) -ODT closes the open location and opens:
the previous location. To continue from the example above:

*001002/012740 ©
001000 /002340

This command closeés location 1002 and opens location 1000. You may
modify the open location by typing the new contents.

If the opened location was a byte, then the circumflex opens the
previous byte.

4.3.2.5 The Underline or Back-Arrow (_) - If you type the underline,
or back-arrow (by wusing SHIFT/0 on an LT33 or LT35 terminal) to an
open word, ODT interprets the contents of the currently open word as
an address indexed by the program counter (PC) and opens the addressed
location:

*1006/000006
001016 /000405

Notice in this example that the open location, 1006, was indexed by
the PC as 1if it were the operand of an instruction with addressing
mode 67 (PC relative mode).

ON-LINE DEBUGGING TECHNIQUE (ODT)

You can make a modification to the opened location before you type a
line feed, circumflex, or underline. Also, the new contents of the
location will be used for address calculations using the underline
command. For example:

*100/000222 4 LF modifies to 4 and opens next location
000102 /000111 6~ modifies to 6 and opens previous location
000100 /000004 200_ changes to 200 and opens location indexed
000302 /123456 by PC

4.3.2.6 Open the Addressed Location (@) - You can wuse the at (@)
symbol (SHIFT/P on the LT33 or LT35 terminal) to optionally modify a
location, close it, and then use its contents as the address of the
location to open next. For example:

*1006,/001044 @ open location 1044 next

001044 /000500

*1006/001044 2100@ modifies to 2100 and opens location
002100 /000167 2100

4.3.2.7 Relative Branch Offset (>) - The right-angle bracket, >,
optionally modifies a location, closes it, and then uses its low-order
byte as a relative branch offset to the next word to be opened. For
example:

*1032/000407 301> modifies to 301 and interprets as a
000636 /000010 relative branch

Note that 301 is a negative offset (-77). ODT doubles the offset
before it adds it to the PC; therefore, 1034+(-176)=636.

4.3.2.8 Return to Previous Sequence (<) - The left-angle bracket, <,
lets you optionally modify a location, close it, and then open the
next location of the previous sequence that was interrupted by an
underline, @, or right-angle bracket command. Note that underline, @,
or right-angle bracket causes a sequence change to the open word. If
a sequence change has not occurred, the left-angle bracket simply
opens the next location as a LINE FEED does. This command operates on
both words and bytes.

*1032/000407 301> > causes a sequence change
000636 /000010 < return to original sequence
001034 /001040 @ @ causes a sequence change
001040 /000405 \005 = < < now operates on byte
001035 \002 =2 < < acts like LF

001036 \004 =?

4.3.3 Accessing General Registers 0-7

Open the program's general registers 0-7 with a command in the
following format:

*$n/

ON-LINE DEBUGGING TECHNIQUE (ODT)

The symbol n is an integer in the range 0-7 that represents the
desired register. When you open these registers, you can examine them
or change their contents by typing in new data as with any addressable
location. For example:

*$0/000033 RET examines register 0 then closes it

*

*$4/000474 464 RET opens register 4, changes its contents
* to 000464, then closes the register

The example above can be verified by typing a slash in response to
ODT's asterisk:

*/000464

You may use the LINE FEED, circumflex, underline or @ command when a
register is open.

4.3.4 Accessing Internal Registers

The program's status register contains the condition codes of the most
recent operational results. Open it by typing $S. For example:

*$5/000311

$S represents the address of the status register. In response to $S
in the example above, ODT printed the 16-bit word, of which only the
low-order eight bits are meaningful. Bits 0-3 indicate whether a
carry, overflow, zero, or negative (in that order) has resulted.

You can also use the $§ to open certain other internal locations listed
in Table 4-2.

Table 4-2
Internal Registers

Register Section Function

SB 4.3.6 Location of the. first word of the
breakpoint table

SM 4.3.9 Mask location for specifying which bits are
to be examined during a bit pattern search

$s 4.3.4 Location containing the condition codes
(bits 0-3)

$C 4.3.10 Location of the constant register

SR 4.3.13 Location of relocation register 0, the base

of the relocation register table

S$F 4.3.1 Location of format register

ON-LINE DEBUGGING TECHNIQUE (ODT)

4.3.5 Radix-50 Mode (X)

Many PDP-11 system programs employ the Radix-50 mode of packing

certain ASCII characters three to a word. You can use Radix-50 mode

by specifying the MACRO .RAD50 directive. ODT provides a method for
examining and changing memory words packed in this way with the X
command .

When you open a word and type the X command, ODT converts the contents
of the opened word to its 3-character Radix-50 equivalent and prints
these characters on the terminal. You can then type one of the
responses from Table 4-3:

Table 4-3
Radix-50 Terminators

Response Effect

RETURN key (RET) Closes the currently open location

LINE FEED key (LF) | Closes the currently open location and
opens the next one in sequence

Circumflex (") Closes the currently open location and
opens the previous one in sequence

Any three Converts the three characters into

characters whose packed Radix-50 format. Legal Radix-50
octal code is 040 characters for this response are:
(space) or greater .

$

Space

0 through 9

A through 2

If you type any other characters, the resulting binary number is
unspecified (that 1is, no error message prints and the result is
unpredictable). You must type exactly three characters before ODT
resumes its normal mode of operation. After vyou type the third
character, the resulting binary number is available to be stored in
the opened location. Do this by closing the location in any one of
the ways listed in Table 4-3. For example:

*1000/042431 X=KBI CBA RET
*1000/011421 X=CBA

NOTE

After ODT converts the three characters
to binary, the binary number can be
interpreted in one of many different
ways, depending on the command that
follows. For example:

*1234/063337 X=PRO XIT/013704

Since the Radix-50 equivalent of XIT 1is
113574, the final slash in the example
will cause ODT to open location 113574
if it is a legal address.

ON-LINE DEBUGGING TECHNIQUE (ODT)

4.3.6 Breakpoints

The breakpoint feature helps you monitor the progress of program
execution. You can set a breakpoint at any instruction that is not
referenced by the program for data. When a breakpoint is set, ODT
replaces the contents of the breakpoint 1location with a BPT trap
instruction so that program execution will be suspended when a
breakpoint is encountered. Then the original contents of the
breakpoint location are restored, and ODT regains control.

With ODT you can set up to eight breakpoints, numbered 0 through 7, at
any one time. Set a breakpoint by typing the address of the desired
location of the breakpoint followed by ;B. Thus, r;B sets the next
available breakpoint at location r. (If all 8 breakpoints have been
set, ODT ignores the r;B command.) You can set or change specific
breakpoints with the r;nB command, where n is the number of the
breakpoint. For example:

*1020;B sets breakpoint 0
*1030;B sets breakpoint 1
*1040;B sets breakpoint 2
*#1032;1B resets breakpoint 1
*

The ;B command removes all breakpoints. Use the ;nB command to remove
only one of the breakpoints, where n is the number of the breakpoint.
For example:

*:2B (removes the third breakpoint)
* .

ODT keeps a table of breakpoints; you can access that table. The $B/
command opens the 1location containing the address of breakpoint 0.
The next seven locations contain the addresses of the other
breakpoints in order. You can sequentially open them by using the
LINE FEED key. For example:

*$B/001020 LF

001136/001032 LF
001140/007070 LF
001142/007070 LF
001144/007070 LF
001146/001046 LF
0011506/001066 LF
001152/007070

In this example, breakpoint 0 is set to 1020, breakpoint 5 is set to
1046, and breakpoint 6 is set to 1066. The other breakpoints are not
set. .

4.3.7 Running the Program (r;G and r;P)

ODT controls program execution. There are two commands for running
the program: r;G and r;P. The r;G command starts execution (go) and
r;P continues (proceed) execution after halting at a breakpoint. For
example:

*1000;G
This command starts execution at location 1000. The program runs
until it encounters a breakpoint or until it completes. If it gets

caught in an infinite loop, it must be restarted as explained in
Section 4.1.

4-9

ON-LINE DEBUGGING TECHNIQUE -(ODT)

Upon execution of either the r;G or r;P command, the general registers
0-6 are set to the values in the locations specified as $0-$6 (as
explained in Section 4.3.3). The processor status register is set to
the value in the location specified as $S.

When ODT encounters a breakpoint, execution stops and ODT prints Bn;
(where n is the breakpoint number), followed by the address of the

breakpoint. You can then examine locations for expected data. For
example:

*1010;3B sets breakpoint 3 at location 1010

*1000;G starts execution at location 1000

B3;001010 stops execution at location 1010

*

To continue program execution from the breakpoint, type ;P in response
to ODT's last prompt (*).

When you set a breakpoint in a loop, you may want to allow the program
to execute a certain number of times through the loop before ODT
recognizes the breakpoint. Set a proceed count by using the Kk;P
command. This command specifies the number of times the breakpoint is
to be encountered before ODT suspends program execution (on the kth
encounter). The count, k, refers only to the numbered breakpoint that
most recently occurred. (Execution of other breakpoints is determined
by their own repeat counts.) You may specify a different proceed count
for the breakpoint when it is encountered. Thus:

B3;001010 halts execution at breakpoint 3

*1026;3B resets breakpoint 3 at location 1026

*4:P sets proceed count to 4 and

B3;001026 continues execution; the program loops

* through the breakpoint three times and halts on

the fourth occurrence of the breakpoint

Following the table of breakpoints (as explained in Section 4.3.6) is
a table of proceed command repeat counts for each breakpoint. You can
inspect these repeat counts by typing $B/ and nine 1line feeds. The
repeat count for breakpoint 0 prints (the first seven line feeds cause
the table of breakpoints to be printed; the eighth types the single
instruction mode, explained in the next section, and the ninth line
feed begins the table of proceed command repeat counts) . The repeat
counts for breakpoints 1 through 7 and the repeat count for the
single-instruction trap follow in sequence. ODT initializes a proceed
count to 0 before you assign it a value. After the command has been
executed, it is set to -1. Opening any one of these provides an
alternative way of changing the count. Once the location is open, you
can modify its contents in the usual manner by typing the new contents
followed by the RETURN key. For example:

.

nnnnnn /001036 LF address of breakpoint 7

nnnnnn /006630 LF single instruction address

nnnnnn /000000 15 LF count for breakpoint 0; change to 15

nnnnnn /000000 LF count for breakpoint 1

nnnnnn /000000 LF count for breakpoint 7

nnnnnn /nnnnnn repeat count for single instruction mode
4-10

ON-LINE DEBUGGING TECHNIQUE (ODT)

Both the address indicated as the single instruction address and the
repeat count for single instruction mode are explained in the
following section.

4.3.8 Single Instruction Mode

With this mode you specify the number of instructions to be executed
before ODT suspends the program run. The proceed command, instead of
specifying a repeat count for a breakpoint encounter, specifies the
number of succeeding instructions to be executed. Note that
breakpoints are disabled in single instruction mode.

Table 4-4 lists the single instruction mode commands.

Table 4-4
Single Instruction Mode Commands

Command Explanation

:nS : Enables single instruction mode. (n can be any digit
and serves only to distinguish this form from the
form ;S). Breakpoints are disabled.

n;P Proceeds with program run for next n instructions
before reentering ODT. (If n is missing, it 1is
assumed to be 1l.) Trap instructions and associated
handlers can affect the proceed repeat count (see
Section 4.4.2).

:S Disables single instruction mode.

When the repeat count for single instruction mode is exhausted and the
program suspends execution, ODT prints:

B8;nnnnnn

where nnnnnn is the address of the next instruction to be executed.
The $B breakpoint table contains this address following that of
breakpoint 7. However, unlike the table entries for breakpoints 0-7,
direct modification has no effect.

Similarly, following the repeat count for breakpoint 7 is the repeat
count for single instruction mode. You may modify this table entry
directly. This is an alternative way of setting the
single-instruction mode repeat count. 1In such a case, ;P implies the
argument set in the $B repeat count table rather than an assumed 1.

4.3.9 Searches

With ODT you can search all or any specific portion of memory for any
bit pattern or for references to a particular location.

ON-LINE DEBUGGING TECHNIQUE (ODT)

4.3.9.1 Word Search (r;W) - Before initiating a word search, you must
specify the mask and search limits. The location represented by $M
specifies the mask of the search. $M/ opens the mask register. The
next two sequential locations (opened by line feeds) contain the lower
and upper limits of the search. ODT examines in the search all bits
set to 1 in the mask; it ignores other bits.

You must then give the search object and the initiating command using
the r;W command, where r 1is the search object. When ODT finds a
match, (i.e., each bit set to 1 in the search object is set to 1 in
the word ODT searches over the mask range) the matching word prints.
For example:

*$SM/000000 177400 LF tests high-order eight bits
nnnnnn /000000 1000 LF sets low address limit
nnnnnn /000000 1040 RET sets high address limit
*400;W initiates word search

001010 /000770
001034 /000404
*

In the above example, nnnnnn is an address 1internal to ODT; this
location varies and is meaningful only for reference purposes. In the
first line above, the slash was used to open $M, which now contains
177400; the 1line feeds opened the next two sequential locations,
which now contain the upper and lower limits of the search.

Typing CTRL/U during a search printout terminates the search.

4.3.9.2 Effective Address Search (r;E) - ODT provides a search for
words that reference a specific location. Open the mask register only
to gain access to the low and high limit registers. After specifying
the search limits (as explained for the word search), type the command
r;E (where r is the effective address) to initiate the search.

Words that are an absolute address (argument r itself), a relative
address offset, or a relative branch to the effective address, print
after their addresses. For example:

*$SM/177400 LF opens mask register only to gain
nnnnnn /001000 1010 LF access to search limits

nnnnnn /001040 1060 RET

*1034;E initiates search

001016 /001006 relative branch

001054 /002767 relative branch

*1020;E initiates a new search

001022 /177774 relative address offset

001030 /001020 absolute address

Give particular attention to the reported effective address
references. A word may have the specified bit pattern of an effective
address without actually being used as one. ODT reports all possible
references whether they are actually used or not.

Typing CTRL/U during a search printout terminates the search.

ON-LINE DEBUGGING TECHNIQUE (ODT)

4.3.10 The Constant Register (rC)

It is often desirable to convert a relocatable address into its value
after relocation or to convert a number into its two's complement, and
then to store the converted value into one or more places in a
program. Use the constant register to perform this and other useful
functions.

Typing r:C evaluates the relocatable expression to its 6-digit octal
value, prints the value on the terminal, and stores it in the constant
register. 1Invoke the contents of the constant register in subseguent
relocatable expressions by typing the letter C. Examples follow:

*-4432;C=173346 places the two's complement of 4432 in the
constant register

*6632/062701 C RET stores the contents of the constant register
in location 6632

*1000;1R sets relocation register 1 to 1000

*1,4272;C=005272 reprints relative location 4272 as an
absolute location and stores it in the
constant register

4.3.11 Memory Block Initialization (;F and ;I)

Use the constant register with the commands ;F and ;I to set a block
of memory to a specific value. While the most common value required
is zero, other possibilities are plus one, minus one, ASCII space,
ete.

When you type the command ;F, ODT stores the contents of the constant
register in successive memory words starting at the memory word
address you specify in the lower search limit, and ending with the
address you specify in the upper search limit.

Typing the command ;I stores the low-order 8 bits in the constant
register 1in successive bytes of memory starting at the byte address
you specify in the lower search limit and ending with the byte address
you specify in the upper search limit.

For example, assume relocation register 1 contains 7000, 2 contains
10000, and 3 contains 15000. The following sequence sets word
locations 7000-7776 to zero, and byte locations 10000-14777 to ASCII
spaces:

opens the mask register to gain

*$M/000000 LF access to search limits

nnnnnn /000000 1,0 LF sets the lower limit to 7000
nnnnnn /000000 2,-2 LF sets the upper limit to 7776
*0;C=000000 sets the constant register to zero
*.F sets locations 7000~7776 to zero

*$M/000000 LF

nnnnnn/007000 2,0 LF sets the lower limit to 10000

nnnnnn/007776 3,-1 RET sets the upper limit to 14777

*40;C=000040 sets the constant register to 40
(space)

*sT sets the byte locations 10000-14777

* to the value in the 1low-order 8

bits of the constant register

ON-LINE DEBUGGING TECHNIQUE (ODT)

4.3.12 Calculating Offsets (r;O)

Relative addressing and branching involve the use of an offset. An
offset is the number of words or bytes forward or backward from the
current location to the effective address. During the debugging
session it may be necessary to change a relative address or branch
reference by replacing one instruction offset with another. ODT
calculates the offsets in response to the r;O0 command.

The command r;0O causes ODT to print the 16-bit and 8-bit offsets from
the currently open location to address r. For example:

*346/000034 414;0 000044 022 22 RET
*/000022

This command opens location 346, calculates and prints the offsets
from location 346 to location 414, changes the contents of location
346 to 22 (the 8-bit offset) and verifies the contents of location
346.

The 8-bit offset prints only if it is in the range -128(decimal) to
127 (decimal) and the 16-bit offset is even, as was the case above. 1In
the next example, the offset of a relative branch is calculated and
modified:

*1034/103421 1034;0 177776 377 \021 377 RET
*/103777

Note that the modified low-order byte 377 must be combined with the
unmodified high-order byte.

4.3.13 Relocation Register Commands

The use of the relocation registers is described briefly in Section
4.2. At the beginning of a debugging session it is desirable to
preset the registers to the relocation biases of those relocatable
modules that will be receiving the most attention.

Do this by typing the relocation bias, followed by a semicolon and the
specification of relocation registers, as follows:

r;nR

where r may be any relocatable expression and n is an integer in the
range 0 - 7. If you omit n, it is assumed to be 0. For example:

*1000;5R puts 1000 into relocation register 5
*5,100;5R adds 100 to the contents
* of relocation register 5

Once a relocation register is defined, you can use it to reference
relocatable values. For example,

*#2000; 1R puts 2000 into relocation register 1
*],2176/002466 examines the contents of location 4176
*]1,3712;0B sets a breakpoint at location 5712

Sometimes programs may be relocated to an address below the one at
which they were assembled. This could occur with PIC code (position
independent code), which is moved without using the linker. In this
case, the appropriate relocation bias would be the two's complement of
the actual downward displacement. One method for easily evaluating

ON-LINE DEBUGGING TECHNIQUE (ODT)

the bias and putting it in the relocation register is illustrated in
the following example.

Agsume a program was assembled at location 5000 and was moved to
location 1000. Then the following sequence enters the two's
complement of 4000 in relocation register 1.

*1000; 1R
*1,-5000;1R
*

Relocation registers are initialized to -1 so that unwanted relocation
registers never enter into the selection process when ODT searches for
the most appropriate register.

To set a relocation register to -1, type ;nR. To set all relocation
registers to -1, type ;R.

ODT maintains a table of relocation registers, beginning at the
address specified by $R. Opening $R ($R/) opens relocation register
0. Successively typing a 1line feed opens the other relocation
registers in sequence. When a relocation register is opened in this
way, you can modify it as you would any other memory location.

4.3.14 The Relocation Calculators, nR and n!

When a location has been opened, it is often desirable to relate the
relocated address and the contents of the location back to their
relocatable values. To calculate ‘the reloca.able address of the
opened location relative to a particular relocation bias, type:

n!

The symbol n specifies the relocation register. This calculator works
with opened bytes and words. If you omit n, the relocation register
whose contents are closest to, but less than or equal to the opened
location 1is selected automatically by ODT. In the following example,
assume that these conditions are fulfilled by relocation register 3,
which contains 2000. Use the following command to find the most
likely module that a given opened byte is in:

*2500\011 = !=3,000500

To calculate the difference between the contents of the opened
location and a relocation register, type nR, where n represents the
relocation register. If you omit n, ODT selects the relocation
register whose contents are closest to but less than or equal to the
contents of the opened location. For example, assume the relocation
bias stored in relocation register 1 is 7000:

*1,500/11032 1R=1,2032

The value 2032 is the content of 1,500, relative to the base 7000.
The next example shows the use of both relocation calculators.

If relocation register 1 contains 1000, and relocation register 2
contains 2000, use the following command to calculate the relocatable
addresses of location 3000 and its contents, relative to 1000 and
2000: . : .

*3000/006410 11!=1,002000 2!=2,001000 1R=1,5410 2R=2,4410

ON-LINE DEBUGGING TECHNIQUE (ODT)

4.3.15 ODT Priority Level, $P
$P is used under other PDP-11 operating systems to represent the

processor priority 1level at which ODT 1is to operate. §P has no
function under RSTS/E and is present for compatibility purposes only.

4.3.16 ASCII Input and Output (r;na)
Inspect and change ASCII text by the command:
r;nA
where r represents a relocatable expression, and n is a character
count. If you omit n, it is assumed to be 1. ODT prints n characters

starting at location r, followed by a carriage return/line feed
combination. Table 4-5 lists responses and their effect.

Table 4-5
ASCII Terminators

Response Effect

RET ODT outputs a carriage return/line feed
combination followed by an asterisk, and waits
for another command.

LF ODT opens the byte following the 1last byte
output.

Up to n characters of text

ODT inserts the text into memory, starting at
location r. If you type fewer than n
characters, terminate the command by typing
CTRL/U. This causes a carriage return/line
feed/asterisk combination to print. However, if
you type exactly n characters, ODT responds with
a carriage return/line feed combination, the
address of the next available byte, and then a
carriage return/line feed/asterisk combination.

4.4 PROGRAMMING CONSIDERATIONS

Information in this section is not necessary for the efficient use of
ODT. However, it does provide a better understanding of how ODT
performs some of its functions. In certain difficult debugging
situations, this understanding is necessary.

4.4.1 Functional Organization

The internal organization of ODT is almost totally modularized into
independent subroutines. The internal structure consists of three
major functions: command decoding, command execution, and utility
routines.

ON-LINE DEBUGGING TECHNIQUE (ODT) .

The command decoder interprets the individual commands, checks for
command errors, saves input parameters for use in command execution,
and sends control to the appropriate command execution routine.

The command execution routines take parameters saved by the command
decoder and use the utility routines to execute the specified command.
Command execution routines either return to the command decoder or
transfer control to your program.

The utility routines are common routines such as SAVE-RESTORE and I/0.
They are used by both the command decoder and the command executers.

4.4.2 Breakpoints

The function of a breakpoint is to give control to ODT whenever a
program tries to execute the instruction at the selected address.
Upon encountering a breakpoint, you can use all of the ODT commands to
examine and modify the program.

When a breakpoint is executed, ODT removes all the breakpoint
instructions from the code so that you can examine and alter the
locations. ODT then types a message on the terminal in the form Bn;k,
where k is the breakpoint address and n is the breakpoint number. ODT
automatically restores the breakpoints when execution resumes.

There is a major restriction in the use of breakpoints: the program
must not reference the word where a breakpoint was set since ODT
altered the word. You should also avoid setting a breakpoint at the
location of any instruction that causes or returns from traps (e.g.,
EMT, RTI). These instructions are likely to clear the T-bit, since a
new word from the trap vector or the stack is loaded into the status
register.

A breakpoint occurs when a trace trap instruction (placed in your
program by ODT) is executed. When a breakpoint occurs, ODT operates
according to the following algorithm:

l. Sets processor priority to 7 (automatically set by trap
instruction). See Section 4.3.15.

2. Saves registers and sets up stack.
3. If internal T-bit trap flag is set, goes to step 13.
4. Removes breakpoints.

5. Resets processor priority to ODT's priority or user's
priority. See Section 4.3.15.

6. Makes sure a breakpoint or single-instruction mode caused the
interrupt.

7. If the breakpoint did not cause the interrupt, goes to step
15.

8. Decrements repeat count.
9. Goes to step 18 if non-zero; otherwise resets count to 1.

10. Saves terminal status.

11.

12.
13.
14.
15.
le.
17.

18.

ON-LINE DEBUGGING TECHNIQUE (ODT)
Types message about the breakpoint or single-instruction mode
interrupt.
Goes to command decoder.
Clears T-bit in stack and internal T-bit flag.
Jumps to the go processor.
Saves terminal status.
Types BE (bad entry) followed by the address.

Clears the T-bit, if set, in the user status and proceeds to
the command decoder.

Goes to the proceed processor, bypassing the TT restore
routine. '

ODT processes a proceed (;P) command according to the following

algorithm:
1. Checks the proceed for legality.
2. Sets the processor priority to 7. See Section 4.3.15.
3. Sets the T-bit flags (internal and user status).
4. Restores the user registers, status, and program counter.
5. Returns control to the user.
6. When the T-bit trap occurs, executes steps 1, 2, 3, 13, and

14 of the breakpoint sequence, restores breakpoints, and
resumes normal program execution.

When a breakpoint is placed on an IOT, EMT, TRAP, or any instruction
causing a trap, ODT follows this algorithm:

When the breakpoint occurs as described above, enters ODT.

When ;P is typed, sets the T-bit and executes the IOT, EMT,
TRAP, or other trapping instruction.

Pushes the current PC and status (with the T-bit included) on
the stack.

Obtains the new PC and status (no T-bit set) from the
respective trap vector.

Executes the whole trap service routine without any
breakpoints.

When an RTI . is executed, restores the saved PC and PS
(including the T-bit). Executes the instruction following
the trap-causing instruction, If this instruction is not
another trap-causing instruction, the T-bit trap occurs;
reinserts the breakpoints in the user program, or decrements
the single-instruction mode repeat count. If the following
instruction is a trap-causing instruction, repeats this
sequence starting at step 3.

4-18

ON-LINE DEBUGGING TECHNIQUE (ODT)

NOTE

Exit from the trap handler must be via
the RTI instruction. Otherwise, the
T-bit is 1lost. oDT cannot regain
control since the breakpoints have not
yet been reinserted.

Note that the ;P command is illegal if a breakpoint has not occurred
(ODT responds with ?). ;P is legal, however, after any trace trap
entry.

The internal breakpoint status words have the following format:

1. The first eight words contain the breakpoint addresses for
breakpoints 0-7. (The ninth word contains the address of the
next instruction to be executed in single-instruction mode.)

2. The next eight words contain the respective repeat counts.
(The following word contains the repeat count for
single-instruction mode.)

You may change these words at will, either by using the breakpoint
commands or by directly manipulating $B.

If program runaway occurs (that is, when the program is no longer
under ODT control, perhaps executing an unexpected part of the program
where you did not place a breakpoint) type CTRL/C if you wish to stop
execution, To restart ODT you must relink your program with ODT, as
described in Section 4.1.

4.4.3 Searches

The word search lets you search for bit patterns in specified sections
of memory. Using the $M/ command, specify a mask, a lower search
limit ($SM+2), and an upper search limit ($M+4). Specify the search
object in the search command itself.

The word search compares selected bits (where 1's appear in the mask)
in the word and search object. If all of the selected bits are equal,
the unmasked word prints.
The search algorithm is:
1. Fetches a word at the current address.
2. XORs (exclusive OR) the word and search object.
3. ANDs the result of step 2 with the mask.
4. If the result of step 3 is zero, types the address of the
unmasked word and its contents; otherwise, proceeds to step
5.
5. MAdds two to the current address. If the current address is
greater than the upper 1limit, types * and returns to the
command decoder; otherwise, goes to step 1.
Note that if the mask is zero, ODT prints every word between the

limits, since a match occurs every time (i.e., the result of step 3 is
always zero).

ON-LINE DEBUGGING TECHNIQUE (ODT)

In the effective address search, ODT interprets every word in the
search range as an instruction that is interrogated for a possible
direct relationship to the search object. The mask register is opened
only to gain access to the search limit registers.

The algorithm for the effective address search follows. ((X) denotes
contents of X, and K denotes the search object):

1. Fetches a word at the current address X.

2. If (X)=K [direct reference], prints contents and goes to step
5.

3. If (X)+X+2=K [indexed by PC], prints contents and goes to
step 5.

4. If (X) is a relative branch to K, prints contents.

5. Adds two to the current address. If the current address is
greater than the upper limit, performs a carriage return/line
feed combination and returns to the command decoder;
otherwise, goes to step 1.

4.5 ERROR DETECTION

ODT detects two types of error: illegal or unrecognizable command,
and bad breakpoint entry. ODT does not check for the legality of an
address when you command it to open a location for examination or
modification. Thus the command: :

177774/
2MON-F-Trap to 4 003362

references nonexistent memory, thereby causing a trap through the
vector at location 4. If the program you are debugging with ODT has
requested traps through location 4 with the .TRPSET EMT, the program
will receive control at its TRPSET address.

Typing something other than a legal command causes ODT to ignore the
command and to print:

(echoes illegal command)?
*

and to wait for another command. Therefore, to cause ODT to ignore a
command just typed, type any illegal character (such as 9 or RUBOUT)
and the command will be treated as an error and ignored.

ODT suspends program execution whenever it encounters a breakpoint
(that is, traps to its breakpoint routine). TIf the breakpoint routine
is entered and no known breakpoint caused the entry, ODT prints:

BEnnnnnn
*

and waits for another command. BEnnnnnn denotes bad entry from
location nnnnnn. A bad entry may be caused by an illegal trace trap
instruction, by a T-bit set in the status register, or by a jump to
some random location within ODT.

4-20

CHAPTER 5

LIBRARIAN

The librarian utility program (LIBR) lets you create, update, modify,
list, and maintain object 1library files. It also lets you create
macro library files to use with the MACRO-11 assembler.

A library file is a direct access file that contains one or more
modules of the same module type. The librarian organizes the library
files so that the 1linker and MACRO-11 assembler can access them
rapidly. Each library contains a library header, library directory
(or global symbol or macro name table), and one or more object modules
or macro definitions. The object modules in a library file can be
routines that are repeatedly used in a program, routines that are used
by more than one program, or routines that are related and simply
gathered together for convenience. The contents of the library file
are determined by your needs. An example of a typical object library
file is the default system library that the linker uses, SYSLIB.OBJ.

You access object modules in a library file from another program by
making calls or references to their global symbols; you link the

object modules with the program that uses them by using the linker to
produce a single load module (see Chapter 3).

5.1 CALLING AND USING LIBR

To call the RSTS/E librarian from the system device, respond to the
prompt printed by the keyboard monitor by typing:

RUN SLIBR RET

LIBR prints an asterisk at the left margin on the terminal
when it is ready to accept a command line.

Type two CTRL/C's to halt the librarian at any time (or a single
CTRL/C to halt the librarian when it is waiting for console terminal
input) and return control to the monitor.

Section 5.2 explains how to use the librarian to create and modify
object libraries; Section 5.3 describes how to create macro
libraries.

LIBR accepts command strings in the following general format:

*dev:1lib,dev:list=dev:obj's/option

where
dev:lib represents the file specification for
the library file to be <created or
updated.

5-1

LIBRARIAN

dev:list represents the file specification for a
listing file of the library's contents.

dev:obj's represents the input object modules (you
can specify up to six input files); it
can also represent a 1library file to
update.

option represents an option from Table 5-1.
All file specifications are of the standard RSTS/E command string

format, as described in Section 1.3. Default file extensions are
assigned as follows:

File File Extension
list file: .LST
library file: .OBJ
input files: .OBJ

1f you specify no device, the default device is assumed.

Each input file consists of one or more object modules, and is stored
on a given device under a specific filename and extension. Once an
object module is inserted into a library file, the module is no longer
referenced by the name of the file of which it was a part, but by its
individual module name. This module name 1is either the subprogram
name you assign to FORTRAN routines or the name you specify in a
.TITLE statement of an assembly language routine. 1In the latter case
the default name .MAIN. is assigned by the assembler when no .TITLE
statement is included.

Thus, for example, the input file FORT.OBJ can exist on DT2: and can
contain an object module called ABC. Once the module is inserted into
a library file, reference only ABC (not FORT.OBJ).

The input files normally do not contain main programs but rather
subprograms, functions, and subroutines. The library file must never
contain a FORTRAN "BLOCK DATA" subprogram; there 1is no undefined
global symbol to cause the linker to load it automatically.

5.2 OPTION COMMANDS AND FUNCTIONS FOR OBJECT LIBRARIES

You maintain object library files by using option commands. Functions
that you can perform include object module deletion, insertion and
replacement, library file creation, and listing of an object 1library
file's contents.

Table 5-1 summarizes the options available for you to use with RSTS/E
LIBR for object libraries. The following sections, which are arranged
alphabetically by option, describe the options in greater detail.

LIBRARIAN

Table 5-1
LIBR Object Options
Command
Option Line Section Meaning
/C any 5.2.1 Command continuation; allows you
but last to type the input specification
: on more than one line.

/D first 5.2.4 Delete; deletes modules that you
specify from a library file.

/B first 5.2.5 Extract; extracts a module from
a library and stores it in an OBJ
file.

/G first 5.2.6 Global deletion; deletes global
symbols that you specify from the
library directory.

/N first 5.2.7 Names; includes the module names
in the directory.

/P first 5.2.8 P-section names; includes the
program section names in the
directory.

/R first 5.2.9 Replace; replaces modules in a
library file.

/U first 5.2.10 Update; inserts and replaces
quules in a library file.

/W first 5.2.11 Indicates wide format for the
listing file.

// first 5.2.1 Command continuation; allows you

and last to type the input specification
on more than one line.

There 1is no option to indicate module insertion. Modules are
automatically inserted into the library file by the librarian if you
do not specify an option.

5.2,1 Command Continuation Options (/C and //)

A continuation option is necessary whenever there is not enough room
to enter a command string on one line. The maximum number of input
files allowed on one line is six; you can use the /C option or the //
option to enter more. Type the /C option at the end of the current
line and repeat it at the end of subsequent command lines as often as
necessary, so long as memory is available; if memory is exceeded, an
error message prints. Each continuation line after the first command
line can contain only input file specifications (and no other
options). You can not specify a /C option on the last line of input.
If vyou use the // option, type it at the end of the first input line,
and again at the end of the last input line.

5-3

LIBRARIAN

In the following example, a library file is created on the default
device under the file name ALIB.OBJ; a listing of the library file's
contents is created as LIBLST.LST (also on the default device). The
file names of the input modules are MAIN.OBJ, TEST.OBJ, FXN.OBJ, and
TRACK.OBJ, all from DKl:.

*ALIB,LIBLST=DK1:MAIN,TEST,FXN/C
*DK1:TRACK

In the next example, a library file is created on the default device
under the name BLIB.OBJ. No listing is produced. 1Input files are
MAIN.OBJ from the default device, TEST.OBJ from DKl:, FXN.OBJ from
DKO:, and TRACK.OBJ from DT1:.

*BLIB=MAIN//
*DK1:TEST
*DKO : FXN
*DT1:TRACK//

Another way of writing this command line is:

*BLIB=MAIN,DK1:TEST,DKO0:FXN//
*DT1:TRACK
*//

5.2.2 Creating a Library File

To create a library file, specify a filename on the output side of a
command line.

The following example creates a new library called NEWLIB.OBJ on the
default device. The modules that make up this library file are in the
files FIRST.OBJ and SECOND.OBJ, both on the default device.

*NEWLIB=FIRST,SECOND
Assume this command line is next entered:
*NEWLIB,LIST=THIRD,FOURTH

The existing library file NEWLIB.OBJ is lost when the new library file
is created. A listing of the library file's contents is created under
the file name LIST.LST, and the object modules in the files THIRD.OBJ
and FOURTH.OBJ are inserted into the library file NEWLIB.OBJ.

5.2.3 1Inserting Modules into a Library

The insert function is assumed whenever an input file does not have an
associated option; the modules in the file are inserted into the
library file you name on the output side of the command string. Any
number of input files are allowed. If you attempt to insert a file
that contains a global symbol or PSECT (or CSECT) having the same name
as a global symbol or PSECT already existing in the library file, the
librarian prints a warning message. However, the librarian updates
the 1library file, ignoring the global symbol or PSECT in error. You
can then enter another command string.

LIBRARIAN

Although you can insert object modules that exist under the same name
(as assigned by the .TITLE statement or SUBROUTINE name statement in
FORTRAN) this practice is not recommended because of the difficulty
involved when replacing or updating these modules (Sections 5.2.9 and
5.2.10 describe replacing and updating) .

NOTE

The library operations of module
insertion, replacement, deletion, merge,
and update are actually performed along
with the library file creation
operation. Therefore, you must indicate
the library file to which the operation
is directed on both the input and output
sides of the command 1line, since
effectively a "new" output library file
is created each time the operation is
performed. You must specify the library
file first in the input field.

The following command line inserts the modules included in the files
FA.0OBJ, FB.OBJ, and FC.OBJ on DT1l: into a 1library file named
DXYNEW.OBJ on the default device. The resulting library also includes
the contents of library DXY.OBJ.

*DXYNEW=DXY,DT1:FA,FB,FC

5.2.4 Delete Option (/D)

The /D option deletes modules and all their associated global symbols
from the library.

When you use the /D option, the librarian prompts:
Module name?

Respond with the name of the module to be deleted followed by a
carriage return; continue until all modules to be deleted have been
entered. Type a carriage return immediately after the Module name?
message to terminate input and initiate execution of the command line.

The following example deletes the modules SGN and TAN from the library
file TRAP.OBJ on DK3:.

*DK3:TRAP=DK3:TRAP/D
Module name? SGN
Module name? TAN
Module name?

The next example deletes the module FIRST from the library LIBFIL.OBJ;
all modules in the file ABC.OBJ replace o0ld modules of the same name
in the library, and the modules in the file DEF.OBJ are inserted into
the library.

*LIBFIL=LIBFIL/D,ABC/R,DEF

Module name? FIRST
Module name?

5-5

LIBRARIAN

In the following example, two modules of the same name are deleted
from the library file LIBFIL.OBJ.

*LIBFIL=LIBFIL/D
Module name? X
Module name? X
Module name?

5.2.5 Extract Option (/E)

The /E option allows you to extract an object module from a library
file and place it in an .OBJ file.

When you specify the /E option, the librarian prints:
Global?

Respond with the global symbol (entry point) which is defined in the
object module to be extracted.

The /E option cannot be used on the same command line with any other
option.

The following example extracts the ATAN routine from the FORTRAN
library, SYSLIB.OBJ and stores it in a file called ATAN.OBJ on DKl:.

*DK]1 :ATAN=SYSLIB/E
Global? ATAN
Global?

The next example extracts the S$PRINT routine from SYSLIB.OBJ and
stores it on DM1l: as PRINT.OBJ.

*DM1:PRINT=SYSLIB/E
Global? S$PRINT
Global?

5.2.6 Delete Global Option (/G)

The (/G) option lets you delete a specific global symbol from a
library file's directory.

When you use the /G option, the librarian prints:
Global?

Respond with the name of the global symbol to be deleted followed by a
carriage return; continue until all globals to be deleted have been
entered. Type a carriage return immediately after the Global?
message to terminate input and initiate execution of the command line.

The following command instructs LIBR to delete the global symbols
NAMEA and NAMEB from the directory found in the library file ROLL.OBJ
on the default device.

*ROLL=ROLL/G

Global? NAMEA
Global? NAMEB
Global?

LIBRARIAN

Globals are only deleted from the directory (and not from the library
itself) . Whenever a library file is updated, all globals that were
previously deleted are restored unless you use the /G option again to
delete them. This feature lets you recover if you have inadvertently
deleted the wrong global.

5.2.7 Include Module Names Option (/N)

The librarian does not include module names in the directory unless
you use the /N option on the first line of the command. The linker
loads modules from libraries based on undefined globals, not on module
names. It also provides equivalent functions by using global symbols
and not module names. Normally, then, it is a waste of space and a
performance compromise to include module names in the directory.

If you do not include module names in the directory, the MODULE column
of the directory 1listing is blank, wunless the module requires a
continuation line to print all its globals. Continued 1lines are
indicated by a plus (+) sign in the MODULE column.

If the library does not have module names in its directory, you must
create a new library to include the module names. The following
example illustrates how to do this. It creates a new library from the
current library, and lists its directory on the terminal.

*NEWLIB,TT:=0OLDLIB/N
RT-11 LIBRARIAN Y03.00 TUE 03-MAY-77 20:36:41

NEWLIB TUE 03-MAY-77 20:36:40

MODULE GLOBALS GLOBALS GLOBALS
IRADS0 IRADSO0 RADS0

JMUL JMUL

LEN LEN

SUBSTR SUBSTR

JADD JADD

JCMP JCMP

5.2.8 1Include P-section Names Option (/P)

The librarian does not include program section names in the directory
unless you use the /P option on the first line of the command. The
linker does not use section names to load routines from 1libraries;
including the names can decrease linker performance. Including
program section names also causes a conflict in the library directory
and subsequent searches, since section names and global symbols are
treated identically.

This option is provided for compatibility with the RT-11 operating
system. Digital recommends that you avoid using it with RSTS/E.

5.2.9 Replace Option (/R)

Use the /R option to replace modules in a library file. The /R option
replaces existing modules in the library file you specify as output
with the modules of the same names contained in the file(s) you
specify as input. The input library file must precede the files used
in the replacement operation,

LIBRARIAN

If an old module does not exist under the same name as an input
module, or if vyou specify the /R option on a library file, the
librarian prints an error message preceded by the module name, and
ignores the replace command. /R must follow each input filename
containing modules for replacement.

The following command line indicates that the modules in the file
INB.OBJ are to replace existing modules of the same names in the
library file TFIL.OBJ. The object modules in the files INA.OBJ and
INC.OBJ are to be added. All files are stored on the default device.

*TFIL=TFIL, INA,INB/R,INC

The same operation occurs in the next command as in the preceding
example, except that this updated library file is assigned the new
name XFIL.

*XFIL=TFIL,INA,INB/R,INC

5.2.10 Update Option (/U)

The /U option lets you update a library file by combining the insert
and replace functions. If the object modules included in an input
file in the command line already exist in the library file, they are
replaced; if not, they are inserted. (Some of the error messages
that might occur under the insert and replace functions are not
printed when you use the update function.) /U must follow each input
file containing modules to be updated. The input 1library file must
precede the input files used in the update operation.

The following command line instructs LIBR to update the 1library file
BALIB.OBJ on the default device. First the modules in FOLT.OBJ and
BART.OBJ replace old modules of the same names in the library file, or
if none already exist under the same names, the modules are inserted.
The modules from the file TAL.OBJ are then inserted; an error message
prints if the name of the module in TAL.OBJ already exists.

*BALIB=BALIB,FOLT/U,TAL,BART/U

In the next example, there are two object modules of the same name (X)
in both Z and XLIB; these are first deleted from XLIB. This ensures
that both the modules called X in file 2 are correctly placed into the
library. Globals SEC1 and SEC2 are also deleted from the directory,
but automatically return the next time the 1library XLIB.OBJ is
updated.

*XLIB=XLIB/D,Z/U/G
Module name? X
Module name? X
Module name?
Global? SEC1
Global? SEC2
Global?

5.2.11 Wide Option (/W)

The /W option gives you a wider listing if you request a listing file.
The wider 1listing has six GLOBAL columns instead of three, as in the
normal listing. This is useful if you list the directory on a printer
or a terminal that has 132 columns.

5-8

LIBRARIAN

5.2.12 Listing the Directory of a Library File

You can request a listing of the contents of a library file (the
global symbol table) by indicating both the library file and a list
file in the command line. Since a library file is not being created
or updated, it is not necessary to indicate the filename on the output
side of the command line; however, you must use a comma to designate
a null output library file.

The command syntax is as follows:
* ,LP:=dev:1lib

or
* ,dev:list=dev:1lib

where

dev:1lib represents the file specification for the
existing library file.

LP: indicates that the 1listing is to be sent
directly to the line printer (or terminal, if
you use TT:).

dev:1list represents the file specification for the
list file of the library file's contents.

The following command outputs to DT2: as LIST.LST a listing of the
contents of the library file LIBFIL.OBJ on the default device.

*,DT2:LIST=LIBFIL

The next command sends to the line printer a listing of all modules in
the library file FLIB.OBJ, which is stored on the default device.

*,LP:=FLIB
Here is a sample directory listing:

*,TT:=SYSLIB
RT-11 LIBRARIAN Y03.00 TUE 03-MAY-77 21:01:01

SYSLIB TUE 03-MAY-77 20:59:47
MODULE GLOBALS GLOBALS GLOBALS
DCOS ECOS FCOS$
+ GCO$ RCIS
DICSIS DICS$MS DICSPS
+ DICS$SS $DIVC $DVC
ADDSIS ADDSMS ADDSPS
+ ADDSSS SUDSIS SUD$MS
+ SUDSPS SUDS$SS SADD

The first line of the listing file shows the version of the 1librarian
that was used, and the current date and time. The second line prints
the library filename and the date and time the library was created.
Module names are not included in this example. Each line in the rest
of the listing shows only the globals that appear in a particular
module. If a module contains more global symbol names than can print
on one line, a new line will be started with a plus (+) sign in column
one to indicate continuation.

LIBRARIAN

5.2.13 Merging Library Files

You can merge two or more library files wunder one. filename by
specifying in a single command 1line all the library files to be
merged. The librarian does not delete the individual library files
following the merge unless the output filename is identical to one of
the input filenames.

The command syntax is as follows:

*Jdev:newlib=dev:oldlibl,dev:0ldlib2,...,dev:0ldlibn

where

dev:newlib represents the library file that will contain
all the merged files. (If a library file
already exists under this filename, it must
also be indicated in the input side of the
command line in order to be included in the
merge) .

dev:oldlibn represents a library file to be merged.

Thus, the following command combines library files MAIN.OBJ, TRIG.OBJ,
STP.OBJ, and BAC.OBJ under the existing library file name MAIN.OBJ;
all files are on the default device. Note that this replaces the old
contents of MAIN.OBJ.

*MAIN=MAIN,TRIG,STP,BAC

The next command creates a library file named FORT.OBJ and merges
existing library files A.OBJ, B.OBJ, and C.OBJ under the filename
FORT.OBJ.

*FORT=A,B,C

NOTE

Library files that have been combined
under PIP are illegal as input to both
the librarian and the linker.

5.2.14 Combining Library Option Functions

You can request two or more library functions in the same command
line, with the exception of the /E option, which cannot be specified
on the same command line with any other option. The librarian
performs functions (and issues appropriate prompts) in the following
order:

1. /C or //
2. /D
3. /G
4. /U
5. /R

6. Insertions
7. Listing

LIBRARIAN

Here is an example that combines options:
*FILE,LP:=FILE/D,MODX,MODY/R
Module name? XYZ
Module name? A
Module name?

The librarian performs the functions in this example in order, as
follows:

1. Deletes modules XYZ and A from the library file FILE.OBJ.
2. Replaces any duplicate of the modules in the file MODY.OBJ.
3.. Inserts the modules in the file MODX.OBJ.

4. Lists the directory of FILE.OBJ on the line printer.

5.3 OPTION COMMANDS AND FUNCTIONS FOR MACRO LIBRARIES

The librarian lets you create macro libraries. A macro library works
with the MACRO assembler to reduce macro search time.

The entries in the library directory (macro names) are produced by the
-MACRO directive. LIBR does not maintain a directory listing file for
macro libraries; you can print the ASCII input file to list the
macros in the library.

The default input and output file extension for macro files is .MAC.

Be careful not to give the library file the same name as one of the
input files. This deletes the input file when the library is created.

Table 5-2 summarizes the options you can use with macro libraries.
The options are explained in detail in the following two sections.

Table 5-~2
LIBR Macro Options
Command
Option Line Section Explanation
/C any 5.3.1 Command continuation; allows you
but last to type the input specification
on more than one line.

/M[:n] first 5.3.2 Macro; creates a macro library
from the ASCII input file
containing .MACRO directives.

// first 5.3.1 Command continuation; allows you

and last to type the input specification
on more than one line.

5-11

LIBRARIAN

5.3.1 Command Continuation Options (/C or //)

These options are the same for macro libraries as for object
libraries. They are described in Section 5.2.1.

5.3.2 Macro Option (/M[:n])

The /M[:n] option creates a macro library file from an ASCII input
file that contains .MACRO directives. The optional argument, n,
determines the amount of space to allocate for the macro name
directory. Remember that n is interpreted as an octal number; you
must follow n by a decimal point (n.) to indicate a decimal number.
Each 64 macros occupy one block of library directory space. The
default value for n is 128, enough space for 128 macros, which will
use 2 blocks for the macro name table.

The command syntax is as follows:

*dev:lib=dev:source/M[:n]

where
dev:lib represents the macro library to be created.
dev:source represents the ASCII input file that contains
.MACRO definitions.
/M[:n] is the macro option.

The continuation options (/C or //) are the only options you can use
with the macro option.

The following example creates the macro library SYSMAC.SML from the
ASCII input file SYSMAC.MAC. Both files are on the default device.

*SYSMAC . SML=SYSMAC/M

5.4 LIBR ERROR MESSAGES

The following error messages are output on the terminal by the
librarian program. All messages are of the form:

?LIBR-n-message

where n represents the severity code of the error. Severity codes can
be F (Fatal) or W (Warning). Fatal errors cause the current command
or statement to be ignored. You must enter another command. A
warning message indicates an error condition that may affect execution
at a later time. The condition causing the message may require some
attention.

5-12

LIBRARIAN

Message

?LIBR-F-Bad GSD in FILNAM

?LIBR~F-Bad library for listing or

?LIBR-F-Bad option: /x

?LIBR-F-EQOF during extract

?LIBR-F-File not found FILNAM

?LIBR-F-Illegal error

?LIBR-F-Illegal extract of AAAAAA

Explanation

There was an error in the global
symbol directory (GSD). The file
is probably not a 1legal object
module.

extract

The input file specified for
extraction or to produce a

directory listing was not an object
library file. Verify the filename
in the command line and check for
typing errors. A valid object
library file is required for
extraction or to produce a
directory listing.

The librarian did not recognize the

given option (/x). The librarian
restarts and prompts with an
asterisk.

The end of the input file was
reached before the end of the

module being extracted. This is an
unusual internal consistency-check
error. The object module format is

probably incorrect. Rebuild the
library file. If the error
condition persists, reassemble the

object module(s) belonging to that

file.

One of the input files indicated in

the command 1line was not found.
LIBR prints an asterisk; the
command may be reentered.

An internal error occurred while

the librarian was in the process of

recovering from a previous system
or user error., Retry the
operations that produced this
error; if it recurs, report the
error to DIGITAL wusing an SPR
(Software Performance Report) ;
include a program listing and a

machine-readable source program, if
possible.
An extraction of the identified

global symbol was attempted but the
symbol was not found in the
library.

5-13

LIBRARIAN
Message Explanation

?LIBR-F-Illegal option combination Options have been specified that
request conflicting functions to be
performed. For example, if /E is
specified, no other option may be
used. If /M 1is specified, only
continuation options (/C, //) may
follow.

?LIBR-F-Illegal record type in FILNAM .

A formatted binary record had a
type not in the range 1-10 (octal).
Verify that the correct filenames
were specified as input; check for
a typing error in the command line.
Reassemble or recompile the source
and retry the operation.

?LIBR-F-Illegal replace of library file FILNAM

The command line specified that a
library file be replaced by another
library file. Check for a typing
error in the command line. Only
object modules can be replaced in a
library file. Enter another
command .

?LIBR-F-Insufficient memory Available free memory has been used T
up. The current command is
aborted.

?LIBR-F-Macro name table full, use /M:N

The number of macros to be placed
in the macro name table was greater
than the number allowed. Increase
the size of the macro name table by
supplying a value (N) to the option "hﬁ
- /M: The default is 128 names. !

?LIBR-F-No value allowed: /a The specified option (/a) does not
take a value. The librarian
restarts and prompts with an
asterisk.

?LIBR-F-Output and input filnam the same

The same filename was specified for .
both input and output files when

the command string to build the

macro library was specified. Use

different filenames for the input

and output files specified to build

a macro library.

LIBRARIAN

Message

?LIBR~F-Qutput device full

?LIBR-F-Output file full

?LIBR-F~Output write error

?LIBR-F-Read error in FILNAM

Explanation

The device was full; LIBR was
unable to create or update the
indicated library file.

The output file was not large
enough to hold the library file or
list file.

An unrecoverable error occurred
while processing an output file.
This may indicate that there was
not enough space left on a device
to create a file, although there
may have been enough directory
entries left.

An unrecoverable error has occurred
while processing an input file.
LIBR prints an asterisk and waits
for another command to be entered.

?LIBR-W-Duplicate module name of AAAAAA

?LIBR-W-Illegal character

?LIBR-W-Illegal delete of AAAAAA

?LIBR-W-Illegal insert of AAAAAA

A new module has been inserted in a
library, but its name is the same
as a module that is already in the
library. The librarian does not
reenter the name in the directory.
The o0l1ld module 1is not updated or
replaced. For the librarian
program, insertion is the default
operation and no command option is
needed; the option for update is
/U and the option for replacement
is /R.

The symbol name entered contained a
non-Radix-~50 character. Retype the
command line and retry the
operation.

An attempt was made to delete from
the library's directory a module or
an entry point that does not exist;
AAAAAA represents the module or
entry point name. Check for a
typing error in the command line.
The entry point name or module name
isnd processing

continues.

An attempt was made to insert into
a library a module that contains
the same entry point as an existing
module. AAAAAA represents the
entry point name. The entry point
is ignored, but the module is still
inserted into the library. No user
action is necessary.

LIBRARIAN

Message

Explanation

?LIBR-W-Illegal replacement of AAAAAA

?LIBR-W-Null library

?LIBR-W-Only continuation allowed

An attempt was made to replace in
the library file a module that does
not already exist. AAAAAA
represents the module name. The
module is ignored and the library
is built without it.

An attempt was made to build a
library file containing no
directory entries. Verify that the
correct filenames were specified as
input; check for a typing error in
the command line. Verify that the
input to the library has at least
one directory entry.

An attempt was made to enter a
command string beyond the end of
the current line without the use of
a continuation character.

5-16

CHAPTER 6

PATCH

You can use the PATCH utility program to make code modifications to
memory image (.SAV) files, including overlay-structured files. You
use PATCH to interrogate, and then to change, words or bytes in the
file.

Additionally, PATCH is needed for maintenance of the RSTS/E FORTRAN IV
utilities. System patches published by DEC are incorporated into the
appropriate system program using the PATCH utility.
It is always a good idea to create a backup version of the file you
want to patch, because PATCH makes changes directly to the file as you
work.
NOTE

The PATCH program should not be used to

modify code in a (user-written) .SAV

file that originated as FORTRAN source

code. If such a modification becomes

necessary, the source file should be
edited and recompiled.

6.1 CALLING AND USING PATCH

To call PATCH from the system device, respond to the READY message
printed by the keyboard monitor by typing:

RUN $SPATCH RET
PATCH then prints:

FILE NAME --
*

You should enter the name of the file you want to patch according to
this general syntax:

dev:filnam.ext/options
where

dev represents an optional device specification; if not
specified, the default device is assumed.

6-1

PATCH

filnam.ext represents the name of the file which 1is to be
patched; if an extension is not indicated, .SAV is
assumed.

/options is one or more of the options listed in Table 6-1.

6.1.1 PATCH Options
Table 6-1 summarizes the options that are wvalid for PATCH at this
point in the opening command.

Table 6-1
PATCH Options

Option Meaning
/0 Use if the file is an overlay-structured file.
/C Requires you to enter a checksum. If you make

no modifications, PATCH ignores the /C option.

/D Use if you do not know the checksum for a
particular patch. PATCH prints the checksum for
that patch. If you make no modifications, PATCH
ignores the /D option.

Note that you must enter the complete file specification and
accompanying options at this point; they are not legal at any other
time. If you enter a carriage return instead of a file specification,
however, PATCH prints its current running version number. It then
repeats the prompt for a file specification.

After you enter the file specification, PATCH prints another asterisk
and waits for a command. Table 6-2 lists valid PATCH commands.

6.1.2 Checksum

PATCH can maintain a running total of the value of each command,
argument, and character you enter. This total is called the checksum
for the patch.

The checksum option helps you verify your work. It lets you compare
the patch that you make to another patch that is known to be correct.
The checksum does not tell you specifically where your error is, but
it does tell you that an inconsistency exists.

For example, if you receive from DIGITAL a patch to improve your
system's performance, the patch contains a checksum value. You should
use the /C option in the first PATCH command 1line, then make the
modifications to your file exactly as shown in the DIGITAL patch.
When you exit, PATCH asks you for a checksum. Enter the value from
the DIGITAL patch. If the checksum you enter and the checksum that
PATCH generated when you made your modifications do not match, PATCH
prints the ?PATCH-W-CHECKSUM ERROR message. You then know that you
made an error in patching your file, and that you need to try again.

PATCH

6.2 PATCH COMMANDS

Table 6~2 summarizes the PATCH commands. Upper case characters
represent PATCH commands; lower case characters represent octal
values or ASCII characters. The following sections describe the
commands in detail. Section 6.3 provides examples that use PATCH.

Table 6-2
PATCH Commands

Command Section Explanation
v;nR 6.2.8 Sets relocation register n to value v.
X;B 6.2.7 Sets the bottom address of the overlay

file to the value x.

r,o/ ©6.2.3 Opens the word location indicated by
the contents of relocation register r
+ offset o.

r,o\ 6.2.3 Opens the byte location indicated by
the contents of relocation register r
+ offset o.

s3r,0/ 6.2.3 Opens the word location indicated by
the contents of relocation register
r + offset o in overlay segment s.

ssr,o\ 6.2.3 Opens the byte location indicated by
the contents of relocation register
r + offset o in overlay segment s.

RET 6.2.3 Closes the currently open word or
byte.

LF 6.2.3 Closes the currently open word or byte
and opens the next sequential word or
byte.

- 6.2.3 Closes the currently open word or byte
and opens the previous word or byte.

@ 6.2.3 Closes the currently open word and
opens the word it addresses.

F 6.2.1 Closes the file currently open and
requests a new file specification.

E 6.2.2 Closes the file currently open and
returns control to the monitor.

X;0 6.2.5 Indicates that a value in the overlay

handler or its tables 1is being
modified to the value x and that the
overlay structure must be
re-initialized. A value of =zero (0)
is illegal and generates an error
message.

(continued on next page)

PATCH

Table 6-2 (Cont.)
PATCH Commands

Command Section Explanation

& 6.2.6 Indicates that PATCH should add the
contents of all subsequently opened
locations to the checksum, until it
encounters another & symbol.

A 6.2.4 Prints the contents of the opened word
or byte as ASCII characters (if a byte
is open, one character prints; if a
word is open, two characters print).

X 6.2.4 Prints the contents of the opened word
as an unpacked Radix-50 word.

C(x[xl]) 6.2.4 Resets the contents of the opened word
or byte to the ASCII value you type
(if a byte is open, you must type one
character; if a word 1is open, you
must type two characters).

P(xXxX) 6.2.4 Resets the contents of the currently
opened word to the packed Radix-50
value of the three ASCII characters
you type (you must type three
characters).

6.2.1 Patching a New File (F)

The F command causes PATCH to request you to enter a checksum, or it
prints the required checksum (depending upon the options you specify).
It also causes PATCH to close the currently open file, and to print an
asterisk indicating its readiness to accept another command string.
No checksum dialogue is invoked if you have not previously specified
checksum options (with /D or /C).

6.2.2 Exiting from PATCH (E)

The E command causes PATCH to close the currently open file after
printing the checksum dialogue according to the options you specify
and return control to the monitor. As with the F command, the
checksum dialogue is by-passed if you have not specified checksum
options.

6.2.3 Examining and Changing Locations in the File

For a non-overlay file, you can open a word address (as with ODT) by
typing:

[relocation register,]offset/

PATCH types the contents of the location and waits for you to enter
either a new location contents or another command.

PATCH

For an overlay file, the format is:
[segment number:] [relocation register,loffset/

where segment number is the overlay segment number as it is printed on
the 1link map for the file. If you omit the segment number, PATCH
assumes the root segment. If you make an error in a command string
while patching an overlaid program, you can use CTRL/U to cancel the
command. However, PATCH assumes the entire 1line is incorrect and
preserves only the ©previously set relocation registers. PATCH
preserves the segment number only across the “~ and LF commands.

Similarly, you can open a byte address in a file. The format for
non-overlay files is:

[relocation register,]offset\
The format for overlay files is:
[segment number:] [relocation register,]offset\

Once a location has been opened, you can optionally type in the new
contents in the format:

[relocation register,]octal value
Follow this line by one of the control characters from Table 6-3.

Table 6-3
PATCH Control Characters

Character Function
RET Closes the current location by
changing its contents to the new
contents (if any) , and awaits

additional control input.

LF Closes the current location by
changing its content to the new
contents (if any), and opens the next
sequential word or byte.

Closes the current location by
changing its contents to the new
contents (if any), and opens the
previous word or byte.

@ Closes the current word location, and
opens the word it addresses (in the
same segment 1if it is an overlay
file).

6.2.4 Translating and Indirectly Modifying Locations with a File

After opening a location within a file, you can translate the contents
into ASCII characters or into the equivalent of a Radix-50 packed
word.

PATCH
To obtain the ASCII equivalent of the opened 1location, type the
following command after PATCH prints the contents in octal.
A

PATCH then translates the word or byte into two (or one, if a byte is
opened) ASCII characters. In this example, a byte is opened:

*1,100\ 102 A = B LF
PATCH prints only the printable ASCII characters in the opened word or
byte (all non-printing characters, such as ASCII codes 0-37, are
represented by the ? character). 1In this example, a word is opened:
*1, 100/ 302 A = B? LF

In the next example, a word is opened, and both ASCII characters are
printable:

*1, 100/ 33502 A = B7 RET

In these examples, one or both of the characters cannot be printed:

*0, 400/ 466 A 6? LF
*1, 202/ 55001 A = ?Z LF
*616/ 401 A = 2?2 RET

To unpack a Radix-50 word as three ASCII characters, type the
following command after PATCH prints the contents of the opened word.

X
PATCH then unpacks the opened word and prints three ASCII characters.
Note that you must open a word and not a byte.
I1f the word you open contains an illegal Radix-50 word, PATCH prints
2??. If the translated character is not printable, PATCH prints ? in
place of it.
Neither the A command nor the X command alters the contents of the
open location; however, PATCH updates the checksum to reflect the
fact that you have entered a new command.

You can specify the A and X commands in any order on the same command
line without altering the contents of the open location. For example,

*1, 15022/ 50553 X = MAC A = kQ

After examining the location with the A or X command, you can change
the location if you wish. For example,

*45660/10146 A = F? X = BX8 12122 RET or LF

If the same location is reopened, the following change appears:

*45660/12122

PATCH

You can change the contents of a location to the ASCII code of the
value you specify by using the C command. You can use the P command
to change a word to the packed Radix-50 word of the three characters
you specify. This example changes an open byte to the ASCII code for
the letter Z:

*1, 115\ 101 C (Z) RET

Note that PATCH prints the parentheses itself; you type only the
character 2.

When reopened, that byte contains the ASCII code for Z:
*1, 115\ 132

Similarly, PATCH inserts the ASCII code for two ASCII characters into
the low order and high order bytes, respectively, of one word. This
example changes an open word to the ASCII code for AZ:

*0,10116/ 103523 C (Az) ~
If reopened, the location contains the ASCII code for AZ:
*0,10116/ 55101 A = AZ

You can examine the same location in more conventional ways, as this
example shows:

*0,10116\ 101 LF
0,10117\ 132

Similarly, you can use the P command to change the contents of an open
word to the Radix-50 packed word equivalent of the three ASCII
characters you specify. This example changes the Radix-50 word
equivalent of SAV to REL:

*2:1,400/ 73376 x = SAV P (REL)RET

6.2.5 Setting Values in the Overlay Handler Tables of a Program

Use the ;0 command to effect any changes to the overlay handler tables
in an overlaid program. For example,

*616/ 1043 1100;0
*

This command line increases the size of the referenced overlay region
by 35(8) words or 58(10) bytes, to allow room for a patch. The value
being modified is a value associated with the overlay handler tables,
or a value required by the overlay handler for proper overlay
structure initialization. The overlay structure is re-initialized and
you can enter commands to modify the new region on the next line. A
value of zero is not permitted with the ;0 command. If you omit the
preceding argument, or use 0, an error message prints on the terminal.

6.2.6 Including the 0ld Contents Into the Checksum

Sometimes it is important that the present contents of the 1locations
being changed have known specific values. This is the case when
DIGITAL publishes system patches. The & command is designed to aid in
implementing system patches.

PATCH

It automatically includes the old contents of an open location into
the checksum. This command is a simple switch. The first occurrence
of the & turns the switch on, the second turns it off. While the
switch is on, the old contents of every location you open and close
properly become part of the checksum. To use the & command, type:

&
PATCH then prints a carriage return-line feed sequence and another *
indicating its readiness to accept another command. This switch is
then enabled.
If you type the command on a line where a location is currently open,
PATCH closes the location and resets the switch. PATCH then prompts

with an asterisk indicating that it is ready to accept additional
commands.

6.2.7 Setting the Bottom Address
To patch an overlay file, PATCH must know the bottom address at which
the program was linked 1if it 1is different from the initial stack
pointer. This is the case if the program sets location 42 in an
.ASECT. To set the bottom address, type:

bottom address;B

You must issue the B command before you open any locations in an
overlay for modification.

6.2.8 Setting Relocation Registers

You set the relocation registers 0-7 (as with ODT) with the R command.
The R command has the syntax:

relocation value;relocation registerR
Be careful when you type this command string. If you inadvertently
substitute a comma (,) for the semi colon (;) in the R command, PATCH
does not generate an error message. However, it does not set the
value you specify in the relocation register.
Once you set one of the eight relocation registers, the expression:
relocation register,octal number

in a command string will have the value:

relocation value + octal number

6.3 PATCH EXAMPLES

This section contains two examples of patching a file. The program
used in both examples is a FORTRAN main program that calls one MACRO
subroutine. 1In the first example the program is in a non-overlaid
file. In the second example the MACRO subroutine has been placed in
an overlay segment. 1In each case the steps necessary to assemble the
subroutine, link, and patch the files are shown.

PATCH

6.3.1 Patching a Non-Overlaid File

The following commands assemble the MACRO subroutine file E2.MAC,
producing the binary object file SUB.OBJ.

RUN $MACRO
*SUB.OBJ, TT:LIST=E2.MAC

These commands also cause an assembly listing to be sent directly to
the terminal. The assembly listing is shown below.

+MAIN, MACRO VO03.01 14-NOV-77 15:142:38 FPAGE 1

i +GLOBL ISUM

2 000000 067367 000002 000022 1ISUMS ADD @2(RT) »SUM
3 000006 005267 000020 INC CNT

4 000012 016701 000012 MOV SUMYR1
3 0000146 005000 CLR RO

4 000020 071067 000006 nIv CNT»RO
7 000024 010100 MOV R1+RO
8 000026 000207 RTS FC

? 000030 000000 SUM? +WORD 0

10 000032 000000 CNT? +WORK 0

11 000001 +END

+MAIN, MACRO V03.01 14-NOV-77 15142138 PAGE 1-1
SYMEOL TABLE

CNT 000032k ISUM 000000RG SUM 000030R
+ ABS, 000000 000
000034 001

ERRORS DRETECTED: O

VIRTUAL MEMORY USEDR! 288 WORDS (2 PAGES)
DYNAMIC MEMORY AVAILARLE FOR 70 PAGES
SUB.ORJ,TTILIST=E2.MAC

ERRORS DETECTED: O

The next commands 1link the MACRO subroutine SUB.OBJ with the
previously compiled FORTRAN main program file called AVG.OBJ. The
linking process produces the memory image load module AVG.SAV.

Ready
RUN SLINK
*AVG.5AV,TT:MAP=AVG.OBJ,SUB.OBJ, SYSLIB

This linker command string sends a load map directly to the terminal.
The load map is shown on the next page.

6-9

PATCH

RT-11 LINK V05,02 Load Mar Mon 14-Nov-77 15:145:18
AVG +SAV Title: +MAIN. Ident: FORYO2

Section Addr Size Global Value Globhal Value Global Value !

+ ABRS., 000000 001000 (RW»IyGELyARSyOVR)
$USRSW 000000 $RF2A1 000000 VIR 000000
$NLLCHN 000006 $HRDWR 000010 $WASIZ 000131
$l.RECLL. 000210 $TRACE 004737

QTSs$1I 001000 014642 (RWyI+LCLsRELCON)
$30TST 001000 $0TI 001026 $$0TI 001030
$$GET 002750 CMI$SS5 003244 CMI$SI 003250
CMI$SM 003254 CMISIS 003260 CMISII 003264

. L]

$TTYIN 007652 $FIO 010526 $$FI0 010532
$ERRTB 011662 $ERRS 011770 SVRINT 015512
$DUMFL 013514

OTS$P 015642 000050 (RWyI» GEL y REL yOVR)

SYS$I 015712 000000 (RWyIsLCLyRELyCON)

USER$I 015712 000000 (RWyI,LCLYRELCON)

$CONE 015712 000154 (RWyI+LCLYREL,CON)
$30TSC 015712

07840 016066 000750 (RWyIyLCLyREL»CON) "!%
$$0TS0 016066 $OFEN 016066

$5YS$0 017036 000000 (RWyIsLCLyRELsCON)

$DATAFP 017036 000172 (RWsDsLCLYyREL,CON)

0TSs$D 017230 000016 (RWsDyLCLyREL yCON)

0TS$8 017246 000052 (RWsI1y LCL»REL. »CON)
$A0TS 017316

$5YS%9 017320 000000 (RWyDyLCLyREL yCON)

$DATA 017320 000004 (RWrDs LCLyREL yCOND

USER$D 017324 000000 (RWsDs LCLyREL »CON)

JE$E%., 017324 000000 (RWy D GELyREL yOVR)

017324 000034 (RWyIyLCLyRELYCON)

ISUM 017324

Transfer address = 015712y High limit = 017360 = 3960. words

The load module AVG.SAV is ready for execution. This is the result of
running AVG,SAV.

RUN AVG.SAV

ENTER NUMBERS TO FIND AVERAGE OF, 1 PER LINE.

ENTER '32767' TO TERMINATE INPUT.

1

2

3 i
4 H
5

32767

THE AVERAGE IS 0
STOP--

Ready .

Apparently AVG.SAV contains an error which causes the wrong result to
be returned. By re-examining the 1logic of the subroutine it is
determined that the error occurs in source statement 7. The following
example uses PATCH to correct the error.

PATCH

RUN $PATCH

FILE NAME--

XAVEG

*01732471R

X124/ 10100 240
XE

Ready

In this example the first PATCH command specifies the name of the .SAV
file to be patched. The second command sets relocation register 1 to
the transfer address of the subroutine. The transfer address is shown
on the link map to be 17324. The next command opens relative location
24 which, as the assembly 1listing shows, contains the code of
(subroutine) source statement 7. The code stored in relative location
24 is 010100, which is a MOV instruction. To correct the error this
code 1is changed to 240, a no-op instruction. Finally PATCH is
terminated -with an E (Exit) command and control returns to the
monitor.

To verify the changes just made relative location 24 can be reopened
for examination, as follows:

RUN $PATCH
FILE NAME--
*AVG
*017324;1R
*1,24/240
1,26/207
1,30/0

*E

Ready

As before relocation register 1 1is set to 17324. Next relative
location 24 is opened. Now it contains the correct value, 240. This
command line and the next one are terminated with a line feed. This
closes the open location and opens the next one. The command line
that opens relative location 30 is terminated with a RET. PATCH then
prompts for a new command with an asterisk. The E (Exit) command is
given and control returns to the monitor.

Execution of the load module AVG.SAV should now produce the desired
results.

6.3.2 Patching an Overlaid File

The following commands 1link the previously compiled FORTRAN main
program AVG.OBJ with the previously assembled MACRO subroutine
SUB.OBJ. An overlay structure is created which places the main
program in the root and the subroutine in overlay segment 1.

RUN $LINK

*MYPROG,TT:MAP = AVG.OBJ, SYSLIB//
*SUB.OBJ/0:1//

6-11

PATCH

The linking process creates the load module called MYPROG.SAV and
sends the linker load map shown below directly to the terminal.

RT-11 LINK V05.02 l.oad Mar . Mon 14-Nov-77 13:52:06
MYFROG.,SAV Title! JMAIN. Ident! FORYO2
Section Addr Size Globhal Value Global Vslue Global Value

+» AES., 000000 001122 (RWy I»GELyAES»OVR)
$USRSW 000000 $RF2A1 000000 VIR 000000
$NLCHN 000006 $HRDWR 000010 $WASIZ 000131
$LRECL. 000210 $TRACE 004737

OTS$1I 001122 014642 (RWyI2LCLYREL»CON)
$$0TSI 001122 $0TI 001150 $$0TI 001152
$$SET 003072 CMI$SS 003366 CMI$SSI 003372
CMI%$SM 003376 . CMI$IS 003402 CMISII 003406

$INITI 006742 $CLOSE 007054 $GETRE 007720
$TTYIN 007774 $FIO 0104650 $¢FIO0 010654
$ERRTE 012004 $ERRS 012112 $VURINT 015634
S$IUMPL 015636

OTS$P 015764 000050 (RWs 1y GBL y REL y OVR)

SYSSI 016034 000000 (RWyIvL.CLyRELCON)

USERS$I 0146034 000000 (RWsIyLCLYRELsCON)

$CODE 016034 000154 (RWsIsL.CLyREL»CON)
$30TSC 016034

0TS%0 016210 000750 (RWyIyLCLYyRELCON)
$$0TS0 016210 $OFEN 016210

Y540 017160 000000 (RWsIsLCLsyREL yCON)

$DATAF 017160 000172 (RWyD1s LLCLLyRELyCON)

ATS$D 017352 000016 (RWyIIsL.CLyRELyCON)

0TSS5 017370 000052 (RWs D1y L.CL»REL y CON)
$A0TS 017440

SYS48 017442 000000 (RWsDsL.CLyRELsCON)

$DATA 017442 000004 (RWsI'y LCLyREL s CON)

USER$DN 017446 000000 (RWy Ity LCLy RELCON)

JB8%%. 017446 000000 (RWs D1y GEL s REL » OVR)

Sedment size = 017446 = 3987, words

Overlay rediorn 000001 Sedment 000001
017450 000034 (RWsIsL.CLYyRELCON)

ISUM @ 017450

Segment size = 000034 = 14, words

Transfer address = 016034, High limit = 017504 = 4002, words

When the load module MYPROG.SAV is run the wrong result (0) 1is again
returned. MYPROG.SAV contains an error in (subroutine) source
statement 7 also. The following example uses PATCH to correct the
error.

Ready

RUN $FATCH

FILE NAME-—

*MYFROG/O

X¥1745050R

X1:0y24/ 10100 240
XE

Ready

6-12

PATCH

The option /O is used in the file specification to indicate that an
overlaid file is to be patched. The next command line sets relocation
register 0 to the start of the overlay segment to be patched. The
load map shows that overlay segment 1 begins at location 17450. The
next command opens relative location 24, which is in overlay segment
1. (It was determined from an assembly listing that the code of
subroutine source statement 7, which contains the error, is in
relative memory location 24.) The contents of relative memory location
24 are changed from 10100 (a MOV instruction) to 240 (a no-op
instruction). The 1last command, E (Exit), terminates PATCH and
control is returned to the system monitor.

The load module MYPROG.SAV now produces the desired results when
executed.

RUN MYPROG.SAV

ENTER NUMBERS TO FIND AVERAGE OF, 1 PER LINE.
ENTER '32767' TO TERMINATE INPUT.
1

2

3

4

5

32767

THE AVERAGE IS 3

STOP--

Ready

6.4 PATCH ERROR MESSAGES

The following error messages can be output by the PATCH program. All
messages are of the form:

?PATCH-n-message

where n represents the severity code of the error. Severity codes can
be F (Fatal), I (Information) or W (Warning). Fatal errors cause the
current command or statement to be ignored. You must enter another
command. An informational message requires no further action. It is
there for your benefit only. A warning message indicates an error
condition that may affect execution at a later time. The condition
causing the message may require some attention.

Message Explanation
?PATCH-F-Insufficient memory There was not enough free core to
contain the device handler and the
internal "overlay tables." This

message should not occur under
normal circumstances.

?PATCH-F-Read error PATCH detected an input error in
reading from the file. Check for
read-locked or off-line devices.

PATCH

Message Explanation
Aun%
?PATCH-F-Write error PATCH detected an input error in
writing to the file. Check for
write-locked or off-line devices.
?PATCH-I-[+2K core] PATCH needs more memory for overlay
handling. PATCH continues

executing normally. This message
is for your information.

?PATCH-I-CHECKSUM=NNNNNN PATCH prints out the checksum 1in
response to the /D option after an
"E" or "F" command has been issued.
This message is for your .
information only.

2PATCH-W-Address not in segment The specified address exceeds the
limits of the particular overlay.
Recheck the linker load map for the
address and proper overlay segment. ‘-!ﬁ

?PATCH-W-Bottom address wrong The contents of the address
specified does not correspond to
the first word in the standard
RSTS/E overlay handler. Correct
the line in error; specify the
correct address using the x;B

command.
?PATCH-W-CHECKSUM error PATCH responds to an incorrectly
entered checksum three times. A -

failure to enter the correct 1
checksum on the third attempt will

cause an automatic exit to the

monitor. The file being patched

has been changed. The incorrectly

patched file should be deleted and

the backup procedures repeated

before attempting to patch the file

a second time.

?PATCH-W-Illegal command The response to the message "FILE
NAME --" was incorrect. Check for !
a typing error in the command line.
The file specification must be of
the form:

dev:filnam.ext/options

?PATCH-W-Illegal option One of the options encountered in
the entered file specification was
not a recognized legal option.

?PATCH-W-Invalid overlay handler modification »

An attempt was made to insert a
zero value into the overlay handler
tables for an overlaid program. A
non-zero value must be given in
conjunction with the ";0" command.

6-14

Message

PATCH

Explanation

?PATCH-W-Invalid relocation register

?PATCH-W-Invalid segment number

?PATCH-W-Must open word

An attempt was made to reference a
relocation register. outside the
range 0-7. Relocation registers
must be set within the range 0-7.

The specified segment number did
not exist in the file being
patched. Recheck the 1linker 1load
map and command string to determine
the overlay structure.

The ll@ll, "P’" or lell command was
typed when no address was open.

?PATCH-W-Must specify segment number

?PATCH-W-No address open

?PATCH-W-Not in program bounds

?PATCH-W~0dd address

?PATCH-W-0dd bottom address

?PATCH-W-Program has no segments

The specified address exceeds the
limits of the root segment.

The "LF"’ ll"ll’ Il@ll, llxll, IIPII’ IICII’
or "A" command character was typed
when no address was open. Check
for a typing error in the command
line.

An attempt was made to reference a
location outside the limit defined
by location 50 in block zero of the
file. The value of the initial
stack pointer for the program may
also be beyond the last location of
the program. Check for a typing
error 1in the command line. Check
the linker load map to determine
where the program was loaded.
Check the initial wvalue of the
stack pointer.

An attempt was made to open an odd
address as a word with the "/"
command. Word addresses must be
even numbers. Use "\" to open an
odd address.

The bottom address specified or
contained in location 42 of an
overlay file was odd. The overlay
handler must start on an even word
boundary.

An attempt was made to reference an
overlay region in a program which
was not identified as an overlaid
program in the file specification,
or an attempt was made to reference
an overlay region in a program
which has none.

6-15

CHAPTER 7

OBJECT MODULE PATCH UTILITY (PAT)

PAT, the RSTS/E object module patch utility, allows you to patch, or
update, code in a relocatable binary object module. PAT is primarily
used to incorporate system patches published by Digital Equipment
Corporation into the compiler and FORTRAN Object Time System. It is
also useful when making corrections to routines that are in .OBJ
format for which the MACRO source files are not available. (The PAT
program should not be used to modify user FORTRAN .OBJ files. It is
more efficient to edit and recompile the source file.)

PAT makes the patch to the object module by means of the procedure
outlined in Figure 7-2. PAT accepts a file containing corrections or
additional instructions and applies these corrections and additions to
the original object module. Prepare correction input in MACRO-11
source form and assemble it with the MACRO-11 assembler.

Input to PAT is two files: 1) the original input file and 2)a
correction file containing the corrections and additions to the input
file. The input file consists of one or more concatenated object
modules. You may correct only one of these object modules with a
single execution of the PAT utility. The correction file consists of
object code that, when 1linked by the 1linker, either replaces or
appends to the original object module.

Output from PAT is the updated input file.

7.1 CALLING AND USING PAT

To call PAT from the system device, respond to the monitor prompt
"READY" by typing:

RUN $PAT RET

PAT prints an asterisk at the left margin on the console terminal when
it is ready to accept a command line.

Type two CTRL/C's to halt PAT at any time (or a single CTRL/C to halt
PAT when it is waiting for terminal input) and return control to the
monitor.

Figure 7-1 shows how you use PAT to update a file (FILEl) consisting
of three object modules (MOD1, MOD2, and MOD3) by appending a
correction file to MOD2. After running PAT, you use the linker to
relink the wupdated module with the rest of the file and to produce a
corrected executable program.

7-1

OBJECT MODULE PATCH UTILITY (PAT)

FILE1
MOD1 FILE1
MOD2 MOD1
MOD2
MOD3 : > PAT : > ________
UPDATE2
UPDATE2 MOoD3

Figure 7-1 Updating a Module Using PAT

There are several steps you must perform to use PAT to update a file.
First, create the correction file using a text editor. Then, assemble
the correction file to produce an object module. Submit the input
file and the correction file in object module form to PAT for
processing. Finally, link the updated object module, along with the
object modules that make up the rest of the file, to resolve global
symbols and create an executable program. Figure 7-2 shows the
processing steps involved in generating an updated executable file
using PAT.

Specify the PAT command string in the following form:

dev:newfile=dev:o0ldfile/C:number ,dev:correct/C:number

where

dev:newfile is the file specification for the output file. If
you do not specify an output file, none is
generated.

dev:oldfile is the file specification for the input file.
This file can contain one or more concatenated
object modules.

dev:correct is the file specification for the correction file.
This file contains the updates being applied to a
single module in the input file.

/C specifies the checksum option, which directs PAT
to generate an octal value for the sum of all the
binary data composing the module in the file to
which the option is applied.

number specifies an octal value that directs PAT to

compare the checksum value it computes for a
module with the octal value you specify as number.

Note that inclusion of /C:number in the command string is optional.
Also, you can specify /C alone, with no argument (number).

OBJECT MODULE PATCH UTILITY (PAT)

CORECT.MAC

TEXT 1. Create a correction file using the :—>

EDITOR text editor.
CORECT.MAC CORECT.OBJ
2. Execute the assembler (or compiler)
:> to create an object module version :>
of the file,
CORECT.OBJ

MYFILE.OBJ

3. Execute PAT using as input the
MYFILE.OBY > correction file and the module to :lJ>
be updated.

MYFILE.OBJ MYFILE.SAV

4. a) If the corrected object module is
f something that typically
LINKER > part o
exists as a program (e.g., BASIC),

execute the linker to resolve new
addresses and create an executable
program.

b} if the corrected module is an
element in a library (e.g., SYSLIB),
run the librarian and create or
update the library to contain the
new (corrected) object module.

c) f the corrected module is some-
thing that typically exists as an
object module (e.g., ODT}, you
need do nothing. Whenever you
link this module, the corrections
will be included.

Figure 7-2 Processing Steps Required to Update a
Module Using PAT

7.2 HOW PAT APPLIES UPDATES

PAT applies updates to a base input module using additions and
corrections supplied in a correction file. This section describes the
PAT input and correction files, gives information on how to create the
correction file, and gives examples of how to use PAT.

OBJECT MODULE PATCH UTILITY (PAT)

7.2.1 The Input File
The input file is the file to be updated; it is the base for the

output file. The input file must be in object module format. When
PAT executes, the module in the correction file applies to this file.

7.2.2 The Correction File

The correction file must also be in object module format. It is
usually created from a MACRO source file in the following format:

.TITLE inputname
.IDENT updatenum
inputline
inputline

*

*

*

where:

inputname is the name of the module to be corrected by the
PAT update. That is, inputname must be the same
name as the name specified on the input file
.TITLE directive for a single module in the input
file. ’

updatenum is any value acceptable to the MACRO assembler.
Generally, this value reflects the update version
of the file being processed by PAT, as shown in
the examples below.

inputline are lines of input to be wused to correct and

update the input file.

During execution, PAT adds new global symbols defined in the
correction file to the module's symbol table. Duplicate global
symbols in the correction file supersede their counterparts in the
input file, provided both definitions are relocatable or both are
absolute.

A duplicate PSECT or CSECT supercedes the previous PSECT or CSECT,
provided:

° both have the same relocatability attribute (ABS or REL);

° both are defined with the same directive (.PSECT or .CSECT).
If PAT encounters duplicate PSECT names, it sets the length attribute
for the PSECT to the length of the longer PSECT and appends a new
PSECT to the module.

If you specify a transfer address, it supersedes that of the module
you are patching.

OBJECT MODULE PATCH UTILITY (PAT)

7.2.3 Creating the Correction File

As shown in Figure 7-2, the first step in using PAT to update an
object file is to generate a MACRO-11l source correction. file. Use the
editor to generate these additions and corrections to your file. The
correction file must be in object module format before PAT can process
it.

Once you have created the source version of the correction file,
assemble it to produce an object module that PAT can process.

7.2.4 How PAT and the Linker Update Object Modules

The following examples show an input file and a correction file
(called a patch file) to be processed by PAT and the linker, along
with a source-like representation of what the output file would 1look
like once PAT and the linker complete processing. Two techniques are
described: one is for overlaying lines in a module and the other is
for appending a subroutine to a module.

7.2.4.1 Overlaying Lines in a Module - The first example illustrates
a technique for overlaying lines in a module by using a patch file.
First, PAT appends the correction file to the input file. The 1linker
then executes to replace code within the input file.

The source code for the input file for this example is:

.TITLE ABC
.IDENT /01/

.ENABL, GBL
ABC::
MOV A,C
JSR PC,XYZ
RTS PC
. END

To add the instruction ADD A,B after the JSR instruction, include the
following patch source file:

.TITLE ABC
.IDENT /01.01/
.ENABL GBL

.=.+12
ADD A,B
RTS PC
.END

The patch source is assembled using MACRO-11] and the resulting object
file is input to PAT along with the original object file. The
following source code represents the result of PAT processing.

7-5

OBJECT MODULE PATCH UTILITY (PAT)

.TITLE ABC
.IDENT /01.01/
.ENABL GBL

ABC::
MOV A,C
JSR PC,XYZ
RTS PC

.=ABC

=.+12
ADD A,B
RTS PC
.END

After the linker processes these files, the load image appears as this
source-code representation shows:

.TITLE ABC
.IDENT /01.01/

.ENABL GBL
ABC::

MOV A,C

JSR PC,XYZ

ADD A,B

RTS PC

.END

The linker uses the .=.+12 in the program counter field to determine
where to begin overlaying instructions in the program. The linker
overlays the RTS instruction with the patch code:

ADD A,B
RTS PC

7.2.4.2 Adding a Subroutine to a Module - The second example
illustrates a technique for adding a subroutine to an object module.
In many cases, a patch requires that more than a few lines be. added to
patch the file. A convenient technique for adding new code is to
append it to the end of the module in the form of a subroutine. This
way, you can insert a JSR instruction to the subroutine at an
appropriate location. The JSR directs the program to branch to the
new code, execute that code, and then return to in-line processing.

The input file for the example is:
.TITLE ABC

.IDENT /01/
.ENABL GBL

ABC::
MOV A,B
JSR PC,XYZ
MOV C,RO
RTS PC
.END

OBJECT MODULE PATCH UTILITY (PAT)

Suppose you wish to add the instructions:

MOV D,RO

ASL RO
between

MOV A,B
and

JSR PC,XYZ

The correction file to accomplish this goal is as follows:

.TITLE ABC
.IDENT /01.01/
.ENABL GBL

JSR PC,PATCH

NOP

.PSECT PATCH
PATCH:

MOV A,B

MOV D,RO

ASL RO

RTS PC

.END

PAT appends the correction file to the input file, as in the previous
example. The linker then processes the file and generates the
following output file:

.TITLE ABC
.IDENT /01.01/
.ENABL GBL

ABC::
JSR PC,PATCH
NOP
JSR PC,XYZ
MOV C,RO
RTS PC
.PSECT PATCH
PATCH:
MoV A,B
MOV D,RO
ASL RO
RTS PC
.END

In this example, the JSR PC,PATCH and NOP instructions overlay the
three-word MOV A,B instruction. (The NOP is included because this is
a case where a 2-word instruction replaces a 3-word instruction. NOP
is required to maintain alignment.) The linker allocates additional
storage for .PSECT PATCH, writes the specified code into this program
section, and binds the JSR instruction to the first address in this
section. Note that the MOV A,B instruction replaced by the JSR
PC,PATCH is the first instruction the PATCH subroutine executes.

7-7

OBJECT MODULE PATCH UTILITY (PAT)

7.2.5 Determining and Validating the Contents of a File

Use the checksum option (/C) to determine or validate the contents of
a module. The checksum option directs PAT to compute the sum of all
binary data composing a file. If you specify the command in the form
/C:number, /C directs PAT to compute the checksum and compare that
checksum to the value specified as number.

To determine the checksum of a file, enter the PAT command 1line with
the /C option applied to the file whose checksum you want to
determine. For example:

=INFILE/C,INFILE.PAT
PAT responds to this command with the message:
INPUT MODULE CHECKSUM IS <checksum>

PAT generates a similar message when you request the checksum for the
correction file.

To validate the changes made to a file, enter the checksum option in
the form /C:number. PAT compares the value it computes for the
checksum with the value you specify as number. If the two values do
not match, PAT displays a message reporting the checksum error:

INPUT FILE CHECKSUM ERROR
or
CORRECTION FILE CHECKSUM ERROR
Checksum processing always results in a nonzero value.

Do not confuse this checksum with the record checksum byte.

7.3 PAT ERROR MESSAGES

The following messages can be output by PAT. All messages are of the
form:

?PAT-n-message

where n represents the severity code of the error causing the message.
Possible severity codes are F (Fatal), I (Information) or W (Warning).
Fatal errors cause the current command or statement to be ignored.
You must enter another command. Information messages are for your
benefit only. They require no further action. A warning message
indicates an error condition that may affect execution at a later
time. The condition causing the message may require some attention.

7-8

OBJECT MODULE PATCH UTILITY (PAT)

Message Explanation

?PAT-F~Command line error There is a syntax error in the PAT
command line. Check for typing
errors and reenter the command
line.

?PAT-F~-Correction file has bad GSD

There was an error in the global
symbol directory (GSD). The file
is probably not a 1legal object
module. Verify that the input
filename is correct; check for a
typing error in the command line.
Reassemble or recompile the source
to obtain a good object module and
retry the operation.

?PAT-F-Correction file has bad RLD

A global symbol named in a relocat-
able record was not defined in the
global symbol definition record. Re-
assemble the indicated file. If the
condition persists, submit a Software
Performance Report.

?PAT-F-Correction file has illegal record

The format of the correction file
is not compatible with the object
file format PAT requires. The
format 1is not what the standard
language processors should produce.
Verify that the correction file has
the proper format, and retype the
command line.

?PAT-F-Correction file missing The command line does not have a
correction file specification. PAT
requires both an input file and a
correction input file in every
command. Enter a complete command
to PAT.

?PAT-F-Correction file read error PAT detected an error while reading
the correction file. Input
hardware can cause this error.
Retry the command. Check for
read-locked or off-line devices.

?PAT-F-Illegal error PAT has generated an illegal error
message call. This is an internal
software error condition. If the
error persists, submit a Software
Performance Report with the related
console dialogue and any other
pertinent information.

7-9

OBJECT MODULE PATCH UTILITY (PAT)
Message Explanation
?PAT-F-Incompatible reference of global AAAAAA

The correction file contains a

global symbol with improper

attributes. Modify the attributes

of the global symbol. Choose

DEFINITION or REFERENCE; and

choose RELOCATABLE or ABSOLUTE. »
Reassemble the correction file, and

retype the command line.

?PAT-F-Incompatible reference to section AAAAAA

The correction file contains a

‘section name with improper

attributes. Modify the section

attributes or section type. Choose -,
RELOCATABLE or ABSOLUTE; and

specify .PSECT or .CSECT.

Reassemble the correction file, and

retype the command line.

?PAT-F-Input file has bad GSD There was an error in the global
symbol directory (GSD). The file
is probably not a legal object
module. Verify that the input
filename is correct; check for a
typing error in the command line. A“ﬁ
Reassemble or recompile the source
and retry the operation.

?PAT-F~-Input file has bad RLD A global symbol named in a
relocatable record was not defined
in the global symbol definition
record. Reassemble the indicated
file. If the error persists,
submit a Software Per formance
Report.

?PAT-F-Input file has illegal record A,

The format of the input file is not
compatible with the object file
format PAT requires. The format is
not what the standard DIGITAL
language processors should produce.
Verify that the input file has the
proper format, and retype the
command line.

?PAT-F-Input file missing The command line does not have an
explicit input file specification.
PAT requires both an input file and
a correction file in every command.
Enter a complete command to PAT.

7-10

OBJECT MODULE PATCH UTILITY (PAT)

Message

?PAT-F-Input file read error

?PAT-F-Insufficient memory

?PAT-F-Only /C allowed

?PAT-F-Output file full

?PAT-F-Output write error

Explanation

PAT detected an error while reading
the input file. 1Input hardware can
cause this error. Retry the
command. If the error persists,
submit a Software Per formance
Report with a copy of the console
dialogue and any other pertinent
information.

There is not sufficient contiguous
memory for PAT to use for the
corrected output file.

The input module or correction file
specifications contain an illegal
option. /C and /C:n are the only
option forms PAT accepts.

There is not enough free space on
the output volume for the corrected
object file.

PAT encountered an error while
writing the output file. This
error occurs when the output device
is write-locked or when there is a
hardware error.

?PAT-F-Unable to locate module AAAAAA

The correction file has a module
name that does not exist in the
input file. PAT shows the name of
the module in this message. Update
the input file to include the
missing module or correct an
improper module name in the
correction file. Retype the
command line.

?PAT-W-Additional input files ignored

The command 1line specifies more
than two input files. PAT
processes the first as the input
module to be corrected and the
second as the correction file. PAT
ignores all other files.

?PAT-W~Additional output files ignored

The command line has more than one
output file specification. PAT
cannot create more than one file
for each command 1line. For the
dgeneral command line format
outl,out2,out3=input,correct PAT's
output file must be in the "outl"
position. PAT ignores all other
output files.

7-11

OBJECT MODULE PATCH UTILITY (PAT)

Message

Explanation

?PAT-W-Correction file checksum error

?PAT-W~Correction file checksum is

?PAT-W-Input file checksum error

PAT finds a checksum value that is
different from the value for the /C
correction file option. Mistyping
the /C option value or specifying
an invalid version of the
correction file causes this error.

NNNNNN

PAT responds to the /C option on
the correction file with this
message. NNNNNN is the octal value
of the sum of all binary data
composing the file. The message is
for your information.

PAT finds a checksum value that is
different from the value for the /C
input file option. Mistyping the
/C option value or specifying an
invalid version of the input file
causes this warning.

?PAT-W-Input module checksum is NNNNNN

PAT responds to the /C option on
the input module with this message.
NNNNNN is the octal value of the

sum of all binary data composing
the file. The message is for your
information.

7-12

APPENDIX A

CHARACTER CODES

A.1 ASCII CHARACTER SET

EVEN
PARITY
BIT

[l [(=0 (= =] OO [o

(=N

o

o M

7-BIT

OCTAL

CODE CHARACTER REMARKS

000 NUL NULL,TAPE FEED CONTROL/SHIFT/P.

001 SOH START OF HEADING: ALSO SOM, START OF
MESSAGE, CONTROL/A.

002 STX START OF TEXT: ALSO EOA, END OF ADDRESS,

. CONTROL/B.

003 ETX END OF TEXT: ALSO EOM, END OF MESSAGE,
CONTROL/C.

004 EOT END OF TRANSMISSION (END): SHUTS OFF TWX
MACHINES, CONTROL/D.

005 ENQ ENQUIRY (ENQRY); ALSO WRU, CONTROL/E.

006 ACK ACKNOWLEDGE; ALSO RU, CONTROL/F.

007 BEL RINGS THE BELL. CONTROL/G.

010 BS BACKSPACE; ALSO FEO, FORMAT EFFECTOR.
BACKSPACES SOME MACHINES, CONTROL/H.

011 HT HORIZONTAL TAB. CONTROL/I.

012 LF LINE FEED OR LINE SPACE (NEW LINE); ADVAN-
CES PAPER TO NEXT LINE, DUPLICATED BY
CONTROL/J .

013 vT VERTICAL TAB (VTAB). CONTROL/K.

014 FF FORM FEED TO TOP OF NEXT PAGE (PAGE) CON-
TROL/L.

015 CR CARRIAGE RETURN TO BEGINNING OF LINE.
DUPLICATED. BY CONTROL/M.

016 S0 SHIFT OUT; CHANGES RIBBON COLOR TO RED.
CONTROL/N.

017 SI SHIFT IN; CHANGES RIBBON COLOR TO BLACK.
CONTROL/O.

020 DLE DATA LINK ESCAPE. CONTROL/P (DCO).

021 DC1 DEVICE CONTROL 1, TURNS TRANSMITTER (READER)
ON, CONTROL/Q (X ON).

022 DC2 DEVICE CONTROL 2, TURNS PUNCH OR AUX ON.
CONTROL/R (TAPE, AUX ON).

023 DC3 DEVICE CONTROL 3, TURNS TRANSMITTER (READER)
OFF, CONTROL/S (X OFF).

024 DC4 DEVICE CONTROL 4, TURNS PUNCH OR AUX OFF.

CONTROL/T (AUX OFF).

CHARACTER CODES

EVEN 7-BIT
PARITY OCTAL
BIT CODE CHARACTER REMARKS -

[

025 NAK NEGATIVE ACKNOWLEDGE; ALSO ERR, ERROR.

CONTROL/U.
026 SYN SYNCHRONOUS FILE (SYNC). CONTROL/V.
027 ETR END OF TRANSMISSION BLOCK; ALSO LEM, LOGI-

CAL END OF MEDIUM. CONTROL/W.
030 CAN CANCEL (CANCL). CONTROL/X.
031 EM END OF MEDIUM. CONTROL/Y. *
032 SUB SUBSTITUTE. CONTROL/Z.
033 ESC ESCAPE. PREFIX. CONTROL/SHIFT/K.
034 FS FILE SEPARATOR. CONTROL/SHIFT/L.
035 GS GROUP SEPARATOR. CONTROL/SHIFT/M.
036 RS RECORD SEPARATOR. CONTROL/SHIFT/N.
037 Us UNIT SEPARATOR. CONTROL/SHIFT/O.
040 SP SPACE.
041 !
042 "
043 #
044 S
045 _
046 &
047 ' APOSTROPHE.
050 (
051)
052 *
053 +
054 ’
055 -
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077

101
102
103
104
105
106
107

HOOHHOMOOHROHKMROHOOHHOOHOHRHOHOOHOHHOORKHOROOHFHOOROKRHOS OFF

HIQ@UEBOO@EPDPED OV I AN OONAUTE WNFON "

111

CHARACTER CODES

EVEN 7--BIT
PARITY OCTAL
BIT CODE CHARACTER REMARKS

112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133 SHIFT/K.

134 SHIFT/L.

135 SHIFT/M.

136 appears as ~ on some machines.
137 appears as _ on some machines.
140 ACCENT, GRAVE

141

142

M= SN X E<SCHODIOYOZIENRG

r 4

174

175 THIS CODE GENERATED BY ALTMODE

176 THIS CODE GENERATED BY ESC KEY (IF PRESENT)
177 DEL DELETE, RUB OUT

I I N = I T N T - I I I R Iy N Y R N
— (-
Ui £=Y
e})
Pt N X ESCEANRQUDVOS BRI NUWURTAQAMOOQTY

A.2 RADIX-50 C
Character

space
A-Z
$

unused
0-9

CHARACTER CODES

NOTES

Teleprinters manufactured by Teletype
Corporation, Skokie, Illinois, have used
codes 175 (ALT) and 176 for ESC.
Programs may forgo the use of (175) and

(176) in order to use these codes as
ESC on older teleprinters.

ASCII is a 7 bit character code with an
optional odd parity bit (200) added for
many devices. Programs normally use
just seven bits internally; the 200 bit
is either stripped or added so the
program will operate with either parity
or non-parity generating devices.

ISO Recommendation R646 and CCITT
Recommendation V.3 (International
Alphabet No. 5) is identical to ASCII
except that number sign (043) is
represented as £ instead of # and
certain characters are reserved for
national use.

HARACTER SET

ASCII Octal Equivalent Radix-50 Octal Equivalent
40 0
101-132 1-32
44 33
56 © 34
35
60-71 36-47

The maximum Radix-50 Octal value:

47*50 +47*50

+47=174777

Table A-1 provides a convenient means of translating between the ASCII
and its Radix-50 equivalents. For example, given the

character set
ASCII string X2
performed in oc

X=113000
2=002400
B=000002
X2B=115402

B, the Radix-50 equivalent follows
tal).

(arithmetic

is

CHARACTER CODES

Table A-1

Radix=-50 Character Set

Single Char.

or Second Third

First Char. Character Character

A 003100 A 000050 A 000001
B 006200 B 000120 B 000002
C 011300 C 000170 C 000003
D 014400 D 000240 D 000004
E 017500 E 000310 E 000005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 H 000500 H 000010
I 034100 I 000550 I 000011
J 037200 J 000620 J 000012
K 042300 K 0006790 K 000013
L 045400 L 000740 L 000014
M 050500 M 001010 M 000015
N 053600 N 001060 N 000016
0 056700 0 001130 0 000017
P 062000 P 001200 P 000020
Q 065100 Q 001250 Q 000021
R 070200 R 001320 R 000022
S 073300 S 001370 S 000023
T 076400 T 001440 T 000024
U 101500 U 001510 U 000025
A4 104600 \' 001560 \'4 000026
W 107700 W 001630 W 000027
X 113000 X 001700 X 000030
Y 116100 Y 001750 Y 000031
7 121200 Z 002020 2 000032
$ 124300 $ 002070 S 000033
. 127400 . 002140 . 000034
unused 132500 unused 002210 unused 000035
0 135600 0 002260 0 000036
1 140700 1 002330 1 000037
2 144000 2 002400 2 000040
3 147100 3 002450 3 000041
4 152200 4 002520 4 000042
5 155300 5 002570 5 000043
6 160400 6 002640 6 000044
7 163500 7 002710 7 000045
8 166600 8 002760 8 000046
9 171700 9 003030 9 000047

APPENDIX B

FILENAME EXTENSIONS

Extension Attribute

.DAT FORTRAN data file

.FOR FORTRAN source file

.LDA Absolute binary file

.LLD Library listing file

LLST FORTRAN or MACRO listing file

.MAC MACRO source file

.MAP Link load map file

.OBJ Relocatable binary file;
library file

. SAV Executable FORTRAN program file

.STB Symbol Definition file

.TMP CREF temporary cross-reference file

C.1 MACRO OPTIONS

The options recognized by
two possible
Sections C.1.1, C.1.2 and

MACRO options.

Option

/Lsarg

/N:arg

/E:arg

/D:arg

/M
/C:arg

/P:arg

arguments;

APPENDIX C

OPTION SUMMARY

MACRO are listed below. The /P:n option has
1l and 2. The /M option has no arguments.
C.1.3 list the arguments for the remaining

Usage
Listing control, overrides source program
directive .LIST

Listing control, overrides source program
directive .NLIST

Object file function enabling, overrides
source program directive .ENABL

Object file function disabling, overrides
source program directive .DSABL

Indicates input file is MACRO library file
Control contents of cross-reference listing

Specifies whether input source file is to be
assembled during pass 1 or pass 2

C.1.1 Arguments for Listing Control Options

Valid arguments for the listing control options (/L:iarg or /N:arg) are
given below.

Argument Default

SEQ
LOC
BIN
BEX
SRC
COM
MD
MC
ME

list
list
list
list
list
list
list
list
nolist

Controls Listing of

Source line sequence numbers

Location counter

Generated binary code

Binary extensions

Source code

Comments

Macro expansions and repeat range expansions
Macro calls and repeat range expansions
Macro expansions

OPTION SUMMARY

Argument Default Controls Listing of

MEB nolist Macro expansion binary code

CND list Unsatisfied conditions and all .IF and .ENDC
statements.

LD nolist Listing directives having no arguments

TOC list Table of contents

TTM nolist 132 column 1line printer format when not
specified; terminal mode when specified

SYM list Symbol table

The /N option with no argument causes MACRO to list only the symbol
table, table of contents and error messages. The /L option with no
arguments causes MACRO to ignore .LIST and .NLIST directives in the
source code that have no arguments.

C.1.2 Arguments for Function Control Options

This section lists valid arguments for the MACRO function control
options, /E:arg (enable) or /D:arg (disable).

Default
Argument Mode Enables or Disables

ABS Disable Absolute binary output

AMA Disable Assembly of all absolute addresses
as relative addresses

CDR Disable Source columns 73 and greater to be
treated as comments

CRF Enable Cross-reference listing. /D:CRF
inhibits CREF output even if /C
is specified.

FPT Disable Floating point truncation

GBL Disable Undefined symbols treated as
globals

LC Disable Accepts lower case ASCII input

LSB Disable Local symbol block

PNC Enable Binary output

REG Enable Mnemonic definitions of registers

C.1.3 Arguments for the Cross-Reference Option

This section lists valid arguments for the cross-reference option,
/C:arg. These arguments control the contents of cross-reference
listings.

Argument Produces Cross-Reference of

User-defined symbols
Register symbols

MACRO symbolic names
Permanent symbols
Control sections

Error codes

<no arg> Equivalent to /C:S:M:E

HOYRoDn

OPTION SUMMARY

C.2 LINK OPTIONS

This section describes the options recognized by the LINK utility.
The command line on which each option must appear is listed.

Option Command
Name Line Explanation

/A first Alphabetizes the entries in the 1load
map.

/B:n first Changes the bottom address of a
program to n.

/C any but Continues input specification on
last another command line (you can use /C
also with /0; do not use /C with the

// option).

/E:n first Extends a particular program section
to a specific value.

/F first Instructs the linker to use the
default FORTRAN library, FORLIB.OBJ,
to resolve any undefined global
references. Note that this option
should not be specified in the command
line when FORLIB has been incorporated
into SYSLIB.

/H:n first Specifies the top (highest) address to
be used by the relocatable code in the
load module.

/1 first Extracts the global symbols you
specify from the 1library and links
them into the load module.

/K:n first Inserts the value you specify (the
valid range for n is from 1 to 28)
into word 56 of block 0 of the image
file. This option indicates that the
program requires nk words of memory.

/L first Produces a formatted binary output
file (.LDA format).

/M or first Cause the 1linker to prompt you for a

/M:n global symbol that represents the
stack address, or sets the stack
address to the value n.

/0:n any, but Indicates that the program is an
the first overlay structure; n specifies the
overlay region to which the module is

assigned.

/P:n first Changes the default amount of space
the linker uses for a library routines
list.

OPTION SUMMARY

Option Command

Name Line Explanation

/S first Makes the maximum amount of space in
memory available for the linker's
symbol table. (Use this option only
when a particular link stream causes a
symbol table overflow)

/T or first Causes the linker to prompt you for a

/T:n global symbol that represents the
transfer address, or sets the transfer
address to the value n.

/U:n first Rounds up the section you specify so
that the size of the root segment is a
whole number multiple of the value you
supply (n must be a power of 2).

/W first Directs the linker to produce a wide
load map listing.

/X Does not output the bitmap if the code
is below 400.

/Z:n first Sets unused 1locations in the 1load
module to the value n.

// first and Allows you to specify command string

last input on additional lines. Do not use

this option with /C.

C.3 LIBR OPTIONS

This section 1lists options recognized by the 1librarian wutility
program, LIBR. Note that there 1is no option to indicate module
insertion. Modules are automatically inserted into the 1library file
if you do not specify an option.

Command
Option Line Meaning
/C any Command continuation; allows you to
but last type the input specification on more
than one 1line.

/D first Delete; deletes modules that you
specify from a library file.

/E first Extract; extracts a module from a
library and stores it in an OBJ file.

/G first Global deletion; deletes global symbols
that you specify from the library
directory.

/N first Names; includes the module names in the
directory.

/P first P-section names; includes the program

section names in the directory.

OPTION SUMMARY

Command
Option Line Meaning
/R first Replace; replaces modules in a library
- file,
/u first Update; 1inserts and replaces modules in
a library file.
/W first Indicates wide format for the 1listing
file.
// first Command continuation; allows you to
and last type the input specification on more

than one line.

C.4 PATCH OPTIONS

The following options are recognized by the PATCH utility program:

Option Meaning
/0 Use if the file is an overlay-structured file.
/C Requires you to enter a checksum. If you make no

modifications, PATCH ignores the /C option.

/D Use if you do not know the checksum for a
particular patch. PATCH prints the checksum for
that patch. If you make no modifications, PATCH
ignores the /D option.

APPENDIX D

ERROR MESSAGE SUMMARY

D.1 MACRO ERROR CODES AND ERROR MESSAGES

MACRO outputs two types of error indications; a single-letter error
code and a descriptive error message.

The single-letter error codes automatically appear on assembly
listings. They also appear on the cross~reference listing if you
specify /C:E in the MACRO command string.

Descriptive error messages are output to the terminal. They are of
one of the following formats:

?MACRO-F~-message
or
?CREF-F-message

Following the appearance of a message of either format, control
returns to - MACRO, which prompts you with an asterisk. You can then
enter a new command string. S

D.1.1 MACRO Error Codes
Error Code Meaning

A Addressing or relocation error. This occurs when an
instruction operand has an invalid address, or when the
definition of a local symbol occurs more than 128 words
from the beginning of a local symbol block.

B Boundary error. The current setting of the 1location
counter would cause the assembly of instruction or word
data at an odd memory address. The system increments
the location counter by 1 to correct this.

D Reference to multiple~definition symbol. The program
‘refers. to a non-local label that is defined more than
once.

E No END directive. The assembler has reached the end of

a source file and found no END directive. The system
generates .END and continues.

I Illegal character detected. The assembler has
encountered in the source file a character that is not
included in the language character set. The system
replaces each illegal character with a ? on the
assembly 1listing and proceeds as if the illegal
character were not present.

D-1

Error Code

L

ERROR MESSAGE SUMMARY

Meaning

Link buffer overflow. The assembler has encountered an
input line greater than 132 characters. In terminal
mode the system ignores additional characters.

Multiple definition of a label. The source program is
attempting to define a label equivalent in the first
six characters to a label defined previously.

Decimal point missing from decimal number. A number
containing the digit 8 or 9 lacks a decimal point.

Op-~code error. A directive appears in an inappropriate
context.

Phase error. The definition or value of a label
differs from one pass to another, or a local symbol
occurs more than once in a local symbol block.

Questionable syntax. This can have any of several
causes, as follows: .

1. There are missing arguments.

2. The instruction scan is not complete.

3. A line feed or form feed does not immediately
follow a carriage return.

Register-type error. The source program attempts an
invalid reference to a register.

Truncation error. A number generates more than 16
significant bits, or an expression generates more than
8 significant bits while a .BYTE directive is active.

Undefined symbol. A symbol not defined elsewhere in
the program appears as a factor in an expression. The
assembler assigns the undefined symbol a constant zero
value.

Incompatible instruction (warning). The instruction is
not defined for all PDP-11 hardware configurations.

D.1.2 MACRO Error Messages

Message Explanation
2CREF-F-Chain-only CUSP Programs must chain to CREF in
order to use it. Attempts to use
RUN S$CREF can cause this error.
Use a language processor to invoke
CREF.
?CREF-F-CRF file error An input error occurred while

reading DK:CREF.TMP, the temporary
input file passed to CREF. Run the
language processor again to create
a good CREF input file.

Message

?CREF-F-Device

?CREF~F-List file error

?MACRO-F-Bad option

?MACRO—F—Device full

?MACRO-F~File not found

?MACRO-F-Illegal command

?MACRO-F-Illegal device

ERROR MESSAGE SUMMARY

Explanation

The language processor chaining to
CREF has specified an invalid
device. This may be a system
error. However, writing a CREF
listing to magtape or cassette
before manually loading the magtape
or cassette handler causes this
error. The error also occurss when
the input file to CREF, CREF.TMP,
is not on a random access device.
If the error persists, submit a
Software Performance Report with a
proegram listing and a machine

readable source program, if
possible.

An output error occurred while
attempting to write the
cross-reference table to the

listing file. The output volume
may not have enough free space
remaining for the listing file.

The specified option was not
recognized by the program. Check
for a typing error in your command
line.

The output volume does not have
sufficient room for an output file
‘specified in the command string.
Delete unnecessary files or use
another device.

An input file specified in the
command line does not exist on the
specified device, or was protected
against the current user. Correct
any file specification errors in
the command line and retype.

The command line contains a syntax
error or specifies more than 6
input files. Correct the command
line and retype.

A device specified in the command
line does not exist on the system.
Either install the device or
substitute another.

?MACRO-F~Input~output error on channel N

A hardware error occurred while
attempting to read from or write to
the device on the channel specified
in the message. Channels
correspond to files in the command
string as follows:

ERROR MESSAGE SUMMARY

Message Explanation
?MACRO-F-Input-output error on channel N (cont.) ‘l.M
Channel File |

0 .OBJ output file
1 .LST output file
2 CREF temporary file
3 Input (source) file #1 v
4 Input (source) file #2
5 Input (source) file #3 -
6 Input (source) file #4
7 Input (source) file #5
8 Input (source) file #6 A!QE

?MACRO-F-Input-output error on MACRO library

MACRO detected a bad record in the
MACRO library. For example, this
error occurs when the library area
is bad. Rebuild the MACRO library.

?MACRO-F~Input-output error on workfile
MACRO failed to read or write to

its workfile, WRK.TMP. Check for
hard error conditions such as read

or write-locked, or offline
devices.
?MACRO-F-Insufficient memory There were too many symbols in the

program being assembled.

?MACRO-F-Invalid macro library The library file has been corrupted A_—
or it was not produced by the CT
librarian, LIBR. Use LIBR to
generate a new copy of the library

file.
?MACRO-F-Output device full There was no room to continue
writing the output file. .

D.2 LINK ERROR MESSAGES

The following error messages can be output by the 1linker. Messages
appear - on the load map if you requested a load map. Otherwise, error
messages are output to the terminal.

All méssages are of the form:

?LINK-n-message AggH

ERROR MESSAGE SUMMARY

where n represents the severity code of the error. Severity codes can
be F (Fatal) or W (Warning). Fatal errors cause the current command
or statement to be ignored. You - must enter another command. A
warning message indicates an error condition that may affect execution
at a later time. The condition causing the message may require some
attention.

Message , Explanation

?LINK-F-/B No value No argument was specified to the /B
option. Reenter the command string
specifying an unsigned even octal
number as the argument to the /B

option.

?LINK-F-/B 0dd value The argument to the /B option was
not an unsigned even octal number.
Reenter the command string

specifying an unsigned even octal
number as the argument to /B.

?LINK-F-/H Value too low The value specified as the high
: address for 1linking was actually
too small to accommodate the code.
Obtain map output without using /H
to determine the space required and
then retry the operation.

?LINK~-F~/M 0dd value An odd value was specified for the
stack address. Check for a typing
error in the command line. Reenter
the command specifying an even
value to the /M option.

?LINK-F-/T 0dd value An odd value was specified for the
transfer address. Check for a
typing error in the command 1line.
Reenter the command specifying an
even value to the /T option.

?LINK-F-/U or /Y value not a power of 2

The value specified with /U is not
a power of 2. Reenter the command
with a value that is a power of 2.

?LINK-F-ASECT too big An absolute section overlaps into
an occupied area of memory or an
overlay region. Locate a segment
of available memory large enough to
contain the absolute section and
substitute the appropriate starting
address.

ERROR MESSAGE SUMMARY

Message

Explanation

?LINK-F-Bad complex relocation in FILNAM

?LINK-F~Bad GSD in FILNAM

?LINK-F-Bad RLD in FILNAM

A complex relocation string in the
input file was found to be invalid.
The message occurs during pass 2 of
the linker. Check for a typing
error in the command line; verify
that the correct filenames were
specified as input. Reassemble or
recompile to obtain a good object
module and retry the operation. If
the error persists, verify that the
source code is correct.:
There was an error in the global
symbol directory (GSD). The file
is probably not a legal object
module. Verify that the correct
filenames were specified as input;
check for a typing error in the
command line. Reassemble or
recompile the source to obtain a
good object module and retry the
operation.

An invalid relocation directory
(RLD) command exists in the input
file. The file is probably not a
legal input module. Check for a
typing error in the command line;
verify that correct filenames were
specified as input. Reassemble or
recompile and retry the operation.
If the error persists, verify that
the source code is correct.

?LINK-F-Bad RLD symbol in DEV:FILNAM.TYP

?LINK-F-Default system library not

A global symbol named in a
relocatable record was not defined
in the global symbol definition
record. Reassemble the indicated
file. If the condition persists,
submit a Software Performance
Report (SPR).

found SYSLIB.OBJ

The linker did not find SYSLIB.OBJ
on the system device when undefined
globals existed. Obtain a copy
from your backup system volume and
relink. your program, or correct the
source files by removing the
undefined globals 1listed on the
terminal.

ERROR MESSAGE SUMMARY

Message

Explanation

?LINK-F-File not found DEV:FILNAM.TYP

?LINK-F-Illegal character

?LINK-F-Illegal device

?LINK-F-Illegal error

The input file indicated was not
found. Check for a typing error in
the command line. Verify that the
filename exists as entered in the
command line and retry the
operation.

The character specified was not
used in proper context. Characters
for symbols must be legal Radix-50
characters. Examine the command
string for errors in syntax.
Correct and retype.

The device/volume indicated was not
available. Verify that the device
is valid for the system in use.

An internal error occurred while
the 1linker was in the process of
recovering from a previous system
Or user error.

Retry the operations that produced
this error; if it recurs, report
the error to DIGITAL using an SPR
(Software Performance Report) ;
include a program 1listing and a
machine-readable source program, if
possible.

?LINK-F-Illegal record type in DEV:FILNAM.TYP

?LINK-F-Insufficient memory

?LINK-F-Map device full

A formatted binary record had a
type not in the range 1-10 (octal).
Verify that the correct filenames
were specified as input; check for
a typing error in the command line.
Reassemble or recompile and retry
the operation,

There was not enough memory to
accommodate the command, the symbol
table or the resultant load module.

There was no room in the directory
for the filename or there was no
room on the output device for the
map file.

?LINK-F-0ld library format in DEV:FILNAM.TYP

The indicated 1library file is
formatted from an old LIBR version.
Rebuild the library file using the
current librarian.

ERROR MESSAGE SUMMARY

Message Explanation
?LINK-F-Read error in DEV:FILNAM.TYP ﬂ
A hardware error occurred while

reading the indicated input file.
Check for read-locked or off-line

devices.
?LINK-F-SAV device full There was no room in the directory
for the filename or there was no N

room on the output device for the
image file.

?LINK-F-SAV read error ' A hardware error occurred while
reading the image file (SAV, LDA). *
Check for read-locked or off-line
devices.

?LINK~-F-SAV write error A hardware error occurred while
writing the image file (LDA). pﬂ!k
Check for write-locked or off-line ' ;
devices.

?LINK-F-STB device full : There was no room in the directory

for the filename or there was no
room on the output device for the
symbol table (STB) file.

?LINK-F-STB not allowed with /S and a MAP

Production of STB and MAP in the ‘q!%
same linking operation is

prohibited in order to maximize

space in the symbol table with /S.

Produce STB and MAP in separate

linking operations.

?LINK-F-STB write error A hardware error occurred while
‘writing the symbol table (STB)
file. Check for write-locked or
off-line devices.

?LINK-F~-Storing text beyond high limit
An input object module has caused
the linker to store information in
the image file beyond the high
limit of the program; there is an ¢
error condition in the object
module. Reassemble and/or
recompile the program.
*
?LINK-F-Symbol table overflow Too many global symbols were used
in the program.
?LINK-W-/0 Ignored Overlays were specified in the
' wrong order. Check for a typing
error in the command line. The
overlay option is ignored. Consult
the overlay restrictions in Chapter A!EQ
3. ’ i
D-8

Message

ERROR MESSAGE SUMMARY

Explanation

?LINK-W-Additive reference of NNNNNN at segment # MMMMMM

?LINK-W-Bad option: /a

A call or a branch to an overlay
segment was not made directly to an
entry point in the segment. NNNNNN
represents the entry point; MMMMMM
represents the segment number.

The linker did not recognize the
option (/a) specified in the
command line, or an illegal
combination of options was used.
If the bad option occurred in the
first command line, control returns
to LINK; enter another command.
If the bad option occurred on a
subsequent command line, the option
is ignored and processing
continues. 1In a continued command
line, only /0, /C, and // are legal
options. Reexamine the command
-line and check for a typing error.

?LINK-W-Bad overlay at segment # NNNNNN

An overlay tried to store text
outside its region; NNNNNN
represents ‘the segment number.
Check for an .ASECT in the overlay.

?LINK-W-Byte relocation error at NNNNNN

The linker attempted to relocate
and link byte quantities, but
failed. NNNNNN represents the
address at which the error
occurred. Failure is defined as
the high byte of the relocated
value (or the 1linked value) not
being all =zeroes. The relocated
value is truncated to 8 bits and
the 1linker continues processing.
Correct the source program so that
there are no relocated byte
quantities, reassemble, and relink.

?LINK-W-Complex relocation divide by 0 in DEV.FILNAM.TYP

A divide by 0 was attempted in a
complex relocation string in the
file indicated. A result of 0 is
returned and linking continues.

ERROR MESSAGE SUMMARY

Message

Explanation

?LINK-W-Conflicting section attributes AAAAAA

?LINK-W-Extend section not found

?LINK~-W-Map write error

The program section symbol was
defined with different attributes.
The attributes of the first
definition are used and the linking
process continues. The source
program should be checked to use
the desired section attributes for
that program section.

The extend section name given with
/E was not found in the modules
that were linked; or the extend
section does not exist in the root

segment. The linker continues
after the warning, without
extending the section. Check the

response to the "Extend section?"
prompt, and use the correct section
name the next time you link.

A hardware error occurred while
writing the map output file. The
map output is terminated and the
linking process continues.

?LINK-W-Multiple definition of symbol

The symbol indicated was defined
more than once. Extra definitions
are ignored.

?LINK-W-Round section not found AAAAAA

?LINK-W-Stack address undefined or

The round program section was not
found in the symbol table to match
the symbol entered (following use
of the /U option). Linking
continues with no round-up action.

in overlay

The stack address specified by the
/M option was either undefined or
in an overlay. For SAV files, the
stack address is set to the default
1000. Check for a typing error in
the command line. Verify that the
stack address or global symbol is
not defined in an overlay segment.

ERROR MESSAGE SUMMARY

Message

?LINK-W-Transfer address undefined

?LINK-W-Undefined globals:

D.3 LIBRARY ERROR MESSAGES

The following error messages are
All messages are of the form:

librarian program.

?LIBR-n-message

where n represents the severity code of the error.
Fatal errors cause the current command

be F (Fatal) or W (Warning).
or statement to be ignored. You
warning message indicates an error
at a later time.
attention.

‘Message

?LIBR-F-Bad GSD in FILNAM

?LIBR-F-Bad library for listing or

The condition causing the message may

Explanation

or in overlay

The transfer address was not
defined or was in an overlay.
Check for a typing error in the
command line. The response to the

/T option must be either a colon
followed by an unsigned 6-digit
octal number, or a carriage return

followed by the global symbol whose
value is the transfer address of

the load module.

The globals listed were undefined.

Check for a typing error in the
command line. The undefined
globals are listed on the terminal

and also - in the 1link map when
requested. Correct the source
program. Verify that all necessary
object modules are indicated in the
command line or present in the
libraries specified.

output on the terminal by the

Severity codes can

must enter another command. A
condition that may affect execution
require some

Explanation
There was an error in the global
symbol directory (GSD). The file
is probably not a 1legal object

module.

extract

The input file specified for
extraction or to produce a
directory listing was not an object
library file. Verify the filename
in the command line and check for

typing errors. A valid object
library file is required for
extraction or to produce a

directory listing.

D-11

ERROR MESSAGE SUMMARY

Message

?LIBR-F-Bad option: /x

?LIBR-F-EOF during extract

?LIBR-F-File not found FILNAM

?LIBR-F-Illegal error

?LIBR-F-Illegal extract of AAAAAA

?LIBR-F-Illegal option combination

Explanation.

The librarian did not recognize the

given option (/x). The librarian
restarts and prompts with an
asterisk.

The end of the input file was
reached before the end of the

module being extracted. This is an
unusual internal consistency-check
error. The object module format is
probably incorrect. Rebuild the
library file. If the error
condition persists, reassemble the
object module(s) belonging to that
file.

One of the input files indicated in
the command 1line was not found.
LIBR prints an asterisk; the
command may be reentered.

An internal error occurred while
the librarian was in the process of

recovering from a previous system
or user error. Retry the
operations that produced this
error; if it recurs, report the
error to DIGITAL using an SPR
(Software: Performance Report) ;
include a program listing and a

machine-readable source program, if
possible.

An extfaétion of the identified
global symbol was attempted but the
symbol was not found in . the
library. :

Options have been specified that

request conflicting functions to be
performed. For example, if /E is
specified, no other switch may be
used. If /M is specified, only
continuation options (/C, //) may
follow.

?LIBR-F~Illegal record type in FILNAM

" A formatted binary

record had a
type not in the range 1-10 (octal).
Verify that the correct filenames
were specified as input; check for
a typing error in the command line.
Reassemble or recompile the source
and retry the operation.

D-12

ERROR MESSAGE SUMMARY

Message

Explanation

?LIBR-F-Illegal replace of library file FILNAM

?LIBR-F-Insufficient memory

?LIBR-F-Macro name table full, use

?LIBR-F-No value allowed: /a

The command line specified that a
library file be replaced by another
library file. Check for a typing
error in the command line. Only
object modules can be replaced in a
library file. Enter another
command.

Available free memory has been used

up. The current command is
aborted.
/M:N

The number of macros to be placed
in the macro name table was greater
than the number allowed. Increase
the size of the macro name table by
supplying a value (N) to the option
/M: The default is 128 names.

The specified option (/a) does not
take a value. The 1librarian
restarts and prompts with an
asterisk.

?LIBR-F-Output and input filnam the same

?LIBR-F-Output device full
?LIBR-F-Output file full

?LIBR~-F-Output write error

?LIBR-F~Read error in FILNAM

The same filename was specified for
both input and output files when
the command string to build the
macro library was specified. Use
different filenames for the input
and output files specified to build
a macro library.

The device was full; LIBR was
unable to create or wupdate . the
indicated library file.

The output file was not large
enough to hold the library file or
list file.

An unrecoverable error occurred
while processing an output file.
This may indicate that there was
not enough space left on a device
to create a file, although there
may have been enough directory
entries left.

An unrecoverable error has occurred
while processing an input file.
LIBR prints an asterisk and waits
for another command to be entered.

ERROR MESSAGE SUMMARY

Message Explanation

?LIBR-W-Duplicate module name of AAAAAA . -,

‘A new module has been inserted in a
library, but its name is the same
as a module that is already in the
library. The 1librarian does not
reenter the name in the directory.
The old module is not updated or
replaced. For the librarian L
program, insertion is the default
operation and no command option is
needed; the option for update is
/U and the option for replacement
is /R.

?LIBR-W-Illegal character The symbol name entered contained a
non-Radix-50 character. Retype the
command line and retry the
operation. -~

?LIBR-W-Illegal delete of AAAAARA An attempt was made to delete from
the library's directory a module or
an entry point that does not exist;
AAAAAA represents the module or
entry point name. Check for a
typing error in the command line.
The entry point name or module name
is ignored and processing
continues.

?LIBR-W-Illegal insert of AAAAAA An attempt was made to insert into
a 1library a module that contains
the same entry point as an existing
module. AAAAAA represents the
entry point name. The entry point
is ignored, but the module is still
inserted into the library. No user
action is necessary.

?LIBR-W-Illegal replacement of AAAAAA

An attempt was made to replace in
the library file a module that does
not already exist. AAAAAA
represents the module name. The
module is ignored and the library
is built without it.

?LIBR-W~-Null library An attempt was made to build a
library file containing no
directory entries. Verify that the
correct filenames were specified as N
input; check for a typing error in
the command line. Verify that the
input to the library has at least
one directory entry.

?LIBR-W-Only continuation allowed An attempt was made to enter a
‘ command string beyond the end of

the current line without the use of A!§5

a continuation character.) 3

D-14

ERROR MESSAGE SUMMARY

D.4 PATCH ERROR MESSAGES

The following error messages can be output by the PATCH program. All
messages are of the form:

?PATCH-n-message

where n represents the severity code of the error. Severity codes can
be F (Fatal), I (Information) or W (Warning). Fatal errors cause the
current command or statement to be ignored. You must enter another
command . An informational message requires no further action. It is
there for your benefit only. A warning message indicates an error
condition that may affect execution at a later time. The condition
causing the message may require some attention.

Message Explanation
?PATCH-F-Insufficient memory There was not enough free core to
contain the device handler and the
internal "overlay tables." This

message should not occur under
normal circumstances.

?PATCH-F-Read error PATCH detected an input error in
reading from the file. Check for
read-locked or off-line devices.

?PATCH-F~-Write error PATCH detected an input error in
writing to the file. Check for
write-locked or off-line devices.

?PATCH-I-[+2K core] The USR is swapping or PATCH needs
more memory for overlay handling.
PATCH continues executing normally.
This message is for your
information,

?PATCH-I-CHECKSUM=NNNNNN PATCH prints out the checksum in
: response to the /D option after an
"E" or "F" command has been issued.
This message is for your
information only.

?PATCH-W-Address not in segment The specified address exceeds the
limits of the particular overlay.
Recheck the linker load map for the
address and proper overlay segment.

?PATCH-W-Bottom address wrong The contents of the address
specified does not correspond to
the first word in the standard
RSTS/E overlay handler. Correct
the line in error; specify the
correct address using the x;B
command.

D-15

ERROR MESSAGE SUMMARY

Message Explanation

?PATCH-W-CHECKSUM error PATCH responds to an incorrectly —_—
entered checksum three times. A '
failure to enter the correct
checksum on the third attempt will
cause an automatic exit to the
monitor. The file being patched
has been changed. The incorrectly
patched file should be deleted and
the backup procedures repeated
before attempting to patch the file i
a second time. '

?PATCH-W-Illegal command The response to the message "FILE
NAME --" was incorrect. Check for
a typing error in the command line.
The file specification must be of
the form:

dev:filnam.ext/options

?PATCH-W-Illegal option One of the options encountered in
the entered file specification was
not a recognized legal option.

?PATCH—W—Invalid overlay handler modification

An attempt was made to insert a
zero value into the overlay handler
tables for an overlaid program. A
non-zero value must be given in -
conjunction with the ";0" command. T

?PATCH-W-Invalid relocation register

An attempt was made to reference a
relocation register outside the
range 0-7. Relocation registers
must be set within the range 0-7.

?PATCH-W-Invalid segment number The specified segment number did
not exist in the file being -~
patched. Recheck the linker 1load '
map and command string to determine
the overlay structure.
?PATCH-W-Must open word The "@"} "p," or "X" command was
typed when no address was open.
{
?PATCH-W-Must specify segment number
The specified address exceeds the .
limits of the root segment.
?PATCH-W-No address open The "LF", "°", "@", "Xx", "p", "C",
or "A" command character was typed
when no address was open. Check
for a typing error in the command
line.
D-16

ERROR MESSAGE SUMMARY

Message Explanation

?PATCH-W-Not in program bounds An attempt was made to reference a
location outside the limit defined
by location 50 in block zero of the
file. The value of the initiagl
stack pointer for the program may
also be beyond the last location of
the program. Check for a typing
error in the command line. Check
the linker load map to determine
where the program was 1loaded.
Check the initial value of the
stack pointer.

?PATCH-W-0dd address An attempt was made to open an o0d4d
address as a word with the "/"
command. Word addresses must be
even numbers. Use "\" to open an
odd address.

?PATCH-W-0dd bottom address The bottom address specified or
contained 1in location 42 of an
overlay file was odd. The overlay
handler must start on an even word
boundary.

?PATCH-W-Program has no segments An attempt was made to reference an
overlay region in a program which
was not identified as an overlaid
program in the file specification,
or an attempt was made to reference
an overlay region in a program
which has none.

D.5 PAT ERROR MESSAGES

The following messages can be output by PAT. All messages are of the
form:

PAT-n-message

where n represents the severity code of the error causing the message.
Possible severity codes are F (Fatal), I (Information) or W (Warning) .
Fatal errors cause the current command or statement to be ignored.
You must enter another command. Information messages are for your
benefit only. They require no further action. A warning message
indicates an error condition that may affect execution at a later
time. The condition causing the message may require some attention.

D-17

ERROR MESSAGE SUMMARY

Message

?PAT-F-Command line error

?PAT-F-Correction file has bad GSD

?PAT-F-Correction file has bad RLD

?PAT-F-Correction file has illegal

?PAT-F-Correction file missing

?PAT-F-Correction file read error

?PAT-F-Illegal error

Explanation

There is a syntax error in the PAT
command 1line. Check for typing
errors and reenter the command
line.

There was an error .in the global
symbol directory (GSD). The file
is probably not a legal object
module. Verify +that the input
filename is correct; check for a
typing error in the command line.
Reassemble or recompile the source
to obtain a good object module and
retry the operation.

A global symbol named in a
relocatable record was not defined
in the global symbol definition

record. Reassemble the indicated
file. If the condition persists,
submit a Software Per formance
Report.
record

The format of the correction file
is not compatible with the object
file format PAT requires. = The
format is not what the standard
language processors should produce.
Verify that the correction file has
the proper format, and retype the
command line.

The command line does not have a
correction file specification. PAT
requires both an input file and a
correction input file in every
command. Enter a complete command
to PAT. '

PAT detected an error while reading

the correction file. Input
hardware can cause this error.
Retry the command . Check for

read-locked or off-line devices.

PAT has generated an illegal error
message call. This is an internal
software error condition. If the
error persists, submit a Software
Per formance Report with the related
console dialogue and any other

pertinent information.

ERROR MESSAGE SUMMARY

Message Explanation

?PAT-F-Incompatible reference of global AAAAAA

The correction file contains a
global symbol with improper
attributes. Modify the attributes
of the global symbol. Choose
DEFINITION or REFERENCE; and
choose RELOCATABLE or ABSOLUTE.
Reassemble the correction file, and
retype the command line.

?PAT-F-Incompatible reference to section AAAAAA

The correction file contains a
section name with improper
attributes. Modify the section
attributes or section type. Choose
RELOCATABLE or ABSOLUTE; and
specify .PSECT or .CSECT.
Reassemble the correction file, and
retype the command line.

?PAT-F-Input file has bad GSD There was an error in the global
symbol directory (GSD). The file
is probably not a 1legal object
module. Verify that the input
filename is correct; check for a
typing error in the command line.
Reassemble or recompile the source
and retry the operation.

?PAT-F-Input file has bad RLD A global symbol named in a
relocatable record was not defined
in the global symbol definition
record. Reassemble the indicated
file. If the error persists,
submit a Software Performance
Report.

?PAT-F~Input file has illegal record

The format of the input file is not

" compatible with the object file
format PAT requires. The format is
not what the standard DIGITAL
language processors should produce.
Verify that the input file has the
proper format, and retype the
command line, '

?PAT-F~Input file missing The command line does not have an
explicit input file specification.
PAT requires both an input file and
a correction file in every command.
Enter a complete command to PAT.

D-19

ERROR MESSAGE SUMMARY

Message

?PAT-F~Input file read error

?PAT-F-Insufficient memory

?PAT-F-Only /C allowed

?PAT-F-Output file full

?PAT-F-Output write error

Explanation

PAT detected an error while reading
the input file. Input hardware can
cause this error. Retry the
command . If the error persists,
submit a Software Performance
Report with a copy of the console
dialogue and any other pertinent
information.

There is not sufficient contiguous
memory for PAT to use for the
corrected output file.

The input module or correction file
specifications contain an illegal
option. /C and /C:n are the only
option forms PAT accepts.

There is not enough free space on
the output volume for the corrected
object file.

PAT encountered an error while
writing the output file. This
error occurs when the output device
is write-locked or when there is a
hardware error.

?PAT-F-Unable to locate module AAAAAA

The correction file has a module
name that does not exist in the
input file. PAT shows the name of
the module in this message. Update
the input file to include the
missing module or correct an
improper module name in the
correction file. Retype the
command line.

?PAT-W-Additional input files ignored

The command line specifies more
than two input files. PAT
processes the first as the input
module to be corrected and the
second as the correction file.

PAT ignores all other files.

?PAT-W-Additional output files ignored

The command line has more than one
output file specification. PAT
cannot create more than one file
for each command line. For the
general command line format
outl,out2,out3=input,correct PAT's
output file must be in the "outl"
position. PAT ignores all other
output files.

D-20

ERROR MESSAGE SUMMARY

Message

Explanation

?PAT-W~Correction file checksum error

PAT finds a checksum value that is
different from the value for the /C
correction file option. Mistyping
the /C option value or specifying
an invalid version of the
correction file causes this error.

?PAT-W-Correction file check is NNNNNN

?PAT-W-Input file checksum error

PAT responds to the /C option on
the correction file with this
message. NNNNNN is the octal value
of the sum of all binary data
composing the file. The message is
for your information.

PAT finds a checksum value that is
different from the value for the /C
input file option. Mistyping the
/C option value or specifying an
invalid version of the input file
causes this warning.

?PAT-W-Input module checksum is NNNNNN

PAT responds to the /C option on
the input module with this message.
NNNNNN is the octal value of the
sum of all binary data composing
the file., The message is for your
information.

// option, 5-3, 5-11, 5-12

Abbreviating a command string,
1-4
Absolute section, 3-5
Accessing general registers, 4-6
Alloc~code, 3-=7
Arguments, 1-3)
cross-reference, C-2
function control, C-2
listing control, 2-5, 2-7, C-1
ASCII, 6-5, 6-6
ASCII character set, A-1
ASCII input file, 5-12
Assembler, 2-1
see also MACRO
Assembler directive,
ASECT, 3-5
.CSECT, 3-8, 7-4
.ENABL GBL, 3-8
.GLOBL, 3-8
.MACRO, 5-12
.PSECT, 7-4
L.TITLE, 7-4
Assembly language, 2-1
see also MACRO-11
Assembly listing, 2-5, 2-6
Associated documents, x
Asterisk (*), 1-2
At symbol (@), ODT, 4-6
Attributes, 3-6, 3-7

Back-arrow, ODT, 4-5
Backslash (\), ODT, 4-5
Bottom address, 6-8

Byte operations, 4-5, 6-6

/C option, ‘)
LIBR, 5-3, 5-11, 5-12
MACRO, C-1 ' ’
PAT, 7-8
PATCH, 6-2)
Calling utility programs, 1-2
Canceling a PATCH command, 6-5
Changing contents of locations,
ODT,. 4=4
PATCH, 6-5, 6-7
Character codes,
ASCII, A-1
Radix-50, A-4
Checksum,
PAT, 7-8 ’
PATCH, 6-2, 6-7, 6-8

INDEX

Circumflex,
see Up-arrow
Closing locations, ODT, 4-4
Commands,
PATCH, 6-3
Command string,
abbreviating a, 1-4
Command string,
library file directory 1listing,
5-9
macro library file, 5-12
Command string syntax,
LIBR, 5-1 '
LINK, 3-2
paT, 7-2
PATCH, 6-1
utility programs, 1-2)
COMMON statement, FORTRAN, 3-6
Concatenated program section,
3-7
Concise Command Language, 2-4
Condition codes, 4-7
Control characters,
PATCH, 6-5
see also CTRL
Creating a load module, 3-1
Creating a macro library file,
5-12
Creating an object library file,
5-4
Cross~reference file, 2-1, 2-2
Cross-reference file listings,
2-3, C-2 _
Cross-reference option, C-2
see.also MACRO
CSECT, 7-4
see also Program section
CTRL,
CTRL/C, 4-2, 7-1
CTRL/U, 4-2, 6-5

/D option, ,
LIBR, 5-3, 5-4
MACRO, C-1
PATCH, 6-2
Device, default,
LIBR, 5-2
LINK, 3-2, 3=3:
MACRO, 2-4
PATCH, 6-1
Device name, 1-2, 1-3
Directive,
.MACRO, 5-11
LTITLE, 7-4
DIGITAL patch, 6-2
see System patch
Documentation conventions, x

Index-1

INDEX (Cont.)

/E option, LIBR,
LIBR, 5-=3, 5-6 calling, 5-1
MACRO, C-1 error messages, 5-12, D-11
Entry point, file creation, 5-4
see Global symbol input filename, 5-2
Error codes, MACRO, D-1 listing file directory, 5-9
Error messages, macro library options, 5-11 !
LIBR, 5-12, D-1l1 merging library files, 5-10
LINK, D-4 module insertion, 5-3, 5-4
MACRO, D-2 object library options, 5-3
paT, 7-8, D-17 Librarian program, A
PATCH, 6-13, D-15 see LIBR
Examining locations, PATCH, 6-4 Library files, 3-11, 5-1
in a non-overlaid file, 6-4 linking, 3-20, 3-21
in an overlaid file, 6-5 Library options combination, 5-10
Extension, LINE FEED, examining sequential -_,
see Filename extension locations, 4-5 oo
LINK, 1-1

error messages, D-4
options, C-3

.] Link map,
Filename extensions, 1-2, B-1 see load map
Filename extensions, default, Linker,
LIBR, 5-2 see LINK
LINK, 3-3 Listing control arguments, C-
MACRO, 2-4 see also MACRO :
PATCH, 6-2 . Listing control,
File specification, 1-2 directives, 2-5 4!!%
MACRO, 2-3, 2-4 i Listing control options, 2-5, :
File specification option, 1-3 c-1
Format register, ODT, 4-4 see also MACRO
FORTRAN main program, 3-16 Listing file, 2-1, 2-2, 5-9
FORTRAN Object Time System, 7-1 Load map, 3-12
Function control arguments, C-2 format, 3-11
Function control options, C-1 producing a, 3-2

Load module, 3-5
Local section, 3-7

/G option, ;
LIBR, 5-3, 5-6 /M option,

Global program section, 3-16 LIBR, 5-11, 5-12

Global section, 3-7 MACRO, C-1

Global symbol table, 5-9 MACRO-11 subprograms, 2-1

Global symbols, 3-9, 7-4 subprograms, 2-1

MACRO, 1-1 4
command string, 2-2, 2-5 ‘
error messages, D-2
; . . listing control arguments, C-1
Incrgfslng overlay region size, options, 2-4, 2-5, C-1 N
Internal registers, accessing, 'MAcgelisngE%er directive,
- [
4=17 MACRO source file, 7-1
Macro library file, 5-11, 5-12
Macro name table, 5-12
Memory allocation, 3-5
/L option, MACRO, C-1l Memory image file, 6-1, 6-2
Left-angle bracket, (<), 4-6 Multiple arguments, MACRO, 2-5 4!!%

Index-2

INDEX (Cont.)

/N option,
LIBR, 5-3, 5-7
MACRO, C-1
Name,
Correction module, PAT, 7-4

/0 option,
LINK, 3-14
PATCH, 6-12, 6-13
Object file, 2-1, 2-2
see also Object modules
Object module, 3-10, 5-1
relocation, 4-2
Object module patch,
see PAT
ooT, 1-1,
calling, 4-1
commands and functions, 4-3
linking, 4-1
Online debugging technique,
see ODT
Opening a byte address, 6-5
Opening a word address, 6-4
in an overlaid file, 6-5
Opening locations, ODT, 4-4
Option arguments, 1-3
see also Arguments
Options,
LIBR, 5-3, C-4
LINK, 3-3, C-3
PAT, 7-8
PATCH, 6-2, C-5
Overlaid program, 6-7
Overlaid program section, 3-7
Overlay file, 3-13
Overlay handler table, 6-7
Overlay structure,
creating, 3-13, 3-16
specifying, 3-14
Overlaying lines with PAT, 7-5

[p.pnl,

see Project,programmer number
/P option,

LIBR, 5-3, 5-7

MACRO, C-1
PAT,

adding a subroutine, 7-6
calling, 7-1

checksum, 7-8

command string, 7-2
correction file, 7-4, 7-5
error messages, 7-8, D-17
input file, 7-4
overlaying lines, 7-5
updating steps, 7-2

PATCH, 1-1
calling and using, 6-1
changing contents of locations,
6-5, 6-7
commands, 6-3
control characters, 6-5
error messages, 6-13, D-15
exiting from, 6-4
opening additional files, 6-4
options, C-5
translating locations, 6-5, 6-6
PATCH bottom address, 6-8
PATCH relocation registers, 6-8,
6-11
Patching an object module, PAT,
7-1
Patching a non-overlaid file, 6-9
Patching an overlaid file, 6-11
Patching utility program,
see PATCH
Printout formats, ODT, 4-3
Program counter, (PC), 4-5
Program section, 3-6
resolving with PAT, 7-4
Program section names, 3-8
Project, programmer number, 1-2
Prompting character, 1-2
Protection code, 1-3, 1-4
.PSECT, 7-4

/R option,
LIBR, 5-3, 5-7
Radix-50, 6-5, 6-6, 6-7
Radix-50 character set, A-4
Reader assumptions, ix
Reducing program size, 3-15
Registers,
general, 4-6
internal, 4-7
relocation, 4-2, 6-4, 6-8, 6-11
status, 4-7
Relative branch offset, 4-6
Relocatable expressions, forms
of 4-2, 4-3
Relocation bias, 4-2
Relocation registers, 4-2, 6-4,
6-8, 6-11
Relocation value, 6-8
RETURN key, 4-4
Right-angle bracket (>), ODT,
4-6
Root segment, 3-7, 3-13

SAV file,
see Memory image file
Scope-code, 3-6, 3-7

Index-3

INDEX (Cont.)

SHIFT/P, Underline,
see At symbol see Back-arrow
SHIFT/O, Unpacking Radix—-50 words, 6-6
see Back—-arrow Up-arrow (4), ODT, 4-5
Slash (/), ODT, 4-4 Update version number, PAT, 7-4
Stack, 3-5 Utility program option, 1-3
Status register, accessing, 4-7 see also Options \
Subprogram assembly, 2-1 Utility programs, 1l-1 *
see also MACRO calling the, 1-2
Subroutine, LIBR, 5-1
adding with PAT, 7-6 LINK, 3-1
Symbol definition file, 3-2 MACRO, 2-1 *
SYSLIB.OBJ, 5-1 opT, 4-1
System library, 1-3 PAT, 7-1
System patch, 6-1, 6-7, 7-1 PATCH, 6-1
prompt, 1-2
Transfer address, 6-11
Translating locations with
PATCH, 6-5 Value,
Type code, 3-6, 3-7 see Argument(s)
/U option,
LIBR, 5-3, 5-8 /W option,
Undefined globals, 3-9 LIBR, 5-3, 5~8 A'“N
FY
Py
-,

Index-4

RSTS/E FORTRAN IV
Utilities Manual
AA-2140B-TC

READER'S COMMENTS

|

I

I

|

I

1

|

|

|

I

|

| NOTE: This form is for document comments only. DIGITAL will
| use comments submitted on this form at the company's
1 discretion. Problems with software should be reported
| on a Software Performance Report (SPR) form. If you
| require a written reply and are eligible to receive
| one under SPR service, submit your comments on an SPR
| form.

|

|

|

|

|

|

|

|

|

|

|

|

|

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?

| o Please make suggestions for improvement.
o=

12

k=
|m

=4

9

o

i

=3

(3]

:§ Is there sufficient documentation on associated system programs

required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date

Organization

Street

City State Zip Code
or
Country

— == — ==Do Not Tear - Fold Hereand Tape — — — — — — — — — o — = = — — — — == — — — =

dliloliltal1 i

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN: Commercial Engineering Publications MK1-2/H3
DIGITAL EQUIPMENT CORPORATION

CONTINENTAL BOULEVARD

MERRIMACK N.H. 03054

« =— — — Do Not Tear - Fold Here and Tape — — — — — e — — — — — — —

No Postage
Necessary
if Mailed in the
United States

|
|
|
|
—:
|
E—
O
I
B
N
e
I |
—:
E—
—
l
4
|
- — — =7

==y ==~

Cut Along Dotted Line

— e e — a— o

.

- &

