May 1979 This document describes the RSTS/E Task Builder; its switches and options, overlays, resident libraries, and memory allocation. # RSTS/E Task Builder Reference Manual Order No. AA-5072A-TC Including AD-5072A-T1 SUPERSESSION/UPDATE INFORMATION: This manual contains information on the RSTS/E Task Builder and includes informa- tion on V7.0 resident library capability. **OPERATING SYSTEM AND VERSION:** RSTS/E V7.0 **SOFTWARE VERSION:** TKB V7.0 To order additional copies of this document, contact the Software Distribution Center, Digital Equipment Corporation, Maynard, Massachusetts 01754 digital equipment corporation · maynard, massachusetts First Printing, December 1977 Revised: May 1979 The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document. The software described in this document is furnished under a license and may only be used or copied in accordance with the terms of such license. No responsibility is assumed for the use or reliability of software on equipment that is not supplied by DIGITAL or its affiliated companies. Copyright © 1977, 1979 by Digital Equipment Corporation The postage-prepaid READER'S COMMENTS form on the last page of this document requests the user's critical evaluation to assist us in preparing future documentation. The following are trademarks of Digital Equipment Corporation: | DIGITAL | DECsystem-10 | MASSBUS | |---------------|--------------|------------| | DEC | DECtape | OMNIBUS | | PDP | DIBOL | os/8 | | DECUS | EDUSYSTEM | PHA | | UNIBUS | FLIP CHIP | RSTS | | COMPUTER LABS | FOCAL | RSX | | COMTEX | INDAC | TYPESET-8 | | DDT | LAB-8 | TYPESET-11 | | DECCOMM | DECSYSTEM-20 | TMS-11 | | ASSIST-11 | RTS-8 | ITPS-10 | # CONTENTS | | | | Page | |---------|--|---|--| | PREFACE | | • | хi | | CHAPTER | 1 | INTRODUCTION | | | | 1.1
1.2
1.3 | INTRODUCTION BRIEF DESCRIPTION OF THE TASK BUILDER ORGANIZATION OF THIS MANUAL | 1-1
1-1
1-2 | | CHAPTER | 2 | TASK BUILDER COMMANDS | | | | 2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.8.1
2.8.2
2.8.3
2.9 | INTRODUCTION TASK COMMAND LINE MULTIPLE LINE INPUT OPTIONS MULTIPLE TASK SPECIFICATIONS INDIRECT COMMAND FILES COMMENT LINES THE EXAMPLE PROGRAMS Entering the Source Language Compiling the Programs Task-Building the Programs SYNTAX RULES | 2-1
2-2
2-4
2-5
2-6
2-9
2-9
2-10
2-13
2-13
2-14 | | CHAPTER | 3 | SWITCHES AND OPTIONS | | | | 3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.7
3.1.8
3.1.6
3.1.7
3.1.8
3.1.10
3.1.10
3.1.11
3.1.12
3.1.13
3.1.14
3.1.15 | <pre>SWITCHES /CC (Concatenated Object Modules) /CM (Compatibility Mode Overlay Structure) /DA (Debugging Aid) /DL (Default Library) /FP (Floating Point) /FU (Full Search) /HD (Header) /LB (Library File) /MA (Map Contents of File) /MP (Overlay Description) /PI (Position Independent) /PM (Post-Mortem Dump) /RO (Resident Overlay) /SH (Short Map) /SQ (Sequential) /SS (Selective Search) /WI (Wide Listing Format) /XT (Exit on Diagnostic) Conflicting Switches /LB and /CC OPTIONS</pre> | 3-1
3-3
3-3
3-3
3-3
3-4
3-4
3-5
3-5
3-6
3-7
3-7
3-7
3-7
3-8
3-8
3-9
3-9
3-9
3-9 | | | | | Page | |---------|--------------------|---|--------------| | | 3.2.1 | Control Option | 3-12 | | | 3.2.1.1 | | 3-12 | | | 3.2.2 | Identification Options | 3-12 | | 1 | 3.2.2.1 | | 3-12 | | l | 3.2.2.2 | | 3-12 | | | 3.2.3 | Allocation Options | 3-14 | | | 3.2.3.1 | | 3-14 | | | 3.2.3.2 | | 3-14 | | • | 3.2.3.3
3.2.3.A | | 3-15 | | | 3.2.3.A
3.2.3.4 | | 3-15
3-15 | | | 3.2.4 | Storage Sharing Options | 3-15 | | | 3.2.4.1 | | 3-16 | | | 3.2.4.2 | | 2-10 | | | 3.2.4.2 | (System Resident Library) | 3-16 | | | 3.2.4.3 | RESCOM (Resident Common Block) or RESLIB | 3 10 | | | 0.2.1.0 | (Resident Library) | 3-17 | | Ī | 3.2.4.4 | | | | | | and Options | 3-17 | | | 3.2.5 | Device Specifying Options | 3-18 | | | 3.2.5.1 | UNITS (Logical Unit Usage) | 3-18 | | | 3.2.5.2 | | 3-1.9 | | | 3.2.5.3 | Example of Device Specifying Options | 3-19 | | | 3.2.6 | Storage Altering Options | 3-20 | | | 3.2.6.1 | | 3-20 | | | 3.2.6.2 | | 3-20 | | | 3.2.6.3 | | 3-21 | | | 3.2.6.4 | | 3-21 | | | 3.2.6.5 | • | 3-22 | | | 3.3 | ABORTS AND REBUILDING | 3-22 | | | 3.3.1 | Aborting the Task | 3-23 | | CHAPTER | 4 | MEMORY ALLOCATION | | | | 4.1 | TASK MEMORY STRUCTURE | 4-1 | | | 4.2 | TASK IMAGE MEMORY | 4-2 | | | 4.2.1 | PSECTS | 4-2 | | | 4.2.2 | PSECT Allocation | 4 – 4 | | | 4.2.3 | PSECT Placement | 4-6 | | | 4.3 | GLOBAL SYMBOL RESOLUTION | 4-6 | | | 4.4 | TASK IMAGE FILE | 4-7 | | | 4.5 | MEMORY ALLOCATION FILE | 4-7 | | | 4.5.1 | Contents of the Memory Allocation File | 4-7 | | | 4.5.2 | Control of Memory Allocation File Contents | | | | | and Format | 4-9 | | | 4.6 | MEMORY ALLOCATION MAP FOR BASIC-PLUS-2 | | | | 4 7 | VERSION OF USER | 4-10 | | | 4.7 | MEMORY ALLOCATION MAP FOR COBOL VERSION OF USER | 4-14 | | | | | Page | |---------|---|---|------------------------------------| | CHAPTER | 5 | OVERLAY CAPABILITY | | | | 5.1
5.1.1
5.1.2
5.1.2.1
5.1.2.2 | Overlay Loading | 5-1
5-2
5-4
5-5 | | | 5.1.2.3 | Multi-Segment Task
Resolving Global Symbols from the | 5-6 | | | 5.1.2.4 | Default Library | 5-8 | | | 5.1.3
5.1.3.1
5.1.3.2
5.1.3.3
5.1.3.4 | Overlay Description Language (ODL) .ROOT and .END Directives .FCTR Directive .NAME Directive .PSECT Directive | 5-8
5-9
5-10
5-11
5-11 | | | 5.1.3.5
5.1.4 | Indirect Files
Multiple Tree Structures | 5-15
5-15 | | | 5.1.4.1
5.1.4.2 | Defining a Multiple Tree Structure
Multiple-Tree Example | 5-15
5-16 | | | 5.1.5
5.1.6 | Overlay Core Image
Overlaying Programs Written in a | 5-17 | | | 5.2 | Higher-Level Language | 5-18 | | | 5.2.1 | USER OVERLAY TREE Defining the ODL File | 5-19
5-19 | | | 5.2.2
5.3 | Building the Task SUBROUTINE COMMUNICATION | 5-19
5-20 | | | 5.4 | SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE | 5-40 | | CHAPTER | 6 | THE AUTOLOAD MECHANISM | | | | 6.1
6.1.1
6.1.2
6.1.3 | AUTOLOAD Autoload Indicator Path-Loading Autoload Vectors | 6-1
6-1
6-3
6-4 | | CHAPTER | 7 | RESIDENT LIBRARIES | | | | 7.1
7.1.1
7.2
7.2.1
7.2.2 | INTRODUCTION Resident Library Installation CREATING A RESIDENT LIBRARY Position Independent and Absolute Libraries Resident Libraries With Memory Resident Overlays | 7-1
7-3
7-5
7-5 | | | 7.2.3 | Run-Time System Support for Overlaid Resident
Libraries | 7-9 | | | 7.3
7.3.1 | ACCESS TO A RESIDENT LIBRARY Referencing a Resident Library | 7-10
7-11 | | | | | Page | |------------|-----------------|---|--------------| | APPENDIX A | A | ERROR MESSAGES | | | APPENDIX E | В | OCTAL TO DECIMAL CONVERSION TABLE | | | ī | B.1 | INTRODUCTION | B-1 | | | B.2 | CONVERTING OCTAL NUMBERS RANGING FROM | | | | | O TO 7777 TO DECIMAL NUMBERS | B-2 | | | B.2.1 | Converting Octal 43 to Decimal
Converting Octal 1000 to Decimal
Converting Octal 7456 to Decimal | B-2 | | | B.2.2 | Converting Octal 1000 to Decimal | B-3 | | | | Converting Octal 7456 to Decimal | B-3 | | F | B.3 | CONVERTING DECIMAL NUMBERS RANGING FROM | B-4 | | , | в.3.1 | 0 TO 4095 TO OCTAL
Converting Decimal 17 to Octal | B-4 | | | B.3.1 | | B-5 | | | | | B-5 | | 1 | в.3.3
в.4 | CONVERTING OCTAL NUMBERS FROM 10000 TO | | | • | | 77777 TO DECIMAL NUMBERS | B-6 | | J | B.4.1 | Converting Octal 10042 to Decimal | B-6 | | ī | B.4.1
B.4.2 | Converting Octal 10042 to Decimal
Converting Octal 67341 to Decimal
Converting Octal 30000 to Decimal | B-7 | | | | | B-8 | | J | B.5 | CONVERTING DECIMAL NUMBERS RANGING FROM | D 0 | | | | 4096 TO 32767 TO OCTAL | B-9
B-9 | | | B.5.1 | Converting Decimal 4787 to Octal | B-10 | | ł | B.5.2 | Converting Decimal 26872 to Octal | B-10 | | APPENDIX | С | TASK BUILDER DATA FORMATS | | | , | C. 1 | GLOBAL SYMBOL DIRECTORY | C-2 | | | C.1.1 | Module Name | C-3 | | (| C.1.2 | Control Section Name
Internal Symbol Name | C-4 | | (| C.1.3 | Internal Symbol Name | C-4 | | (| C.1.4 | Transfer Address | C-5 | | (| C.1.5 | Global Symbol Name
PSECT Name | C-5
C-6 | | | C.1.6 | Program Vargion Identification | C-8 | | | C.1./ | Program Version Identification | C-9 | | (| C 3 | END OF GLOBAL SYMBOL DIRECTORY TEXT INFORMATION | c-9 | | , | C.4 | RELOCATION DIRECTORY | C-10 | | , | C.4.1 | Internal Relocation | C-11 | | (| C.4.2 | Internal Relocation
Global Relocation | C-12 | | (| C.4.3 | Internal Displaced Relocation | C-12 | | (| C.4.4 | Global Displaced Relocation
 C-13 | | | C.4.5 | Global Additive Relocation | C-13 | | | C.4.6 | Global Additive Displaced Relocation | C-13
C-14 | | | C.4.7 | Location Counter Definition | C-14 | | | C.4.8 | Location Counter Modification | C-15 | | | C.4.9
C.4.10 | Program Limits
PSECT Relocation | C-15 | | | C.4.10 | PSECT Displaced Relocation | C-16 | | | | | C-16 | | | C.4.12 | PSECT Additive Relocation | C-10 | | | | | Page | |----------|--|---|--| | | C.4.14
C.4.15
C.5
C.6 | Complex Relocation
Additive Relocation
INTERNAL SYMBOL DIRECTORY
END OF MODULE | C-18
C-19
C-20
C-20 | | APPENDIX | D | TASK IMAGE FILE STRUCTURE | | | | D.1
D.2
D.2.1
D.3
D.3.1
D.3.2
D.4
D.5 | LABEL BLOCK GROUP HEADER LOW Core Context OVERLAY DATA STRUCTURE Autoload Vectors Segment Descriptor ROOT SEGMENT OVERLAY SEGMENTS | D-1
D-4
D-7
D-8
D-9
D-9
D-11
D-11 | | APPENDIX | E | RESERVED SYMBOLS | | | APPENDIX | F | IMPROVING TASK BUILDER PERFORMANCE | | | | F.1.1
F.1.2 | EVALUATING AND IMPROVING TASK BUILDER
PERFORMANCE
Task Builder Work File
Input File Processing | F-1
F-1
F-3 | | APPENDIX | G | INCLUDING A DEBUGGING AID | | | APPENDIX | Н | GLOSSARY | | | INDEX | | | | | | | | | | | | FIGURES | | | FIGURE | 2-1
4-1
4-2
4-3 | Indirect File Interaction Task Memory Structure PSECT Allocations Grouped by Access Code Memory Allocation File for BASIC-PLUS-2 Version of User | 2-8
4-2
4-5
4-11 | | | 4-4 | Memory Allocation File for COBOL Version of User | 4-15 | | | 5-1
5-2
5-3
5-4
5-5
5-6
5-7 | TKI Memory Allocation Allocation for a Multi-Segment Task How to Read a Block Diagram Multi-Level Overlay Tree Global Symbols in a Tree Common Blocks in a Tree A Simple Multi-Level Tree | 5-3
5-4
5-5
5-7
5-9
5-10.1 | | | | Page | |--|---|---| | 55-10
-8905-112
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113
55-113 | TKI Modified Tree Using the .NAME Directive Co-Tree Co-Tree Block Diagram User Overlay Tree User Block Diagram BASIC-PLUS-2 User ODL File COBOL User ODL File User COBOL Memory Allocation Map User BASIC-PLUS-2 Memory Allocation Map Simple Tree (Summary Example) Co-Trees (Summary Example) The .FCTR Directive System Memory Usage Shared and Non-Shared Memory Resident Library Access Table B-1, Showing Table Parts for Conversion Steps for Converting Octal 43 to Decimal Steps for Converting Octal 1000 to Decimal Steps for Converting Octal
17456 to Decimal Steps for Converting Decimal 17 to Octal Steps for Converting Decimal 870 to Octal Steps for Converting Decimal 8826 to Octal Steps for Converting Octal 10042 to Decimal Steps for Converting Octal 10042 to Decimal Steps for Converting Octal 30000 to Decimal Steps for Converting Decimal 26872 to Octal Steps for Converting Decimal 4787 to Octal Steps for Converting Decimal 26872 to Octal General Object Module Format GSD Record and Entry Format Module Name Entry Format Control Section Name Entry Format Internal Symbol Name Entry Format Transfer Address Entry Format Program Version Identification Entry Format Program Version Identification Entry Format | 5-177900
5-177900
5-22124
5-22143
5-23413
7-242234
5-43
5-43
5-2124
5-45
5-2124
8-38
8-67
8-89
8-70
8-89
8-70
8-89
8-70
8-89
8-70
8-89
8-70
8-70
8-70
8-70
8-70
8-70
8-70
8-70 | | C-11
C-12 | Text Information Record Format
Relocation Directory Record Format | C-9
C-11 | | C-13
C-14
C-15 | Internal Relocation Entry Format
Global Relocation Entry Format
Internal Displaced Relocation Entry Format | C-12
C-12 | | C-15
C-16
C-17 | Internal Displaced Relocation Entry Format
Global Displaced Relocation Entry Format
Global Additive Relocation Entry Format | C-12
C-13
C-13 | | C-18 | Global Additive Displaced Relocation
Entry Format | C-13 | | C-19
C-20
C-21
C-22 | Location Counter Definition
Location Counter Modification
Program Limits Entry Format
PSECT Relocation Entry Format | C-14
C-15
C-15 | | C-23 | PSECT Displaced Relocation Entry Format | C-16
C-16 | | | | Page | |---|--|--| | C-24
C-25
C-26
C-27
C-28
C-29
D-1
D-2
D-3
D-4
D-5
D-6
D-7
D-8
D-9
D-10 | PSECT Additive Relocation Entry Format PSECT Additive Displaced Relocation Complex Relocation Entry Format Additive Relocation Entry Format Internal Symbol Directory Record Format End-of-Module Record Format Task Image on Disk Label Block Group Task Header Fixed Part Task Header Variable Part Vector Extension Area Format Task-Resident Overlay Data Base Autoload Vector Entry Segment Descriptor Sample Tree Segment Linkage Directives | C-17
C-19
C-19
C-20
C-20
D-1
D-2
D-5
D-6
D-8
D-8
D-9
D-9
D-10 | | | TABLES | | | 2-1
2-2
3-1
3-2
4-1
4-2
4-3
4-4
B-1
E-1
E-2 | Default File Extensions Sample Task Builder Commands Task Builder Switches Task Builder Options PSECT Attributes PSECT Allocation Allocation Totals Global Reference Resolution Octal-Decimal Integer Conversion Table Task Builder Reserved Global Symbols PSECT Names Reserved by the Task Builder | 2-2
2-3
3-2
3-11
4-3
4-5
4-5
4-6
B-11
E-1 | #### PREFACE This manual introduces you to the basic concepts and capabilities of the Task Builder. Examples that go from simple to complex introduce and describe Task Builder features. Computer-generated prompts and user-typed responses (in color) are printed in terminal type font. You will best be able to use this manual if you have compiled several source language programs and are reasonably familiar with your source language. You will find information in this manual that is relevant to users on the systems programmer/analyst level, but is not necessarily relevant for you. Most of this kind of material has been confined to the appendices. This manual has six chapters. They describe basic Task Builder functions and show you how to use them. The appendices list error messages and give detailed descriptions of the structures the Task Builder uses. The RSTS/E Documentation Directory tells you what you should know for optimum usage of each manual. Other manuals that may help you if you have a problem are described there. #### CHAPTER 1 #### INTRODUCTION #### 1.1 INTRODUCTION The Task Builder is a system program that transforms one or more compiled modules into a single, executable image called a task. Task Builder functions include: - Linking compiled modules - Resolving any references to system or user object module libraries - Allocating required system and task memory - Producing an optional memory map - Building an overlaid task according to your overlay description - Linking the task to run-time systems or resident libraries An object module is the output from a compiler or assembler and the linput to the Task Builder. Object modules cannot be directly ullet executed. They must first be processed by the Task Builder. #### 1.2 BRIEF DESCRIPTION OF THE TASK BUILDER The Task Builder connects, or links, object modules by using global symbols to resolve references between modules. Global symbols are labels that are defined in one module and referenced in others. Each global symbol defined in the module can be associated with a unique memory address when the Task Builder assigns a particular memory location to an object module. The Task Builder then uses this address to resolve references to these global symbols in other modules. Often, the programs you write cannot stand alone. For example, they may need library routines, subprograms, or object modules created by another programming language. The Task Builder can gather the various elements you need and combine them to produce a runnable task, the task image. The Task Builder makes a set of assumptions, or defaults, about the task image based on typical usage and storage requirements. You can override these defaults by including switches and options when you build the task. This allows you to build a task that is tailored to its own input/output and storage requirements. #### INTRODUCTION The Task Builder also produces, on request, a memory allocation file, or map, that contains information describing storage allocation, the separate modules that comprise the task, and the value of all global symbols. Additionally, you may request that the list of global symbols, accompanied by the name of each referencing module, be appended to the file. The Task Builder also enables you to build extremely large and complex programs. The Task Builder allows you to build overlayable tasks that may be larger in aggregate size than the main memory size limitation. Run-time systems are segments of code that are shared by numerous tasks. If your task uses resident subroutines to save memory, the Task Builder lets you link to existing run-time systems. As you read this manual you will encounter two similar sample programs called USER. Written in COBOL and BASIC-PLUS-2, they show you how to coordinate your source language and Task Builder as you build your task. #### 1.3 ORGANIZATION OF THIS MANUAL There are six more chapters in this manual: - Chapter 2, TASK BUILDER COMMANDS, discusses the Task Builder command and option modes and how to distinguish between them. - Chapter 3, SWITCHES AND OPTIONS, covers Task Builder assumptions that you can change. - Chapter 4, MEMORY ALLOCATION, shows how the Task Builder assigns memory to the various parts of your task. - Chapter 5, OVERLAY CAPABILITY, discusses overlay design and implementation. - Chapter 6, THE AUTOLOAD MECHANISM, shows what happens when your program calls for a segment that is not currently in memory. - Chapter 7, RESIDENT LIBRARIES, describes the creation of resident libraries, their position in memory, and user access to them. The appendices contain convenient reference material for users on varying levels: - Appendix A contains Task Builder error messages. - Appendix B contains an octal-decimal conversion table and instructions for its use. - Appendix C contains Task Builder data formats. - Appendix D contains information on task image file structure. # INTRODUCTION - Appendix E contains symbol names reserved for the Task Builder's use alone. - Appendix F contains information on how to improve Task Builder performance. - Appendix G shows how to include a debugging aid in your task. - Appendix H contains a glossary for your convenience. #### CHAPTER 2 #### TASK BUILDER COMMANDS #### 2.1 INTRODUCTION This chapter describes basic command sequences that can be used to build most tasks. The sequences are explained, then shown in an example. A discussion of syntax for the commands ends the chapter. Some examples in this manual begin with the command "TKB". If you have TKB installed as a CCL (Concise Command Language) command, you can invoke the Task Builder with that command. If not, use "RUN STKB". #### NOTE The \$ in RUN \$TKB shows that Task Builder is stored under the system library account [1,2]. The filename is TKB.TSK. Task Builder usually runs under the RSX Run-Time System. The CCL command TKB is optional. See your system manager for more information. Task Builder prompts consist of the characters TKB>. Here is one way to compile, load, and execute a simple task: - Write a program (BASIC-PLUS-2 is used here). (The filename is MAIN.B2S). - 2. As the system prompts for input, type the following responses: RUN \$BASIC2 OLD MAIN.B2S COMPILE /OBJ EXIT TKB TKB USER.TSK,USER.MAP=MAIN.OBJ / HISEG=BASIC2 // RUN USER.TSK The COBOL equivalent, for the filename MAIN.CBL, is: CBL MAIN.OBJ,MAIN.LST=MAIN.CBL/KER:MA RUN \$CBLMRG MRGODL.ODL M N MAIN.ODL <CR> or the appropriate PPN N TKB USER.TSK=MRGODL.ODL/MP RUN
USER.TSK The COMPILE command causes the BASIC-PLUS-2 compiler to translate the source language in the file MAIN.B2S into the relocatable object module called MAIN.OBJ. The next command (TKB) causes the Task Builder to process the file MAIN.OBJ, producing the task image file USER.TSK. The last command (RUN) causes the task to execute. The simplest use of the Task Builder is shown in the command: TKB USER.TSK=MAIN.OBJ This command gives the name of a single file as input - MAIN.OBJ - and the name of a single file as output - USER.TSK. Note the filename extensions: they may be default entries, but are specifically listed here. Other forms of task command lines are discussed later in the chapter. If you do not give extensions for files that are input to or output from the Task Builder, the Task Builder will assign default file extensions. Table 2-1 lists these extensions and the applicable file. If the files you specify do not have the extensions listed as defaults in Table 2-1, you must name the file with its extension to the Task Builder. | Type of File | Extension | File Contents | |--------------|------------------------------|---| | Input | .OBJ
.OLB
.ODL
.CMD | Object Module
Object Library
Overlay Description
Task Builder Commands | Task Image Memory Allocation Map Symbol Definition Table Table 2-1 Default File Extensions #### 2.2 TASK COMMAND LINE Output The task command line contains the output file specifications, an equal sign, and then the input file specifications. There can be up to three output files and any number of input files. The task command line has the form: TASK-IMAGE, MAP, SYMBOL-DEFINITION=INPUT-FILE[,INPUT-FILE,...] The output files must be given in a specific order: .TSK .MAP .STB - 1. The task image file - 2. The memory allocation file - 3. The symbol definition file The task image file (.TSK) contains the task to be run. The memory allocation file (.MAP) contains information about the size and location of components within the task. The symbol definition file (.STB) contains the global symbol definitions in the task and their virtual or relocatable addresses in a format suitable for reprocessing by the Task Builder. See Section 5.1.2.2 for a discussion of global symbols. Any output file can be omitted by dropping the filename. Be sure to place commas where necessary so that the Task Builder sees each output file in its correct syntax location. Please note that the only space in the line should fall immediately after the TKB command and then only if you are using the CCL command TKB to invoke the Task Builder. A space anywhere else in the line terminates the command. The commands in Table 2-2 below illustrate correct comma placement and ways in which the output filenames are interpreted. Note that in all cases, the input file is IN1, the memory allocation file is MP1, the symbol definition file is SF1, and the task image is IMG1. The file extensions have been omitted for easier reading. Table 2-2 Sample Task Builder Commands | Command | Output Files | |----------------------|--| | TKB IMG1,MP1,SF1=IN1 | The task image file is IMG1.TSK, the memory allocation file is MP1.MAP, the symbol definition file is SF1.STB, and the input file is IN1. | | TKB IMG1=IN1 | The task image file is IMG1.TSK. The other output files are omitted. The first filename the Task Builder encounters is assumed to be that of the task image file unless there are one or two commas preceding the filename. Putting a comma after the last filename, when you are naming less than three files, is unnecessary. | | TKB ,MPl=IN1 | The memory allocation file is MPl.MAP. The comma preceding "MPl" indicates that the task image file has been omitted. The symbol definition file is also omitted. After picking up the task image filename or recognizing the absence of a task image filename, Task Builder looks for a memory allocation file. The Task Builder assumes that the next filename it encounters is that of the memory allocation file. To tell the Task Builder that there is no memory allocation file you can do one of three things: | (continued on next page) # Table 2-2 (Cont.) Sample Task Builder Commands | Command | Output Files | |----------------------|--| | TKB ,MPl=INl (Cont.) | Put two commas in front of the symbol
definition file, whether you name a
task image file or not. | | | Name only a task image file. (No
commas are necessary in this case.) | | | Name no files at all. (See the last
example in this series to see how to
designate a diagnostic run.) | | TKB ,,SF1=IN1 | The symbol definition file is SF1.STB. The two preceding commas show that both the task image file and the memory allocation file are omitted. | | TKB IMG1,,SF1=IN1 | The task image file is IMG1.TSK and the symbol definition file is SF1.STB. Two commas together in this case show that only one file has been omitted - the memory allocation file. | | TKB IMG1,MP1=IN1 | The absence of a third filename here tells the Task Builder that the symbol definition file is omitted. | | TKB =IN1 | This is merely a diagnostic run with no output files. The Task Builder assumes this from the fact that an equal sign heads the parameter list. | #### 2.3 MULTIPLE LINE INPUT When several input files are used in building a task image, a more flexible format is necessary. This multi-line format is also necessary for including options, as discussed in the next section, or for limiting the command line to 80 characters. (Task Builder lines are limited to 80 characters.) The Task Builder prompts for multi-line format input until it receives a line consisting of only the terminating sequence "//". Here are two ways to do the same thing: The sequence TKB TKB>IMG1,MP1=IN1 TKB>IN2,IN3 TKB>// produces the same result as the single line command TKB IMG1, MP1=IN1, IN2, IN3 Either sequence produces the task image file IMG1.TSK and the memory allocation file MP1.MAP from the input files IN1.OBJ, IN2.OBJ, and IN3.OBJ. The output file specifications and the separator "=" must appear on the first TKB command line. Input file specifications can begin or continue on later lines. The terminating pair of slashes directs the Task Builder to stop accepting input, build the task, and return to the system level. #### 2.4 OPTIONS You can use options to specify or modify certain features of the task being built. A single slash typed in response to a TKB prompt in command mode¹ directs the Task Builder to request option parameters by displaying "ENTER OPTIONS:" and prompting for input on the next line. The "ENTER OPTIONS:" display notifies you that the Task Builder is now in option mode and is looking for option input. Keep in mind that the Task Builder is still looking for "//" to end the task input and return to the system level. A representative Task Builder command sequence might look like this: TKB TKB>IMG1,MF1=IN1 TKB>IN2,IN3 TKB>/ ENTER OPTIONS: TKB>TASK=USER TKB>HISEG=BASIC2 TKB>// Here, the options TASK=USER and HISEG=BASIC2 appear followed by the double slash terminator, which ends option input. Control then returns to the system level. The Task Builder provides several options more fully discussed in Chapter 3, but mentioned briefly here. The general form of an option is a keyword followed by an equal sign and an argument list. Two or more options on a single line are separated by exclamation points (!). Arguments, which may be qualified, are separated by commas. Qualifiers are separated from their corresponding arguments by colons (:). The following example shows all three separators in action: TKB>UNITS=6!ASG=TI:5,SY:1 This is equivalent to: TKB>UNITS=6 TKB>ASG=TI:5 TKB>ASG=SY:1 which does the same thing on three lines instead of one. ¹ You are in command mode when you invoke Task Builder and when you enter the command line(s). #### 2.5 MULTIPLE TASK SPECIFICATIONS If you want to build more than one task at a time, type a single slash in answer to a prompt in option mode in the first task. The single slash will direct the Task Builder to build the task you have just finished entering and prompt for the next one. The lines in the following example are numbered for convenient reference: - 1 TKB - 2 TKB>IMG1.TSK=USER.OBJ.INTRO.OBJ (first task) - 3 TKB>CRUNCH.OBJ.CHATR.OBJ - 4 TKB>/ - 5 ENTER OPTIONS: - 6 TKB>TASK=USER - 7 TKB>HISEG=BASIC2 - 8 TKB>/ - 9 TKB>CUSER.TSK,CUSER.MAF=CUSER.ODL/MF (second task) 10 TKB>// Two tasks are being built here. The names of the task image files are IMG1.TSK and CUSER.TSK (see lines 2 and 9 above). The second one-slash entry, on line 8, is the end of the first task. Task Builder now looks for a new task to build and finds one: TKB>CUSER.TSK, CUSER.MAP=CUSER.ODL/MP As always, the double slash terminator (see line 10 above) ends Task Builder input and directs the building of, in this case, two tasks. Control then returns to the system level. #### NOTE Notice that line 6 above changed the name of the first task (as displayed by SYSTAT) from IMG1 to USER. However, the name of the task image file is still IMG1.TSK. See also Section 3.2.2.1 for more information on the TASK option. #### 2.6 INDIRECT COMMAND FILES It is also possible
to enter Task Builder commands indirectly. They may be stored on a permanent file for later processing. If you are using a large number of options or switches, using an indirect file could enable you to type those options or switches only once and run with them whenever you wish. The Task Builder goes to the file for information when you type, on a separate line, a commercial "at" character (@) followed by the filename, as in TKB @AFIL If you typed this command and AFIL contained: IMG1,MP1=IN1 IN2,IN3 / TASK=USER HISEG=BASIC2 // then the Task Builder would build the same task as that illustrated in the first example in Section 2.3. Note that the contents of AFIL are the same as the entries in that example, but without the TKB prompts. When the Task Builder encounters a single slash in the indirect file, it does one of two things, depending on which mode it is in at the time: - In command mode, the Task Builder enters option mode and continues as if it were getting its input from a terminal file. - In option mode, the Task Builder stops accepting input for the task, builds the task, and enters command mode to look for a command line. When the Task Builder encounters the double slash terminator in the indirect file (AFIL.CMD, in this case), it: - stops accepting input from the indirect file, - builds the task, - returns to the system level as if the contents of the indirect file had been typed on the terminal. If an end-of-file condition on the file occurs before the double slash terminator, then the Task Builder returns to the terminal to look for input. #### CAUTION A TKB prompt indicates that the Task Builder has returned to the terminal, but does not indicate whether the Task Builder is looking for commands or options. It is your responsibility to be aware of the contents of an indirect file and what the Task Builder is looking for when it returns to the terminal. One way to solve this problem is to indicate in the filename or extension where the Task Builder returns (with a "C" for command mode and an "O" for option mode, for instance). The Task Builder permits two levels of indirection, primary and secondary, in file references. That is, an indirect file referenced in a sequence of terminal commands (called a primary indirect file) may contain references to further indirect files (called secondary indirect files). These secondary indirect files may not contain any references to any other indirect files and can only return to the primary indirect file by an end-of-file condition. Also, a secondary indirect file can only return to the system level by the double slash terminator. In Figure 2-1, the primary indirect file is AFIL.CMD. BITBKT.CMD, BFIL.CMD, and CFIL.CMD are all secondary indirect files. Figure 2-1 Indirect File Interaction The contents of each secondary indirect file, if any exist, are inserted into the text of the primary indirect file at the point where the secondary indirect file was referenced. The contents of the primary indirect file are inserted into the terminal sequence of commands at the point where the primary indirect file was referenced. If AFIL contains: IMG1,MP1=IN1 IN2,IN3 / TASK=USER HISEG=BASIC2 @BFIL // and BFIL contains: UNITS=12 ASG=SY:1 then the result of the command TKB@AFIL is the same as if you had typed: TKB>IMG1,MP1=IN1 TKB>IN2,IN3 TKB>/ ENTER OPTIONS: TKB>TASK=USER TKB>HISEG=BASIC2 TKB>UNITS=12 TKB>ASG=SY:1 TKB>// NOTE The indirect file reference must appear as a separate line. Otherwise the substitution will not take place and the Task Builder will report the error. #### 2.7 COMMENT LINES Comment lines can be included anywhere in the sequence except in lines containing file specifications. A comment begins with a semicolon (;), which may or may not be the first character in the line. A comment ends with a carriage return. Here are some examples: ; <CR> This is a "null" comment line used for vertical spacing on the page ;THIS COMMENT TAKES A WHOLE LINE. <CR> UNITS=12; SET NUMBER OF UNITS <CR> This comment is used to explain a line of executable TKB command code. Task Builder executes the command and ignores the comment. #### 2.8 THE EXAMPLE PROGRAMS The first step in developing your task is to write, compile, and build the basic task. To do this: - Enter the routines by a text editor or the BASIC-PLUS-2 compiler, - Have them translated by the appropriate compiler, - Use the Task Builder to build them into a task. The routines in the example programs called USER.TSK are: USER which controls the processing INTRO which accepts and reformats input data (where necessary) CRUNCH which performs the computations CHATR which reports the results #### 2.8.1 Entering the Source Language You can enter source lines for the example program by using a text editor. BASIC-PLUS-2 users can also use the BASIC-PLUS-2 compiler. The example programs in BASIC-PLUS-2, then COBOL, are shown below: | 10
20 | CALL INTRO(A1%,B1%) CALL CRUNCH(A1%,B1%,SUMM%,PRODUCT%,DIFFER%) | |----------|---| | 30
40 | CALL CHATR(A1%,B1%,SUMM%,PRODUCT%,DIFFER%) END | | 10 | SUB INTRO(AA%, BA%) | | 20
30 | INPUT "INPUT TWO NUMBERS";AA%,BA%
SUBEND | | 1.0 | SUB CRUNCH(AAZ,BAZ,CA%,CB%,CC%) | | 20
30 | CAZ = AAZ + BAZ
CBZ = AAZ * BAZ | | 40
50 | CCZ = AAZ - BAZ
SUBEND | | 10 | SUB CHATR(AAZ,BAZ,CAZ,CBZ,CCZ) | | 20
30 | PRINT "THE SUM OF ";AAZ;" AND ";BAZ;" IS ";CAZ PRINT "THE PRODUCT OF ";AAZ;" AND ";BAZ;" IS ";CBZ | | 40
50 | PRINT "THE DIFFERENCE OF "; AAX; " AND "; BAX; " IS "; CC% SUBEND | IDENTIFICATION DIVISION. PROGRAM—ID. USER. ENVIRONMENT DIVISION. CONFIGURATION SECTION. SOURCE—COMPUTER. PDP—11. DATA DIVISION. WORKING—STORAGE SECTION. O1 DATA—STORAGE. O2 FIRST—NUMBER PIC S999 VALUE ZERO SIGN LEADING SEPARATE CHARACTER. ``` SECOND-NUMBER PIC S999 VALUE ZERO SIGN LEADING SEPARATE CHARACTER. COMPUTATION-AREA. 02 NUMBER-1 FIC S999 USAGE COMP. 02 NUMBER-2 FIC S999 USAGE COMP. 02 SUMM PIC S9(6) USAGE COMP. 02 PRODUCT FIC S9(6) USAGE COMP. 02 DIFFERENCE FIC S9(6) USAGE COMP. DISPLAY-AREA. 0.1 02 SUM-OUT PIC -Z(5)9. 02 PRODUCT-OUT PIC -Z(5)9. 02 DIFFERENCE-OUT PIC -Z(5)9. PROCEDURE DIVISION. MAIN-MODULE. CALL "INTRO" USING FIRST-NUMBER, SECOND-NUMBER. CALL "CRUNCH" USING FIRST-NUMBER, SECOND-NUMBER, SUM-OUT, PRODUCT-OUT, DIFFERENCE-OUT. CALL "CHATR" USING FIRST-NUMBER, SECOND-NUMBER, SUM-OUT, PRODUCT-OUT, DIFFERENCE-OUT. STOP RUN. IDENTIFICATION DIVISION. PROGRAM-ID. INTRO. ENVIRONMENT DIVISION. CONFIGURATION SECTION. SOURCE-COMPUTER. PDF-11. OBJECT-COMPUTER. PDP-11, SEGMENT-LIMIT IS 3. DATA DIVISION. LINKAGE SECTION. 77 FIRST-NUMBER PIC S999 SIGN LEADING SEPARATE CHARACTER. 77 SECOND-NUMBER PIC 5999 SIGN LEADING SEPARATE CHARACTER. NUMBER-1 FIC S999 USAGE COMP. 77 NUMBER-2 PIC S999 USAGE COMP. 77 SUMM PIC S9(6) USAGE COMP. 77 PRODUCT PIC S9(6) USAGE COMP. 77 DIFFERENCE FIC S9(6) USAGE COMP. 77 SUM-OUT PIC -Z(5)9. PRODUCT-OUT PIC -Z(5)9. DIFFERENCE-OUT PIC -Z(5)9. PROCEDURE DIVISION USING FIRST-NUMBER, SECOND-NUMBER. MD1 SECTION 5. MAIN-MODULE. DISPLAY "THINK OF TWO NUMBERS THAT ARE SIGNED INTEGERS,". DISPLAY " SUCH AS +015 OR -256, THAT ARE LESS THAN 1000", DISPLAY * AND GREATER THAN -1000. .. DISPLAY SPACES. DISPLAY "PLEASE ENTER THE FIRST NUMBER: ". ACCEPT FIRST-NUMBER. DISPLAY "AND NOW THE SECOND: ". ACCEPT SECOND-NUMBER. EXIT-PARAGRAPH. EXIT PROGRAM. DEFAULT-HALT. STOP RUN. IDENTIFICATION DIVISION. PROGRAM-ID. CRUNCH. ENVIRONMENT DIVISION. ``` ``` CONFIGURATION SECTION. SOURCE-COMPUTER. PDP-11. OBJECT-COMPUTER. PDF-11, SEGMENT-LIMIT IS 3. DATA DIVISION. WORKING-STORAGE SECTION. COMPUTATION-AREA. FIC S999 USAGE COMP. NUMBER-1 02 FIC S999 USAGE COMP. 02 NUMBER-2 PIC S9(6) USAGE COMP. 02 SUMM PIC S9(6) USAGE COMP. PRODUCT 02 PIC S9(6) USAGE COMP. DIFFERENCE 02 LINKAGE SECTION. PIC 5999 77 FIRST-NUMBER SIGN LEADING SEPARATE CHARACTER. PIC S999 SECOND-NUMBER SIGN LEADING SEPARATE CHARACTER. FIC -Z(5)9. SUM-OUT PIC -Z(5)9. 77 PRODUCT-OUT PIC -Z(5)9. DIFFERENCE-OUT 77 PROCEDURE DIVISION USING FIRST-NUMBER, SECOND-NUMBER, SUM-OUT, PRODUCT-OUT, DIFFERENCE-OUT. MD2 SECTION 5. MAIN-MODULE. MOVE FIRST-NUMBER TO NUMBER-1. MOVE SECOND-NUMBER TO NUMBER-2. COMPUTE SUMM = NUMBER-1 + NUMBER-2. COMPUTE PRODUCT = NUMBER-1 * NUMBER-2. COMPUTE DIFFERENCE = NUMBER-1 - NUMBER-2. MOVE SUMM TO SUM-OUT. MOVE PRODUCT TO PRODUCT-OUT. MOVE DIFFERENCE TO DIFFERENCE-OUT. EXIT-PARAGRAPH. EXIT PROGRAM. DEFAULT-HALT. STOP RUN. IDENTIFICATION DIVISION. PROGRAM-ID. CHATR. ENVIRONMENT DIVISION. CONFIGURATION SECTION. SOURCE-COMPUTER. PDP-11. PDF-11, SEGMENT-LIMIT IS 3. OBJECT-COMPUTER. DATA DIVISION. LINKAGE SECTION. FIC S999 FIRST-NUMBER SIGN LEADING SEPARATE CHARACTER. PIC 5999 SECOND-NUMBER SIGN LEADING SEPARATE CHARACTER. PIC S999 USAGE COMP. 77 NUMBER-1 PIC S999 USAGE COMP. 77 NUMBER-2 PIC S9(6) USAGE COMP. 77 SUMM PRODUCT FIC S9(6) USAGE COMF. PIC S9(6) USAGE COMP. 77 DIFFERENCE 77 SUM-OUT PIC -Z(5)9. PRODUCT-OUT PIC -Z(5)9. 77 PIC -Z(5)9. 77 DIFFERENCE-OUT PROCEDURE DIVISION USING FIRST-NUMBER, SECOND-NUMBER, SUM-OUT, PRODUCT-OUT, DIFFERENCE-OUT. MD3 SECTION 5. MAIN-MODULE. ``` DISPLAY "THE NUMBERS YOU SELECTED WERE ", FIRST-NUMBER, " AND ", SECOND-NUMBER. DISPLAY "THE SUM OF THESE NUMBERS IS ", SUM-OUT. DISPLAY "THE PRODUCT OF THESE NUMBERS IS :, PRODUCT-OUT. DISPLAY "THE RESULT OF SUBTRACTING THE SECOND NUMBER FROM", " THE FIRST IS ", DIFFERENCE-OUT. DISPLAY "USER PROGRAM ENDS.". EXIT-PARAGRAPH. EXIT PROGRAM. DEFAULT-HALT. STOP RUN. #### 2.8.2 Compiling the Programs The BASIC-PLUS-2 programs are compiled by the following sequence: RUN \$BASIC2 OLD USER.B2S COMPILE /OBJ OLD INTRO.B2S COMPILE /OBJ OLD CRUNCH.B2S COMPILE /OBJ OLD CHATR.B2S COMPILE /OBJ After the call to the BASIC-PLUS-2 compiler, the first command of each pair brings the source code into memory. The second command directs the compiler to translate the source code and place the relocatable object code in the associated object file. The remaining
commands perform similar actions for the source files INTRO, CRUNCH, and CHATR. The equivalent commands for COBOL users are shown below: CBL CUSER.OBJ.CUSER.LST=CUSER.CBL/KER:CUCBL CINTRO.OBJ.CINTRO.LST=CINTRO.CBL/KER:CICBL CCRNCH.OBJ.CCRNCH.LST=CCRNCH.CBL/KER:CRCBL CCHATR.OBJ.CCHATR.LST=CCHATR.CBL/KER:CHCBL/KER Note that the letter C was used as a prefix for the filenames and that the spelling of CRUNCH was changed. This is solely for the purpose of differentiating the BASIC-PLUS-2 object module and task image files from their COBOL equivalents in this section. The /KER:xx switch in the COBOL version must be used if you are linking two or more COBOL object modules. The COBOL compiler cannot generate PSECTs (see Section 4.2.1) with unique PSECT names across two or more object modules because it can only compile one source program at a time. The /KER:xx switch (see your PDP-11 COBOL User's Guide,) lets you specify two characters of the PSECT names that the COBOL compiler creates. If the /KER:xx switch arguments you use are different for each object module, you will avoid multiple definition errors. #### 2.8.3 Task-Building the Programs Building your task is the last thing you have to do before trying the first execution. To build the task, you need to create Task Builder commands in one of three ways: - Through the BASIC-PLUS-2 BUILD command - Through a text editor - Through direct instructions to the Task Builder Task Builder commands for the example program USER were formatted through the creation of an overlay description file (see Chapter 5) that was used as Task Builder input. In the BASIC-PLUS-2 version of USER, the overlay description was created through the BUILD command and adjusted to fit the trident-shaped structure by text editor. In the COBOL version, the overlay description was created by the system program CBLMRG, the MERGE program. The overlay description files are shown in Figures 5-13 and 5-14 respectively. The commands that actually built the task are TKB USER, USER=USER/MP and TKB CUSER, CUSER=CUSER/MP for the BASIC-PLUS-2 and COBOL versions, respectively. #### 2.9 SYNTAX RULES Here are syntax rules for the interaction between you and the Task Builder. They define in a more formal and concise way the syntax of the commands already described in this chapter. Task Builder syntax takes the following forms: A task-building command can have one of several forms. The first form is a single line: TKB task-command-line The second form has additional lines for input file names: TKB RET TKB>task-command-line TKB>input-line TKB>terminating-symbol The third form allows the specification of options: TKB RET TKB>task-command-line TKB>/ ENTER OPTIONS: TKB>option-line TKB>terminating-symbol The fourth form has both input lines and option lines: TKB RET TKB>task-command-line TKB>input-line TKB>/ ENTER OPTIONS: TKB>option-line TKB>terminating-symbol NOTES The terminating symbol can be: if more than one task is to be built, or if control is to return to the system level 2. No wild cards are permitted. A task-command-line has one of the three forms: output-file-list=input-file,... = input-file,... where indirect-file is a file-specification as described in @indirect-file Section 2.5. 3. An output-file-list has one of the three forms: task-file, map-file, symbol-file task-file, map-file task-file where task-file is the file specification for the task image file; map-file is the file specification for the memory allocation file; and symbol-file is the file specification for the symbol definition file. Any of the specifications can be omitted, so that, for example, the form: task-file,,symbol-file is permitted. 4. An input-line has either of the forms: input-file,... @indirect-file where input-file and indirect-file are file-specifications. 5. An option-line has either of the forms: option!... @indirect-file where indirect-file is a file specification. 6. An option has the form: keyword=argument-list,... where the argument-list is arg:... The syntax for each option is given in Chapter 3. 7. A file-specification consists of a filename that conforms to standard RSTS/E conventions, plus optional Task Builder switches. It has the form device:[project,programmer]filename.extension/sw... where everything is optional except the filename. The components are defined as follows: device is the name of the device that the volume containing the desired file is mounted on. The device name consists of two ASCII characters followed by an optional 1- or 2-digit decimal unit number; for example, LP or DT1. Logical device names of up to six alphanumeric characters may also be used. [project, is the project-programmer identification programmer] number associated with the file. The default is your own PPN. filename is the name of the desired file. The file name can contain up to six alphanumeric characters. extension is the 3-character filename extension. Files having the same name but a different function can be distinguished from one another by the file extension; for example, CALC.TSK and CALC.OBJ. is a switch specification. More than one switch can be used, each separated from the previous one by its slash (/). The switch name is a 2- to 4-character alphanumeric code that identifies the switch and shows whether or not it is negated. The permissible switches and their syntax are given in Chapter 3. The device, the PPN, the extension, and the switch specifications are all optional. The following default assumptions apply to missing components of a file-specification: | Item | Default | | | |---|--|--|--| | device ¹ | The device last specified (SY:, if none) | | | | project-programmer
number ¹ | the project-programmer number last specified (your own, if there is no previous entry) | | | | extension | (See Table 2-1.) | | | | switch | (See Chapter 3.) | | | For example: DK1: IMG1, MP1=IN1, DB0: IN2, IN3 | Device | File | |--------|----------| | DKl | IMG1.TSK | | DK1 | MP1.MAP | | SY | IN1.OBJ | | DB0 | IN2.OBJ | | DB 0 | IN3.OBJ | When appearing in an overlay description, the default device is always SY:, and the default PPN is your own. (For a discussion of PPNs, consult the RSTS/E System User's Guide. Overlays and overlay descriptions are discussed in Chapter 5 of this manual.) #### CHAPTER 3 #### SWITCHES AND OPTIONS Switches and options give you more control over the construction of a task image. Many of the functions described here deal with topics discussed more fully later on. These functions are given here to demonstrate the range of functions available and to serve as a reference. This chapter covers the following major topics. - Switches - Options - · Aborts and rebuilding #### 3.1 SWITCHES The syntax for a RSTS/E Task Builder file specification is: device:[project,programmer]filename.extension/sw-1/sw-2.../sw-n The file specification ends with one or more switches (sw-1, sw-2,...sw-n) from Table 3-1. When a switch is not given in a file specification, the Task Builder uses the default setting for the switch for that file only. Task Builder recognizes a 2-character alphabetic code that is preceded by a slash as a switch name. If the switch name is preceded by a minus sign (-) or the letters NO, the function of the switch is negated. Either method of negating a switch is acceptable. For example, if the switch is /DA (the task contains a debugging aid), then the switch settings Task Builder recognizes are: /DA The task contains a debugging aid. /-DA The task has no debugging aid. /NODA The task has no debugging aid. The switch codes allowed by the Task Builder are given in alphabetical order in Table 3-1. After the alphabetical listing, a more detailed description is given for each switch. The following information is given for each switch: - the switch name and meaning - the file type(s) to which the switch can be applied - the default value used if the switch is not present # SWITCHES AND OPTIONS # Table 3-1 Task Builder Switches | SWITCH
NAME | MEANING |
FILE
TYPE ¹ | DEFAUL | |----------------|---|---------------------------|---------------| | /cc | Input file consists of concatenated object modules. | I | /cc | | /CM | Memory resident overlays are aligned on 256-word boundaries. | т | /-CM | | /DA | Task contains a debugging aid | T,I | /-DA | | /DL | Specified library file is a replacement for the system object library. | | /-DL | | /FP | Task uses Floating Point Processor. | Т | /FP | | /FU | All co-tree overlay segments are searched for matching definition or reference when modules from the default object module library are being processed. | Т | /-FU | | /HD | Task image includes a header. | T,S | /HD | | /LB | Input file is a library file. | I | /-LB | | /MA | Memory allocation output includes information from the file. | M,I | 2 | | /MP | Input file contains an overlay
description | I | /-MP | | /PI | Task is position independent. | T,S | /-PI | | /PM | Post-mortem dump requested. | Т | /-PM | | /RO | Memory resident overlay operator (!) is enabled. | Т | /RO | | /SH | Short memory allocation file is produced | М | /SH | | /SQ | Task PSECTs are allocated sequentially. | Т | /-sq | | /SS | Selective search for global symbols. | I | / - SS | | /WI | Memory allocation file is printed at a width of 132 characters. | М | /WI | | /XT:n | Task Builder exits after n diagnostics. | Т | /-XT | | 1 | T task image file | 1 | | | | M memory allocation file | | | | | S symbol definition file | | | | | I input file | | | | 2 | The default is /MA for an input file, and and resident library .STB files. | /-MA for | system | 3.1.1 /CC (Concatenated Object Modules) file: input The file contains more than one object module and the meaning: modules are positioned together within the file. The Task Builder includes in the task image all the modules effect: in the file. If this switch is negated, the Task Builder uses only the first module in the file. default: /cc NOTE Switch /LB overrides this switch. See Section 3.1.15. 3.1.A /CM (Compatibility Mode Overlay Structure) file: task image The task is built in compatibility mode. meaning: The memory resident overlay segments are aligned on 256-word effect: with compatibility other boundaries to ensure implementations of the mapping directives. default: /-CM 3.1.2 /DA (Debugging aid) file: task image or input The task contains a debugging aid. meaning: The Task Builder performs the special processing described effect: in Appendix G. If this switch is applied to the task image file, the Task Builder automatically includes the system debugging aid SY:[1,1]ODT.OBJ in the task image. default: /-DA 3.1.3 /DL (Default Library) file: input The file is a replacement for the system object module meaning: library. effect: The specified library replaces the file SY: [1,1]SYSLIB.OLB as the library that is searched to resolve undefined global references. This file is referenced only when undefined symbols remain after all other user-specified files have been processed. The DL switch can be applied to only one input file. default: /-DL # 3.1.4 /FP (Floating Point) file: task image meaning: The task uses the Floating Point Processor. effect: This switch directs the RSTS/E monitor to save the state of the Floating Point Processor. default: /FP #### NOTE Do not negate this switch on systems that have the Floating Point Processor. This switch has no effect on systems without a Floating Point Processor. # 3.1.5 /FU (Full Search) file: task image meaning: When processing modules from the default object module library, the Task Builder searches all co-tree overlay segments for a matching definition or reference. effect: If the switch is negated, unintended global references between co-tree overlay segments are eliminated. Definitions of global symbols from the default library are restricted in scope to references in the main root and the current tree. Certain RMS-11 tasks may require you to use this switch. default: /-FU #### 3.1.B /HD (Header) task image or symbol definition file: Includes a header in the task. A header is required for meaning: executable tasks. You must negate this switch if the task output is to be used as a resident library (see Section 7.2). The Task Builder constructs a header in the task image. effect: default: /HD # 3.1.6 /LB (Library File) Alternate Form: /LB:mod-1:mod-2:...mod-8 input file: meaning: 1. If the switch is applied without arguments, the input file is assumed to be a library file of relocatable object modules. These modules are to be searched for the resolution of undefined global references. - If the switch is applied with arguments, the input file is assumed to be a library file of relocatable object modules from which up to eight modules named in the argument list are to be taken for inclusion in the task image. - If no arguments are specified, the Task Builder searches effect: the file to resolve undefined global references. It then takes from the library the modules that contain definitions for these undefined references. - If arguments are specified, the Task Builder includes only the named modules in the task image. #### NOTES - 1. If you want the Task Builder to search a library file both to resolve global references and to select named modules for inclusion in the task image, you must name the library file twice. Name the library file once with arguments for the names of the modules you want included. Name the library file the second time with no arguments but with the /LB switch to get the Task Builder to search the file for undefined global references. - 2. You can use the /SS switch (see Section 3.1.12) with the /LB switch to perform a selective search for global definitions. 3. This switch overrides /CC. See Section 3.1.15. default: /-LB # 3.1.7 /MA (Map Contents of File) file: input or memory allocation meaning: The Task Builder will include information from the file in the memory allocation output. effect: Global symbols defined or referenced by the file are displayed in the memory allocation file and global cross-reference. The file is listed in the File Contents section of the memory allocation listing. When applied to the allocation file, the switch controls the display of information about the default system library or symbol table file that is associated with memory-resident shared regions. # 3.1.8 /MP (Overlay Description) file: input meaning: The input file describes an overlay structure for the task. effect: The Task Builder receives all the input file specifications from this file and allocates memory as directed by the overlay description (ODL). It then automatically requests option information by displaying ENTER OPTIONS:. Overlays are discussed in Chapter 5. ### NOTES - 1. DO NOT type a slash (/) terminator on the line after the ED following the /MP switch unless you want to start a new task. The Task Builder automatically prompts for option input after the ED following the ODL file specification. - When you specify an overlay description file as the input file for a task, it must be the only input file. The Task Builder accepts only one input file in this case. default: /-MP 3.1.C /PI (Position Independent) task image or symbol definition file: The task or resident library contains position only meaning: independent code or data. effect The Task Builder sets the Position Independent Code (PIC) attribute flag in the task label block flag word. Section 7.2.1 discusses position independent resident libraries. default: /-PI 3.1.9 /PM (Post Mortem Dump) file: task image meaning: If the task terminates abnormally, the system automatically writes the contents of task memory on a disk file created for that purpose. For this file to be read, it must be formatted by the PMDUMP program (refer to the RSTS/E System User's Guide). The name of the file is: PMDnnn.PMD where: is your job number. nnn The Task Builder sets the post-mortem dump flag in the flag effect: word in the label block group (se Figure D-2, bytes 30 and 31). default: /-PM 3.1.D /RO (Resident Overlay) file: task image Enables recognition of the memory resident overlay operator (!). See Section 5.1.3.1. When the memory resident overlay operator is present in the effect: overlay description file (.ODL), the Task Builder uses the operator to construct a task image that contains one or more memory resident overlay segments. If you negate this switch, the Task Builder checks the operator syntactically but does not construct memory resident overlay segements. default: /RO 3.1.10 /SH (Short Map) file: memory allocation The Task Builder produces a shortened version of the memory allocation file. Chapter 4 describes the memory allocation file. effect: The Task Builder does not produce the file contents section of the memory allocation file. default: /SH 3.1.11 /SQ (Sequential) file: task image The Task Builder constructs the task image from meaning: specified PSECTs in the order in which they are accessed. effect: The Task Builder does not reorder the PSECTs alphabetically. Section 4.2 describes task image allocation. default: /-SQ CAUTION Do not use the /SQ switch on RMS-11 tasks. RMS-11 assumes that PSECTs are arranged alphabetically. See Section 4.2.3 for other reasons why the use of /SQ is not advised. 3.1.12 /SS (Selective Search) file: input Do not include a global symbol definition from this module meaning: unless a previously undefined reference to the global symbol exists. The Task Builder searches the Global Symbol Table for each effect: global symbol defined in the module. If an undefined reference to a symbol is found, the corresponding definition is included. When applied to a library or a concatenated object file, the switch applies to every module in the file. default: /-SS 3.1.13 /WI (Wide Listing Format) file: memory allocation meaning: Print the memory
allocation file in wide (132-character) format. effect: The listing width is expanded to fill a 132-column hard copy output device. Negating this switch normally produces 80-column hard copy, but see the NOTE below. default: /WI NOTE Some systems are installed so that even if you negate the /WI switch, you will still get 132-column hard copy. See your system manager for details. 3.1.14 /XT[:n] (Exit on Diagnostic) file: task image meaning: More than n error diagnostics is not acceptable. effect: The Task Builder exits after n error diagnostics have been produced. The number of diagnostics can be specified as a decimal or octal number by using the convention: n. indicates a decimal number (the decimal point must be included) #n or n indicates an octal number The default value for n is 1. default: /-XT ## 3.1.15 Conflicting Switches /LB and /CC The /LB and /CC switches conflict when applied to the same file. If you use both switches, the Task Builder applies the overriding switch. Switch /LB overrides switch /CC. A comparison of the functions of the two switches reveals the reason for the override. In this example: TKB IMG5=IN6, IN5/LB/CC the input file IN5 is assumed to be a library file to be searched for undefined global references, not an input file with several object modules. #### 3.2 OPTIONS The Task Builder offers 18 options, which provide information about the task being built. These options can be divided into six categories. Brief descriptions of these categories with their identifying mnemonics are listed below: - 1. contr Control options are used to affect Task Builder execution. ABORT is the only member of this category. - 2. ident Identification options are used to identify task characteristics to the Task Builder. TASK and PAR are members of this category. - 3. alloc Allocation options are used to change the way the task is laid out in memory. You can specify or adjust the size of the stack, the size of the PSECTs in the task, and the number and size of work areas and buffers used by programs written in higher-level languages. EXTSCT, EXTTSK, WNDWS, and STACK are members of this category. - 4. share Storage sharing options tell the Task Builder that you intend to use a shared run-time system or resident library. HISEG, COMMON, LIBR, RESCOM, and RESLIB are members of this category. - 5. device Device-specifying options give the number of units required by the task. These options also assign logical unit numbers to physical devices. ASG and UNITS are members of this category. - 6. alter Content-altering options define a global symbol and value or introduce patches in the task image. ABSPAT, GBLDEF, GBLPAT, and GBLREF are members of this category. Table 3-2 lists all the options alphabetically and gives a brief description of each. The options are then broken down by category and described in more detail in Sections 3.2.1 through 3.2.6. Table 3-2 Task Builder Options | Option | Meaning | Category | |------------------|--|----------| | ABORT | Abort the building of the task | contr | | ABSPAT | Declare absolute patch value(s) | alter | | ASG | Declare device assignment to logical unit(s) | device | | COMMON | Declare task's intention to access a memory resident library | share | | EXTSCT | Declare extension of a PSECT | alloc | | EXTTSK | Declare extension of the amount of memory owned by a task | alloc | | GBLDEF | Declare global symbol definition(s) | alter | | GBLPAT | Declare patch value(s) relative to a global symbol | alter | | GBLREF | Declare global symbol reference(s) | alter | | HISEG | Associate the task with a specific high segment (run-time system) | share | | LIBR | Declare task's intention to access a memory resident library | share | | PAR | Declare partition name and dimensions | ident | | RESCOM
RESLIB | Declare task's intention to access a memory resident library | share | | STACK | Declare the size of the stack | alloc | | TASK | Declare the name of the task | ident | | UNITS | Declare the maximum number of units | device | | WNDWS | Declare the number of address windows required by the resident library | alloc | ### 3.2.1 Control Option 3.2.1.1 ABORT (Abort the Building of the Task) - ABORT is useful when you discover that an earlier error in the terminal sequence will cause the Task Builder to produce an unusable task image. When the Task Builder recognizes the ABORT command, it stops accepting input for the task being built and prepares to accept input for a new task. You can now, if you wish, rebuild the task you just ABORTed. Section 3.3.1 contains an example of the use of the ABORT option. syntax: ABORT = n where n is an integer. (The integer is required to satisfy the general form of an option, but the value is ignored.) default: (none) NOTE Typing a CTRL/Z at any time causes the Task Builder to stop accepting input and start building the task at hand. But ABORT is the only proper way to restart the Task Builder, if you find an error and do not want the resulting Task Builder output. # 3.2.2 Indentification Options 3.2.2.1 TASK (Task Name) - The TASK option specifies the name of the task being built. This name is displayed by the SYSTAT program. You can use this option if you wish to give a name to a task other than the name of the task image file. There is an example of how to use the TASK option in Section 2.4. syntax: TASK = task-name where task-name is a 1- to 6-character name from the Radix-50 set identifying the task. default: the task image filename ## 3.2.2.2 PAR (Partition) The PAR option identifies the partition (the area of memory within the job's virtual address space) for which the resident library task image is built and allows you to specify a base address and length for the library. syntax: PAR=pname[:base:length] where; pname is the name of the partition. is the octal byte address that defines the start of the partition. If the library is position independent (see Section 7.2.1), the base address is zero. If the library is not position independent, the base address is non-zero. length is the octal number of bytes contained in the partition. The Task Builder automatically extends the task size of the resident library to make up the difference between the length specified for the partition and the amount of memory required by the task. A length of zero signifies that the task size is to equal the memory required. If the task size is greater than the partition size, the Task Builder issues the following error message: %TKB---*DIAG*-TASK HAS ILLEGAL MEMORY LIMITS You must specify a partition name if the task is to be used as a resident library. If you do not specify a partition base address or length, the library is position independent, and the Task Builder assigns a base of 0 and a length that equals the size of the created task image. The Task Builder attaches the task to the address defined by the partition base and verifies that the task does not exceed the length specification (if made). To ensure that a usable task image is produced, the Task Builder must consider two types of task: executable task images and resident libraries. An executable task image must have a header and is capable of direct execution. A resident library must not have a header and is not directly executable. An executable task on RSTS/E cannot be larger than 28K. However, if the task is built under the RSX Run-Time System and executed with a Monitor that has RSX emulation support, you can extend the task up to 31K. The Task Builder enforces address limits according to the type of task, as follows: | | Executable
Task | Resident
Library | |--------------------------|-------------------------|-------------------------| | base | 0 | on 4K
boundary | | length | multiple of
32 words | multiple of
32 words | | high
address
bound | (28K)
words | (32K)
words | Refer to Section 7.2.1 for a description of the PAR option in command lines that create resident libraries. # 3.2.3 Allocation Options 3.2.3.1 EXTSCT (PSECT Extension) - The EXTSCT option declares an extension in size for a PSECT in an input object file or in the overlay description file. PSECTs and their attributes are described in Section 4.2.1. If the PSECT has the CON (concatenated) attribute, the PSECT is extended by the specified number of bytes. If the PSECT has the OVR (overlay) attribute, the section is extended by the length of the extension if that extension is greater than the previously established length of the PSECT. syntax: EXTSCT = PSECT-name:extension where: PSECT-name is the 1- to 6-character name from the Radix-50 set of the PSECT to be extended. extension is the octal number of bytes by which to extend the PSECT. default: none In the following example, PSECT BUFF is initially 200 bytes long: EXTSCT = BUFF: 250 The new size of the PSECT depends on the CON/OVR attribute: - For CON the extension is an additional 250 bytes for a total of 450 bytes. - For OVR the extension is an additional 50 bytes for a total of 250 bytes. 3.2.3.2 EXTTSK (Extend Task Memory) - The EXTTSK option declares the amount of additional memory to be allocated to the task up to a maximum of 28K words. The amount of memory available to the task is the sum of the task size plus the increment specified in the EXTTSK keyword (rounded up to the nearest 32-word boundary). syntax: EXTTSK = length where: length is a decimal number specifying the increase in task memory allocation in words. default: The task is extended to the next multiple of 1K words. 3.2.3.3 STACK (Stack Size) - The STACK option declares the maximum size of the stack required by the task. The stack is an area of memory used for temporary storage, subroutine calls, and other system functions. The stack is referenced by hardware register 6 (the stack pointer). syntax: STACK = stack-size where: stack-size is a decimal integer specifying the number of words required for the stack.
default: STACK = 256 #### CAUTION Decreasing the size of the stack to less than the default size can lead to unpredictable or fatal results in certain higher level languages. #### 3.2.3.A WNDWS (Number of Address Windows) The WNDWS option declares the number of address windows required by the resident library in addition to those already declared (by default) to map the task image, any mapped array, or resident library. syntax: WNDWS=n where; n is an integer in range of 0 to 7. If you do not specify a number of address windows, the Task Builder assigns zero to the option. Note that the number of address windows must be equal to the number of simultaneously mapped memory regions that the task will use. 3.2.3.4 Example of Allocation Options - In the following example, the size of PSECT AAAAAA is expanded to 20000 (octal) bytes. The terminal sequence used to build the task is: TKB TKB>IMG1,MP1=GRP1 TKB>/ ENTER OPTIONS: TKB>EXTSCT=AAAAAA:20000 TKB>// # 3.2.4 Storage Sharing Options 3.2.4.1 HISEG (High Segment) - The HISEG option associates the task image with a high segment, or run-time system, of the name specified. The symbol table of the high segment is automatically included to resolve global references. The .STB file for the named high segment must be in the account specified by the system logical name LB:. If the HISEG option is not specified: - The high segment associated with the task image is the same as that associated with the Task Builder itself. - No global references to symbols in that high segment are resolved. syntax: HISEG = high-segment-name where: high-segment-name is a 1- to 6-character name from the Radix-50 set specifying the run-time system. default: the Task Builder high segment 3.2.4.2 COMMON (System Common Block) or LIBR (System Resident Library) By convention, the COMMON option indicates a resident library that contains data; the LIBR option indicates a resident library that contains code. These options are identical and each declares a resident library for use by your task. syntax: COMMON=name:access code[:apr] LIBR=name:access code[:apr] where; name is the 1- to 6-character Radix-50 name (from the Radix-50 character set) of the resident library you wish to attach to your task. The Task Builder expects to find a symbol table file and task image file of the same name (name.STB and name.TSK) under the account specified by the system logical name LB:. access code is the code RW (for read/write) or RO (for read only) and indicates the type of access required by your task. apr is an integer in the range of 1 to 7 that specifies the first Active Page Register reserved for the library. The APR can be omitted. It is specified only if the resident library is position independent. There is no default for this option # 3.2.4.3 RESCOM (Resident Common Block) or RESLIB (Resident Library) By convention, the RESCOM option indicates a resident library that contains data; the RESLIB option indicates a resident library that contains code. These options are identical and each declares a resident library for use by your task, and unlike COMMON or LIBR, they allow you to include a file specification. Note that comments must not appear on an option line with RESCOM or RESLIB nor can you specify a device name and unit number. However, you can specify an account, filename, and extension on the option line. syntax: RESCOM=file spec/access code[:apr] RESLIB=file spec/access code[:apr] where; file spec is the file specification of the resident library. access code is the code RW (for read/write) or RO (for read only) and indicates the type of access required by your task. apr is an integer in the range of 1 to 7 that specifies the first Active Page Register to be reserved for the library. The APR can be omitted. It is specified only for position independent libraries. The Task Builder expects to find a symbol definition file (name.STB) and a task image file (name.TSK) of the same name as the specified resident library on the public disk structure in the account you specify in the file specification. If you do not specify an account, the Task Builder searches the account associated with your task. That is, the Task Builder assigns the current account on the public structure, and a file extension of .TSK as defaults for the file specification. # 3.2.4.4 Examples of Resident Library Switches and Options In the following example, the task is composed of the MACRO-11 programs TST1 and TST. The task accesses the resident library, DTST, which contains data, and the resident library, STST, which contains code. The Task Builder command lines used to build the task are as follows: RUN \$TKB TKB>TST,TST=TST1,TST2 TKB>/ ENTER OPTIONS: TKB>COMMON:DTST:RW TKB>LIBR:STST:RO TKB>// In a similar fashion, the RESLIB and RESCOM options can be used to link the task to user-created resident libraries. For example: RUN \$TKB TKB>TST,TST=TST1,TST2 TKB>/ ENTER OPTIONS: TKB>RESCOM=E20,201DTST/RW TKB>RESLIB=E20,201STST/RO TKB>// # 3.2.5 Device Specifying Options The two options in this category are UNITS and ASG. The UNITS option declares the maximum number of input/output units that the task uses. The ASG option declares the devices that are assigned to these units. A logical unit number, or LUN, is assigned to each file or device used by the task. (Each LUN corresponds to a channel number in BASIC-PLUS and BASIC-PLUS-2 terminology.) The LUN provides the link between the filename and the channel the file is associated with. The number of logical units and the highest unit number assigned must be compatible. An attempt to assign a physical device to a logical unit number that is larger than the total number of units declared is an error. Conversely, the number of units declared cannot be fewer than the highest-numbered logical unit assigned. #### NOTE To increase the number of units and assign devices to these units, you should enter the UNITS option first and then the ASG option. Because the options are processed as they are encountered, entering the options in the reverse order can produce an error message. 3.2.5.1 UNITS (Logical Unit Usage) - The UNITS option declares the number of logical units that are used by the task. syntax: UNITS = max-units where: max-units is a decimal integer from 0 to 14 specifying the maximum number of logical units. default: UNITS = 6 NOTE BASIC-PLUS-2 programmers should always set max-units to 12. 3.2.5.2 ASG (Device Assignment) - The ASG option declares the physical device that is assigned to one or more units. syntax: ASG = device-name:unit-num-1:unit-num-2...:unit-num-8 where: device-name is a 2-character alphabetic device name followed by an optional 1- or 2-digit decimal unit number. unit-num-1: are decimal integers indicating the Logical unit-num-2: Unit Numbers, or LUNs. unit-num-8 default: ASG = SY:1:2:3:4, TI:5, CL:6 3.2.5.3 Example of Device Specifying Options - In the following example, the BASIC-PLUS-2 programs specified in the file GRP1 require a maximum of nine logical units. The device assignments for units 1-6 agree with the default assumptions. Logical units 7 and 8 are assigned to magtape 1 (MT1) and unit 9 is assigned to magtape 2. The terminal sequence of the example in Section 3.2.3.4 is changed to include device assignment options, as follows: RUN \$TKB TKB>IMG1,MP1=GRP1 TKB>/ ENTER OPTIONS: TKB>UNITS=9 TKB>ASG=MT1:7:8 TKB>ASG=MT2:9 TKB>EXTSCT=AAAAAA:20000 TKB>// # 3.2.6 Storage Altering Options Four options alter the task image: - GBLDEF (global symbol definition) - GBLREF (global symbol reference) - ABSPAT (absolute patch) - GBLPAT (global relative patch) The GBLDEF option declares a global symbol and value; GBLREF declares a global symbol reference. The options ABSPAT and GBLPAT introduce patches into the task image. #### CAUTION The options in this section are for use by the experienced programmer or analyst only. 3.2.6.1 GBLDEF (Global Symbol Definition) - The GBLDEF option declares the definition of a global symbol. A global symbol is a label for a data item that is defined in one module and referenced in others. The symbol definition is considered absolute. syntax: GBLDEF = symbol-name:symbol-value where: symbol-name is the 1- to 6-character name from the Radix-50 set of the defined symbol. symbol-value is an octal number in the range 0-177777 assigned to the defined symbol. default: none 3.2.6.2 GBLREF (Global Symbol Reference) - The GBLREF option declares a global symbol reference. The reference originates in the root segment of the task. A global symbol is a label for a data item that is defined in one module and referenced in others. syntax: GBLREF = symbol-name where: symbol name is the 1- to 6-character name from the Radix-50 set of the global symbol reference. default: none 3.2.6.3 ABSPAT (Absolute Patch) - The ABSPAT option declares a series of patches starting at the specified base address within the specified segment. Up to eight patch values can be given. syntax: ABSPAT = seg-name:address:val-1:val-2...:val-8 is the 1- to 6-character name from Radix-50 set of the segment. where: seg-name > address is the octal address of the first patch. The address must be on a word boundary. Two bytes are always modified for each patch. > val-1 is an octal number in the range 0 - 177777 to > be stored at address. val-2 is an octal number in the range 0 - 177777 to be stored at address + 2 bytes. va1-8 is an octal number in the range 0 - 177777 to be stored at address + 16(octal) bytes. default: none ### NOTE All patches must be within the segment address limits or a fatal error is generated. 3.2.6.4 GBLPAT (Global Relative Patch) - The GBLPAT option declares a series of patch values starting at an offset relative to a global Up to eight patch values can be given. syntax: GBLPAT=seg-name:sym-name[+/-offset]:val-1:val-2 ...:val-8 where: seg-name is the 1- to 6-character name from Radix-50 set of the segment. > sym-name is the 1- to 6-character name from Radix-50 set specifying the
global symbol. > offset is an octal number specifying the offset from the global symbol. val-1 is an octal number in the range 0 - 177777 to be stored at the octal address of the first patch. is an octal number in the range 0 - 177777 to va1-2 be stored at the first address + 2 bytes. val-8 is an octal number in the range 0 - 177777 to be stored at the first address + 16(octal) bytes. default: none NOTE All patches must be within the segment address limits, or a fatal error is generated. 3.2.6.5 Example of Storage Altering Options - In the following example, GAMMA is a referenced symbol whose value is specified as 25 (octal) when the task is built. Ten patch values relative to the global symbol DELTA are also introduced. The terminal command sequence looks like this: TKB>CHK,CHK=TST1,TST2 TKB>Z ENTER OFTIONS: TKB>GBLDEF=GAMMA:25 TKB>GBLPAT=TST1:DELTA:1:5:10:15:20:25:30:35 TKB>GBLPAT=TST1:DELTA+20:40:45 TKB>ZZ ## 3.3 ABORTS AND REBUILDING The first execution of a task may have yielded several logical errors. After correcting the program, you are now ready to make some changes. You may also decide to make adjustments in the task image file. These adjustments are based on the information obtained about the size of the task in the first task-build. To make the needed changes in the task image: - Change the text file for the program - Recompile (and remerge, if you are using COBOL) 2. - 3. Rebuild the task # 3.3.1 Aborting the Task Rather than continue to build a task that you know will crash, you may decide that you want to abort and start over. You may also decide to abort the task when you discover that you forgot something. Here is an example of such a situation: - 1 TKB - 2 TKB>CALC,=RDIN, PROC1, RPRT - 3 TKB>/ - 4 ENTER OPTIONS: - 5 TKB>UNITS=12 - 6 TKB>ABORT≈1 - 7 TKB -- *FATAL* TASK-BUILD ABORTED VIA REQUEST - 8 TKB>CALC, CALC/SH=RDIN, PROC1, RPRT - 9 TKB>/ - 10 ENTER OFTIONS: - 11 TKB>UNITS=12 - 12 TKB>HISEG=BASIC2 - 13 TKB>/ - 14 TKB> (command mode) Notice lines 6 and 7 above. The ABORT option was used to end the task-build in this example because the memory allocation file was omitted. After printing the abort message, Task Builder prompts in command mode (line 8). #### CHAPTER 4 #### MEMORY ALLOCATION The Task Builder allocates the physical memory and virtual address space required by a task. This allocation can consist of two parts: - 1. A region containing the task itself - Memory that is not physically a part of the task image, but contains subroutines shared by several tasks This chapter covers the following major topics. - Task Memory Structure - Task Image Memory - Global Symbol Resolution - Task Image File - Memory Allocation File - Memory Allocation Map for BASIC-PLUS-2 Version of USER - Memory Allocation Map for COBOL Version of USER # 4.1 TASK MEMORY STRUCTURE Task memory structure (see Figure 4-1) is divided into two physically contiguous areas containing: - 1. The task image - Additional memory allocated while the task is running. (You can allocate additional memory by using the Extend Task system directive. If you use the Task Builder EXTTSK option, RSTS/E can also extend memory.) Figure 4-1 Task Memory Structure #### 4.2 TASK IMAGE MEMORY The area of memory allocated for task image storage contains - 1. A header, - 2. A stack, and - 3. A group of PSECTs (see Section 4.2.1). The header contains task parameters and data required by RSTS/E and provides a storage area for saving the task's context. The contents of the header are described in detail in Section D.2. Note that a header is required only for executable tasks. If you are creating a task for use as a resident library, you must omit the header from the task image. That is, you must specify a /-HD switch (negate the header) in the TKB command line to create a resident library. The stack is an area that can be used for temporary storage and subroutine linkage. It is referenced by general register 6, the stack pointer. You can change the size of the stack by using the STACK option, as described in Section 3.2.3.3. # 4.2.1 PSECTs A program section or PSECT, of variable size, is the basic unit of task memory that contains code or data and can be referenced by name. Associated with each PSECT is a set of attributes that controls the allocation and placement of the PSECT within the task image. A PSECT is composed of the following elements: - A name by which it is referenced - A set of attributes that define its contents, mode of access, size allocation, and placement in memory - \bullet A length that determines how much storage is to be reserved for the PSECT PSECTs are created or referenced in either of the following ways: - Language processors automatically include PSECTs in the object module to reserve storage for code or data. - You can explicitly create PSECTs by using facilities present in the language processors or Task Builder. PSECTs are created through the COMMON and MAP statements in BASIC-PLUS-2, or through the association of a segment number with a section name in COBOL. The Task Builder overlay processor allows PSECTs to be created and inserted at specific points in the overlay structure. This facility is described in Chapter 5. As noted above, each reference to a PSECT is accompanied by a length and set of attributes that describe memory allocation to that PSECT. Task Builder collects scattered references to the PSECT in a single area of task memory. The attributes, listed in Table 4-1, control the way the Task Builder collects and places PSECT storage and determine the contents of the PSECT name entry flag byte (see Section C.1.6). Table 4-1 PSECT Attributes | Attribute | Value | Meaning | | | | |--------------------|-------|--|--|--|--| | Access code | RW | Read/Write - Data can be read from and written into the PSECT. | | | | | | RO | Read Only - Data can be read from but cannot be written into the PSECT. | | | | | Allocation
code | CON | Concatenate - All references to a given PSECT name are concatenated. The total allocation is the sum of the individual allocations. Overlay - All references to a given PSECT name overlay each other. The total allocation is the length of the longest individual allocation. | | | | | | OVR | | | | | | Relocation
code | REL | Relocatable - The base address of the PSECT is relocated relative to the virtual base address of the task. | | | | | | ABS | Absolute - The base address of the PSE is not relocated. It is always zero. | | | | | Scope code | GBL | Global - The PSECT name is recognized across overlay segment boundaries. The Task Builder allocates storage for the PSECT from references outside the defining overlay segment. | | | | (continued on next page) Table 4-1 (Cont.) PSECT Attributes | Attribute | Value | Meaning | | |-----------------------|-------|---|--| | Scope code
(Cont.) | LCL | Local - The PSECT name is recognized only within the defining overlay segment. The Task Builder allocates storage for the PSECT from references within the defining overlay segment only. | | | Type code 1 | D | Data - The PSECT contains data. | | | | I | Instruction - The PSECT contains either instructions, or data and instructions. | | $^{\rm 1}{\rm These}$ codes should not be confused with the I and D space hardware codes on PDP-11 systems. The Task Builder uses the access code and allocation code to determine the size of the PSECT and its placement in task memory. The Task Builder divides storage into read/write and read-only memory, and places PSECTs in the appropriate area according to access code. Memory allocated to read-only PSECTs is not hardware protected. The allocation code is used to determine the starting address and length of memory allocated by modules that reference a common PSECT. If the allocation code indicates that such a PSECT is to be overlaid, the Task Builder places the allocation from each module at the same location in task memory, and determines the total size from the length of the longest reference to the PSECT. If the allocation code indicates that a PSECT is to be concatenated, the Task Builder places the allocation of each of the modules one after the other in task memory, and determines the total allocation from the sum of the lengths of each reference. The allocation of memory for a PSECT always begins on a word boundary. If the PSECT has the D (data) and CON (concatenate) attributes, all storage contributed by subsequent modules within that PSECT is appended to the last byte of the previous allocation. This occurs regardless of whether or not that byte is on a word boundary. Thus, the first allocation in the PSECT begins on a word boundary, but the remaining allocations may not. For a PSECT with the I (instruction) and CON attributes, however, all storage contributed by subsequent modules begins at the nearest following word boundary. The scope code and type code are meaningful only when an overlay structure is defined for the task. The scope code is described in Chapter 5, in the context of PSECT resolution. The type code is described in Chapter 6, in the context of autoload vector generation. # 4.2.2 PSECT Allocation Here is an example of PSECT allocation: TKB IMG1, MP1/SH/MA=IN1, IN2, IN3, LBR1/LB This command directs the Task Builder to build a task image file, IMG1.TSK, and a memory allocation file, MP1.MAP, from the input files IN1.OBJ, IN2.OBJ, and IN3.OBJ. It also initiates a search of the library file LBR1.OLB for any undefined global references. The input files are composed of PSECTs with access
codes, allocation codes, and sizes as illustrated in Table 4-2: Table 4-2 PSECT Allocation | Filename | PSECT | Access | Allocation | Size | |----------|-------|--------|------------|---------| | | Name | Code | Code | (octal) | | IN1 | B | RW | CON | 100 | | | A | RW | OVR | 300 | | | C | RO | CON | 150 | | IN2 | A | RW | OVR | 250 | | | B | RW | CON | 120 | | IN3 | С | RO | CON | 50 | In Table 4-2, there are two occurrences of the PSECT named B with attributes RW and CON. The total allocation for B is the sum of the lengths of the references; that is, 100 + 120 = 220 blocks. If the OVR attributes had been used instead of CON, as in PSECT A, the total allocation would have been 120 blocks, which is the largest allocation for PSECT B. The total allocation for each uniquely named PSECT is shown in Table 4-3. Table 4-3 Allocation Totals | PSECT | Total | |-------|------------| | Name | Allocation | | B | 220 | | A | 300 | | C | 200 | The Task Builder then groups the PSECTs according to their access-codes, and alphabetizes each group. Figure 4-2 shows the results: Figure 4-2 PSECT Allocations Grouped by Access Code ## 4.2.3 PSECT Placement The placement of PSECTs in task memory is affected by the /SQ (sequential) switch. References to a given PSECT from object modules are collected as described. All PSECTs are then grouped according to access-code and, within these groups, are placed in memory in the order they were input, rather than alphabetically. The /SQ switch was intended to satisfy adjacency requirements of existing code that was previously written for another PDP-11 operating system. Using this feature is otherwise discouraged for the following reasons: - Standard library routines will not work properly. - Sequential allocation can result in errors if the order in which modules are linked is altered. - RMS-11, BASIC-PLUS-2, and COBOL assume that PSECTs are arranged in alphabetical sequence. You can place PSECTs together by selecting names alphabetically to correspond to the desired order. # 4.3 GLOBAL SYMBOL RESOLUTION When creating the task image file IMG1.TSK in the command in Section 4.2.3, the Task Builder resolves the global references shown in Table 4-4 in the following manner. Table 4-4 Global Reference Resolution | File
Name | PSECT
Name | Global
Definition | Global
Reference | |--------------|---------------|----------------------|-----------------------| | IN1 | B
A
C | B1
B2 | A1
L1
C1
XXX | | IN2 | A
B | A1
B1 | B2 | | IN3 | С | | B1 | In processing the first file, IN1.0BJ, the Task Builder finds definitions for Bl and B2 and references to Al, Ll, Cl, and XXX. Because no definition exists for these references in IN1.0BJ, the Task Builder defers the resolution of these global symbols. In processing the next file, IN2.0BJ, the Task Builder finds a definition for Al, which resolves the previous reference, and a reference to B2, which can be immediately resolved. The third file IN3.0BJ contains a reference to B1. (The last paragraph in this section shows how references to B1 are resolved.) When all the object files have been processed, the Task Builder has three unresolved global references -- Cl, Ll, and XXX. A search of the library file LBRl resolves Ll, and the Task Builder includes the defining module in the task image. A search of the System Library resolves XXX. The global symbol Cl remains unresolved and is listed as an undefined global symbol. The relocatable global symbol Bl is defined in two different modules and is listed as a multiply defined global symbol on the terminal. The first definition of a multiply defined symbol is the one used by the Task Builder. An absolute global symbol can be defined more than once without being listed as multiply defined as long as all occurrences of the symbol have the same value. #### 4.4 TASK IMAGE FILE The task image file contains a copy of the task that can be read into memory and started with little system overhead. The Task Builder does all linking, memory allocation, and address resolution. The system loads the task image and transfers control to it. The task image file also contains a label block group. The label block group contains data that is used by the system loader when the task is run. The label block group is described in detail in Section D.1. #### 4.5 MEMORY ALLOCATION FILE The memory allocation file lists information about the allocation of task memory and the resolution of global symbols. ## 4.5.1 Contents of the Memory Allocation File The memory allocation file contains the following items: - Page Header - Task Attributes - Overlay Description (if applicable) - Segment Description - Memory Allocation Synopsis - Global Symbols - File Contents - Summary of Undefined Global Symbols - Task Builder Statistics Sample memory allocation files are shown in Figures 4-3 of Section 4.6 and 4-4 of Section 4.7, where each item is identified. The following paragraphs discuss the map items in greater detail. - The page header shows the name of the task image file and the overlay segment name, along with the date, time, and version of the Task Builder that was used. - 2. The task attribute section may contain the following information, some of which does not appear in Figure 4-3 or 4-4: - a. Task name - b. Task partition (always GEN) - c. Identification (task version) - d. Task UIC (PPN) - e. Stack limits -- consisting of the low and high addresses, followed by the length in octal and decimal bytes - f. ODT transfer address -- starting address of the debugging aid - g. Program transfer address - h. Task attributes -- shown only if you specify a switch (see Table 3-1) that differs from the default. For example, one or more of the following can be displayed: - DA task contains debugging aid - -FP task does not use floating-point processor - PM task requests post-mortem dump - -HD task does not contain a header (resident library) - PI task contains only position independent code - CM task built in compatibility mode - Total address windows -- the number of address windows allocated to the task - j. Task extension -- the increment of physical memory allocated through the EXTTSK keyword - k. Task image -- the amount of memory required to contain task code - Total task size -- the amount of memory allocated to task extension and task image listed above - m. Task address limits -- the lowest and highest virtual addresses allocated to the task - 3. The overlay description shows the address limits, length, and name of each overlay segment. Indenting is used to illustrate the overlay structure. The overlay description is printed only when a multi-segment task is created. - 4. The segment description gives the name of the segment, along with the segment address and disk space limits. - 5. The memory allocation synopsis gives information about the PSECTs that make up the memory allocated to each overlay segment. The information shown consists of the PSECT name, attributes, starting address, and length in bytes, followed by a list of modules that contributed storage to the section. The entry for each module shows the starting address and length of the allocation, the module name, module identification, and file name. If the /SQ switch is applied, the PSECTs are listed in the order of input; otherwise they appear in alphabetical order. The following PSECT information is omitted: - a. The absolute section . ABS. is not shown because it appears in every module and always has a length of 0. - b. The unnamed relocatable section . BLK. is not displayed if its length is 0, because it appears in every module. - 6. Global symbols that are defined in the segment are listed along with their octal values. The code -R is appended to the value if the symbol is relocatable. The list is alphabetized in columns. - The file contents section lists the module name, the filename, and any PSECTs, and global definitions occurring in the module. - 8. A summary of undefined global references is printed after the listing of file contents. - The display of Task Builder statistics lists the following information, which may be used to evaluate Task Builder performance. - Work File References -- The number of times that the Task Builder accessed data stored in its work file. - Work File Reads -- The number of times that the work file device was accessed to read work file data. - Work File Writes -- The number of times that the work file device was accessed to write work file data. - Size of Core Pool -- The amount of memory that was available for work file data and table storage. - Size of Work File -- The amount of device storage that was required to contain the work file. - Elapsed Time -- The amount of wall-clock time required to construct the task image and produce the memory allocation file. Elapsed time is measured from the completion of option input to the completion of map output. This value excludes the time required to process the overlay description, parse the list of input file names, and create the cross-reference listing (if specified). Section F.1.1 contains a more detailed discussion of the work file and its relationship to task performance. # 4.5.2 Control of Memory Allocation File Contents and Format By using the memory allocation and input file switches described below, you can: - 1. Eliminate nonessential information from the output - Improve Task Builder throughput 3. Obtain output in a format that is more compatible with the hard copy device The /SH (short map) and /MA (map wanted) switches control the amount of information presented in the memory allocation file. When the /SH switch is included in the map file specification, the Task Builder eliminates: - 1. the file contents section of the allocation listing - 2. the list of global definitions by module - 3. the list of unresolved global references within each module All other contents can be found elsewhere in the memory allocation file. In general, the short format gives
enough information for debugging, yet reduces the task-building time considerably. You can get listings that contain a full description of the file contents at less frequent intervals and keep them for later reference. You can keep the contents of individual input files out of the listing by negating the /MA switch (/NOMA or /-MA). For each file so treated, the following information is omitted: - 1. PSECT contributions as shown in the memory allocation synopsis - 2. global symbol definitions - file contents - global definitions or references, and module names as shown in the cross-reference listing To disable map output for individual files, include /NOMA in the appropriate input file specification. To disable such output for the default system object module library and all memory-resident library files, include /NOMA in the memory allocation file specification. The width of the listing is controlled by the /WI (wide) switch. This switch is included in the map file specification to increase the listing format from 80 to 132 columns. The global symbols, overlay description, and cross-reference output are expanded to fill the additional space. Some systems are installed so that /-WI gives you 132-column output anyway. Check with your system management to be sure. # 4.6 MEMORY ALLOCATION MAP FOR BASIC-PLUS-2 VERSION OF USER The first run of the BASIC-PLUS-2 version of USER, discussed in Section 2.8, produces the memory allocation file shown in Figure 4-3. The memory map shown results from a task containing no overlays. That is, all four segments are in memory at all times. The overlaid version of the memory map is shown in Section 5.3. The task attributes section lists the principal characteristics of interest, such as task size in words, and task address limits. Items such as task attributes, that are not specified or that do not differ from the default, have been omitted. ``` BASIC2.OLB BASIC2.OLB BASIC2.OLB USER.OBJ INTRO.OBJ CRUNCH.OBJ CHATR.OBJ USER.OBJ INTRO.OBJ CRUNCH.OBJ CHATR.OBJ USER.OBJ INTRO.OBJ CRUNCH.OBJ CHATR.OBJ V01X03 V01X03 V01X03 V01X03 V01X03 V01X03 V01X03 V01X03 V0 V01X03 V01X03 V01X03 V01X03 Н PAGE IDENT 02CM 02CM 01CM USER INTRO CRUNCH CHATR $JPMOV $JPSUB CRUNCH CHATR SJPADD SCALLS CRUNCH USER INTRO USER INTRO TITLE 00308. 00060. 00038. 00000. 000000 00072. 00072. 00038. .00000 .00000 00000 00228. 00072. 00000 00444. PARTITION NAME: GEN IDENTIFICATION: V01X03 TASK UIC: [1,13] STACK LIMITS: 001000 001777 001000 00512. PRG XFR ADDRESS: 002674 TOTAL ADDRESS WINDOWS: 2. TASK IMAGE SIZE: 1568. WORDS TASK ADDRESS LIMITS: 000000 006027 R/W MEM LIMITS: 000000 006027 006030 03096. DISK BLK LIMITS: 000002 000010 000007 00007. TKB M26 22:44 000674 000344 000046 000046 000000 000000 000000 000464 000074 000110 000000 000000 000000 000110 000110 000000 002000 002000 002046 002532 002626 002674 002674 002674 002674 002674 003240 MEMORY ALLOCATION MAP 16-JUL-77 003570 003570 003570 003570 003570 003460 MEMORY ALLOCATION SYNOPSIS: BLK.: (RW, I, LCL, REL, CON) SARRAY: (RW, D, LCL, REL, CON) $CODE : (RW, I, LCL, REL, CON) $FLAGR: (RW, D, GBL, REL, CON) ROOT SEGMENT: USER USER. TSK SECTION *** ``` for BASIC-PLUS-2 Version of Memory Allocation File 4-3 Figure | n
B
T | J
BJ | n
D
Cl | u
u
u
u | ָּבָּל י בֿרָ
 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 | |--|--|--|--|--|--|--| | USER.OBJ
INTRO.OBJ
CRUNCH.OBJ
CHATR.OBJ | USER.OBJ
INTRO.OBJ
CRUNCH.OBJ
CHATR.J | USER.OBJ
USER.OBJ
INTRO.OBJ
CRUNCH.OBJ | CHATR.OBJ
USER.OBJ
INTRO.OBJ
CRUNCH.OBJ | CHATR.OBJ
USER.OBJ
USER.OBJ
INTRO.OBJ | CRUNCH.OBJ
CHATR.OBJ
USER.OBJ
INTRO.OBJ
CRUNCH.OBJ | Control of the contro | | V01X03
V01X03
V01X03
V01X03 | V01X03
V01X03
V01X03
V01X03 | V01X03
V01X03
V01X03 | V01X03
V01X03
V01X03
V01X03 | V01X03
V01X03
V01X03 | V01X03
V01X03
V01X03
V01X03 | 50
4
10
0 | | USER
INTRO
CRUNCH
CHATR | USER
INTRO
CRUNCH
CHATR | USER
USER
INTRO | CHATR
USER
INTRO | CHATR
USER
USER
INTRO | CRUNCH
CHATR
USER
INTRO
CRUNCH | CHAIR | | 000008.
000002.
000002.
000002. | 000000 | 00128.
00128.
00836.
00812. | 00008.
00168.
00108.
00020. | 00000 | | 00000.
00000.
00000.
00000.
000002. | | 0000010
0000002
0000002
0000002 | 000000 | 000200
000200
001504
001454
000010 | 000010
0000250
0000154
0000024 | | | 000000
000000
000000
000000
000000
00000 | | 003570
003570
003572
003574
003574 | 003600 | 003600
003600
004000
004000
005454 | 005504
005504
005504
005504 | 005730
005734
005754
005756
005756 | 005756
005756
005756
005756
005756 | 005756
005756
006026
006002
006026
006026 | | \$FLAGS: (RW,D,GBL,REL,CON) | \$FLAGT: (RW,D,GBL,REL,CON) | \$ICIO1: (RW,D,GBL,REL,OVR)
\$IDATA: (RW,D,LCL,REL,CON) | \$PDATA: (RW, D, LCL, REL, CON) | \$SAVSP: (RW,D,LCL,REL,CON)
\$STRNG: (RW,D,LCL,REL,CON) | \$TDATA: (RW, D, LCL, REL, CON) | \$\$ALER: (RW, I, LCL, REL, CON)
\$\$MRKS: (RO, I, LCL, REL, OVR)
\$\$OVRS: (RW, D, LCL, REL, OVR)
\$\$RDSG: (RO, I, LCL, REL, OVR)
\$\$RTS: (RW, I, GBL, REL, OVR)
\$\$SGD0: (RW, D, LCL, REL, OVR)
\$\$SGD2: (RW, D, LCL, REL, OVR) | Figure 4-3 (Cont.) Memory Allocation File for BASIC-PLUS-2 Version of USER | 002046-R
004050-R | | | | | |--|------------------------------|--|-----------------------|---| | SINITS
\$OTSVA | | | | | | SUI\$PA 002666-R
SUI\$PM 002660-R
SUI\$PP 002636-R
SUI\$PS 002652-R
SUI\$SP 002630-R | | | | Memory Allocation File for BASIC-PLUS-2 Version of USER | | INTRO 003240-R
CRUNCH 003350-R
CHATR 003460-R
SUIŞIP 002626-R
SUIŞMP 002642-R | | | | BASIC-PLUS-2 | | MOI\$PS 002556-R
MOI\$SP 002534-R
NOI\$P 002610-R
ONI\$P 002600-R
SBE\$ 002310-R | | | | ition File for | | MOIȘIP 002532-R MC
MOIȘMP 002546-R MC
NOIȘPA 002664-R NC
MOIȘPP 002572-R ON
MOIȘPP 002542-R SE | | (33. PAGES) | | _ | | S 002024-R 1
P 002002-R 1
002214-R 1
002510-R 1
002620-R 1 | STICS: | TOTAL WORK FILE REFERENCES: 901 WORK FILE READS: 0. WORK FILE WRITES: 0. SIZE OF CORE POOL: 8548. WORDS SIZE OF WORK FILE: 7168. WORDS | :14 | Figure 4-3 (Cont. | | ADI\$PS (ADI\$PS (CAL\$ (CBR\$ (CLI\$P (CLI\$P (C) | R STATI | WORK FILE REFERENCE OF FILE WRITES: 0 FICE WRITES: 0 F CORE POOL: 8 F WORK FILE: 7 | E:00:00 | Figure | | ADIȘIP 002000-R
ADIȘMP 002014-R
ADIȘPA 002040-R
ADIȘPM 002032-R
ADIȘPP 002010-R | *** TASK BUILDER STATISTICS: | TOTAL WORK F
WORK FILE WORK FILE W
SIZE OF CORE | ELAPSED TIME:00:00:14 | | GLOBAL SYMBOLS: # 4.7 MEMORY ALLOCATION MAP FOR COBOL VERSION OF USER Figure 4-4 shows the memory allocation map for the COBOL version of USER. # NOTE A single-segment task, such as that illustrated by the memory allocation map in Figure 4-4, does not require use of the /KER:xx switch. Compare the PSECT names in this map that begin with "\$C\$" (along the left margin) with their equivalents in Figure 5-15. Note that in many cases "\$C\$" has been replaced by "\$xx" where xx represents kernel characters for each module. PAGE TKB M26 10:51 MEMORY ALLOCATION MAP 16-JUL-77 TSK. TSK IDENTIFICATION: 182089 TASK UIC.:
[120,80] STACK LIMITS: 001000 001777 001000 00512. PRG XFR ADDRESS: 024570 TOTAL ADDRESS WINDOWS: 2. TASK IMAGE SIZE: 8032. WORDS TASK ADDRESS LIMITS: 000000 037203 ROOT SEGMENT: USER R/W MEM LIMITS: 000000 037203 037204 16004. DISK BLK LIMITS: 000002 000041 000040 00032. MEMORY ALLOCATION SYNOPSIS: COBLIB.OLB COBLIB.OLB COBLIB.OLB COBLIB.OLB COBLIB.OLB COBLIB.OLB COBLIB.OLB COBLIB.OLB COBLIB.OLB FILE 1A.24 IDENT ACDQIO 1A.17 ACDQIO 1A.17 1A.07 MSGPSR 1A.09 1A.3 1A.3 ADDSUB MSGPSR TITLE EDITX EDITX EXEC EXEC 02738. 02738. 00850. 00242. 00242. 03340. 00750. 00750. 00164. 00850. 00022. 03340. 00022. 00106. 00106.000244 001356 001356 005262 005262 001522 000026 000026 0000362 000244 006414 000152 000152 002000 002422 002422 002666 002666 004244 0011526 011526 013250 013276 013276 01360 01360 022274 022274 031426 031426 . BLK.: (RW, I, LCL, REL, CON) ACDDAT: (RW, D, GBL, REL, OVR) ACDINS: (RW, I, GBL, REL, OVR) ARITH : (RW, I, GBL, REL, OVR) EDITI : (RW, I, GBL, REL, OVR) EDITXD: (RW, D, GBL, REL, OVR) EXECD1: (RW, D, GBL, REL, OVR) EXECI2: (RW, I, GBL, REL, OVR) MSGPSD: (RW, D, GBL, REL, OVR) MSGPSR: (RO, I, GBL, REL, OVR) USER Memory Allocation File for COBOL Version of 4-4 | OLB. | OLB. | OLB. | 1.00 da 21. | OBJ | OBJ | OBJ. | , | 970. | OLB. | | USER.OBJ | OBJ | .0BJ | .OBJ | OLB | | USER.OBJ | INTRO.OBJ | I.OBJ | CHATR.OBJ | 1 | 3.0LB | a To | 0.0 | USER.OBJ | INTRO.OBJ | RUNCH, OBJ | R.OBJ | , | 8.0LB | USER, OBJ | INTRO.OBJ | H.OBJ | R.OBJ | B.OLB | | |--------------------------|--------------------------------|---------------------------------|---------------------------------|-----------|-------------|-----------|---------------------------------|--------|--------------------------------|----------------------------|----------|-----------|-------------|-----------|---------------------------------|---------------------------|--------------------------------|-----------|-------------|-----------|----------------------------|------------|---------------------------------|---------|--------------------------------|-----------|------------|--------|--------------------------------|------------|---------------------------------|-----------|-------------|--------|---------------------------------|---| | COBLIB.OLB | COBLIB.OLB | COBLIB.OLB | 00011 | INTRO.OBJ | CRUNCH, OBJ | CHATR.OBJ | | COBLIB | COBLIB.OLB | | USER | INTRO.OBJ | CRUNCH, OBJ | CHATR.OBJ | COBLIB.OLB | | USEF | INTRO | CRUNCH, OBJ | CHATE | | COBLIB.OLB | alo arraco | COBELL | USE | | O | CHATR | | совттв.огв | HSE. | INTR | CRUNCH, OBJ | CHATR | COBLIB.OLB | | | 1A.4 (| 1A.4 (| 1A.04 (| 00000 | 182088 | - | | , | IA.04 | 1A.04 | | 182089 | 182088 | 182089 | 182089 | 1A, 04 | | 182089 | 182088 | 182089 | 182089 | | 1A.04 | , K | TA : 04 | 182089 | 182088 | 182089 | 182089 | | 1A.04 | 182089 | 182088 | 182089 | 182089 | 1A.04 | | | UTIL | UTIL | TASKCA | | TNTRO | ж | | | TASKCA | TASKCA | | | | CRUNCH | CHATR | TASKCA | | USER | 0 | Ξ | CHATR | | TASKCA | | TASKCA | USER | INTRO | CRUNCH | CHATR | | TASKCA | 9251 | TNTRO | CRUNCH | CHATR | TASKCA | 1 | | 00140. | | 00000 | | 00000 | 00000 | 00000 | .00000 | 00000 | 00000 | .00000 | .00000 | .00000 | .00000 | .00000 | 00000 | 00000 | 00000 | 00000 | 00000 | .00000 | 00005. | 00005. | 00000 | 00000 | 00000 | | | .00000 | .00000 | 00000 | 06000 | 00000 | | | 00000 | , | | 000214 | 000012 | 000000 | 000000 | 00000 | 000000 | 000000 | 000000 | 000000 | 000000 | 000000 | 000000 | 000000 | 000000 | 000000 | 000000 | 00000 | 000000 | 000000 | 000000 | 000000 | | | 000000 | | 000000 | 000000 | 000000 | 000000 | 000000 | 000000 | 000132 | | | | 000000 | | | 022446 | 022662 | 022674
022674 | 022674 | 0226/4 | 022674 | 022674 | 022674 | 022674 | 022674 | 022674 | 022674 | 022674 | 022674 | 022674 | 022674 | 10220 | 022674 | 022674 | 022674 | 022674 | 022674 | 022674 | 022676 | 022676 | 022676 | 072676 | 022676 | 022676 | 022676 | 022676 | 022676 | 070770 | 022676 | 022676 | 023030 | כ | | : (RW, I, GBL, REL, OVR) | UTILD : (RW, D, GBL, REL, OVK) | \$CBBD0: (RW, I, GBL, REL, OVR) | \$CBBD1: (RW, I, GBL, REL, CON) | | | | \$CBBD2: (RW, I, GBL, REL, OVR) | | SCBFAU: (KW, 1, GBL, KEL, OVK) | SCBFA1: (RW.I,GBL,REL,OVR) | | | | | \$CBFD0: (RW, I, GBL, REL, OVR) | (NOO rad rap t way franco | SCBFDI: (KW, I, GBL, KEL, CON) | | | | SCBFD2: (RW.I,GBL,REL,OVR) | | \$CBIF0: (RW, I, GBL, REL, OVR) | | SCBIFI: (KW, I, GBL, KEL, CON) | | | | SCBIF2: (RW, I, GBL, REL, OVR) | | \$CBIOT: (RW, I, GBL, REL, OVR) | | | | \$CBIR0: (RW, I, GBL, REL, OVR) | | Figure 4-4 (Cont.) Memory Allocation File for COBOL Version of USER | \$CBIR1: (RW, I, GBL, REL, CON) | 023030 | 000000 | 00000 | į | | 400 | | |----------------------------------|--------|--------|--------|--------|--------|------------|--| | | 2303 | 000000 | 00000 | USER | 182089 | TMER.OBJ | | | | 023030 | 000000 | 00000 | LNTRO | 102000 | TALKO OBJ | | | | 023030 | 00000 | 00000 | CHATR | 182089 | CHATE, OBJ | | | SCBIR2 (RW.I.GBL. BEL.OVR) | 023030 | 000000 | 00000 | |) | | | | | 023030 | 000000 | 00000 | TASKCA | 1A.04 | COBLIB.OLB | | | \$CBKB0: (RW, I, GBL, REL, OVR) | 023030 | 000000 | 00000 | | | | | | | 023030 | 000000 | 00000 | TASKCA | 1A.04 | COBLIB.OLB | | | \$CBKB1: (RW, I, GBL, REL, CON) | 023030 | 000000 | 00000. | 1 | | | | | | 023030 | 000000 | 00000 | USER | 182089 | USER.OBJ | | | | 023030 | 000000 | 00000 | INTRO | 182088 | INTRO, OBJ | | | | 023030 | 000000 | 00000 | CHUNCH | 182089 | CHATE OBJ | | | SCBKB2: (RW.I.GBL, REL, OVR) | 023030 | 000000 | 00000 | | | | | | | 023030 | 000000 | .00000 | TASKCA | 1A.04 | COBLIB.OLB | | | \$CBKD0: (RW, I, GBL, REL, OVR) | 023030 | 000000 | .00000 | | | | | | | 023030 | 000000 | 00000 | TASKCA | 1A.04 | COBLIB.OLB | | | \$CBKD1: (RW, I, GBL, REL, CON) | 023030 | 000000 | 00000 | | | | | | | 023030 | 000000 | .00000 | USER | 182089 | USER, OBJ | | | | 023030 | 000000 | 00000 | INTRO | 182088 | INTRO.OBJ | | | | 023030 | 000000 | .00000 | CRUNCH | 8208 | CRUNCH.OBJ | | | | 023030 | 000000 | 00000 | CHATR | 182089 | CHATR.OBJ | | | \$CBKD2: (RW, I, GBL, REL, OVR) | 023030 | 000000 | .00000 | | | | | | | 023030 | 000000 | .00000 | TASKCA | 1A.04 | COBLIB.OLB | | | \$CBSWT: (RW, I, GBL, REL, OVR) | 023030 | 000002 | 00002. | | | | | | | 023030 | 000002 | 00002. | USER | 182089 | USER, OBJ | | | | 023030 | 000002 | 00005. | INTRO | 182088 | INTRO.OBJ | | | | 023030 | 000002 | 00002. | CRUNCH | 182089 | CRUNCH.OBJ | | | | 023030 | 000002 | 00002. | CHATR | 182089 | CHATR.OBJ | | | | 023030 | 000000 | 00000 | TASKCA | 1A.04 | COBLIB.OLB | | | \$CBISK: (RW, I,GBL,REL,OVR) | 023032 | | 00032. | | • | 410 | | | (div lad id) : (avaba | 023032 | 000040 | 00000 | TASKCA | 1A.04 | COBLIB.OLB | | | SCRAMI (KW, I, GBL, KEL,OVK) | 023072 | | 00000 | TASKCA | 1A.04 | COBLIB.OLB | | | SCBXA1: (RW, I, GBL, REL, OVR) | 023072 | | 00000 | | | | | | | 023072 | 000000 | 00000 | USER | 182089 | USER.OBJ | | | | 023072 | 000000 | 00000 | INTRO | 182088 | INTRO.OBJ | | | | 023072 | _ | .00000 | CRUNCH | 182089 | CRUNCH.OBJ | | | | 023072 | 000000 | .00000 | CHATR | 182089 | CHATR.OBJ | | | \$CBXA2: (RW, I, GBL, REL, OVR) | 023072 | | .00000 | | | | | | | 023072 | 000000 | .00000 | TASKCA | 1A.04 | COBLIB.OLB | | | \$C\$ADT: (RW, I, GBL, REL, CON) | 2 | 000000 | 00000 | | | | | | | 023072 | 0000 | 00000 | USER | 182089 | | | | | 023072 | 000000 | 00000 | INTRO | 182088 | INTRO.OBJ | | Figure 4-4 (Cont.) Memory Allocation File for COBOL Version of USER | OBJ | | USER.OBJ | .0BJ | .0BJ | .OBJ | | USER.OBJ | .0BJ | I.OBJ | 4.0BJ | | USER.OBJ | INTRO.OBJ | 1.0BJ | CHATR. UBJ | | USER.OBJ | INTRO.OBJ | H.OBJ | CHATR.OBJ | | USER.OBJ | INTRO.OBJ | H.OBJ | CHATR.OBJ | 1 | USER.OBJ | INTRO.OBJ | H.OBJ | R.OBJ | | USER.OBJ | INTRO.OBJ | H.OBU | CHATR.OBJ | | USER.OBJ | INTRO.OBJ | CRUNCH, OBJ | CHATR.OBJ | 1 | USER.OBJ | INTRO.OBU | |-------------|--------------------------|----------|-------------|-----------|-----------|---------------|----------|-----------|-------------|-----------|------------------------------|----------|-----------|-------------|------------|--------------------------------|----------|-----------|------------|-----------|--------------------------------|----------|-----------|------------|-----------|--------------------------------|----------|-----------|-------------|--------|---------------------------------|----------|-----------|---------------|-----------|---------------------------------|----------|-----------|-------------|-----------|--------------------------------|----------|-----------| | CRUNCH, OBJ | | USER | CRUNCH, OBJ | INTRO.OBJ | CHATR.OBJ | | USEF | INTRO.OBJ | CRUNCH, OBJ | CHATR.OBJ | | USEI | INTRO | CRUNCH, OBJ | CHAT | | USE | INTR | CRUNCH.OBJ | CHAT | | USE | INTR | CRUNCH.OBJ | CHAT | | USE | INTR | CRUNCH, OBJ | CHATR | | | | \mathcal{L} | | | USE | INTR | CRUNC | CHAT | | , | | | 182089 | | 182089 | 182089 | 182088 | 182089 | | 182089 | 182088 | 182089 | 182089 | | 182089 | 182088 | 182089 | 182089 | | 182089 | 182088 | 208 | 182089 | | 182089 | 182088 | 182089 | 182089 | | 182089 | 182088 | 182089 | 182089 | | 182089 | 182088 | 182089 | 182089 | | 182089 | 182088 | 182089 | 182089 | | 182089 | 182088 | | CRUNCH | | USER | CRUNCH | INTRO | CHATR | | USER | INTRO | CRUNCH | | | USER | INTRO | CRUNCH | CHATR | | USER | INTRO | CRUNCH | CHATR | | USER | INTRO | CRUNCH | CHATR | | USER | INTRO | CRUNCH | CHATR | | USER | INTRO | CRUNCH | CHATR | | USER | INTRO | CRUNCH | CHATR | | USER | INTRO | | | 00072. | .00000 | 00030 | 00012. | 00000 | .08900 | 00202. | 00148. | 00182. | 00148. | 00078. | 00030. | .00000 | 00048. | 00000 | 00100. | 00016. | 00030. | 00030. | 00020. | .00000 | 00000 | 00000 | .00000 | .00000 | 00420. | 00012. | 00216. | 00014. | 00178. | 00018. | 00012. | 00002. | 00005. | 00002. | 00132. | 00012. | | | _ | _ | | 00008. | | 000000 | 000010 | 000000 | 000036 | 000014 | 000036 | 001250 | 000312 | 000224 | 000266 | 000224 | 000116 | 000036 | 000000 | 090000 | 000000 |
000152 | 000020 | 000036 | 000036 | 000036 | | 000000 | 000000 | | 000000 | | 000014 | 000330 | 000016 | 000262 | _ | | | _ | _ | _ | 000014 | _ | _ | | 000034 | _ | 0000010 | | 023072 | 023072 | 023072 | 023106 | 023072 | 023144 | 023202 | 023202 | 023514 | 023740 | 024226 | 024452 | 024452 | 024510 | 024510 | 024570 | 024570 | 024570 | 024610 | 024646 | 024704 | 024742 | 024742 | 024742 | 024742 | 024742 | 024742 | 024742 | 024756 | 025306 | 025324 | 025606 | 025606 | 025622 | 025624 | 025626 | 025630 | 025630 | 025644 | 025732 | 025754 | 026034 | 603 | 026040 | | | _ | | | | | CON) | | | | | _ | | | | | CON) | | | | | L. RET. | | | | | GBL, REL, CON | | | | | L.REL | | | | | L, REL | | | | | IL. REL | | | | | IL, REL | | | | | 3L, REL | | | | | BL, REI | | | | | SCSPDT: (RW, I, GBL, REL, CON) | | | | | T. GB | | | | | I, GB | | | | | I.GB | | | | | BD'I' | | | | | T. T. GE | | | | | J, I, GE | | | | | 1, I, G | | | | | N, I, G | | | | | E. I. | | | | | Ma/ | | | | | : (RW.I | | | | | (RW | | | | | (RW | | | | | (RW | | | | | . (R | | | | | R | • | | | | : (R | | | | | | • | | | | SCSABG (PW I GBL BELLCON | · | | | | SCSDAT | | | | | SCSDDD: (RW. I.GBL, REL, CON | 1 | | | | SCSENT: (RW, I, GBL, REL, CON) | | | | | SCSTOR: (RW. T. GBL. REL. CON) | 201404 | | | | SCSLIT: (RW, I, GBL, REL, CON) | | | | | SC\$LST: (RW, I, GBL, REL, CON) | | | | | SC\$LTD: (RW, I, GBL, REL, CON) | | | | | SCSPD | Figure 4-4 (Cont.) Memory Allocation File for COBOL Version of USER | CHATR.OBJ
CHATR.OBJ
USER.OBJ
INTRO.OBJ
RUNCH.OBJ | USER.OBJ
NTRO.OBJ
UNCH.OBJ
HATR.OBJ | USER.OBJ
INTRO.OBJ
RUNCH.OBJ
CHATR.OBJ | USER.OBJ
INTRO.OBJ
RUNCH.OBJ
CHATR.OBJ | USER.OBJ
INTRO.OBJ
RUNCH.OBJ
CHATR.OBJ | INTRO.OBJ
RUNCH.OBJ
CHATR.OBJ | 3.OLB | 3.OBL | 3.OLB | |---|--|--|--|--|--------------------------------------|---|--|--| | CRUNCH.OBJ
CHATR.OBJ
USER.OBJ
INTRO.OBJ
CRUNCH.OBJ
CHATR.OBJ | USER.OBJ
INTRO.OBJ
CRUNCH.OBJ
CHATR.OBJ | USER.OBJ
INTRO.OBJ
CRUNCH.OBJ
CHATR.OBJ | USER.OBJ
INTRO.OBJ
CRUNCH.OBJ
CHATR.OBJ | USER.OBJ
INTRO.OBJ
CRUNCH.OBJ
CHATR.OBJ | O | COBLIB.OLB | COBLIB.OBL | COBLIB.OLB
COBLIB.OLB
COBLIB.OLB | | 182089
182089
182089
182089
182089 | 182089
182088
182088
182089 | 182089
182088
182089
182089 | 182089
182088
182089
182089 | 182089
182088
182089
182089 | 182088
182089
182089 | 1A.21
1A.21 | 1A.08
1A.08 | 1A.21
1A.21
1A.08 | | CRUNCH
CHATR
USER
INTRO
CRUNCH | USER
INTRO
CRUNCH
CHATR | USER
INTRO
CRUNCH
CHATR | USER
INTRO
CRUNCH
CHATR | USER
INTRO
CRUNCH
CHATR | INTRO
CRUNCH
CHATR | xGO x | XCALL | XGO
XGO
XCALL | | 00008.
00008.
00560.
00140.
00140. | 000000 | 00024.
00024.
00024.
00024. | 00066.
00066.
00066. | 00588.
00088.
00174.
00186. | 00204.
00048.
00078. | 00018.
00018.
00012.
00012. | 00088.
00088.
00034. | 00106.
00106.
00016.
00016.
00012. | | 0000010
000010
001060
000214
000214 | 900000 | | | 0001114
0000130
000256
000272
000214 | | | 000130
000130
000042
000042 | 000152
000152
000020
000020
000014
000014 | | 026050
026060
026070
026070
026304
026520 | 027150
027150
027156
027156
027156 | 027156
027156
027206
027236
027266 | 027316
027420
027522
027522 | 027726
027726
030056
030334
030626 | 031042
031042
031122
031240 | 036046
036046
036070
036070 | 036104
036104
036234
036234 | 036276
036276
036450
036450
036470 | | CON) | | | | (CON) | CON) | CON) | CON) | CON) | | ,,REL, | , REL, | REL | | , REL | , REL | (RO, I, GBL, REL, CON
(RO, I, GBL, REL, CON | , REL | : (RO, I, GBL, REL, CON) : (RO, I, GBL, REL, CON) : (RO, I, GBL, REL, CON) | | I,GBI | I,GBI | I,GBI | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | I,GBI | I,GBI | 1,98
1,98 | I,GB
I,GB | I,GB
I,GB
I,GB | | (RW, | (RW, | (RW, | , MA | (RW, | (RW, | (RO, | (RO, | (RO, | | \$C\$PFM: (RW, I, GBL, REL, CON) | \$C\$SDT: (RW, I, GBL, REL, CON) | \$C\$USE: (RW, I, GBL, REL, CON) | WCANKKK: (KM) I) GBL J KELL CON) | \$C\$001: (RW, I, GBL, REL, CON) | \$C\$002: (RW, I, GBL, REL, CON) | \$XABRT: (RO, I, GBL, REL, CON
\$XALT: (RO, I, GBL, REL, CON | \$XCALL: (RO, I, GBL, REL, CON
\$XDDDI: (RO, I, GBL, REL, CON | \$XENDP: (RO, I, GBL, REL, CON)
\$XERR: (RO, I, GBL, REL, CON)
\$XEXIT: (RO, I, GBL, REL, CON) | | | | | | | | | | | Figure 4-4 (Cont.) Memory Allocation File for COBOL Version of USER | | | | | \$XCNDT 020330-R \$XMBD 017560-R
\$XDDDI 036234-R \$XMCC 016644-R
\$XDIVB 010306-R \$XMDB 017206-R
\$XDIVR 010300-R \$XMDD 017044-R
\$XEACC 002772-R \$XMDD 01526-R
\$XEDIS 003234-R \$XMJR 015174-R
\$XENDP 036276-R \$XMNA 013230-R
\$XERN 036470-R \$XMNA 013230-R
\$XGOD 036504-R \$XMULB 007520-R
\$XGOP 036504-R \$XNULB 007520-R
\$XGOF 036504-R \$XNULR 007520-R
\$XGOF 036504-R \$XNULR 007520-R
\$XGON 036504-R \$XNUR 007200-R
\$XGON 036504-R \$XNUR 007200-R
\$XGON 036504-R \$XNUR 007200-R
\$XGON 036504-R \$XNUR 00700-R
\$XGON 036504-R \$XNUR 00700-R
\$XGON 036506-R \$XNUR 037036-R
\$XIFA 022146-R \$XSUB 006610-R
\$XIFN 022034-R \$XSUBR 037104-R | |--|--|--|---|---| | .OLB | .0LB | 0.0 Bull Bull Bull Bull Bull Bull Bull Bul | | USSGN 006354-R WFB1 013402-R WFB2 013422-R WFB3 013442-R WFB4 013524-R WFD1 013534-R SCBSWT 023030-R SCBSWT 023030-R SCADBR 006634-R SXADBR 006634-R SXADDB 00642-R SXADDB 00642-R SXADDR 00444-R SXADDR 004436-R SXALT 036070-R SXALT 036070-R SXALT 036070-R SXALT 036070-R | | 1A.21 COBLIB.OLB | 1A.21 COBLIB.OLB 1A.21 COBLIB.OLB | 1A.21 | | RSCRY 013572-R RSTRN 022642-R SAVE 022622-R SEPSGN 006474-R SIGNF 013566-R SIZFLG 013600-R SSTTBL 036026-R SSTTBL 036026-R SSTTBL 036026-R UCFV 006524-R UDCS 005440-R UDCS 005440-R UDCS 005440-R UDCS 00542-R UGC 005732-R UGC 005732-R UGC 005732-R UGC 005736-R | | 000120 00080.
000120 00080. XGO
000052 00042.
000052 00042. | 0000032
0000032
0000070
0000016 | 000046 00038.
000046 00038.
000076 00062.
000076 00062. | 0000024 00020.
000000 00000.
000000 00016.
000000 00000.
000000 00000. | INTEG 035140-R INTRO 024610-R IXDDD 013604-R ILDL 013372-R INHLD 013570-R MASKPT 020360-R MSGPTL 034330-R MSGRTL 034330-R MSGRTL 034330-R MSGRTL 034004-R MSGRTL 034004-R MSGRTL 034004-R MSGRTL 034004-R MSGRTL 034004-R MSGRTL 03400-R NGFLD0 011030-R NGFLD1 011030-R NGFLD1 011030-R NGFLD1 013650-R R PARAM 013610-R | | | \$XGOUN: (RO, 1, GBL, REL, CON) 036676
036676
\$XINIT: (RO, I, GBL, REL, CON) 036730
036730
\$XSTOP: (RO, I, GBL, REL, CON) 037020 | | \$\$ALER: (RW, I, LCL, REL, CON) 031356
\$\$MRKS: (RO, I, LCL, REL, OVR) 037202
\$\$OVRS: (RW, D, LCL, REL, OVR) 031402
\$\$RDSG: (RO, I, LCL, REL, OVR) 037202
\$\$RTS: (RW, I, GBL, REL, OVR) 031422
\$\$GD0: (RW, D, LCL, REL, OVR) 031424
\$\$SGD2: (RW, D, LCL, REL, OVR) 031424 | MBOLS: 2476-R C3F 013724-R 3564-R DCMLPT 022662-R 2460-R DSETNG 006514-R 2456-R DSETNG 006514-R 3154-R EASTP 006736-R 3412-R EMBB 015340-R 3432-R EMCC 016656-R 3452-R EMCC 01656-R 3454-R EMCD 017056-R 3514-R EMDD 017056-R 3514-R EMDD 017056-R 4004-R EMJD 01556-R 4004-R EMJR 01556-R 4104-R | | \$XGO : (RO, I, \$XGOD : (RO, I, | \$XGOUN: (RO, I
\$XINIT: (RO, I
\$XSTOP: (RO, I | \$XSTPR: (RO, I
\$XSUBK: (RO, I | \$\$ALER: (RW, I
\$\$MRKS: (RO, I
\$\$OVKS: (RW, D
\$\$RDSG: (RO, I
\$\$RTS : (RW, I
\$\$SGDO: (RW, D | ACCBUF 002476-R ACCGIO 003606-R ADDET 003554-R ADDEU 002456-R ADLUN 002456-R ASLUN 003442-R ASLUN 003442-R AWFB1 013412-R AWFB2 013412-R AWFB2 013412-R AWFB4 013464-R AWFD1 013544-R BAN 004404-R BAN 004374-R BAN 004374-R BAN 004374-R CDN 013374-R CDN 013374-R CONDR 013374-R | Figure 4-4 (Cont.) Memory Allocation File for COBOL Version of USER | \$XSUBR 004736-R
\$XSWT 020442-R
\$XSZEC 020276-R |
--| | \$XINIT 036730-R
\$XIXBY 015106-R
\$XIXCP 015116-R
\$XMAL 016712-R
\$XMALD 013212-R
\$XMBB 015326-R | | SXCCB 021072-R
SXCCC 020674-R
SXCCCS 020660-R
SXCDD 021356-R
SXCHD 020310-R | | 016752-R
010070-R
020172-R
005302-R
024570-R
006564-R | | UMB
UMLQ
UMND
USD
USER
USER | | PARAM2 013652-R PARAM3 013654-R PARAM4 013656-R PUTCMG 022446-R QIODPB 002422-R RNDFL 013376-R | | 013310-R
013300-R
004066-R
014646-R
013370-R | | FCS
FIRLUN
GETSWT
GETUB
HDL
IDXMS1 | | 003332-R
024646-R
013606-R
013660-R
013660-R | | CRLFQI
CRUNCH
CTEST
CIFC
CZFC
CZFC | *** TASK BUILDER STATISTICS: TOTAL WORK FILE READS: 0. WORK FILE WRITES: 0. SIZE OF CORE POOL: 6436. WORDS (25. PAGES) SIZE OF WORK FILE: 4608. WORDS (18. PAGES) ELAPSED TIME:00:00:33 Figure 4-4 (Cont.) Memory Allocation File for COBOL Version of USER | | · | | | |--|---|--|---| | | | | | | | | | | | | | | • | | | | | | ## CHAPTER 5 ## OVERLAY CAPABILITY The Task Builder gives you the means to reduce the memory and/or virtual address space requirements of a task. Tree-like overlay structures created with the aid of the Overlay Description Language (ODL) enable you to have only the operating portion of your task in memory at any given time. This chapter covers the following major topics: - Overlay Description - USER Overlay Tree - Subroutine Communication - Summary of Overlay Description # 5.1 OVERLAY DESCRIPTION To create an overlay structure, divide a task into a series of segments as follows: - A single, controlling, root segment (always in memory) - Any number of overlay segments (residing on disk and sharing virtual address space and memory with one another according to your overlay structure) A segment is a set of modules and PSECTs. Segments that overlay each other must be logically independent; that is, the components of one segment cannot reference components of any segment with which it shares virtual address space. Consider also the general flow of control within the task. There are several large classes of tasks that can be handled effectively by an overlay structure. For example, one that moves sequentially through a set of modules is well-suited to an overlay structure. Another that selects one of several modules according to the value of an item of input data is also well-suited, if speed of execution is not critical. Tasks having several distinct functions are overlay candidates, too. You must decide what kind of overlay segment to have at a given position in the structure and how to construct it. Dividing a task into disk-resident overlays saves physical space, but introduces the overhead activity of loading these segments each time they are needed and not present in memory. # 5.1.1 Disk-Resident Overlay Structures Disk-resident overlays conserve memory by sharing it. Segments that are logically independent need not be present in memory at the same time. Therefore, they can be allocated a common physical area in memory for use by each as needed. The example task TK1 shows the use of disk-resident overlays. consists of four input files. Each input file contains a single module having the same name as the file. The task is built by the command: TKB TK1=CNTRL,A,B,C where the file extensions conform to the defaults listed in Table 2-1. The complete filenames and extensions are: - TK1.TSK - CNTRL.OBJ - A.OBJ - B.OBJ - C.OBJ Here, the modules A, B, and C are logically independent, so: - A does not call B or C and does not use the data of B or C. B does not call A or C and does not use the data of A or C. C does not call A or B and does not use the data of A or B. You can define a disk-resident overlay structure in which A, B, and C are overlay segments that occupy the same storage area in memory. The flow of control for the task is as follows: - TKl starts in the segment CNTRL. - CNTRL calls A and A returns to CNTRL. - CNTRL calls B and B returns to CNTRL. CNTRL calls C and C returns to CNTRL. - CNTRL calls A again and A returns to CNTRL. - TKl ends in the segment CNTRL. In this example, overlay loading occurs only four times during the execution of the task. So you can reduce the memory requirements of a similar task without unduly increasing the overhead activity. The effect of an overlay structure on memory allocation for the task is discussed in the following paragraphs. The lengths of the modules (expressed in octal) are: | Module | Length in Bytes | |--------|-----------------| | CNTRL | 10000 | | A | 6000 | | В | 5000 | | С | 1200 | The memory allocation produced when you build the task as a single segment is shown in Figure 5-1. Figure 5-1 TKl Memory Allocation Figure 5-2 shows the memory allocation produced when you use the overlay capability and build a multi-segment task. Figure 5-2 Allocation for a Multi-Segment Task The memory allocation for a single-segment task requires 24200 (octal) bytes, and the multi-segment task requires 16000 (octal) bytes resulting in a net saving of 6200 (octal) bytes. In addition to the module storage, storage is required for overhead in handling the overlay structure. This overhead is described further on and illustrated in the examples. # NOTE Module lengths are given in octal and module length calculations are done using octal arithmetic. See Appendix B for an octal-to-decimal conversion table and instructions. You can determine the amount of storage required for the task by adding the length of the root segment and the length of the longest overlay segment. Overlay segments A and B in Figure 5-2 are much longer than overlay segment C. If you can divide A and B into sets of logically independent modules, you can reduce task storage requirements even more. As shown in Figure 5-3, A can be divided into a control program (A0) and two overlays (A1 and A2). A2 is then divided into a control module (A2) and two overlays (A21 and A22). Similarly, the B overlay can be divided into a control module (B0) and two overlays (B1 and B2). The unlabelled portions of the block diagram represent unused memory space. The memory allocation for the task produced by the additional overlays defined for A and B is shown in Figure 5-3 below. The left side of the figure is unmarked for clarity. The paragraphs following the figure discuss the method of reading a block diagram. Figure 5-3 How to Read a Block Diagram A vertical line can be drawn through a memory diagram to show which modules are in memory at a given time. On the right side of Figure 5-3 the line at t shows memory when CNTRL, A0, and A1 are loaded. The line at t+ Δ t shows memory when CNTRL, A0, A2, and A21 are loaded, and so on. A horizontal line can be drawn through a memory diagram to show which segments share the same storage. The line at 11000 passes through Al, A21, A22, B1, B2, and C, all of which can use the same memory. The line at 7500 passes through Al, A2, B1, B2, and C, all of which can use the same memory. ## 5.1.2 Overlay Tree The arrangement of overlay segments in a task can also be represented schematically as a tree-like structure. Each branch in the tree represents a segment. Parallel branches rising from the same horizontal bar denote segments that overlay one another; these segments must be logically independent. Branches connected end-to-end represent segments that do not share virtual or physical memory with each other; these segments need not be logically independent. The topmost segments, which contain no subroutine calls, are leaves. The Task Builder provides a language for representing an overlay structure consisting of one or more trees (described in Section 5.1.4). The single overlay tree shown in Figure 5-4 below represents the overlay structure for the block diagram in Figure 5-3. Figure 5-4 Multi-level Overlay Tree The tree in Figure 5-4 has a root (the main module, or driver, CNTRL) and two main branches (the major subprograms A0 and B0). It also has five leaves (the minor subroutines A1, A21, A22, B1, and B2). Subprogram C, which calls no other routines, can also be considered to be a leaf. Relationships between the modules in an overlay tree are expressed as paths. Paths show the flow of control between modules in a tree, and show how to access a given module. The tree has as many paths as it has leaves. The path down is defined from the leaf to the root. For example in Figure 5-4: A21-A2-A0-CNTRL The path up is defined from the root to the leaf: CNTRL-B0-B1 If you know the properties of the tree and its paths, you will better understand overlay loading and global symbol resolution (see also Section 4.3). 5.1.2.1 Overlay Loading - Modules can call other modules that exist on the same path. Look at the tree in Figure 5-4. Module CNTRL is common to every path of the tree and therefore can call and be called by every module in the tree. Module A2 can call the modules A21, A22, A0, and CNTRL because these modules are on the same paths as A2. But A2 cannot call A1, B1, B2, B0 or C because these modules are on different paths from A2. When a module in one overlay segment calls a module in another overlay segment, the called segment must be in memory or must be loaded. The autoload mechanism, which handles all high-level language loading, is described in Chapter 6. 5.1.2.2 Resolving Global Symbols in a Multi-segment Task - In resolving global symbols for a multi-segment task, the Task Builder performs the same activities as for a single-segment task. The rules defined in Section 4.3 for the resolution of global symbols in a single-segment task also apply in this case, but the scope of the global symbols is restricted by the overlay structure. In a single-segment task, any module can reference any global symbol. In a multi-segment task, however, a module can reference only global symbols that are defined on the same path.
The following points, illustrated in the tree shown in Figure 5-5, describe the two distinct cases of multiply-defined symbols, and ambiguously-defined symbols. In a single segment task, if two global symbols with the same name are defined, the symbols are considered multiply-defined and an error message is produced. In a multi-segment task: - Two global symbols with the same name can be legally defined if they are on separate paths and are not referenced from a segment common to both. - A global symbol defined more than once on separate paths, but referenced from a segment that is common to both, is ambiguously defined. - A global symbol defined more than once on a single path is multiply defined. The procedure for resolving global symbols can be summarized as follows: - 1. The Task Builder selects an overlay segment for processing. - 2. Each module in the segment is scanned for global definitions and references. - 3. If the symbol is a definition, the Task Builder searches all segments on paths that pass through the segment being processed, and looks for references that must be resolved. - 4. If the symbol is a reference, the Task Builder performs the tree search as described in step 3, looking for an existing definition. - 5. If the symbol is new, it is entered in a list of global symbols associated with the segment. Overlay segments are selected for processing in an order corresponding to their distance from the root. The Task Builder considers a branch farther away from the root or a leaf before processing an adjoining branch. When a segment is being processed, the search for global symbols proceeds in the following order: - the segment being processed - all segments toward the root - all segments away from the root - all co-trees (see Section 5.1.4) Figure 5-5 Global Symbols in a Tree The following notes apply to the use of the symbols Q, R, S, and T, shown in the tree structure in Figure 5-5 above: - The global symbol Q is defined in the segment AO and BO. The reference to Q in segments A22 and Al are resolved by the definition in AO. The reference to Q in Bl is resolved by the definition in BO. The two definitions of Q are distinct in all respects and occupy different overlay paths (CNTRL-AO-A2-A22 and CNTRL-BO-Bl, respectively). - 2. The global symbol R is defined in the segment A2. The reference to R in A22 is resolved by the definition in A2 because there is a path to the reference from the definition (CNTRL-A0-A2-A22). The reference to R in A1, however, is undefined because there is no definition for R on the path through A1 (CNTRL-A0-A1). To correct this situation, move the definition of R to A0. - 3. The global symbol S is defined in AO and BO. References to S from Al, A2l, or A22 are resolved by the definition in AO, and references to S in Bl and B2 are resolved by the definition in BO. However, the reference to S in CNTRL cannot be resolved because there are two definitions of S on separate paths through CNTRL (CNTRL-AO and CNTRL-BO). S is ambiguously defined. To correct this situation, move the definition of S to CNTRL. - 4. The global symbol T is defined in A21 and A0. Because there is a single path through the two definitions (CNTRL-A0-A2-A21), the global symbol T is multiply defined. To correct this situation, remove the erroneous definition and, preferably, place the correct definition in A0. 5.1.2.3 Resolving Global Symbols from the Default Library - The process of resolving global symbols may require two passes over the tree structure. The global symbols discussed in the previous section are included in user-specified input modules that the Task Builder scans on the first pass. If any undefined symbols remain, the Task Builder makes a second pass over the structure to try to resolve such symbols by searching the default object module library (normally SY:[1,1]SYSLIB.OLB). Any undefined symbols remaining after the second pass are reported to you at the terminal. When you define multiple tree structures (see Section 5.1.4), you run the risk of multiply or ambiguously defining global symbols. This can occur when the Task Builder tries to resolve global symbols during its second pass over the co-tree structures. Multiple or ambiguous definitions of global symbols can cause overlay segments to be inadvertently displaced from memory by the overlay loading routines, thereby causing run-time failures to occur. To eliminate these conditions, the tree search on the second pass is restricted to: - The segment in which the undefined reference has occurred - All segments in the current tree that are on a path through the segment - The root segment When the current segment is the main root, the tree search is extended to all segments. You can extend the tree search to all segments for the entire tree by including the /FU (full search) switch in the task image file specification for the entire tree. 5.1.2.4 Resolving PSECTS in a Multi-segment Task - A PSECT has an attribute that indicates whether the PSECT is local (LCL) to the segment in which it is defined or is global (GBL). Local PSECTS with the same name can appear in any number of segments. (Thus, an often-used routine can be called with minimum system overhead from many places in your task.) Storage is allocated for each local PSECT in the segment in which it is declared. Global PSECTS that have the same name, however, must be resolved by the Task Builder. When a global PSECT is defined in several overlay segments along a common path, the Task Builder allocates all storage for the PSECT in the overlay segment closest to the root. BASIC-PLUS-2 COMMON and MAP blocks are translated into global PSECTS and given the overlay attribute. In the tree shown in Figure 5-6 the common block COMA is defined in modules A2 and A21. The Task Builder allocates the storage for COMA in A2, because that segment is closer to the root than the segment that contains A21. If the programs A0 and B0 use a common block COMAB, however, the Task Builder allocates the storage for COMAB in both the segment that contains A0 and the segment that contains B0. A0 and B0 cannot communicate through COMAB. When the overlay segment containing B0 is loaded, any data stored in COMAB by A0 is lost. Figure 5-6 shows the tree for task TK1, including the allocation of the common blocks COMA and COMAB. Figure 5-6 Common Blocks in a Tree You can specify PSECT allocation. If AO and BO need to share the contents of COMAB, you can force the allocation of COMAB into the root segment by using the .PSECT directive, described in Section 5.1.3.4. # 5.1.3 Overlay Description Language (ODL) The Task Builder provides a language that lets you describe the overlay structure of a task. An overlay description is a text file consisting of a series of ODL directives, one directive per line. This file is entered in a Task Builder command line, and is identified as an ODL file by the presence of the /MP switch (see Section 3.1.7) after the filename. If an overlay description text file is entered, it must be the only input file specified. The format for an ODL line is: label: directive argument-list; comment The label is a necessary part of the .FCTR directive only (see Section 5.1.3.2). Directives act upon argument lists: - Named input files - Overlay segments - PSECTS - Lines in the ODL file itself The hyphen, exclamation point, and comma operators, described in Section 5.1.3.1, group these named task elements, or attach attributes to them. If the name belongs to a file, a complete file specification can be given. Defaults for omitted parts of the file specification are as described in Chapters 2 and 3, except that the default device is always SY, and the default PPN is your own. In addition, the following restrictions apply to argument-lists: - The dot character (.) can only be used in a filename. - Comments cannot appear on a line ending with a filename (see Section 2.6). 5.1.3.1 .ROOT and .END Directives - There must be one .ROOT directive and one .END directive in your ODL file. The .ROOT directive tells the Task Builder where to start building the tree, and the .END directive tells Task Builder where the input ends. The arguments of the .ROOT directive use four operators to express concatenation, overlaying, memory and library residency: - A pair of parentheses delimits a group of segments that start at the same virtual address and thus share storage. The number of nested parenthetical groups cannot exceed 16. - The hyphen operator (-) indicates the concatenation of storage. For example, X-Y means that sufficient memory will be allocated to contain X and Y simultaneously. X and Y are allocated in sequence. - The exclamation point operator (!) allows the specification of resident library overlay segments that will permanently reside in memory rather than on disk. The use of the operator for executable task images is not supported. Memory residency is specified by placing an exclamation point immediately before the left parentheses (in the .ODL file) that enclose the desired segments. For example: .ROOT A-! (B,C) In this example, segments B and C are declared resident in separate areas of memory. The single starting virtual address for both B and C is determined by the Task Builder. The Task Builder rounds the octal length of segment A up to the next 4K boundary. It then determines the physical memory allocated to segments B and C by rounding the actual length of each segment to the next 32-word boundary (256-word boundary if the /CM switch is in effect; see Section 3.1.A), and adding the determined value to the total memory required by the task. The exclamation point operator applies only to segments at the first level inside a pair of parentheses; segments of the ODL that are nested within the first level are not affected. • The comma operator (,) appearing within parentheses indicates a virtual memory overlay involving the two modules that are separated by the comma. For example, Y,Z means that virtual
memory can contain either Y or Z. The comma operator is also used to define multiple tree structures, as described in Section 5.1.4, when it separates two structures as in TFIL.ODL below. The directives: describe the tree and corresponding memory diagram in Figure 5-7: Figure 5-7 A Simple Multi-level Tree The overlay description for the task TKl described in Section 5.1.1, contains the directives: .ROOT CNTRL-(A0-(A1,A2-(A21,A22)),B0-(B1,B2),C) .END | | | * | |---|--|---| _ | · | Assuming that this ODL description appears in a file named TFIL.ODL, you can build the required structure with the 1-line command: TKB TK1.IMG=TFIL.ODL/MP The switch /MP tells the Task Builder that there is only one input file, TFIL.ODL, and that this file contains an overlay description for the task. 5.1.3.2 .FCTR Directive - The Overlay Description Language includes another directive, .FCTR, to help you build large, complex trees and represent them more clearly. The .FCTR directive has a label in the left margin that is referenced in a .ROOT or another .FCTR statement. The .FCTR directive lets you extend the tree description beyond a single line. (There can be only one .ROOT directive.) To simplify the tree in TFIL.ODL, you can introduce the .FCTR directive into the overlay description: .ROOT CNTRL-(AFCTR, BFCTR, C) .FCTR A0-(A1, A2-(A21, A22)) BFCTR: .FCTR B0-(B1,B2) .END AFCTR: The label AFCTR designates the structure A0-(A1,A2-(A21,A22)), as shown in the .FCTR directive on the next line. The label BFCTR designates the structure B0-(B1,B2). The resulting overlay description is easier to interpret than the original description. The tree consists of a root, CNTRL, and three main branches. Two of the main branches have sub-branches. The .FCTR directive can be nested to 16 levels. You can change TFIL to read as follows: .ROOT CNTRL-(AFCTR, BFCTR, C) AFCTR: .FCTR A0-(A1,A2FCTR) A2FCTR: .FCTR A2-(A21,A22) BFCTR: .FCTR B0-(B1,B2) .END NOTE The order in which .FCTR and .NAME lines appear is irrelevant. 5.1.3.3 .NAME Directive - The .NAME directive lets you specify a name for a segment and to attach desired attributes to the segment. The name must be unique with respect to filenames, PSECT names, .FCTR labels, and other segment names that are used in the overlay description. The chief uses of the .NAME directive are: 1. to uniquely name a segment to permit a segment that does not contain executable code to be loaded The format of the .NAME directive is .NAME segname[,attr][,attr] where: is a 1- to 6-character name from the Radix-50 segname characters A - Z, 0 - 9, and \$ denote optional attributes brackets ([]) represents one of the following attributes: attr NOTE Attributes are not attached to a segment until the name is used in a .ROOT or .FCTR statement that defines an overlay When multiple segment names segment. are applied to a segment, the attributes of the latest name given go into effect. The name is entered in the segment's global GBL symbol table. The GBL attribute make possible the loading of non-executable overlay segments by means of the autoload mechanism (see Chapter 6). The name is not entered in the segment's NOGBL global symbol table. NOTE If the GBL attribute is not present, NOGBL is assumed. named Disk storage is allocated to the DSK segment. NODSK No disk space is allocated to the segment. If a data overlay segment has no initial have its contents values, but will established by the running task, no space for the task image on disk need be reserved in advance. If the NODSK attribute has been specified, an attempt to initialize the segment with data at task-build time results in a fatal error. NOTE If the NODSK attribute is not present, DSK is assumed. In Figure 5-8, a modified tree for TK1, the three main branches, A0, B0, and C, are named by specifying the names in the .NAME directive, and using them in the .ROOT directive. The default attributes NOGBL and DSK are in effect for BRNCH1 and BRNCH3. But BRNCH2 has the complementary attributes (GBL and NODSK) that cause the name BRNCH2 to be entered into its segment's global symbol table, and the allocation of disk space for the segment to be suppressed. BRNCH2 contains uninitialized storage to be used at run-time. Figure 5-8 TKl Modified Tree Using the .NAME Directive .NAME BRNCH1 .NAME BRNCH2, GBL, NODSK .NAME BRNCH3 .ROOT CNTRL-(BRNCH1-AFCTR, *BRNCH2-BFCTR, BRNCH3-C) AFCTR: .FCTR A0-(A1,A2-(A21,A22)) BFCTR: .FCTR B0-*(B1,B2) .END (*, in the statement labelled BFCTR:, is the autoload indicator. It is discussed in Section 6.1.1.) Global segment names allow segments containing only data, such as message text, constant values, etc. to be autoloaded. Such data segments must have the autoload indicator applied. See Section 6.1.1 for more information about the autoload indicator. BRNCH2 above does have the autoload indicator applied so it can be loaded by the following statement in the CNTRL program. CALL BRNCH2 This action is immediately followed by an automatic return to the next instruction in the CNTRL program. You can also use segment names to make patches with the options ABSPAT and GBLPAT (described in Sections 3.2.6.3 and 3.2.6.4). NOTE If there is no unique .NAME specification, the Task Builder establishes a segment name, using the first .PSECT, file, or library module name occurring in the segment. 5.1.3.4 .PSECT Directive - The .PSECT directive lets you direct the placement of a global PSECT in an overlay structure. The name of the PSECT (a l- to 6-character name composed from the set A-Z, 0-9, and \$) and its attributes are given in the .PSECT directive. This allows use of the name to indicate which segment the PSECT will be allocated to. An example of the use of .PSECT is given in the modified version of task TKl shown below. Be careful about logical independence of the modules in the overlay segment, but do not forget to take into account the requirement for logical independence in multiple executions of the same overlay segment. In other words, if you call a segment twice, be sure you do not change the flow of control between the first call and the second. (COBOL programmers should particularly avoid the ALTER statement.) The flow of task TKl (described in Section 5.1.1) can be summarized this way. CNTRL calls each of the overlay segments in the order A, B, C, A and each overlay segment returns to CNTRL. Module A is executed twice. The overlay segment containing A must be reloaded for the second execution because it was overlaid when B was loaded. Module A uses the common block DATA3. The Task Builder allocates DATA3 to the overlay segment containing A. The first execution of A stores some results in DATA3. The second execution of A requires these values. In this disk-resident overlay structure, however, the values calculated by the first execution of A are overlaid. When the segment containing A is read in for the second execution, the common block is in its initial state. To permit the data in DATA3 to be accessed on the second execution of A, use a .PSECT directive to force the allocation of DATA3 into the root. One way to do this is to replace the last four statements of the previous overlay description of TK1 (starting with the .ROOT statement) with the following: .PSECT DATA3,RW,GBL,REL,OVR .ROOT CNTRL-DATA3-(AFCTR, BFCTR, C) AFCTR: .FCTR A0-(A1,A2-(A21,A22)) BFCTR: .FCTR B0-(B1,B2) .END 5.1.3.5 Indirect Files - The Overlay Description Language processor can accept ODL text from an indirect file, if the text is included in a file specified in the proper format. If a commercial "at" (@) is the first character in an ODL line, processor reads text from the file specified immediately after the "@". It accepts the ODL text from the file as input at the point in the overlay description where the file is specified. Two levels of indirection are allowed. For example, if the file BIND.ODL contains B: .FCTR B1-(B2,B3) then this text can be replaced by a line beginning with @BIND, at the position where the text would have appeared: | | Direct | Indirect | |----------|--|--| | C:
B: | .ROOT A-(B,C) .FCTR C1-(C2,C3) .FCTR B1-(B2,B3) .END | .ROOT A-(B,C) C: .FCTR C1-(C2,C3) @BIND .END | Note that the extension of the filename BIND is assumed to be .ODL. If the file you are using does not have the .ODL extension, you must specify the extension to the Task Builder. # 5.1.4 Multiple Tree Structures The Task Builder lets you define more than one tree in an overlay structure. A multiple tree structure contains one main tree and one or more co-trees. RSTS/E loads the root segment at the start of the task. Segments of the co-tree(s) are loaded by the Overlay Run-time System as they are called. Except for this distinction, all overlay trees have identical characteristics; a root segment that resides in memory, and, usually, two or more overlay segments. The main property of a structure containing more than one tree is that storage is not shared among trees. Any segment in a tree can be referenced from another tree without displacing segments from the calling tree. Routines that are called from several main tree overlay segments, for example, can overlay one another in a co-tree. The next two sections describe the procedure for specifying multiple trees in the Overlay Description Language, and illustrate the use of co-trees to produce the memory allocation best suited to the needs of the task. 5.1.4.1 Defining a Multiple-Tree Structure - The comma, when included within parentheses, defines a pair of segments that share storage. The comma outside all parentheses delimits overlay trees. The first overlay tree so defined is the main tree. Other trees in the same ODL file are co-trees. Here is an ODL description
of a main tree and a co-tree: X: ROOT X,Y X: FCTR X0-(X1,X2,X3) Y: FCTR Y0-(Y1,Y2) END You define co-trees in the .ROOT directive by placing the comma operator outside all parentheses and immediately in front of the co-tree root (Y, in the example above). Any number of co-trees can be defined. Co-trees can access any module in the main tree or any other co-tree. In the example above, there are two overlay trees. The main tree X contains the root segment X0 and three overlay segments. The co-tree Y contains the root segment Y0 and two overlay segments. RSTS/E loads segment X0 into memory when the task starts. The Overlay Run-time System then loads the remaining segments as they are called. A co-tree must have a root segment to establish linkage with its own overlay segments. But co-tree root segments need not contain code or data. A segment of this type, called a null segment, can be created using the .NAME directive. The previous example is modified as shown below, to move file Y0.OBJ to the root, and include a null segment. | | .ROOT | Х, Ү | |-----------|-------|------------------| | X: | .FCTR | X0-Y0-(X1,X2,X3) | | | .NAME | YNUL | | Y: | .FCTR | YNUL-(Y1,Y2) | | | .END | | The .NAME directive creates the null segment YNUL which replaces the co-tree root that formerly contained Y0.OBJ. 5.1.4.2 Multiple-Tree Example - You can use multiple trees to reduce the size of a task. In the example below, CNTRLX and CNTRLY are logically independent of each other and must be accessed from modules on all the paths of the main tree. A co-tree for CNTRLX and CNTRLY that names a root segment (CNTRL2) satisfies these requirements and reduces the amount of storage required by the task. The overlay description looks like this: .NAME CNTRL2 .ROOT CNTRL-(AFCTR, BFCTR, C), CNTRL2-(CNTRLX, CNTRLY) . END The tree for the task TKl is shown in Figure 5-9. Figure 5-9 Co-tree The corresponding memory diagram is shown in Figure 5-10. Figure 5-10 Co-tree Block Diagram Specifying a co-tree decreases the storage allocation by 4000 bytes. CNTRLX and CNTRLY can be accessed by all modules in the main tree. The co-tree only requires that CNTRLX and CNTRLY be independent. # 5.1.5 Overlay Core Image The contents of the core image for a task with an overlay structure are discussed briefly in this section. (The header and stack are described in Section 4.2.) The root segment of the main tree contains: - modules that are resident in memory throughout task execution - segment tables and autoload vectors that are required by the overlay loading routines Segment tables contain a descriptor for every segment in the task. The segment descriptor contains information about the load address, the length of the segment, and the tree linkage. The segment table is described in detail in Appendix D. Autoload vectors appear in every segment that calls modules in another segment located farther away from the root of the tree. The autoload mechanism is described in Chapter 6. The detailed composition of the autoload vector is given in Section D.3.1. The main tree overlay region consists of memory allocated for the overlay segments of the main tree. The overlays are read into this area of memory as they are needed. The co-tree overlay region consists of memory allocated for co-tree overlay segments. The co-tree root segment contains modules that, once loaded, must remain resident in memory. The first co-tree is loaded above the main tree overlay region. Other co-trees are loaded above the overlay region of the preceding co-tree in the same fashion. Figure 5-10 shows the block diagram for the main tree and the co-tree of TK1. # 5.1.6 Overlaying Programs Written in a Higher-level Language Programs that are written in a higher-level language usually require a large number of library routines in order to execute. Unless care is taken when overlaying such programs, these problems can occur: - Task Builder throughput may be drastically reduced because of the number of library references in each overlay segment. - Default object module library references resolved across tree boundaries can cause unintentional displacement of segments from memory at run-time. - Attempts to task-build such programs can result in multiple and ambiguous symbol definitions when a co-tree structure is defined. Effective procedures for solving these problems are: - Linking commonly used library routines into the main root segment. Task Builder throughput can thereby be increased. - Using the /-FU switch (the default) to restrict the scope of the default library search. Ambiguous and multiple definitions, and cross-tree references can thereby be eliminated. You can force library modules into the root by preparing a list of the appropriate global references and linking the object module containing them into the root segment. The User's Guide for the language you are using contains other ways to reduce the size of your task. NOTE (COBOL USERS ONLY) COBOL overlay procedures require that you use the /KER:xx switch at compile-time to generate unique names for certain compiler-generated PSECTs. See the PDP-11 COBOL User's Guide for an explanation of this switch. Be sure your kernel characters are unique within the ODL file. #### 5.2 USER OVERLAY TREE Figure 5-11 shows the overlay tree for USER. Figure 5-11 USER Overlay Tree # 5.2.1 Defining the ODL File After you determine how the final structure is to operate, create ODL directives to represent the overlay tree, such as the following: .ROOT TREE TREE: .FCTR USER-LIBR-*(INTRO-LIBR, CRUNCH-LIBR, CHATR-LIBR) LIBR: .FCTR [1,1]BASIC2/LB . END (The * in the ODL description is the autoload indicator. It is described in Section 6.1.1.) This section applies only to BASIC-PLUS-2 users. # 5.2.2 Building the Task You can build the task with the same options used in the example in Section 3.3.1. Here, the names of the input files are replaced by a single filename that designates the file containing the overlay description: TKB (RET) TKB>USER*USER=NEWODL/MP ENTER OPTIONS: TKB>HISEG=BASIC2 TKB>// Note that the ODL file specification automatically terminates command input and the Task Builder automatically prompts for options. The memory diagram for the COBOL and BASIC-PLUS-2 versions of USER is shown in Figure 5-12 below: Figure 5-12 USER Block Diagram # 5.3 SUBROUTINE COMMUNICATION The three subroutines of the example program USER (INTRO, CRUNCH, and CHATR) cannot transfer data among themselves because of the trident-shaped tree structure. Any data stored in one module's copy of a storage area is lost when another module, with its unaltered copy of the original storage area is loaded. To transfer data, common storage areas must be forced to the root or to a segment accessible by all three calling segments. If your common storage area is not in the root segment, you run the risk of losing your data when the non-root segment containing your data is overlaid. A .PSECT directive added to the overlay description forces common storage areas to the root of the tree. The actual allocation is made by using the PSECT name in the .ROOT directive so that the three modules can communicate with one another. An overlay description solving this problem might look like this: .ROOT RDIN-RPRT-ADTA-*(PROC1, PROC2, P3FCTR) P3FCTR: .FCTR PROC3-(SUB1,SUB2) .PSECT ADTA, RW, GBL, REL, OVR, D . END Figures 5-13 and 5-14 contain the ODL files for the BASIC-PLUS-2 and COBOL versions of USER, respectively. The reason for the more complex COBOL ODL file is that COBOL deals with PSECTs where BASIC-PLUS-2 deals with modules. Consult the PDP-11 COBOL User's Guide for additional information on COBOL-generated ODL files. The COBOL ODL file in Figure 5-14 was generated by the system program CBLMRG (the COBOL Merge program). .ROOT USER-LIBE-*(INTRO-LIBE,CRUNCH-LIBE,CHATE-LIBE) .FCTR E1,13BASIC2/LB .END LIBR: Figure 5-13 BASIC-PLUS-2 USER ODL File ``` #MERGED ODL FILE CREATED ON 20-JUL-77 AT 14:11:29 #COBOL STANDARD ODL FILE GENERATED ON: 19-JUL-77 08:56:43 ¢COBOBJ=USER.OBJ #COBMAIN COBOL STANDARD ODL FILE GENERATED ON: 14-JUL-77 11:10:12 #COBOBU=INTRO.OBU ‡COBKER=IN .NAME IN$003,GBL .PSECT $INOO2,GBL,I,RW,CON IN003$: .FCTR *IN$003-$IN002 .NAME IN$005,GBL .PSECT $INOO1,GBL,I,RW,CON IN005$: .FCTR *IN$005-$IN001 1N003$,IN005$ INOURS: .FCTR COBOL STANDARD ODL FILE GENERATED ON: 14-JUL-77 15:26:19 ¢COBOBJ≕CRUNCH.OBJ #COBKER=CR .NAME CR$003,GBL *PSECT $CROO2,GBL,I,RW,CON CROO3$: .FCTR *CR$003-$CR002 .NAME CR#005,GBL .PSECT #CROO1,GBL,I,RW,CON CR005$: .FCTR *CR$005-$CR001 CROVES: .FCTR CR003$,CR005$ #COBOL STANDARD ODL FILE GENERATED ON: 14-JUL-77 15:27:19 $COBOBJ=CHATR.OBJ ∮COBKER=CH .NAME CH$003,GBL .PSECT $CHOO2,GBL,I,RW,CON CHO03$: .FCTR *CH$003-$CH002 .NAME CH$005,GBL .PSECT $CHOO1,GBL,I,RW,CON CHOO5$: .FCTR *CH$005-$CH001 CHOVR$: .FCTR CH003$, CH005$ CBOBJ#: .FCTR USER.OBJ-INTRO.OBJ-CRUNCH.OBJ-CHATR.OBJ CBOVR$: .FCTR INOVR$,CROVR$,CHOVR$ CBOTS%: .FCTR E1,13COBLIB/LB .FCTR E1,13RMSLIB/LB RMS$: OBJRT$: .FCTR CBOBJ$-CBOTS$-RMS$.ROOT OBJRT$-(CBOVR$) . END ``` Figure 5-14 COBOL USER ODL File Figures 5-15 and 5-16 show the memory allocation maps that correspond to these ODL files. | PAGE 1 | | |----------------|-------------| | TKB M26 | 7:01 | | ALLOCATION MAP | 28-JUL-77 1 | | MEMORY | | | CUSER. TSK | | | | 00512. | | | | | |-------------------------------|----------------------|----------|------------|----------|---------------| | | | | | S | 737 | | | 001777 001000 | | • | | 000000 036737 | | GEN
209164 | [200,47]
001000 0 | 027210 | WINDOWS: 1 | 3 : 7936 | LIMITS: 000 | | ME : | LIMITS: | ADDRESS: | SS WIN | SIZE | | | PARTITION NAME IDENTIFICATION | OIC | FR | ADDRESS | IMAGE | ADDRESS | | PARTI
IDENT | TASK | 2 | TOTAL | TASK | TASK | CUSER.TSK OVERLAY DESCRIPTION: | MD0 IN\$003
IN\$005
CR\$003
CR\$005
CR\$005
CH\$003 | | |---|---| |
118
15652.
10048.
00176.
00188.
00188. | MEMORY ALLOCATION MAP TKB 28-JUL-77 17:01 | | LEN
036444
000060
000260
00012U
000274
00012U | MEMORY ALLO | | BASE TOP 000000 036443 036444 036523 036444 03653 036444 036563 036444 036553 | CUSER.TSK | 7 *** ROOT SEGMENT: MD0 R/W MEM LIMITS: 000000 036443 03644 15652. DISK BLK LIMITS: 000002 000040 000037 00031. Figure 5-15 User COBOL Memory Allocation Map # MEMORY ALLOCATION SYNOPSIS: | SECTION | | | | TITLE | IDENT | FILE | |---------------------------------|---------|--------|--------|--------|---------|-------------| | BLK.: (RW, I, LCL, REL, CON) | 002000 | 000440 | 00288. | | | | | ACDDAT: (KW, D, GBL, KEL, OVK) | 002440 | * 4 | 00164. | ACDQIO | 1A.17 | COBLIB.OLB | | ACDINS: (RW, I, GBL, REL, OVR) | 002704 | 001356 | 00750. | ACDOTO | 14.17 | COBLIB.OLB | | ARITH : (RW, I, GBL, REL, OVR) | | 005262 | 02738. |)
I | | | | | 262 | 005262 | 02738. | ADDSUB | 1A.07 | COBLIB.OLB | | EDITI : (RW, I, GBL, REL, OVR) | 011544 | 001522 | 00850. | EDITX | 1A.3 | COBLIB.OLB | | EDITXD: (RW, D, GBL, REL, OVR) | 013266 | 000026 | 00022. | | | | | | 013266 | 000026 | 00022. | EDITX | 1A.3 | COBLIB.OLB | | EXECD1: (RW,D,GBL,REL,OVR) | 013314 | 000362 | 00242. | EXEC | 1A.24 | COBLIB.OLB | | EXECT2: (RW. T.GBL. REL.OVR) | 013676 | 006414 | 03340. | | | | | | 013676 | 006414 | | EXEC | 1A.24 | COBLIB.OLB | | MSGPSD: (RW, D, GBL, REL, OVR) | 022312 | 000152 | 00106. | | | 41.400 | | VOICE THE THE TOTAL TOTAL | 020312 | 2CT000 | | MOGPOR | TA: 03 | COBELD: OLD | | (A) | 030422 | 004420 | | MSGPSR | 1A.09 | COBLIB.OLB | | UTIL : (RW, I, GBL, REL, OVR) | 022464 | | | | | | | | 022464 | | | UTIL | 1A.4 | COBLIB.OLB | | UTILD : (RW, D, GBL, REL, OVR) | 022700 | | | | | | | | 022700 | 000012 | | UTIL | 1A.4 | COBLIB.OLB | | \$CBBD0: (RW, I, GBL, REL, OVR) | 022712 | 000000 | | £ 0.40 | , r | arraco | | (NOO 180 180 1 ma) - Lanco | 022/17 | | 00000 | TASKCA | 1A.04 | COBLIB.OLB | | SCBBDI: (KW, I, GBL, KEL, CON) | 21/270 | | | 0431 | 700164 | | | | 022/12 | 00000 | 00000 | UNER | 2091602 | MDU.OBJ | | | 022712 | | 00000 | CRINCH | 209169 | | | | 022712 | | 00000 | CHATR | 209169 | | | \$CBBD2: (RW, I, GBL, REL,OVR) | 022712 | | .00000 | | | | | | 0.22712 | _ | 00000 | TASKCA | 1A.04 | COBLIB.OLB | | \$CBFA0: (RW, I, GBL, REL, OVR) | 022712 | _ | 00000 | | | | | | 022712 | _ | 00000 | TASKCA | 1A.04 | COBLIB.OLB | | \$CBFA1: (RW, I, GBL, REL, OVR) | 022712 | | 00000 | | | | | | 022/12 | 000000 | 00000 | USEK | 209169 | MD1.0BJ | | | 022712 | | 00000 | CRUNCH | 209169 | MD2 | | | 022712 | - | .00000 | CHATR | 209169 | | | \$CBFD0: (RW, I, GBL, REL, OVR) | 022/12 | 000000 | 00000 | | | | Figure 5-15 (Cont.) User COBOL Memory Allocation Map | COBLIB.OLB | | MD0.0BJ | MDI.OBJ | MD2.OBJ | MD3.OBJ | | COBLIB.OLB | 1 | COBLIB.OLB | 4 | MDU.OBJ | MDI.OBJ | MD2.0BJ | MD3.0B0 | STO STISON | 200.01 | MDO, OR.I | 2 | | MD2.000 | MD3.OBJ | | COBLIB.OLB | | MD0.0BJ | MD1.0BJ | MD2.0BJ | MD3.0BJ | | COBLIB.OLB | A.TO BILIBOD | 200000000000000000000000000000000000000 | MD0.0BJ | - | | MD3.0BJ | | COBLIB.OLB | | COBLIB.OLB | | MD0.0BJ | MD1.0BJ | |------------|---------------------------------|---------|---------|---------|---------|--------------------------------|------------|---------------------------------|------------|---------------------------------|---------|---------|---------|---------|--------------------------------|----------------------------|--------------------------|--------|--------|---------|---------|---------------------------------|------------|--------------------------------|---------|---------|---------|---------|---------------------------------|------------|---------------------------------|---|--------------------------------|--------|--------|---------|--------------------------------|------------|--------------------------------|------------|---------------------------------|---------|---------| | 1A.04 | | 209164 | 209169 | 209169 | 209169 | | 1A.04 | : | 1A.04 | | 209164 | 209169 | 209169 | 401407 | V 0 4 1 | FO • UT | 209164 | 200160 | 201602 | 601607 | 209169 | , | 1A.04 | | 209164 | 209169 | 209169 | 209169 | ; | 1A.04 | ۷0 × ۱ | | 209164 | 209169 | 209169 | 209169 | | 1A.04 | | 1A.04 | | 209164 | 209169 | | TASKCA | | USER | INTRO | CRUNCH | CHATR | | TASKCA | | TASKCA | | USER | INTRO | CRUNCH | CHATR | * CA C * E | TABACA | 11SFD | THEFT | TRINGE | CRUNCE | CHATR | | TASKCA | | USER | INTRO | CRUNCH | CHATR | | TASKCA | 4 7 % D K E | TASACA | IISER | TNTRO | CRUNCH | CHATR | | TASKCA | | TASKCA | | - | INTRO | | .00000 | 00000 | .00000 | .00000 | .00000 | .00000 | 00005. | 00002. | .00000 | .00000 | 00000 | 00000 | 00000 | 00000 | 00000 | | .0000 | 00000 | | | | .06000 | 00000 | .00000 | 00000 | 00000 | 00000 | .00000 | .00000 | .00000 | 00000 | 00000 | • | 0000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | | 000000 | 000000 | 000000 | 000000 | 000000 | 000000 | 00000 | 00000 | 000000 | 000000 | 000000 | 000000 | 000000 | 000000 | 000000 | | 00000 | 201000 | 2000 | 000132 | 251000 | _ | _ | | 000000 | 000000 | 000000 | _ | _ | | 000000 | 000000 | | | | 000000 | 000000 | 000000 | 000000 | 000000 | _ | | | 000000 | | 022712 | 022712 | 022712 | 022712 | 022712 | 022712 | 022712 | 022712 | 022714 | 022714 | 022714 | 022714 | 022714 | 022714 | 022714 | 977770 | 022714 | A L C C C C | 41/770 | 022/14 | 022/14 | 022714 | 023046 | 023046 | 023046 | 023046 | 023046 | 023046 | 023046 | 023046 | 023046 | 023046 | 072040 | 023040 | 023040 | 023046 | 023046 | 023046 | 023046 | 023046 | 304 | 304 | 023046 | 023046 | | | \$CBFD1: (RW, I, GBL, REL, CON) | | | | | SCBFD2: (RW, I, GBL, REL, OVR) | | \$CBIF0: (RW, I, GBL, REL, OVR) | , | \$CBIF1: (RW, I, GBL, REL, CON) | | | | | SCBIFZ: (KW, I, GBL, KEL, OVK) | (dif) tag tag t way motaco | CDIOI: (VM) I GDD (VET) | | | | | \$CBIR0: (RW, I, GBL, REL, OVR) | | SCBIR1: (RW, I, GBL, REL, CON) | | | | | \$CBIR2: (RW, I, GBL, REL, OVR) | | \$CBKB0: (RW, I, GBL, REL, OVR) | | SCBKB1: (RW, I, GBL, REL, CON) | | | | SCBKB2: (RW. I, GBL, REL, OVR) | | SCBKD0: (RW, I, GBL, REL, OVR) | | \$CBKD1: (RW, I, GBL, REL, CON) | | | Figure 5-15 (Cont.) User COBOL Memory Allocation Map | MD2.OBJ
MD3.OBJ | COBLIB.OLB | | MD0.0BJ | MD1.0BJ | MD2.0BJ | MD3.0BJ | COBLIB.OLB | | COBLIB.OLB | | COBLIB.OLB | | MD0.0BJ | MDI.OBJ | MDZ.OBJ | MD3.0B0 | | COBLIB.OLB | | MD3.0BJ | | MD3.0BC | MD3.0B.T | | MD3.0BJ | | MD3.0BJ | | MD3.0BJ | | MD3.0BJ | | MD3.OBJ | |--------------------|---------------------------------|--------------------------------|---------|---------|---------|---------|------------|--------------------------------|------------|---------------------------------|------------|---------------------------------|---------|---------|---------|---------|---------------------------------|------------|---------------------------------|---------|--------------------------------|---------|--------------------------------|---------|--------------------------------|---------|---------------------------------|---------|---------------------------------|---------|---------------------------------|---------------------------------|---------|--------------------------------|---------|--------------------------------|---------|---------------------------------|---------|---------------------------------|---------| | 209169
209169 | 1A.04 | | 209164 | 209169 | 209169 | 209169 | 1A.04 | | 1A.04 | | 1A.04 | 10000 | 209164 | 2091602 | 2091602 | KOTK07 | | 1A.04 | | 209169 | | 209169 | | 209169 | | 209169 | | 209169 | 000 | KOTKOZ | 209169 | | 209169 | | 209169 | | 209169 | | 209169 | | 209169 | | CRUNCH | TASKCA | | USER | INTRO | CRUNCH | CHATR | TASKCA | | TASKCA | | TASKCA | | USER | INTRO | CRUNCH | CHAIR | | TASKCA | | CHATR | CHATE | | CHATR | | 00000. | 000000 | 00005. | 00002. | 00002. | 00002. | 00002. | .00000 | 00032. | 00032. | .00000 | .00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000 | 00030. | 00030. | 00148. | 00148. | 00000 | .00000 | 00030. | 00030. | 00000 | 00000 | 001/8 | | 00002. | 00048. | 00048. | 00008. | .80000 | 00140. | 00140. | 00000 | .00000 | | 000000 | 000000 | 000002 | 000002 | 000007 | 000000 | 000002 | 000000 | 000040 | 000040 | 000000 | 000000 | 000000 | 00000 | 00000 | 000000 | 00000 | 000000 | 000000 | _ | _ | 000036 | 000036 | 000224 | 000224 | 000000 | - | | | 000000 | 00000 | 000262 | 000002 | 000002 | 090000 | 090000 | 000000 | 00000 | 000214 | 000214 | 000000 | 000000 | | 023046
023046 | 023046
023046 | 023046 | 023046 | 023046 | 023046 | 023046 | 023046 | 023050 | 023050 | 023110 | 023110 | 023110 | 023110 | 023110 | 023110 | 023110 | 023110 | 023110 | 023110 | 023110 | 023110 | 023110 | 023146 | 023146 | 023372 | 023372 | 023372 | 023372 | 023430 | 023430 | 023430 | 023712 | 023712 | 023714 | 023714 | 023774 | 023774 | 024004 | 024004 | 4 | 024220 | | | \$CBKD2: (RW, I, GBL, REL, OVR) | SCBSWT: (RW, I, GBL, REL, OVR) | | | | | | SCBTSK: (RW, I, GBL, REL, OVR) | | \$CBXA0: (RW, I, GBL, REL, OVR) | | \$CBXA1: (RW, I, GBL, REL, OVR) | | | | | \$CBXA2: (RW, I, GBL, REL, OVR) | | \$CHADT: (RW, I, GBL, REL, CON) | | SCHARG: (RW, I, GBL, REL, CON) | | SCHDAT: (RW, I, GBL, REL, CON) | | SCHDDD: (RW, I, GBL, REL, CON) | | \$CHENT: (RW, I, GBL, REL, CON) | | \$CHIOB: (RW, I, GBL, REL, CON) | | \$CHLIT: (RW, I, GBL, REL, CON) | SCHI,ST: (RW. I, GBL, REL, CON) | | SCHLTD: (RW. I, GBL, REL, CON) | | SCHPDT: (RW, I, GBL, REL, CON) | | \$CHPFM: (RW, I, GBL, REL, CON) | | \$CHSDT: (RW, I, GBL, REL, CON) | | Figure 5-15 (Cont.) User COBOL Memory Allocation Map | OBJ | OBJ | OBJ | OBJ | OBJ. | | OBJ | OBJ | 1 | OBJ. | OBJ | T.a.O | 8 | .OBJ | 1 | OBJ | 1 | OBO | , | .ogo | 1 00 | 200 | OBJ | | OBJ | ŀ | OBJ | OBJ | | .OBJ | | OBJ | , | .oBJ | |-------------------|---------------------------------|---------------------------------|---------------------------------
---------------------------------|---------------------------------|--------|---------------------------------|---------------------------------|--------|--------------------------------|---------------------------------|-----------------------------|--------------------------------------|---------------------------------|--------|---------------------------------|--------|---------------------------------|--------|---------------------------------|---------|--------------------------------|--------------------------------|--------|---------------------------------|--------|---------------------------------|-----------------------------|--------|---------------------------------|--------|---------------------------------|--------| | MD3.0 | MD3.C | MD3.C | m | MD2.0 | | MD2.0 | MD2.0 | | MD2.0 | MD2.0 | CCM | ; | MD2.0 | | MD2. | | MD2. | , | MD2. | 200 | • | MD2. | | MD2. | | MD2. | MD2. | | MD2. | | MD1. | ; | MD | | 209169 | 209169 | 209169 | 916 | 209169 | | 209169 | 209169 | | 209169 | 209169 | 200169 | 1 | 209169 | | 209169 | , | 209169 | • | 209169 | נסס | 60T607 | 209169 | | 209169 | , | 209169 | 209169 | | 209169 | | 209169 | | 209169 | | CHATR | CHATR | CHATE | CHATR | CRINCH | | CRUNCH | CRUNCH | | CRUNCH | CRUNCH | DUNIDE | CRUNCI | CRUNCH | | CRUNCH | | CRUNCH | | CRUNCH | TORLIGO | CKUNCE | CRUNCH | | CRUNCH | | CRUNCH | CRUNCH | | CRUNCH | | INTRO | | INTRO | | 00024.
00024. | 000066. | 00140. | 00078. | 00000 | 000030 | | | | 00048. | 00030. | 00000 | 00000 | 00000 | 00002. | 00002. | 00012. | 00012. | | | 00140. | | | 00024 | | | | 00186. | | | 0000 | | 00012. | 00012. | | 0000030 | 000102 | 000214 | 00011 | 000000 | 000036 | 000036 | 000266
000266 | 090000 | 090000 | 000036 | 000000 | 000000 | 000012 | 000002 | 00000 | 000014 | 000014 | 0000010 | 00000 | 000214 | | 00000 | | | | | 000272 | 000116 | 000116 | 000000 | 000000 | 0001 | 000014 | | 422 | 024250
024250 | 036444 | 036444 | 024352 | 024352 | 024352 | 024410
024410 | 024676 | 024676 | 024756 | 025014 | 025014 | 025014 | 025026 | 025026 | 025030 | 025030 | 025044 | 025044 | 025054 | 0.25054 | 025270 | 025270 | 025270 | 025320 | 025320 | 036444 | 7 | 644 | 2542 | 542 | 025422 | 542 | | (RW, I, GBL, REL, | \$CHWRK: (RW, I, GBL, REL, CON) | \$CH001: (RW, I, GBL, REL, CON) | \$CH002: (RW, I, GBL, REL, CON) | \$CRADT: (RW, I, GBL, REL, CON) | \$CRARG: (RW, I, GBL, REL, CON) | | \$CRDAT: (RW, I, GBL, REL, CON) | \$CRDDD: (RW, I, GBL, REL, CON) | | SCRENT: (RW, I, GBL, REL, CON) | \$CRIOB: (RW, I, GBL, REL, CON) | SCRITT (RW.I.GBL. BEI. CON) | () (====(=========================== | \$CRLST: (RW, I, GBL, REL, CON) | | \$CRLTD: (RW, I, GBL, REL, CON) | | \$CRPDT: (RW, I, GBL, REL, CON) | | \$CRPFM: (RW, I, GBL, REL, CON) | 1200 | SCRSDT: (KW, 1, GBL, KEL, CON) | SCRUSE: (RW, I, GBL, REL, CON) | | \$CRWRK: (RW, I, GBL, REL, CON) | | \$CR001: (RW, I, GBL, REL, CON) | SCR002: (RW. I.GBL.REL.CON) | | \$INADT: (RW, I, GBL, REL, CON) | | \$INARG: (RW, I, GBL, REL, CON) | | Figure 5-15 (Cont.) User COBOL Memory Allocation Map | (RW, I, GBL, REL, CON) 025662 000000 00000 025662 000000 00000 025662 000000 00000 025662 000000 00000 025662 000000 00000 025662 000000 00000 025500 000000 00000 025720 000000 00000 025720 000000 00000 025720 000000 00000 025720 000000 00000 025720 000000 00000 025720 000000 00000 025720 000000 00000 025720 000000 00000 025720 000000 00000 025720 000000 00000 025720 000000 00000 025720 000000 00000 025720 000000 00000 025720 000000 00000 025720 000000 00000 00000 025720 000000 00000 00000 00000 00000 00000 0000 | (RW, I, GBL, REL, CON) 025545 0000224 00148. INTRO 209169 1025662 000000 000000. INTRO 209169 1025662 000000 000000. INTRO 209169 1025662 000000 000000. INTRO 209169 1025720 0000014 00204. INTRO 209169 1025720 000014 00204. INTRO 209169 1025720 000014 00204. INTRO 209169 1025720 000015 00002. INTRO 209169 1025720 000010 000002. INTRO 209169 102634 000002 00002. INTRO 209169 102634 000000 000002. INTRO 209169 102634 000000 000000. INTRO 209169 102634 000000 000000. INTRO 209169 102634 0000000 000000. INTRO 209169 102634 000000 10264 102634 000000 000000. INTRO 209169 10264 102634 000000 000000. INTRO 209164 10264 10264 000000 000000. INTRO 209164 1027120 000000 000000 INTRO 209164 1027120 000000 000000000000000000000000 | AINDAT: (KW, I, GBL, KEL, CON) | 025436 | 000224 | OUT48. | | | | | |--|--|--------------------------------|--------|---------|--------|-------|--------|----------|--| | KW, I, GBL, REL, CON 025662 000000 000000. INTRO 209169 MD1 | (RW, I, GBL, REL, CON) 025662 000000 000000 INTRO 209169 025662 0000000 000000 INTRO 209169 025662 0000000 000000 INTRO 209169 025720 0000000 000000 INTRO 209169 025720 0000000 000000 INTRO 209169 025720 000014 00204 INTRO 209169 026234 000002 00002 INTRO 209169 026336 000052 000042 INTRO 026336 000052 000042 INTRO 026336 000052 000042 INTRO 026330 000010 000008 INTRO 026330 000010 000008 INTRO 026330 000010 000008 INTRO 026330 000010 000000 INTRO 026330 000014 00140 INTRO 026330 000014 00140 INTRO 026334 000000 000000 INTRO 026334 000000 000000 INTRO 026534 026540 000102 00006 INTRO 026540 000102 00006 INTRO 026540 000102 000000 INTRO 026540 000102 00006 INTRO 026540 000000 00000 INTRO 026540 000000 00000 INTRO 026540 000000 00000 USER 029164 INTRO 026540 000000 00000 USER 029164 INTRO 026660 000000 00000 USER 029164 INTRO 027152 0000000 00000 USER 029164 INTRO 027152 000000 00000 USER 029164 INTRO 027152 000000 00000 USER 029164 INTRO 027152 000000 00000 USER 029164 INTRO 027154 0000010 000000 USER 029164 INTRO 0271 | 184 140 | 025436 | 000224 | m c | INTRO | 209169 | MDI.OBJ | | | (RW, I, GBL, REL, CON) 025662 000036 00030. INTRO 209169 MD1. 025720 000000 00000. INTRO 209169 MD1. 025720 000000 00000. INTRO 209169 MD1. 025720 000014 00204. O25720 000012 00002. INTRO 209169 MD1. 025720 000012 00002. INTRO 209169 MD1. 025720 000012 00002. INTRO
209169 MD1. 025720 000012 00002. INTRO 209169 MD1. 026234 000002 00002. INTRO 209169 MD1. 026336 000052 000042. INTRO 209169 MD1. 026330 000010 00008. INTRO 209169 MD1. 026330 000010 00008. INTRO 209169 MD1. 026330 000014 00140. INTRO 209169 MD1. 026330 000014 00140. INTRO 209169 MD1. 026334 000000 00000. INTRO 209169 MD1. 026334 000000 00000. INTRO 209169 MD1. 026334 000000 00000. INTRO 209169 MD1. 026534 000000 00000. INTRO 209169 MD1. 02654 001012 00066. INTRO 209169 MD1. 02654 001012 00066. INTRO 209169 MD1. 02654 001012 00006. INTRO 209169 MD1. 02654 001000 00000. USER 209164 MD0. 02666 000000 00000. USER 209164 MD0. 02666 000000 00000. USER 209164 MD0. 02666 000000 00000. USER 209164 MD0. 027152 000036 00000. USER 209164 MD0. 027153 000000 00000. USER 209164 MD0. 027154 000010 00000. USER 209164 MD0. 027154 000011 000002. USER 209164 MD0. 027154 000011 000012. USER 209164 MD0. 027154 000011 000002. 000004 USER 209164 MD0. 027154 000004 USER 209164 MD0. 027154 | (RW, I, GBL, REL, CON) 025662 000036 00030. INTRO 209169 025720 000000 000000. INTRO 209169 025720 000000 000000. INTRO 209169 025720 0000314 00204. INTRO 209169 025720 000314 00204. INTRO 209169 025720 000314 00204. INTRO 209169 025720 000314 00204. INTRO 209169 025234 000002 00002. INTRO 209169 025234 000002 00002. INTRO 209169 02534 000002 00002. INTRO 209169 02534 000002 00002. INTRO 209169 02534 000000 000002. 02554 000112 00066. INTRO 209169 02554 000102 00006. INTRO 209169 02564 000102 00006. INTRO 209169 02564 000102 00000. USER 209164 02566 000000 00000. USER 209164 027210 000020 00016. USER 209164 027210 000020 00000. USER 209164 027210 000020 00000. USER 209164 027210 000020 000010 000000 000000. USER 209164 027210 000000 000000 00000. USER 209164 027210 000000 000000 00000000. USER 209164 027210 000000 000000 000000 000000 000000 0000 | : (KW, 1,650,KEL, | 025662 | 000000 | 20 | INTRO | 10 | | | | (RW, I, GBL, REL, CON) 025520 000000 000000 000000 000000 000000 0000 | (RW, I, GBL, REL, CON) 025720 000000 000000. COS 025720 0000000 000000. COS 025720 0000010 000000. COS 025720 0000114 00204. 00202. COS 025720 000011 000002. COS 025720 000011 000002. COS 025720 000011 000002. COS 025720 0000114 00140. 0000114. COS 025720 0000114 00102 00006. COS 025720 0000114 00102 00000. COS 025720 000010 00000. COS 027210 000020 00000. COS 027210 000020 000010 COS 027210 000000 00000. 0000000 00000. COS 027210 000001 00000. COS 027210 000001 00000. COS 027210 0000114 000112. 027 | : (RW, I, GBL, REL | 025662 | m | 030 | | | | | | (RW, I, GBL, REL, CON) 025720 000000 000000. INTRO 209169 MD1. 025720 000314 00204. INTRO 209169 MD1. 026234 000002 000022 INTRO 209169 MD1. 026236 000052 00042. INTRO 209169 MD1. 026236 000052 00042. INTRO 209169 MD1. 026330 000010 000008. INTRO 209169 MD1. 026330 0000140 001008. INTRO 209169 MD1. 026320 000214 00140. INTRO 209169 MD1. 026320 000214 00140. INTRO 209169 MD1. 026324 000000 000000. INTRO 209169 MD1. 026534 000000 0000024. INTRO 209169 MD1. 026544 000000 0000024. INTRO 209169 MD1. 026544 000000 0000024. INTRO 209169 MD1. 026544 000000 000000. USER 209164 MD0. 02666 000000 000000. USER 209164 MD0. 027152 000036 000000. USER 209164 MD0. 027152 000036 000000. USER 209164 MD0. 027152 000036 000000. USER 209164 MD0. 027152 000000 000000. USER 209164 MD0. 027152 000000 000000. USER 209164 MD0. 027152 000000 000000. USER 209164 MD0. 027152 0000000 000000. USER 209164 MD0. 027150 000000 000000. USER 209164 MD0. 027150 0000000 000000. USER 209164 MD0. 027150 000000 000 | (RW, I, GBL, REL, CON) 025720 000000 000000. INTRO 025720 000014 00204. O25720 000014 00204. O25720 000014 00204. O25720 000014 00204. O25720 000114 00204. O25720 000114 00204. O25720 000114 00204. O25720 000114 00204. O26234 000002 00002. O26236 000052 00042. O26236 000052 00042. O26310 000010 00008. O26310 000010 00008. O26310 000010 00008. O26310 000010 00008. O26320 000214 00140. O26330 000214 00140. O26334 000000 00000. O27230 000000. O27230 0000000 000000. O27230 0000000 000000. O27230 000000 000000. O27230 0000000 000000. O27230 0000000 000000. O27230 0000 | • | 025662 | m | | INTRO | o | • | | | (RW, I, GBL, REL, CON) 025720 0000000. INTRO 209169 MD1. 025720 000314 00204. INTRO 209169 MD1. 025720 000314 00204. INTRO 209169 MD1. 026234 000002 000022 | (RW, I, GBL, REL, CON) 025720 000010 00000. INTRO 209169 1025720 000314 00204. O25720 000314 00204. O25720 000314 00204. O25720 000314 00204. O26234 000002 00002. O26234 000002 00002. O26236 000052 000042. O26236 000052 000042. O26330 000010 00008. INTRO 209169 1026310 000010 00008. INTRO 209169 1026310 000010 00008. INTRO 209169 1026320 000214 00140. O26330 0000214 00140. O26330 0000214 00140. O26534 000000 00000. O2654 000102 00066. O2666 000000 00000. O2654 000102 00006. O2666 000000 00000. 0000000 00000. O2666 000000 00000. O2666 000000 00000. O2666 0000000 00000. O2666 000000 00000000 00000. O2666 000000 00000. O2666 000000 00000. O2666 000000 000000. O2666 000000 000000. O2666 000000 000000. O2666 0000000 000000. O2666 0000000 000000. O2666 0000000000 000000. O2666 00000000 000000. O2666 00000000000000. O2666 00000000000000000000000 | : (RW, I, GBL, REL, | 72 | 000000 | 00000 | | | | | | (RW, I, GBL, REL, CON) 025720 000314 00204. INTRO 209169 MD1 0255720 0000314 002004. INTRO 209169 MD1 026234 000002 000002. INTRO 209169 MD1 026234 000002 000002. INTRO 209169 MD1 026236 0000052 000042. INTRO 209169 MD1 026310 000010 00008. INTRO 209169 MD1 026334 000000 000000. INTRO 209169 MD1 026534 026544 000000 000000. INTRO 209169 MD1 026544 000000 000000. INTRO 209169 MD1 026544 000000 000000. INTRO 209169 MD1 026564 000000 000000. INTRO 209169 MD1 026564 000000 000000. INTRO 209169 MD1 026564 000000 000000. INTRO 209169 MD1 026566 000000 000000. INTRO 209169 MD1 02666 000000 000000. INTRO 209164 MD0 027152 000036 00030. INTRO 209164 MD0 027152 000036 00030. INTRO 209164 MD0 027152 000036 000000. INTRO 209164 MD0 027152 000000 000000. INTRO 209164 MD0 0271540 000014 000012. INTRO 209164 MD0 0271540 000012 INT | (RW, I, GBL, REL, CON) 025720 000314 00204. 025720 000314 00204. 02534 000002 00002. 026234 000002 00002. 026234 000002 00002. (RW, I, GBL, REL, CON) 026236 000052 00042. 026310 000010 00008. (RW, I, GBL, REL, CON) 026310 000010 00008. (RW, I, GBL, REL, CON) 026320 000214 00140. 026320 000214 00140. 026320 000214 00140. 026324 000000 00000. (RW, I, GBL, REL, CON) 026534 000000 00000. (RW, I, GBL, REL, CON) 026534 000000 00000. (RW, I, GBL, REL, CON) 026544 000026 00000. (RW, I, GBL, REL, CON) 02666 000000 027210 000020 00016. (RW, I, GBL, REL, CON) 027210 000012. (RW, I, GBL, REL, CON) 027230 000010 00008. | | 72 | 000000 | .00000 | INTRO | 209169 | • | | | (RW, I, GBL, REL, CON) 026534 0000020 000022. INTRO 209169 MD1. 026234 0000020 000022. INTRO 209169 MD1. 026234 0000020 000022. INTRO 209169 MD1. 026234 0000020 000022. INTRO 209169 MD1. 026310 000010 00008. INTRO 209169 MD1. 026310 000010 00008. INTRO 209169 MD1. 026310 000010 00008. INTRO 209169 MD1. 026534 000000 000000. INTRO 209169 MD1. 02654 000102 00066. INTRO 209169 MD1. 02654 000102 000066. INTRO 209169 MD1. 036444 000256 00174. INTRO 209169 MD1. 036444 000256 00174. INTRO 209169 MD1. 036444 000256 001000 00000. USER 209164 MD0. 026666 000000 00000. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027152 000036 00000. USER 209164 MD0. 027100 000001 USER 209164 MD0. 027110 | (RW, I, GBL, REL, CON) 026234 0000020 000020. (RW, I, GBL, REL, CON) 026234 0000020 000020. (RW, I, GBL, REL, CON) 026236 000052 000042. (RW, I, GBL, REL, CON) 026336 000052 000042. (RW, I, GBL, REL, CON) 026330 000010 00008. (RW, I, GBL, REL, CON) 026330 0000214 00140. (RW, I, GBL, REL, CON) 026534 000000 00000. (RW, I, GBL, REL, CON) 026534 000000 00000. (RW, I, GBL, REL, CON) 026534 000000 00000. (RW, I, GBL, REL, CON) 02654 000102 00066. (RW, I, GBL, REL, CON) 026564 000102 00066. (RW, I, GBL, REL, CON) 026564 000102 00066. (RW, I, GBL, REL, CON) 026666 000000 00000. 027152 000036 00030. (RW, I, GBL, REL, CON) 027152 000036 00000. (RW, I, GBL, REL, CON) 027152 000036 00000. (RW, I, GBL, REL, CON) 027152 0000016. (RW, I, GBL, REL, CON) 027130 0000010 00000. (RW, I, GBL, REL, CON) 027230 000010 00000. (RW, I, GBL, REL, CON) 027230 0000000000. (RW, I, GBL, REL, CON) 027230 00000000000000000000000000000000 | : (RW, I, GBL, REL | 2 | 000314 | 00204. | | | | | | (RW, I, GBL, REL, CON) 026234 000002 00002. INTRO 026236 000052 00002. INTRO 209169 MD1. 026236 000052 00002. INTRO 209169 MD1. 026310 000010 00008. INTRO 209169 MD1. 026310 000010 00008. INTRO 209169 MD1. 026320 000214 00140. INTRO 209169 MD1. 026320 000214 00140. INTRO 209169 MD1. 026534 000000 00000. INTRO 209169 MD1. 02654 000102 00066. INTRO 209169 MD1. 02654 000102 00066. INTRO 209169 MD1. 036444 000256 00174. INTRO 209169 MD1. 036444 000256 00174. INTRO 209169 MD1. 036444 000000 00000. USER 209164 MD0. 026666 000000 00000. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027210 0000020 00000. USER 209164 MD0. 027210 000000 0000000 00000. USER 209164 MD0. 027210 000000 00000. USER 209164 MD0. 027210 000000000. USER 209164 MD0. 027210 0000000 00000. USER 209164 MD0. 027210 0000000 00000. USER 209164 MD0. 027210 00000000000000000000000000000000 | (RW,I,GBL,REL,CON) 026234 000002 00002. INTRO 026234 0000052 000042. O26234 0000052 000042. O26236 0000052 000042. O26236 0000052 000042. O26336 0000052 000042. O26330 000010 00008. INTRO 029169 O26330 000014 001008. INTRO 029169 O26330 000014 001008. INTRO 029169 O26330 000014 001000. O26334 000000 00000. O26334 000000 00000. O26534 000000. O2654 000102 00066. O2654 000102 00066. O26564 000102 00066. O26564 000102 00066. O26564 000102 00066. O26564 000102 00006. O26564 000102 00006. O26564 000000 00000. O26564 000000 00000. O26564 000000 00000. O26666 000000 00000. USER 000164 (RW,I,GBL,REL,CON) 026666 000000 00000. USER 000164 (RW,I,GBL,REL,CON) 027152 000036 00030. USER
000164 (RW,I,GBL,REL,CON) 027152 000036 00000. USER 000164 (RW,I,GBL,REL,CON) 027230 0000010 00008. USER 000164 (RW,I,GBL,REL,CON) 027230 0000010 00008. USER 000164 (RW,I,GBL,REL,CON) 027230 000010 00008. USER 000164 (RW,I,GBL,REL,CON) 027230 0000010 00008. USER 000164 (RW,I,GBL,REL,CON) 027230 000010 000008. USER 000164 (RW,I,GBL,REL,CON) 027230 000010 00008. USER 000164 00008. USER 000080 000 | | 2 | 000314 | 00204. | INTRO | S | MD1.0BJ | | | (RW, I, GBL, REL, CON) 026234 0000022 1NTRO 209169 MD1. 026236 000055 00042. INTRO 209169 MD1. 026310 0000110 00008. INTRO 209169 MD1. 026310 0000110 00008. INTRO 209169 MD1. 026320 000214 00140. INTRO 209169 MD1. 026320 000214 00140. INTRO 209169 MD1. 026334 000000 00000. INTRO 209169 MD1. 026534 000000 00000. INTRO 209169 MD1. 026534 000000 000002. INTRO 209169 MD1. 026534 000000 000002. INTRO 209169 MD1. 026534 000000 000002. INTRO 209169 MD1. 02654 000102 00066. INTRO 209169 MD1. 02654 000102 00066. INTRO 209169 MD1. 02654 000102 00066. INTRO 209169 MD1. 026564 000000 00000. USER 209164 MD0. 02666 000000 00000. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027210 000000 00000. USER 209164 MD0. 027230 0000010 000008. 000002. 0000002. USER 209164 MD0. 027230 0000002. USER 209164 | 026234 000002 00002. INTRO 209169 026236 000052 00042. INTRO 209169 026310 000010 00008. INTRO 209169 026310 000010 00008. INTRO 209169 026310 000010 00008. INTRO 209169 026320 000214 00140. INTRO 209169 026320 000214 00140. INTRO 209169 026534 000000 00000. 02654 000102 00066. INTRO 209169 02654 000102 00066. INTRO 209169 02654 000000 00000. USER 209164 036444 000056 000048. INTRO 209169 036444 000056 000000 00000. USER 209164 02666 000000 00000. USER 209164 02666 000000 00000. USER 209164 027152 000036 00036 00036 00036 00036 00036 00036 00036 00036 00036 00036 00036 00000. USER 209164 027152 000036 00000 00000. USER 209164 027152 000036 00000 00000. USER 209164 027210 000020 00016. 00010 00008. USER 209164 027210 000020 00016. USER 209164 0272210 000010 00008. USER 209164 0272210 000020 00010 00000 00000 00000 00000 00000 00000 0000 | : (RW, I,GBL,REL | ന | 00000 | 00005. | | , | | | | (RW, I, GBL, REL, CON) 026236 000052 00042. (RW, I, GBL, REL, CON) 026310 0000018. INTRO 209169 MD1. 026310 000010 00008. INTRO 209169 MD1. 026320 000214 00140. INTRO 209169 MD1. 026320 000214 00140. INTRO 209169 MD1. 026534 000000 00000. INTRO 209169 MD1. 026534 000030 000024. INTRO 209169 MD1. 026534 000030 000024. INTRO 209169 MD1. 026534 000030 000024. INTRO 209169 MD1. 02654 000102 00066. INTRO 209169 MD1. 036444 000056 00174. INTRO 209169 MD1. 036444 000056 00000. USER 209164 MD0. 02666 000000 00000. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027152 000036 00000. USER 209164 MD0. 027152 000000 000000. USER 209164 MD0. 027152 000000 00000. USER 209164 MD0. 027152 000000 00000. USER 209164 MD0. 027152 000000 00000. USER 209164 MD0. 027152 000000 000000. USER 209164 MD0. 027152 0000000 000000. USER 209164 MD0. 0271540 000011 000008. USER 209164 MD0. 0271540 000011 000012. USER 209164 MD0. 0271540 000011 000012. USER 209164 MD0. 0271540 0000112. 0000112 | (RW, I, GBL, REL, CON) 026236 000052 00042. INTRO 026310 0000010 00008. INTRO 026310 000010 00008. INTRO 026310 000010 00008. INTRO 026310 000010 00008. INTRO 026320 000214 00140. INTRO 026320 000214 00140. INTRO 029169 1026324 000000 00000. INTRO 029169 1026324 000000 000024. INTRO 029169 1026324 000000 000024. INTRO 029169 1026324 000000 00000. INTRO 029169 10264 102656 000000 00000. USER 029164 102666 000000 00000. USER 029164 102666 000000 00000. USER 029164 102716 000000. USER 029164 102716 000000 000000 00000. USER 029164 102716 000000 000000 000000 000000 000000 0000 | | 623 | 000005 | 00002. | INTRO | 916 | • | | | (RW, I, GBL, REL, CON) 026310 000010 000008. INTRO 209169 MD1. 026320 0000214 00140. INTRO 209169 MD1. 026320 0000214 00140. INTRO 209169 MD1. 026320 0000214 00140. INTRO 209169 MD1. 026534 000000 000000. INTRO 209169 MD1. 026534 000030 000024. INTRO 209169 MD1. 026534 000030 000024. INTRO 209169 MD1. 026544 000000 000000. INTRO 209169 MD1. 02654 000102 00066. INTRO 209169 MD1. 02654 000102 00066. INTRO 209169 MD1. 02654 000102 00066. INTRO 209169 MD1. 036444 000056. INTRO 209169 MD1. 036444 000056. INTRO 209169 MD1. 036444 000056. 00174. INTRO 209169 MD1. 036444 000060 00000. USER 209164 MD0. 02666 000000 00000. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027152 000036 00000. USER 209164 MD0. 027152 000000 00000. USER 209164 MD0. 027152 000000 00000. USER 209164 MD0. 027152 000000 00000. USER 209164 MD0. 027230 000010 000008. USER 209164 MD0. 027230 000010 000002. U | 0.26236 000052 00042. INTRO 209169 026310 000010 00008. INTRO 209169 026320 000214 00140. INTRO 209169 026320 000214 00140. INTRO 209169 026320 000214 00140. INTRO 209169 026324 000000 00000. INTRO 209169 026534 0000030 00024. INTRO 209169 02654 000102 00066. INTRO 209169 02654 000102 00066. INTRO 209169 02654 000102 00066. INTRO 209169 036444 000056 00174. INTRO 209169 036444 000056 00174. INTRO 209169 036444 000060 00000. USER 209164 036444 000060 00000. USER 209164 02666 000000 00000. USER 209164 02666 000000 00000. USER 209164 02666 000000 00000. USER 209164 027152 000036 00030. USER 209164 027152 000036 00030. USER 209164 027152 000036 00000. USER 209164 027152 000036 00000. USER 209164 027152 000036 00000. USER 209164 027152 000000 000000 000000 000000 000000 0000 | (RW, I, GBL, REL | m | 000052 | 00042. | 1 | | | | | (RW, I, GBL, REL, CON) 026310 000010 00008; INTRO 209169 MD1. 026320 000214 00140. INTRO 209169 MD1. 026320 000214 00140. INTRO 209169 MD1. 026320 000214 00140. INTRO 209169 MD1. 026534 000000 00000. INTRO 209169 MD1. 026534 000000 00000. INTRO 209169 MD1. 026534 0000030 00024. INTRO 209169 MD1. 026534 0000030 00024. INTRO 209169 MD1. 026544 000102 00066. INTRO 209169 MD1. 026564 000102 00066. INTRO 209169 MD1. 026564 000102 00006. INTRO 209169 MD1. 026564 000000 00000. USER 209169 MD1. 036444 000256 00174. INTRO 209169 MD1. 036444 000056 000000. USER 209164 MD0. 026666 000000 00000. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027152 000036 00000. USER 209164 MD0. 027152 000036 00000. USER 209164 MD0. 027210 000020 00016. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027230 000012. 027240 000 | (RW, I, GBL, REL, CON) 026310 000010 000008. (RW, I, GBL, REL, CON) 026320 000214 00140. 026320 000214 00140. 026334 000000 00000. 026534 000000 00000. 026534 000000 00000. 026534 000000 00000. 026534 000010 00000. 02654 000102 00066. 02654 000102 00066. 02654 000102 00066. 02654 000102 00066. 02654 000102 00066. 02656 000102 00066. 02656 000102 00066. 02656 000102 00066. 03644 000256 00174. 03644 000256 00174. 03644 000056 00000. 03644 000000 00000. 03666 000000 00000. 03666 000000 00000. 03666 000000 00000. 03666 000000 00000. 037152 000036 00030. 037152 000036 00030. 037210 000000 00000. 037210 000000 00000. 037210 000000 00000. 0372210 000000 00000. 0372210 000010 00000. 0372210 000010 00000. 0372210 000010 00000. 0372210 000010 00000. 0372210 000010 00000. 0372210 000010 00000. 0372210 000010 00000. 0372210 000010 00000. 0372210 000010 00000. 0372210 000010 00000. 0372210 000010 00000. 0372210 000010 00000. 0372210 000010 00000. 0372210 000010 00000. 0372240 000010 00000. | | 026236 | 000052 | 00042. | INTRO | 16 | • | | | (RW, I, GBL, REL, CON) 026534 0000214 00140. INTRO 209169 MD1. 026534 0000214 00140. INTRO 209169 MD1. 026534 000000 00000. INTRO 209169 MD1. 026534 000000 00000. INTRO 209169 MD1. 026534 000030 000024. INTRO 209169 MD1. 026544 000102 00066. INTRO 209169 MD1. 026564 000000 00000. USER 209169 MD1. 02666 000000 00000. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027152 000036 00000. USER 209164 MD0. 027210 000020 00016. USER 209164 MD0. 027210 000020 00016. USER 209164 MD0. 027220 000010 00008. USER 209164 MD0. 027230 0000112. USER 209164 MD0. 027240 000012. | (RW, I, GBL, REL, CON) 026534 0000214 00140. (RW, I, GBL, REL, CON) 026534 000000 00000. (RW, I, GBL, REL, CON) 026534 000000 00000. (RW, I, GBL, REL, CON) 026534 000000 00000. (RW, I, GBL, REL, CON) 026534 000010 00000. (RW, I, GBL, REL, CON) 02654 000102 00066. (RW, I, GBL, REL, CON) 036444 000256 00174. (RW, I, GBL, REL, CON) 036444 000056 00000. (RW, I, GBL, REL, CON) 036444 000056 00174. (RW, I, GBL, REL, CON) 03666 000000 00000. (RW, I, GBL, REL, CON) 026666 000000 00000. (RW, I, GBL, REL, CON) 027152 000036 00030. (RW, I, GBL, REL, CON) 027210 000020 00016. (RW, I, GBL, REL, CON) 027210 000020 00016. (RW, I, GBL, REL, CON) 027230 000000 00000. (RW, I, GBL, REL, CON) 027230 000010 027240 000010 00000. | : (RW,I,GBL,REL, | 026310 | 000000 | 00008 | 6 | 0000 | | | | (RW, I, GBL, REL, CON) 026534 00000140. INTRO 209169 MD1. 026534 0000000 000000. INTRO 209169 MD1. 026534 000000 000000. INTRO 209169 MD1. 026534 000030 00024. INTRO 209169 MD1. 026534 000030 00024. INTRO 209169 MD1. 02654 000102 00066. INTRO 209169 MD1. 02654 000102 00066. INTRO 209169 MD1. 02654 000102 00066. INTRO 209169 MD1. 036444 000256 00174. INTRO 209169 MD1. 036444 000056 00174. INTRO 209169 MD1. 036444 000056 000048. INTRO 209169 MD1. 02666 000000 00000. USER 209164 MD0. 02666 000000 00000. USER 209164 MD0. 02666 0000264 00180. USER 209164 MD0. 02666 0000264 00180. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027152 000036 00000. USER 209164
MD0. 027152 000000 000000. USER 209164 MD0. 027152 000000 000000. USER 209164 MD0. 027230 000000 000000. USER 209164 MD0. 027230 000000 000000. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027230 0000112. 027240 000012. USER 209164 MD0. 027240 000012. USER 209164 MD0. 027240 00 | (RW, I, GBL, REL, CON) 026534 0000214 00140. (RW, I, GBL, REL, CON) 026534 000000 00000. (RW, I, GBL, REL, CON) 026534 000000 00000. (RW, I, GBL, REL, CON) 026534 000000 00000. (RW, I, GBL, REL, CON) 02654 000102 00066. (RW, I, GBL, REL, CON) 036444 000056 00174. (RW, I, GBL, REL, CON) 036444 000056 00174. (RW, I, GBL, REL, CON) 036444 000000 00000. (RW, I, GBL, REL, CON) 02666 000000 00000. (RW, I, GBL, REL, CON) 027152 000000 00000. (RW, I, GBL, REL, CON) 027152 0000000 00000. (RW, I, GBL, REL, CON) 027152 000000 00000. (RW, I, GBL, REL, CON) 027210 000000 00000. (RW, I, GBL, REL, CON) 027230 0000010 00000. (RW, I, GBL, REL, CON) 027230 0000010 00000. (RW, I, GBL, REL, CON) 027230 000010 | | 026310 | 010000 | 00008 | TNTRO | KOTKOZ | • | | | (RW,I,GBL,REL,CON) 026534 000000 00000. INTRO 209169 MD1. 026534 000000 00000. INTRO 209169 MD1. 026534 000030 00024. INTRO 209169 MD1. 026534 000030 00024. INTRO 209169 MD1. 026564 000102 00066. INTRO 209169 MD1. (RW,I,GBL,REL,CON) 026564 000102 00066. INTRO 209169 MD1. 036444 000256 00174. INTRO 209169 MD1. 036444 000056 000048. INTRO 209169 MD1. 036444 0000000 00000. USER 209169 MD1. 026666 000000 00000. USER 209164 MD0. 026666 000000 00000. USER 209164 MD0. 026666 000000 USER 209164 MD0. 026666 0000000 USER 209164 MD0. 026666 000000 USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027152 000036 00000. USER 209164 MD0. 027210 000000 USER 209164 MD0. 027210 000000 USER 209164 MD0. 027230 000000 00000. USER 209164 MD0. 027230 000000 00000. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027230 0000114 00012. | (RW, I, GBL, REL, CON) 026534 000000 00000. INTRO 209169 1026534 000000 000000. INTRO 209169 1026534 000000 000000. INTRO 209169 1026534 000000 000000. INTRO 209169 102654 000102 00066. INTRO 209169 1026564 000102 00066. INTRO 209169 1026564 000102 00066. INTRO 209169 102644 000256 00174. INTRO 209169 102644 000056 00174. INTRO 209169 102644 000056 000000 00008. INTRO 209169 102666 000000 00000. USER 209164 1027152 0000026 00016. USER 209164 102716 000020 00016. USER 209164 102716 000020 00010. USER 209164 102716 000020 00010. USER 209164 102716 000020 000000. USER 209164 102716 000020 000000. USER 209164 102716 000020 000010 00008. USER 209164 102716 000010 000000 00000. | :(KW,1,GBL,KEL | 026320 | 000214 | 00140. | CATA | \(C | | | | (RW, I, GBL, REL, CON) 026534 0000000 000024. INTRO 209169 MD1. 026534 000030 00024. INTRO 209169 MD1. 026534 000030 00024. INTRO 209169 MD1. 026564 000102 00066. INTRO 209169 MD1. 026564 000102 00066. INTRO 209169 MD1. 036444 000256 00174. INTRO 209169 MD1. 036444 000256 00174. INTRO 209169 MD1. 036444 0000060 000048. INTRO 209169 MD1. 036444 0000060 000000. USER 209164 MD0. 026666 000000 00000. USER 209164 MD0. 026666 000000 00000. USER 209164 MD0. 026666 0000264 00180. USER 209164 MD0. 026666 000264 00180. USER 209164 MD0. 027152 000036 00000. USER 209164 MD0. 027210 000020 00016. USER 209164 MD0. 027210 000020 00016. USER 209164 MD0. 027230 000000 00000. USER 209164 MD0. 027230 000000 00000. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027230 0000112. USER 209164 MD0. 027230 0000114 00012. USER 209164 MD0. 027240 000014 00012. USER 209164 MD0. | (RW, I, GBL, REL, CON) 026534 000000 000001. INTRO 209169 1026534 0000000 000024. INTRO 209169 1026534 0000000 000024. INTRO 209169 1026564 000102 00066. INTRO 209169 1026564 000102 00066. INTRO 209169 1026564 000000 000066. INTRO 209169 10264 1000000 000000 000000 000000 000000 00000 | · / DW T CRI. PRI. | 026320 | 177000 | 00000 | | • | • | | | (RW, I, GBL, REL, CON) 026534 000030 00024. INTRO 209169 MD1. 026534 000030 00024. INTRO 209169 MD1. 026564 000102 00066. INTRO 209169 MD1. 026564 000102 00066. INTRO 209169 MD1. 036444 000256 00174. INTRO 209169 MD1. 036444 000060 000048. INTRO 209169 MD1. 036444 000060 000048. INTRO 209169 MD1. 026666 000000 00000. USER 209164 MD0. 026666 0000264 00180. USER 209164 MD0. 026666 0000264 00180. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027210 000020 00016. USER 209164 MD0. 027230 000000 00000. USER 209164 MD0. 027230 000000 00000. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027230 0000114 00012. USER 209164 MD0. 027240 000014 00014 00012 USER 209164 MD0. 027 | (RW, I, GBL, REL, CON) 026534 000030 00024. INTRO 209169 1026554 000102 00066. INTRO 209169 1026564 000102 00066. INTRO 209169 1026564 000102 00066. INTRO 209169 1026564 000102 00066. INTRO 209169 102644 000256 00174. INTRO 209169 102644 000256 00174. INTRO 209169 102644 000056 000008. INTRO 209169 102666 000000 00000. USER 209164 102666 0000264 00180. USER 209164 102715 0000264 00180. USER 209164 102715 000026 00016. USER 209164 102715 000000 00000. USER 209164 102716 000010 | | 026534 | 000000 | 00000 | INTRO | ာ | • | | | (RW,I,GBL,REL,CON) 026564 000102 00066. INTRO 209169 MD1. 026564 000102 00066. INTRO 209169 MD1. 036444 000256 00174. INTRO 209169 MD1. 036444 000256 00174. INTRO 209169 MD1. 036444 0000060 00048. INTRO 209169 MD1. 036444 000000 00000. USER 209169 MD1. 026666 000000 00000. USER 209164 MD0. 026666 0000264 00180. USER 209164 MD0. 026666 000264 00180. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027210 000020 00016. USER 209164 MD0. 027230 000000 00000. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027230 0000114 00012. USER 209164 MD0. 027240 000014 00012. USER 209164 MD0. 027240 000014 00012. USER 209164 MD0. | (RW,I,GBL,REL,CON) 026534 000030 00024. INTRO 209169 026564 000102 00066. INTRO 209169 036444 000256 00174. INTRO 209169 036444 000256 00174. INTRO 209169 036444 000056 00174. INTRO 209169 036444 000056 000048. INTRO 209169 02666 000000 00000. USER 209164 0000264 00180. USER 209164 027152 000036 000030. USER 209164 027152 000036 000030. USER 209164 027210 000020 00016. USER 209164 027210 000020 00016. USER 209164 027210 000020 00000. USER 209164 027230 000000 00000. USER 209164 027230 000010 00008. 000000 00008. USER 209164 027230 000000 00008 00008 00008 00008 00008 00008 00008 00008 00008 00008 00008 00008 00008 00008 00008 00008 0 | : (RW, I, GBL, REL | 026534 | 000030 | 00024 | | | | | | (RW,I,GBL,REL,CON) 026564 000102 00066. INTRO 209169 MD1. 026564 000102 00066. INTRO 209169 MD1. 036444 000256 00174. O36444 000256 00174. O36444 000256 00174. O36444 0000060 000048. O36444 0000060 000048. O36444 0000060 000000. USER 209169 MD1. O26666 000000 00000. USER 209164 MD0. O26666 000000 00000. USER 209164 MD0. O26666 000000 00000. USER 209164 MD0. O26666 000264 00180. USER 209164 MD0. O27152 000036 00030. USER 209164 MD0. O27152 000000 00000. USER 209164 MD0. O27210 0000000 00000. USER 209164 MD0. O27230 000000 00000. USER 209164 MD0. O27230 000010 00008. USER 209164 MD0. O27230 000010 00008. USER 209164 MD0. O27230 0000114 00012. O27240 000014 00014 | (RW,I,GBL,REL,CON) 026564 000102 00066. (RW,I,GBL,REL,CON) 036444 000256 00174. (36444 000256 00174. (36444 000056 00174. (36444 000056 00174. (36444 000060 00048. (36444 000060 000048. (36444 000060 000048. (36444 000000 00000. (36444 000000 00000. (36444 000000 00000. (36444 000000 00000. (36444 000000 00000. (36444 000000 00000. (36444 000000 00000. (36444 000000. (36444 000000. (36444 000000. (36444 000000. (36444 00000. (36444 00000. (36444 00000. (36444 00000. (36444 00000. (36444 00000. (3666 000000. (3666 000000. (3666 000000. (37152 000000. (3715 | | 026534 | 000030 | 00024 | INTRO | Q | • | | | (RW,I,GBL,REL,CON) 036444 000256 00174. INTRO 209169 MD1. 036444 000256 00174. INTRO 209169 MD1. 036444 000056 000048. INTRO 209169 MD1. 036444 000060 000048. INTRO 209169 MD1. 026666 000000 00000. USER 209164 MD0. 026666 000000 00000. USER 209164 MD0. 026666 000000 00000. USER 209164 MD0. 026666 000264 00180. USER 209164 MD0. 026666 000264 00180. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027152 000000 00000. USER 209164 MD0. 027210 000000 00000. USER 209164 MD0. 027210 000000 00000. USER 209164 MD0. 027230 000000 00000. USER 209164 MD0. 027230 0000010 00008. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0.
027230 0000114 00012. USER 209164 MD0. 027240 000014 00012. USER 209164 MD0. 027240 000014 00012. USER 209164 MD0. | (RW,I,GBL,REL,CON) 036444 000256 00174. INTRO 209169 036444 000056 00174. INTRO 209169 036444 000056 00174. INTRO 209169 036444 000060 00048. O36444 000060 00048. O36444 000060 000048. O3644 000060 00000. O3666 000000 00000. U3ER 209164 026666 000000 00000. U3ER 209164 OX6666 0000264 00180. O36666 0000264 00180. O36666 0000264 00180. U3ER 209164 OX7152 000036 00030. U3ER 209164 OX7152 000036 00030. U3ER 209164 OX7152 000036 00000. U3ER 209164 OX7152 000036 00000. U3ER 209164 OX7152 000000 00000. U3ER 209164 OX7152 000000 00000. U3ER 209164 OX7210 000020 00016. U3ER 209164 OX7230 000010 00008. 000008. U3ER 209164 OX7230 000000 00000 00008. U3ER 209164 OX7230 0 | : (RW, I,GBL,REL | 026564 | 000102 | 99000 | INTRO | G | • | | | (RW,I,GBL,REL,CON) 036444 000256 00174. INTRO 209169 MD1. 036444 000060 00048. INTRO 209169 MD1. 036444 000060 00048. INTRO 209169 MD1. 026666 000000 00000. USER 209164 MD0. 026666 000000 00000. USER 209164 MD0. 026666 000264 00180. USER 209164 MD0. 026666 000264 00180. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027152 000000 00000. USER 209164 MD0. 027210 000020 00016. USER 209164 MD0. 027210 000000 00000. USER 209164 MD0. 027230 000000 00000. USER 209164 MD0. 027230 000000 00000. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027240 000014 00012. USER 209164 MD0. 027240 000014 00012. USER 209164 MD0. | (RW,I,GBL,REL,CON) 036444 0000256 00174. INTRO 209169 036444 000060 00048. O36444 000060 00048. O36444 000060 00048. O36444 000060 000048. O209169 026666 000000 00000. USER 209164 O26666 000000 00000. USER 209164 OZ6666 0000264 00180. USER 209164 OZ6666 0000264 00180. USER 209164 OZ7152 000036 00030. USER 209164 OZ7152 000036 00030. USER 209164 OZ7152 000036 000030. USER 209164 OZ7152 000036 000030. USER 209164 OZ7152 000036 000030. USER 209164 OZ7152 0000036 000000. USER 209164 OZ7152 000000 000000. USER 209164 OZ7153 000000 000000. USER 209164 OZ7153 000000 000000. USER 209164 OZ7153 0000010 00008. USER 209164 OZ7153 0000014 000012. USER 209164 OZ71540 000014 000012. USER 209164 OZ71540 000014 000012. | : (RW.I.GBL, REL, | 036444 | 000256 | 00174 | | | • | | | (RW,I,GBL,REL,CON) 036444 000060 00048. INTRO 209169 MD1. 026666 000000 00000. USER 209164 MD0. 026666 000000 USER 209164 MD0. 026666 000000 USER 209164 MD0. 026666 000000 USER 209164 MD0. 026666 000264 00180. USER 209164 MD0. 026666 000264 00180. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027152 000000 USER 209164 MD0. 027210 000020 00016. USER 209164 MD0. 027210 000000 USER 209164 MD0. 027210 000000 USER 209164 MD0. 027230 000000 USER 209164 MD0. 027230 000000 USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027230 0000114 00012. USER 209164 MD0. 027240 000014 00012. USER 209164 MD0. | (RW,I,GBL,REL,CON) 036444 000060 00048. 036444 000060 00048. INTRO 209169 1006666 000000 00000. 026666 000000 00000. USER 209164 100001. 026666 000000 00000. USER 209164 100001. 026666 0000264 00180. USER 209164 100001. 026666 0000264 00180. USER 209164 100001. 027152 000036 00030. USER 209164 100001. 027152 000036 00030. USER 209164 100001. 027210 000020 00016. USER 209164 100001. 027210 000020 00016. USER 209164 100001. 027230 000000 00000. 027230 000010 00008. USER 209164 100001. 027230 000010 00008. USER 209164 100001. 027230 000010 00008. USER 209164 100001. 027240 000014 00012. USER 209164 100012. USER 209164 100012. | | 036444 | 000256 | 00174 | INTRO | S | • | | | (RW,I,GBL,REL,CON) 026666 000000 00000. USER 209169 MD1. 026666 000000 00000. USER 209164 MD0. 026666 000000 00000. USER 209164 MD0. 026666 000000 00000. USER 209164 MD0. 026666 000264 00180. USER 209164 MD0. 026666 000264 00180. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027210 000020 00016. USER 209164 MD0. 027210 000000 00000. USER 209164 MD0. 027230 000000 00000. USER 209164 MD0. 027230 000000 00000. USER 209164 MD0. 027230 0000010 00008. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027240 000014 00012. USER 209164 MD0. 027240 000014 00012. USER 209164 MD0. | (RW,I,GBL,REL,CON) 026666 0000000 00000. USER 209164 000000 000000. USER 209164 000000000000000000000000000000000000 | : (RW, I,GBL,REL, | 036444 | 090000 | | | | | | | (RW,I,GBL,REL,CON) 026666 000000 00000. USER 209164 MD0. 026666 000000 00000. USER 209164 MD0. 026666 000000 00000. USER 209164 MD0. 026666 0000000 USER 209164 MD0. 026666 000264 00180. USER 209164 MD0. 026666 000264 00180. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027210 000020 00016. USER 209164 MD0. 027210 000000 000000. USER 209164 MD0. 027230 000000 000000. USER 209164 MD0. 027230 000000 000000. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027230 0000114 00012. USER 209164 MD0. 027230 0000114 00012. USER 209164 MD0. 027240 000014 00012. USER 209164 MD0. | (RW,I,GBL,REL,CON) 026666 000000 00000. USER 209164 10 026666 000000 00000. USER 209164 10 026666 000000 000000. USER 209164 10 026666 000000 00000. USER 209164 10 026666 0000264 00180. USER 209164 10 026666 0000264 00180. USER 209164 10 027152 000036 00030. USER 209164 10 027152 000036 000030. USER 209164 10 027210 000020 00016. USER 209164 10 027210 000020 00000. USER 209164 10 027230 000000 00000. USER 209164 10 027230 000010 00008. USER 209164 10 027230 0000112. USER 209164 10 027240 000014 00012. USER 209164 10 027240 000014 00012. USER 209164 10 027240 000014 00012. | | 036444 | 090000 | 00048. | INTRO | 16 | • | | | 026666 000000 USER 209164 MD0. 026666 000000 USER 209164 MD0. 026666 000000 USER 209164 MD0. 026666 000264 00180. 026666 000264 00180. 027152 000036 00030. 027152 000036 00030. 027210 000020 00016. 027210 000020 00016. 027210 000000 00000. 027230 000000 00000. 027230 000000 00000. 027230 000000 00000. 027230 000000 00000. 027230 000010 00008. 027230 000010 00008. 027230 000010 00008. 027230 000010 00008. 027230 000010 00008. 027230 000010 00008. 027230 000010 00008. | 026666 000000 00000. USER 209164 10 026666 000000 00000. USER 209164 10 026666 000000 000000. USER 209164 10 026666 000000 000000. USER 209164 10 026666 000264 00180. USER 209164 10 027152 000036 00030. USER 209164 10 027152 000036 00030. USER 209164 10 027210 000020 00016. USER 209164 10 027210 000020 00016. USER 209164 10 027230 000000 00000. USER 209164 10 027230 000010 00008. 027240 000014 00012. USER 209164 10 027240 000014 00012. USER 209164 10 027240 000014 00012. USER 209164 10 027240 000014 00012. | : (RW, I,GBL,REL | 026666 | 000000 | 00000 | | | | | | (RW,I,GBL,REL,CON) 026666 000000 00000. USER 209164 MD0. 026666 000000 00000. USER 209164 MD0. 026666 000264 00180. 026666 000264 00180. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027210 000020 00016. USER 209164 MD0. 027210 000000 00000. USER 209164 MD0. 027230 000000 00000. USER 209164 MD0. 027230 000000 00000. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027240 000012. USER 209164 MD0. 027240 000014 00012. USER 209164 MD0. 027240 000014 00012. USER 209164 MD0. 027240 000014 00012. | (RW,I,GBL,REL,CON) 026666 000000 00000. (RW,I,GBL,REL,CON) 026666 000000 00000. USER 209164 10 026666 0000264 00180. USER 209164 10 026666 0000264 00180. USER 209164 10 027152 000036 00030. USER 209164 10 027152 0000036 000030. USER 209164 10 027152 0000020 00016. USER 209164 10 027210 000020 00016. USER 209164 10 027230 000000 00000. USER 209164 10 027230 000010 00000. USER 209164 10 027230 000010 00008. 027240 000014 00012. USER 209164 10 027240 000014 00012. | | 026666 | 00000 | | USER | 209164 | MD0.0BJ | | | 026666 000000 USER 209164 MD0. (RW,I,GBL,REL,CON) 026666 000264 00180. 026666 000264 00180. (RW,I,GBL,REL,CON) 027152 000036 00030. (RW,I,GBL,REL,CON) 027210 000020 00016. (RW,I,GBL,REL,CON) 027230 000000 00000. (RW,I,GBL,REL,CON) 027230 000000 00000. (RW,I,GBL,REL,CON) 027230 000010 00008. (RW,I,GBL,REL,CON) 027230 000010 00008. (RW,I,GBL,REL,CON) 027240 0000114 00012. (RW,I,GBL,REL,CON) 027240 000014 00012. | (RW,I,GBL,REL,CON) 026666 000000 00000. USER 209164 10 026666 000264 00180. USER 209164 10 026666 000264 00180. USER 209164 10 027152 000036 00030. USER 209164 10 027152 0000036 000030. USER 209164 10 027152 0000020 00016. USER 209164 10 027210 000020 00016. USER 209164 10 027230 000000 00000. USER 209164 10 027230 000010 000008. 027240 000010 000008. USER 209164 10 027240 000010 000008. USER 209164 10 027240 000010 000008. | : (RW, I, GBL, REL, | 026666 | 000000 | 00000 | | 4 | | | | (RW,I,GBL,REL,CON) 026666 000264 00180. 026666 000264 00180. USER 209164 MD0. 027152 000036 00030. (RW,I,GBL,REL,CON) 027152 000036 00030. (RW,I,GBL,REL,CON) 027210 000020 00016. USER 209164 MD0. 027230 000000 00000. 027230 000000 00000. 027230 000010 00008. USER 209164 MD0. 027230 000010 00008. 027230 000010 00008. 027230 000010 00008. 027230 000010 00008. 027240 000014 00012. | (RW,I,GBL,REL,CON) 026666 000264 00180. 026666 000264 00180. USER 209164 1027152 000036 00030. USER 209164 1027152 000036 000030. USER 209164 1027152 0000036 000016. USER 209164 1027210 000020 00016. USER 209164 1027210 000000 00000. USER 209164 1027230 000000 00000. USER 209164 1027230 000010 00008. USER 209164 1027240 000014 00012. USER 209164 1027240 000014 00012. USER 209164 1027240 000014 00012. | | ۵ | 000000 | 00 | USER | 209164 | • | | | (RW,I,GBL,REL,CON) 027152 000036 00030. USER 209164 MDU. (RW,I,GBL,REL,CON) 027210
000036 00030. USER 209164 MDO. 027210 000020 00016. USER 209164 MDO. 027210 000020 00016. USER 209164 MDO. 027230 000000 00000. USER 209164 MDO. 027230 000000 00000. USER 209164 MDO. 027230 000010 00008. USER 209164 MDO. 027230 000010 00008. USER 209164 MDO. 027240 000014 00012. | (RW,I,GBL,REL,CON) 027152 000036 000180. USER 209164 1027152 000036 00030. USER 209164 1027152 000036 00030. USER 209164 1027152 0000020 00016. USER 209164 1027210 000020 00016. USER 209164 1027230 000000 00000. USER 209164 1027230 000010 00008. USER 209164 1027240 000014 00012. USER 209164 1027240 000014 00012. | : (RW, I, GBL, REL | 026666 | ιÒι | 00180. | | 7 | 0 | | | (RW,I,GBL,REL,CON) 027152 000036 00030. USER 209164 MD0. 027152 000036 00030. USER 209164 MD0. 027210 000020 00016. USER 209164 MD0. 027210 000000 00000. USER 209164 MD0. 027230 000000 00000. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027230 000010 00008. USER 209164 MD0. 027240 000014 00012. | (RW,I,GBL,REL,CON) 027152 000036 00030. USER 209164 1 027152 000036 000030. USER 209164 1 027210 000020 00016. USER 209164 1 027210 000020 00016. USER 209164 1 027230 000000 00000. USER 209164 1 027230 000010 00008. USER 209164 1 027230 000010 00008. USER 209164 1 027230 000010 00008. USER 209164 1 027240 000014 00012. | 194 195 t 294 | 025555 | 0 0 | 00180 | USER | 916 | MDU.OBJ | | | (RW,I,GBL,REL,CON) 027210 000020 00016.
027210 000020 00016. USER 209164 MDO.
027230 000000 000000. USER 209164 MDO.
(RW,I,GBL,REL,CON) 027230 000010 00008. USER 209164 MDO.
027230 000010 00008. USER 209164 MDO.
027240 000014 00012. USER 209164 MDO. | : (RW,I,GBL,REL,CON) 027210 000020 00016.
: (RW,I,GBL,REL,CON) 027210 000020 00016.
027230 000000 00000.
: (RW,I,GBL,REL,CON) 027230 000010 00008.
027230 000010 00008.
027230 000010 00008.
027240 000014 00012.
: (RW,I,GBL,REL,CON) 027240 000014 00012.
: (RW,I,GBL,REL,CON) 027254 000006 00006. | (KW, 1,6DL,KEL | 027152 | 000036 | 00000 | Œ | 9 | MD0.0R.T | | | (RW,I,GBL,REL,CON) 027210 000020 00016. USER 209164 MDO. 027230 000000 00000. USER 209164 MDO.: (RW,I,GBL,REL,CON) 027230 000010 00008. USER 209164 MDO. 027230 000010 00008. USER 209164 MDO.: (RW,I,GBL,REL,CON) 027240 000014 00012. USER 209164 MDO. 027240 000014 00012. USER 209164 MDO. | (RW,I,GBL,REL,CON) 027210 000020 00016. USER 209164 1027230 000000 00000. USER 209164 1027230 000000 00000. USER 209164 1027230 000010 00008. USER 209164 1027230 000010 00008. USER 209164 1027240 000014 00012. | : (RW.I.GBL.REL | 027210 | 0000020 | o co | 1 | 2 | | | | :(RW,I,GBL,REL,CON) 027230 000000 000000.
027230 000000 000000. USER 209164 MD0.
:(RW,I,GBL,REL,CON) 027230 000010 00008.
027230 000010 00008. USER 209164 MD0.
:(RW,I,GBL,REL,CON) 027240 000014 00012. USER 209164 MD0. | : (RW,I,GBL,REL,CON) 027230 000000 00000. USER 209164 027230 000000 00000. USER 209164 027230 000010 00008. USER 209164 027230 000010 00008. USER 209164 027240 000014 00012. USER 209164 027240 000014 00012. USER 209164 027240 000014 00012. USER 209164 027240 0000014 00012 027240 0000014 00012 027240 0000014 00012 027240 0000014 00012 027240 0000014 00012 027240 0000014 027240 00000014 027240 0000014 027240 00000014 027240 00000014 027240 0000014 027240 00000014 027240 0000014 027240 000000000 | | 027210 | 000000 | ص ا | USER | 209164 | | | | (RW,I,GBL,REL,CON) 027230 000000 000000. USER 209164 MDO.
027230 000010 00008. USER 209164 MDO.
:(RW,I,GBL,REL,CON) 027240 000014 00012. USER 209164 MDO. | (RW,I,GBL,REL,CON) 027230 000000 00000. USER 209164
027230 000010 00008. USER 209164
:(RW,I,GBL,REL,CON) 027240 000014 00012.
027240 000014 00012. USER 209164
:(RW,I,GBL,REL,CON) 027254 000006 00006. | : (RW, I, GBL, REL, | 027230 | 000000 | | | | | | | (RW,I,GBL,REL,CON) 027230 000010 00008.
027230 000010 00008. USER 209164 MDO.
(RW,I,GBL,REL,CON) 027240 000014 00012.
027240 000014 00012. USER 209164 MDO. | (RW,I,GBL,REL,CON) 027230 000010 00008.
027230 000010 00008. USER 209164
(RW,I,GBL,REL,CON) 027240 000014 00012.
027240 000014 00012. USER 209164
(RW,I,GBL,REL,CON) 027254 000006 00006. | | \sim | 000000 | | USER | 209164 | MD0.0BJ | | | 027230 000010 00008. USER 209164 MDO.
(RW,I,GBL,REL,CON) 027240 000014 00012.
027240 000014 00012. USER 209164 MDO. | (RW,I,GBL,REL,CON) 027240 000014 00012.
027240 000014 00012.
027240 000014 00012. USER 209164
(RW,I,GBL,REL,CON) 027254 000006 00006. | (RW, I, GBL, REL, | \sim | 000010 | .80000 | | | | | | (RW,I,GBL,REL,CON) 027240 000014 00012.
027240 000014 00012. USER 209164 | (RW,I,GBL,REL,CON) 027240 000014 00012.
027240 000014 00012. USER 209164
(RW,I,GBL,REL,CON) 027254 000006 00006. | | 72 | _ | m | USER | 9 | | | | 027240 000014 00012. USER 209164 | 027240 U0UU14 UUULZ. USER 2U9164 (RW,I,GBL,REL,CON) 027254 000006 00006. | : (RW,I,GBL,REL, | 72 | _ , | 00012. | 1 | 7 | 1 | | | | (RW, I, GBL, REL, CON) 02/254 000006 0000 | | 2724 | - 0 | 00012. | USER | 916 | MD0.0BJ | | Figure 5-15 (Cont.) User COBOL Memory Allocation Map | 164 MD0.0BJ | 164 MD0.0BJ | 7 | 164 MDU.OBJ | 164 MD0.0BJ | 1 40 0 0 TW 1 2 1 | 4 BD0 | 164 MD0.0BJ | | 164 MDU.UBJ | 21 COBLIB.OLB | OT CORLIE OLB | • | 08 COBLIB.OLB | 1 | 08 COBLIB.OLB | OPETER OLB | G T T G C C | 21 COBLIB.OLB | | 08 COBLIB.OLB | | 21 COBLIB.OLB | | 21 COBLIB.OLB | 21 COBLIE OLE | ZI COBILE | 21 COBLIB.OLB | | ZI COBLIB.OLB | 21 COBLIB.OLB | | .08 COBLIB.OLB | | | | | |-------------|-----------------------------|--------------------------------|-------------|-------------------------------|--------------------------------|---------------------------------------|-------------------------------------|---------------------------------|---------------------------------|---------------|--------------------------------|---------------------------|---------------|------------------------------|---------------|-----------------------------|-------------|-------------------------------|--------------------------|-----------------------------|-------------------------------|---------------|---------------------------------|---------------|--------------------------------|---------------------------|---------------|---------------------------------|---------------|--------------------------------|---------------------------------|----------------|----------------------------------|--------|---------------------------------|----------| | USER 20916 | USER 20916 | | USEK 20910 | USER 20916 | | USER ZUSIO | USER 2091 | | USER 20916 | XGO 1A.21 | רכ ער טא | | XCALL 1A.08 | | XCALL 1A.08 | רכ גיר טטא | | xG0 1A.21 | | XCALL 1A.08 | | xGo 1A. | | xGo lA. | . 4. C | · C | XGO 1A.21 | ; | xGO TA: | xGO 1A. | | XCALL 1A. | | | | | | .90000 | 00004. | 00140. | 00140. | 00000 | 00024. | 00066. | 000066. | 00088. | 00088. | 00018. | 00012. | 00088. | .88000 | 00034. | 00034. | 00100 | .0000 | 00016 | 00012 | 00012. | 00000 | .08000 | 00042. | 00042. | 00026. | 00026 | 00026. | 00014. | 00014. | 6 00038.) | 9000 | 00062. | 0002 | 000 | 000 | 6 00062. | | _ | 2 000004 | 00021 | 6 000214 | | | 0 000030 | | ~ | 12 000130
12 000022 | | 4 000014 | 00013 | | 0 000042 | | 2 000152 | | 4 000020 | 0000 | 0000 | 00012 | 00012 | 00002 | | 72 000032 | | | | 4 00001 | 0000 | 0000 | . ~ | ~ | | 6 00013 | 76 00007 | | 027254 | _ | _ | | N) 02/502
027502 | _ | 027510
V) 027540 | | 027 | _ | | N) 035064 | _ | | $\overline{}$ | | _ | _ | _ | _ | | _ | 03220 | _ | | $\overline{}$ | _ | | _ | ٠. | N) U36U32
036032 | _ | _ | | | 0300 | 0361 | | | \$USPDT: (RW, I,GBL,REL,CON | \$USPFM: (RW, I, GBL, REL, CON | | SUSSDT: (RW, I, GBL, REL, CON | \$USUSE: (RW, I, GBL, REL, CON | NOD - 138 - 188 - 1 - May . 1 - Maris | SOSHEN (ANTICOLOGICALIST CONTRACTOR | \$US 001: (RW, I, GBL, REL, CON | NOD TERM TOWN . THE SERVICE NO. | • | \$XALT : (RO, I, GBL, REL, CON | SXCALL: (RO.I.GBL.REL.CON | | \$XDDDI: (RO, I,GBL, REL,CON | | \$XENDP: (RO, I,GBL,REL,CON | | SXERR : (RO, I, GBL, REL, CON | SYEXIT (BO I GBL BEL CON | 100 (mm) (mm) (mm) (mm) | SXGO : (RO, I, GBL, REL, CON) | | \$XGOD : (RO, I, GBL, REL, CON) | | \$XGOUN: (RO, I, GBL, REL, CON | SYINITE (BO I GBL BET CON | | \$XSTOP: (RO, I, GBL, REL, CON) | | \$XSTPR: (RO, I, GBL, REL, CON | SXSIIRK: (BO. I. GBL. REI. CON) | | \$\$ALER: (RW, I, LCL, REL, CON) | SALVC: | \$\$AUTO: (RW, I, LCL, REL, CON | SMRKS: | Figure 5-15 (Cont.) User COBOL Memory Allocation Map | GLOBAL | GLOBAL SYMBOLS: | | | | | | | | | | | | | |------------------|----------------------|--------|----------------------|---------------|----------------------|--------|----------------------|----------------|----------------------|-------------------|----------|----------------|----------| | ACCBUF
ACCQIO | 002514-R
003624-R | ClFC | 013676-R
013714-R | HDL
IDXMS1 | 013406-R
022702-R | PUTCMG | 022464-R
002440-R | USER | 027210-R
006602-R | \$XCHDR
SXCNDT | 020322-R | ŞXMBD | 017576-R | | ADDET | 003572-R | C2FL | 013760-R | INTEG | 034134-R | RNDFL | 013414-R | z | 006372-R | SXDDDI | 035230-R | SXMDB | 017224-R | | ADDEV | 002476-R | C3F | 013742-R | INTRO | 025662-R | RSCRY | 013610-R | | 013420-R | | 010324-R | SXMDD | 017062-R | | ADLUN | 0024/4-R | DCMLPT | 022700-R | IN\$003 | 030026-R | RSTRN | 022660-R | WFB2 | 013440-R | \$XDIVR | 010316-R | ŞXMED | 011544-R | | ADSET | 0031/2-R | DISSIG | 003744-R | IN\$005 | 030016-R | SAVE | 022640-R | | 013460-R | \$XEACC | 003010-R | SXMJR | 015212-R | | ASLUN | 003450-K | DSETNG | 006532-R | qqqxi | 013622-R | SEPSGN | 006512-R | WFB4 | 013472-R | | 003252-R | \$XMNA | 020126-R | | AWFBI | 013430-K | DSETPS | 006514-R | LDL | 013410-R | SIGNE | 013604-R | |
013542-R | Д | 035272-R | \$XMNAE | 013246-R | | | 013450-K | بد | 006/54-R | LINHLD | 013606-R | SIZFLG | 013616-R | | 013552-R | | 035444-R | SXMULB | 007544-R | | | 0134/U-R | | 016/42-R | MASKPT | 020376-R | SSTTBL | 035022-R | | 023046-R | II | 035464-R | \$XMULR | 007536-R | | | 013502-K | | 015356-R | MSG | 002507-R | SZEFLG | 013620-R | \$CBTSK | 023050-R | \$XGO | 035500-R | \$XNGAT | 007142-R | | | 013532-R | | 015320-R | MSGPTL | 033324-R | TTYBUF | 002504-R | \$XABRT | 035042-R | | 035620-R | SXPWER | 007216-R | | AWFDI | 013562-R | | 016674-R | MSGPTW | 033316-R | UBADD | 007050-R | SXACCS | 002704-R | ы | 035574-R | \$XSBBR | 006620-R | | BAN | 004422-R | | 013070-R | MSGRTL | 033000-R | UCFV | 006572-R | \$XADBR | 006652-R | \$XGOR5 | 035500-R | SXSSIZ | 020436-R | | BAK | 004412-R | | 017074-R | MSGRTN | 032772-R | UDCS | 005456-R | \$XADDB | 006660-R | SXGOSP | 035602-R | SXSTOP | 036014-R | | BININS | 014022-R | | 011574-R | M.DPID | 011472-R | UDEA | 014130-R | \$XADDD | 004462-R | \$XGOTR | 035564-R | SXSTPR | 036032-R | | | 013412-K | | 015224-R | M4DPID | | UDXP | 015030-R | \$XADDR | 004454-R | | 035672-R | SXSUBB | 006626-R | | | 0233/2-R | EMXB | 015274-R | NEGOAD | | UGBR | 010216-R | \$XALT | 035064-R | SXIFA | 022164-R | SXSUBD | 004762-R | | CH4003 | 030066-R | ESGNE | 006466-R | NGFLD0 | 011110-R | ΩÐΩ | 005230-R | | 021530-R | | 021664-R | \$XSUBK | 036100-R | | | 030036-R | FCFI | 013320-R | NGFLDI | 011046-R | UGFC | 005754-R | | 035100-R | SXIFUN | 022052-R | \$XSUBR | 004754-R | | | 013614-K | FCFZ | 013322-R | OPCRY | 013416-R | UGFCI | 005740-R | \$XCALS | 021514-R | SXINIT | 035724-R | SXSWT | 020460-R | | | 003350-K | FCF3 | 013324-R | PARAM | 013626-R | UGREV1 | 006330-R | | 021110-R | \$XIXBY | 015124-R | SXSZEC | ~ | | | N-90/ #70 | ונא | U13326-R | PARAMI | 013666-R | UMB | 016770-R | SXCCC | 020712-R | SXIXCP | 015134-R | | | | | 030046-R | FIREUN | 013316-R | RAM2 | 013670-R | OMLQ | 010106-R | \$XCCCS | 020676-R | SXMAL | 016730-R | | | | Ω | 030036-R | GETSWT | 1 | | 013672-R | UMND | 020210-R | | 021374-R | SXMALD | 013230-R | | | | CIESI | 013624-K | GETUB | 014664-R | PARAM4 | 013674-R | nsp | 005320-R | \$XCHD | 020326-R | \$XMBB (| 015344-R | | | 000104. 000000. 000000. 000000. 000084. \$\$OVDT: (RW,I,LCL,ABS,CON) O \$\$OVRS: (RW,D,LCL,REL,OVR) O \$\$RDSG: (RO,I,LCL,REL,OVR) O \$\$RESL: (RW,I,LCL,REL,CON) O \$\$RTS: (RW,D,LCL,REL,CON) O \$\$SGDO: (RW,D,LCL,REL,OVR) O \$\$SGDO: (RW,D,LCL,REL,CON) \$\$ Figure 5-15 (Cont.) User COBOL Memory Allocation Map | RY ALLOCATION MAP TKB M26
28-JUL-77 17:01 | | |--|--| | JUSER.TSK MEMORY
IN\$003 | | 8 PAGE *** SEGMENT: IN\$003 R/W MEM LIMITS: 036444 036523 000060 00048. DISK BLK LIMITS: 000041 000041 000001. MEMORY ALLOCATION SYNOPSIS: GLOBAL SYMBOLS: IN\$003 030272-R CUSER.TSK MEMORY ALLOCATION MAP TKB M26 PAGE IN\$005 28-JUL-77 17:01 σ *** SEGMENT: IN\$005 R/W MEM LIMITS: 036444 036723 000260 00176. DISK BLK LIMITS: 000042 000042 000001 00001. MEMORY ALLOCATION SYNOPSIS: SECTION -----\$IN001:(RW,I,GBL,REL,CON) 036444 000256 00174. \$\$ALVC:(RW,D,LCL,REL,CON) 036722 000000 00000. \$\$RTS :(RW,I,GBL,REL,OVR) 030272 000002 00002. FILE IDENT Figure 5-15 (Cont.) User COBOL Memory Allocation Map GLOBAL SYMBOLS: IN\$005 030272-R PAGE 10 TKB M26 17:01 MEMORY ALLOCATION MAP 28-JUL-77 CUSER.TSK CR\$003 *** SEGMENT: CR\$003 R/W MEM LIMITS: 036444 036563 000120 00080. DISK BLK LIMITS: 000043 000043 000001 00001. MEMORY ALLOCATION SYNOPSIS: SECTION FILE IDENT TITLE 036444 000116 00078. 036562 000000 00000. 030272 000002 00002. \$CR002: (RW, I, GBL, REL, CON) \$\$ALVC: (RW, D, LCL, REL, CON) \$\$RTS: (RW, I, GBL, REL, OVR) GLOBAL SYMBOLS: CR\$003 030272-R PAGE 11 MEMORY ALLOCATION MAP TKB M26 28-JUL-77 17:01 CUSER.TSK CR\$005 *** SEGMENT: CR\$005 R/W MEM LIMITS: 036444 036737 000274 00188. DISK BLK LIMITS: 000044 000044 000001 00001. User COBOL Memory Allocation Map Figure 5-15 (Cont.) SECTION ----\$CRU01: (RW,I,GBL,REL,CON) 036444 000272 00186. \$\$ALVC: (RW,D,LCL,REL,CON) 036736 000000 00000. \$\$ALVC: (RW,D,LCL,REL,CON) 036736 000000 00000. IDENT GLOBAL SYMBOLS: CR\$005 030272-R CUSER.TSK MEMORY ALLOCATION MAP TKB M26 CH\$003 12 *** SEGMENT: CH\$003 R/W MEM LIMITS: 036444 036563 000120 00080. DISK BLK LIMITS: 000045 000045 000001 00001. MEMORY ALLOCATION SYNOPSIS: FILE GLOBAL SYMBOLS: CH\$003: 030272-R Figure 5-15 (Cont.) User COBOL Memory Allocation Map CUSER.TSK MEMORY ALLOCATION MAP TKB M26 CH\$005 *** SEGMENT: CH\$005 *** SEGMENT: CH\$005 R/W MEM LIMITS: 036444 036657 000214 00140. DISK BLK LIMITS: 000046 000046 000001. MEMORY ALLOCATION SYNOPSIS: SECTION SECTION ----\$CH001: (RW, I, GBL, REL, CON) 036444 000214 00140. \$\$ALVC: (RW, D, LCL, REL, CON) 036660 000000 00000. \$\$\$RTS: (RW, I, GBL, REL, OVR) 030272 000002 00002. FILE GLOBAL SYMBOLS: CH\$005 030272-R * TASK BUILDER STATISTICS: TOTAL WORK FILE REFERENCES: 69063. WORK FILE WRITES: 0. SIZE OF CORE POOL: 8548. WORDS (33. PAGES) SIZE OF WORK FILE: 6656. WORDS (26. PAGES) ELAPSED TIME: 00:00:26 Figure 5-15 (Cont.) User COBOL Memory Allocation Map TKB M26 MEMORY ALLOCATION MAP 18-JUL-77 11 USER. TSK PARTITION NAME: GEN IDENTIFICATION: V01X03 TASK UIC: [200,47] STACK LIMITS: 001000 001777 001000 00512. PRG XFR ADDRESS: 002464 TOTAL ADDRESS WINDOWS: 2. TASK IMAGE SIZE: 1600. WORDS TASK ADDRESS LIMITS: 000000 006177 USER.TSK OVERLAY DESCRIPTION: INTRO CRUNCH CHATR 02800. 00136. 00272. 00400. LENGTH 005360 000210 000420 000620 005357 005567 005777 006177 TOP 000000 005360 005360 005360 BASE MEMORY ALLOCATION MAP TKB M26 18-JUL-77 11:41 USER.TSK USER 7 PAGE *** ROOT SEGMENT: USER R/W MEM LIMITS: 000000 005357 005360 02800. DISK BLK LIMITS: 000002 000007 000006 00006. MEMORY ALLOCATION SYNOPSIS: User BASIC-PLUS-2 Memory Allocation Map Figure 5-16 | SECTION | | | | TITLE | IDENT | FILE | |----------------------------------|--------|---------|--------|---------|---------|------------| | . BLK.: (RW, I, LCL, REL, CON) | 002000 | 000464 | 00308. | STATE | 0.2CM | BASTC2_OLB | | SARRAY: (RW, D, LCL, REL, CON) | 002464 | 000000 | 00000 | | | | | | 002464 | 000000 | .00000 | USER | V01X03 | USER.OBJ | | \$CODE : (RW, I, LCL, REL, CON) | 002464 | 000204 | 00132. | | | | | VIOO Tag Tag d may don't ag | 002464 | 0000000 | 00000 | SER | VULAUS | USEK. OBC | | SFLAGK: (KW, U, GBL, KEL, CON) | 002670 | 000000 | 00000 | USER | V01X03 | USER, OBJ | | SFLAGS: (RW, D, GBL, REL, CON) | 002670 | 000000 | .80000 | | | | | | 002670 | 000002 | 00002. | USER | V01X03 | USER.OBJ | | \$FLAGT: (RW, D, GBL, REL, CON) | 002700 | 000000 | 00000 | USER | V01X03 | USER, OBJ | | SICIO1: (RW.D.GBL, REL, OVR) | 002700 | 000200 | 00128. | | | | | | 002700 | 000200 | 00128. | USER | V01X03 | USER.OBJ | | \$IDATA: (RW, D, LCL, REL, CON) | 003100 | 001454 | 00812. | | | | | | 003100 | 001454 | 00812. | USER | V01X03 | USER.OBJ | | \$PDATA: (RW, D, LCL, REL, CON) | 004554 | 000024 | 00020. | | | | | | 004554 | 000024 | 00020. | USER | VOLXU3 | USER.OBJ | | \$SAVSP: (RW, D, LCL, REL, CON) | 004600 | 000002 | 00002. | 1 | | | | | 004600 | 00000 | 00002. | USER | VOLXUS | USEK.OBJ | | \$STRNG: (RW, D, LCL, REL, CON) | 004602 | 000000 | 00000 | | 0001000 | 1 00 | | | 004602 | 00000 | 00000 | USEK | COVTOA | USEK. OBJ | | \$TDATA: (RW, D, LCL, REL, CON) | 004602 | 000000 | 00000 | 119.P.D | VOIXOS | HSER OB.T | | 104 TOT T 534 | 700400 | | • | 200 | 2010 | 200.111 | | | 004602 | 000004 | 00000 | | | | | | 004070 | 000000 | | | | - | | | 00400 | 0000130 | 00000 | | | | | _ | 711500 | 9/000 | 0000 | | | | | _ | 000000 | 00000 | 00000 | | | | | $\overline{}$ | 00200 | 00000 | 00016. | | | | | _ | 005210 | 000150 | 00104. | | | | | _ | 005026 | 000000 | 00000 | | | | | | 005026 | 000005 | 00002. | | | | | | 002030 | 000000 | .00000 | | | | | SSGD1: | 005030 | 090000 | 00048. | | | | | | 005110 | 000000 | 00002 | | | | | \$\$WNDS: (RW, D, LCL, REL, CON) | 005112 | 00000 | .00000 | | | | GLOBAL SYMBOLS: Figure 5-16 (Cont.) User BASIC-PLUS-2 Memory Allocation Map | CALS | 002146-R | CBR\$ | 002442-R | CHATR | 004646-R | CHATR 004646-R CRUNCH 004636-R | INTRO | NINTRO 004626-R | -R SBEŞ | 002242-R | 002242-R \$INITS 002000-R | :000-R | |---------|----------|-------|----------|-------|----------|--------------------------------|-------|-----------------|---------|----------|---------------------------|--------| | \$OTSVA | 003150-R | | | | | | | | | | | | | P TKB M26 PAGE | 11:41 | |-----------------------|-----------| | MEMORY ALLOCATION MAP | 18-JUL-77 | | JSER. TSK MEMOR | INTRO | *** SEGMENT: INTRO R/W MEM LIMITS: 005360 005567 000210 00136. DISK BLK LIMITS: 000010 000010 000001. MEMORY ALLOCATION SYNOPSIS: | SECTION | | | | TITLE | IDENT | FILE | |--|------------------|--------|--------|-------|--------|------------------| | \$ARRAY: (RW, D, LCL, REL, CON) | 005360 | 000000 | 00000. | INTRO | V01X03 | INTRO.OBJ | | \$CODE : (RW, I, LCL, REL, CON) | 005360 | 000126 | 00086. | INTRO | V01X03 | INTRO.OBJ | | \$FLAGR: (RW, D, GBL, REL, CON) | 002670 | 000000 | | INTRO | V01X03 | | | \$FLAGS: (RW, D, GBL, REL, CON) | 002670 | 000010 | 00008. | INTRO | V01X03 | V01X03 INTRO.OBJ | | \$FLAGT: (RW, D, GBL, REL, CON) | 002700 | 000000 | 000000 | INTRO | V01X03 | INTRO.OBJ | | \$IDATA: (RW,D,LCL,REL,CON) | 005506
005506 | 900000 | | INTRO | V01X03 | INTRO.OBJ | | SPDATA: (RW, D, LCL, REL, CON) | 005514 | 000052 | 00042. | INTRO | V01X03 | V01X03 INTRO.OBJ | | \$STRNG: (RW, D, LCL, REL, CON) | 005566 | | | INTRO | V01X03 | V01X03 INTRO.OBJ | | \$TDATA: (RW, D, LCL, REL, CON) | 005566 | 000000 | 00000 | INTRO | V01X03 | INTRO.OBJ | | \$\$ALVC: (RW, D, LCL, REL, CON)
\$\$RTS : (RW, I, GBL, REL, OVR) | 005566
005026 | 000000 | 00000. | | | | GLOBAL SYMBOLS: Figure 5-16 (Cont.) User BASIC-PLUS-2 Memory Allocation Map INTRO 005360-R USER. TSK MEMORY ALLOCATION MAP TKB M26 CRUNCH
18-JUL-77 11:41 PAGE 5 SEGMENT: CRUNCH R/W MEM LIMITS: 005360 005777 000420 00272. DISK BLK LIMITS: 000011 000011 000001 00001. MEMORY ALLOCATION SYNOPSIS: BASIC2.OLB BASIC2.OLB BASIC2.OLB CRUNCH, OBJ V01X03 CRUNCH.OBJ CRUNCH VOIXO3 CRUNCH.OBJ CRUNCH, OBJ CRUNCH, OBJ CRUNCH, OBJ CRUNCH V01X03 CRUNCH.OBJ VOLX03 CRUNCH.OBJ FILE V01X03 V01X03 V01X03 V01X03 V01X03 IDENT 01CM 02CM 01CM \$JPADD \$JPMOV CRUNCH CRUNCH CRUNCH SJPSUB CRUNCH CRUNCH CRUNCH CRUNCH TITLE 00104. 00104. 000002. 00012. 00020. 00020. 00038. 00038. 00000 .00000 00000 .00000 00000 00000 00000 00008. 00000 00000 00000 00012 000150 000150 000000 000000 0000010 0000002 0000000 0000000 000014 000024 000046 000046 000000 000074 000000 000024 000000 000000 000000 000000 00000 005360 005426 005522 005570 005570 005570 002670 002670 002700 005740 005740 006000 005026 000900 000900 000900 000900 BLK.: (RW, I, LCL, REL, CON) \$FLAGT: (RW, D, GBL, REL, CON) \$FLAGR: (RW, D, GBL, REL, CON) \$FLAGS: (RW, D, GBL, REL, CON) \$IDATA: (RW, D, LCL, REL, CON) STDATA: (RW, D, LCL, REL, CON) \$\$ALVC: (RW, D, LCL, REL, CON) \$\$RTS : (RW, I, GBL, REL, OVR) SARRAY: (RW, D, LCL, REL, CON) SCODE : (RW, I, LCL, REL, CON) \$PDATA: (RW, D, LCL, REL, CON) \$STRNG: (RW, D, LCL, REL, CON) SECTION Figure 5-16 (Cont.) User BASIC-PLUS-2 Memory Allocation Map | 005504-R SUI\$PA 005562-R SUI\$SP 005524-R
005474-R SUI\$PM 005554-R
005522-R SUI\$PP 005532-R
005536-R SUI\$PS 005546-R | |--| | SUI\$PA 005562-R
SUI\$PM 00554-R
SUI\$PP 005532-R
SUI\$PS 005546-R | | 005504-R
005474-R
P 00552-R
IP 005536-R | | NOISP
ONISP
SUISI
SUISW | | 005466-R
005436-R
005452-R
005430-R | | MOISPM
MOISPP
MOISPS
MOISSP | | CRUNCH 005570-R MOIŞPM 005466-R NOIŞP 005504-R
MOIŞIP 005426-R MOIŞPP 005436-R ONIŞP 005474-R
MOIŞMP 005442-R MOIŞPS 005452-R SUIŞIP 005522-R
MOIŞPA 005460-R MOIŞSP 005430-R SUIŞMP 005536-R | | 005370-R
005404-R
005362-R
005514-R | | ADI\$PP
ADI\$PS
ADI\$SP
CLI\$P | | GLOBAL SYMBOLS: ADIŞIP 005360-R ADIŞPP 005370-R ADIŞMP 005374-R ADIŞPS 005404-R ADIŞPA 005420-R ADIŞSP 005362-R ADIŞPM 005412-R CLIŞP 005514-R | | | USER.TSK MEMORY ALLOCATION MAP TKB M26 PAGE 6 CHATR 18-JUL-77 11:41 *** SEGMENT: CHATR R/W MEM LIMITS: 005360 006177 000620 00400. DISK BLK LIMITS: 000012 000012 000001 00001. MEMORY ALLOCATION SYNOPSIS: | SECTION | | | | TITLE | IDENT | FILE | |---------------------------------|----------------------|-----------------------|----------------------------|---|--------|------------------| | | | | | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 1 | !!!! | | . BLK.: (RW, I, LCL, REL, CON) | 005360 000074 00060. | 000074 | 09000 | | | | | | 005360 | 000074 | .09000 | \$JPMOV 02CM | 02CM | BASIC2.OLB | | SARRAY: (RW, D, LCL, REL, CON) | 005454 | 000000 | .00000 | | | | | | 005454 | 000000 | 00000 | CHATR | V01X03 | V01X03 CHATR.OBJ | | SCODE : (RW, I, LCL, REL, CON) | 005454 | 000346 | 00230. | | | | | | 005454 | 000346 | 00230. | CHATR | V01X03 | V01X03 CHATR.OBJ | | SFLAGR: (RW, D, GBL, REL, CON) | 002670 | 0002670 0000000 | 00000 | | | | | | 002670 | 000000 | 002670 000000 00000. | CHATR | V01X03 | V01X03 CHATR.OBJ | | SFLAGS: (RW, D, GBL, REL, CON) | 002670 | 002670 000010 00008. | 00008. | | | | | | 002676 | 000000 | 000002 00002. CHATR | CHATR | V01X03 | V01X03 CHATR.OBJ | | SFLAGT: (RW, D, GBL, REL, CON) | 002700 | 000000 | .00000 | | | | | | 002700 | 000000 | .00000 | CHATR | V01X03 | V01X03 CHATR.OBJ | | SIDATA: (RW, D, LCL, REL, CON) | 006022 | 000014 | 00012. | | | | | | 006022 | 000014 | 000014 00012. | CHATR | V01X03 | V01X03 CHATR.OBJ | | SPDATA: (RW, D, LCL, REL, CON) | 006036 | 006036 000140 00096. | .96000 | | | | | | 006036 | 000140 | 006036 000140 00096. CHATR | CHATR | V01X03 | V01X03 CHATR.OBJ | | \$STRNG: (RW, D, LCL, REL, CON) | | 006176 000000 000000. | .00000 | | | | | | | 000000 | 006176 000000 00000. CHATR | CHATR | V01X03 | V01X03 CHATR.OBJ | Figure 5-16 (Cont.) User BASIC-PLUS-2 Memory Allocation Map V01X03 CHATR.OBJ CHATR 006176 000000 00000. 006176 000000 00000. C 006176 000000 00000. STDATA: (RW, D, LCL, REL, CON) \$\$ALVC: (RW, D, LCL, REL, CON) \$\$RTS : (RW, I, GBL, REL, OVR) GLOBAL SYMBOLS: 005426-R ONI\$P MOI\$SP 005362-R NOI\$P 005436-R MOI\$PP 005370-R MOI\$PS 005404-R MOISPA 005412-R MOISPM 005420-R MOI\$IP 005360-R MOI\$MP 005374-R 005454-R 005446-R CHATR CLI\$P *** TASK BUILDER STATISTICS: (70. PAGES) (63. PAGES) TOTAL WORK FILE REFERENCES: 93702. WORK FILE READS: 0. WORK FILE WRITES: 0. SIZE OF CORE POOL: 18052. WORDS (7) SIZE OF WORK FILE: 16128. WORDS (6) ELAPSED TIME:00:01:08 User BASIC-PLUS-2 Memory Allocation Map 5-16 (Cont.) Figure # 5.4 SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE - An overlay structure consists of one or more trees. Each tree contains at least one segment. A segment is a set of modules and PSECTS that can be loaded by a single disk access. A tree can have only one root segment, but it can have any number of overlay segments or co-trees. - 2. An overlay description is a text file consisting of a series of ODL directives, one directive per line. This file is entered in a Task Builder command line and is identified as an ODL file by the presence of the /MP switch after the filename. An overlay description text file, if entered, must be the only input file specified. - 3. The overlay description language provides five directives for specifying the tree representation of the overlay structure, namely: - .ROOT - . END - . PSECT - .FCTR - . NAME These directives can appear in any order in the overlay description subject to the following restrictions: - a. There can be only one .ROOT and one .END directive. - b. The .END directive must be the last directive, because it terminates input. - 4. The tree structure is defined by the operators hyphen (-), exclamation point (!), and comma (,) and by the use of parentheses. - The hyphen operator indicates that the arguments preceding and following it are concatenated and thus coexist in memory. - The exclamation point operator is only used for resident libraries and allows you to specify library overlay segments that will permanently reside in memory. - The comma operator within parentheses indicates that its arguments are to overlay each other physically. - The comma operator outside parentheses delimits overlay trees. - Parentheses group segments that begin at the same address in memory. ### CAUTION DO NOT treat parentheses in ODL like parentheses in English or mathematics. Putting parentheses around a series of segments for grouping purposes changes the meaning of any commas within the parentheses. For example, the directives .ROOT A-B-(C,D-(E,F)) . END define an overlay structure with a root segment consisting of the modules A and B. In this structure, there are four overlay segments: C, D, E, and F. The outer pair of parentheses indicates that the overlay segments C and D start at the same location in memory; and similarly, the inner parentheses indicate that E and F start at their own shared address. The resulting tree, assuming that the next line is a .END directive, looks like Figure 5-17. Figure 5-17 Simple Tree (Summary Example) - 5. The .ROOT directive defines the overlay structure. The arguments of the .ROOT directive are one or more of the following: - File specifications as described in Section 2.8, item 7 - Factor labels, which match the labels of .FCTR directives in the same structure - Segment names - PSECT names, which match the labels of .PSECT directives in the same structure - The .END directive terminates input. - 7. The .FCTR directive provides a means for replacing text by a symbolic reference (the factor label). This replacement is useful for two reasons: - a. The .FCTR directive extends the text of the .ROOT directive to more than one line and thus allows complex trees to be represented. - b. The .FCTR directive allows the overlay description to be written in a form that makes the structure of the tree more apparent. For example: ROOT $$A-(B-(C,D),E-(F,G),H)$$ END can be expressed, using the .FCTR directive, as follows: .ROOT A-(F1,F2,H) .FCTR B-(C,D)F1: .FCTR E-(F,G)F2: .END The second representation shows more clearly that the tree has three main branches and that branches B and E each have two leaves. 8. The .PSECT directive provides a means for directly specifying the segment in which a PSECT is placed. It accepts the name of the PSECT and its attributes. For example: .PSECT ALPHA, CON, GBL, RW, I, REL ALPHA is the PSECT name and the remaining arguments are attributes. PSECT attributes are described in Table 4-1. The PSECT name (composed from the characters A-Z, 0-9, and \$) must appear first in the .PSECT directive, but the attributes can appear in any order or be omitted. If an attribute is omitted, a default condition is assumed. The defaults for PSECT attributes are RW, I, LCL, REL, and CON. #### NOTE The use of the dollar sign (\$) in PSECT names is customarily reserved for system software. While \$ is a valid character in a PSECT name, its use in user-generated PSECTs is not recommended. As in the example above, therefore, specify only those attributes that do not correspond to the defaults: .PSECT ALPHA, GBL The .NAME directive provides a means for designating a segment name for use in the overlay description, and for specifying segment attributes. This directive is useful for creating a null segment, naming a segment differently from the name of the first module, or naming a non-executable segment that is to be autoloadable. If the .NAME directive is not used, the name of the first file, PSECTs, or library module is used to identify the segment. The .NAME directive creates a segment name as follows: .NAME segname, attr, attr where
segname is the designated name (composed from the character set A-Z, 0-9, and \$), and attr is an optional attribute taken from the following: GBL, NODSK, NOGBL, DSK. The defaults are NOGBL and DSK. The defined name must be unique with respect to the names of PSECT, segments, files, and factor labels referenced in the ODL file. A co-tree can be defined by specifying an additional tree structure in the .ROOT directive. The first overlay tree description in the .ROOT directive is the main Subsequent overlay descriptions are co-trees. For example: .ROOT A-B-(C,D-(E,F)),X-(Y,Z),Q-(R,S,T) The main tree in this example has the root segment consisting of files A.OBJ and B.OBJ; two co-trees are defined; the first co-tree has the root segment X and the second co-tree has the root segment Q. The tree structure looks like Figure 5-18. Figure 5-18 Co-trees (Summary Example) If the preceding overlay description were written using the .FCTR directive, it might look like this: ``` .ROOT ATREE, XTREE, QTREE ATREE .FCTR A-B-(C,D-(E,F)) XTREE .FCTR X-(Y,Z) QTREE .FCTR Q-(R,S,T) .END ``` It is now clear that there are three trees involved in this structure and that ATREE is the main tree (because it was the first tree mentioned in the .ROOT directive). Contrast this ODL description with the one preceding. Notice how difficult it is to see at first glance in the first description that there are three trees. #### CHAPTER 6 ### THE AUTOLOAD MECHANISM The autoload mechanism is a method for loading disk-resident overlays. In the autoload method, the Overlay Run-time System handles loading and error recovery. Overlays are automatically loaded when referenced through a transfer-of-control instruction in the calling segment (CALL, PERFORM, GO TO, or GOSUB). No specific calls to the Overlay Run-time System are needed. This section discusses the following topics. - Autoload Indicator - Path-Loading - Autoload Vectors - Autoloadable Data Segments ### 6.1 AUTOLOAD All loading in higher level languages is done for you by the autoload method. Once loaded, the root segment of a co-tree remains in memory throughout the execution process. The execution of a transfer-of-control instruction to an autoloadable segment farther away from the root automatically initiates the autoload process. ### 6.1.1 Autoload Indicator You can assist the autoload method by putting asterisks (*) in the ODL description of the task at the points where autoloading should take place. The autoload indicator can be applied to the following elements: - Filenames Make all the components of the file autoloadable. - Portions of ODL tree descriptions enclosed in parentheses - Make all the elements within the parentheses autoloadable. This includes elements within any nested parentheses. - PSECT names Make the PSECT autoloadable. The PSECT must have the I (instruction) attribute. - Segment names defined by the .NAME directive Make all components of the segment autoloadable. ### THE AUTOLOAD MECHANISM .FCTR label names - Make the first component of the factor autoloadable. All elements of the .FCTR are autoloadable if they are enclosed in parentheses. If the autoload indicator is applied to an ODL statement enclosed in parentheses, then every task element named within the parentheses is marked as autoloadable. Applying the autoload indicator at the outermost parenthesis level of the ODL tree description marks every module in the overlay segments as autoloadable. In Figure 5-8, if segment C consisted of a set of modules Cl, C2, C3, C4, and C5, the tree diagram would resemble Figure 6-1. Figure 6-1 The .FCTR Directive Placing the autoload indicator at the outermost parenthesis level assures that, regardless of the flow of control within the task, a module will be properly loaded when called. The ODL description for the task with this provision is: .ROOT CNTRL-* (AFCTR, BFCTR, CFCTR) AFCTR: .FCTR A0-(A1,A2-(A21,A22)) BFCTR: .FCTR B0-(B1,B2) CFCTR: .FCTR C1-C2-C3-C4-C5 .END To be sure that all modules of a co-tree are properly loaded, you must mark its root segment as well as its outermost parenthesis level: .ROOT CNTRL-* (AFCTR, BFCTR, CFCTR), *CNTRL2-* (CNTRLX, CNTRLY) The example above assumes that one or more modules containing executable code reside in CNTRL2. #### THE AUTOLOAD MECHANISM Note in the following example, how two .PSECT directives, a .NAME directive, and five autoload indicators are used: .ROOT CNTRL-(*AFCTR, *BFCTR, *CFCTR) AFCTR: .FCTR A0-*ASUB1-ASUB2-*(A1,A2-(A21,A22)) BFCTR: .FCTR (B0-(B1,B2)) CFCTR: .FCTR CNAM-C1-C2-C3-C4-C5 .NAME CNAM, GBL .PSECT ASUB1,I,GBL,OVR .PSECT ASUB2,I,GBL,OVR . END The autoload indicators function as follows: (*AFCTR, *BFCTR, *CFCTR) The autoload indicator is applied to each factor name. - $\bullet \quad *AFCTR = *A0$ - *BFCTR = *(B0-(B1-B2)) - *CFCTR = *CNAM CNAM is an element defined by a .NAME directive. Therefore, all the components of the segment to which the name applies are autoloadable: C1, C2, C3, C4, and C5. *ASUBl The autoload indicator is applied to the name of a PSECT having the I (Instruction) attribute, so the PSECT ASUBl is autoloadable. *(A1,A2-(A21,A22)) The autoload indicator is applied to a portion of the ODL description enclosed in parentheses, so every element within the parentheses is autoloadable: Al, A2, A21, and A22. The net effect of this ODL description is to make every element autoloadable except ASUB2. The others are all accounted for. # 6.1.2 Path-Loading Autoload uses the technique of path-loading. In the path-loading method, all the segments on the path from the calling segment to the called segment are brought into physical memory and mapped if they are not already there. Path-loading is confined to the tree in which the called segment resides. A call from a segment in one tree to a segment in another causes all unloaded segments in the second tree on the path from the root to the called module to be loaded. Look at Figure 6-1. If CNTRL calls A21, then all the modules between the calling module CNTRL and the called module A21 are loaded. In this case, modules A0 and A2 are loaded. This permits the loading of A21 and the call can now be made. The Overlay Run-time System keeps track of which segments are loaded and mapped, and issues load requests only for segments that are not in memory and mapped. (If CNTRL calls A2 after calling A1, A0 is not loaded again. It is already in memory and mapped). #### THE AUTOLOAD MECHANISM A reference from one segment to another segment closer to the root and on the same path is resolved directly. For example, A2 can immediately access A0 because A0 was path-loaded when A2 was called. #### 6.1.3 Autoload Vectors When the Task Builder sees a reference to a global symbol in an autoloadable segment farther up the tree, it generates an autoload vector for the referenced global symbol. The reference is changed to a definition that points to an autoload vector entry. A transfer-of-control instruction to the global symbol executes the call to the autoload routine, \$AUTO. But references from a segment to a global symbol up-tree in a PSECT with the D attribute (see Table 4-1) are resolved directly. The Task Builder often generates more autoload vectors than are necessary, because it knows very little about the flow of control in the task. You can tell the Task Builder more about the path-loading necessary and the flow of control. If you put autoload indicators only where they are needed, you can minimize the number of autoload vectors generated. Assume that the root segment CNTRL has the following contents: CALL A1 CALL A21 CALL A2 CALL A0 CALL A22 CALL B0 CALL B1 CALL B2 CALL C1 PROGRAM CNTRL CALL C3 CALL C4 CALL C5 CALL C2 Note that all calls to the overlays come from the root segment. If you put the autoload indicator at the outermost parenthesis level, thirteen autoload vectors are generated for this task; one for each segment. You can eliminate the unnecessary autoload vectors by placing the autoload indicator only where explicit loading is required: .ROOT CNTRL-(AFCTR,*BFCTR,CFCTR) .FCTR A0-(*A1,A2-*(A21,A22)) AFCTR: .FCTR A0-(*A1,A2-*(A2)) BFCTR: .FCTR (B0-(B1,B2)) CFCTR: .FCTR *C1-C2-C3-C4-C5 .END With this ODL description, the Task Builder generates only seven autoload vectors which act on the following modules: A1, A21 and A22, B0, B1, and B2, and C1. A0 is path-loaded when A1 is called. Likewise, A2 is path-loaded when A21 is called. Autoload vectors for A0 and A2 are therefore unnecessary. All modules of BFCTR are autoloaded, because BFCTR is autoloaded and its entire contents are within parentheses in the .FCTR statement. Therefore, autoload vectors for B0, B1, and B2 are unnecessary. The call to C1 loads the segment that contains C2, C3, C4, and C5. Therefore, autoload vectors for these modules are unnecessary. ### CHAPTER 7 ### RESIDENT LIBRARIES ## 7.1 INTRODUCTION A resident library is a block of data or code that resides in memory and can be used by any number of tasks. These libraries are useful because they make efficient use of memory: - By providing a way in which two or more tasks can communicate, and - 2. By providing a way in which a single copy of a date base or commonly used subroutine can be shared by several tasks. The first case is illustrated by Figure 7-1. Figure 7-1 System Memory Usage In Figure 7-1, task A stores some result in library S and task B retrieves the data from the library at a later time. In the second case, common reentrant subroutines are not included in each task image. Rather, a single copy is shared by all tasks, as shown in Figure 7-2. | | ROUTINE R | |-----------|-----------| | ROUTINE R | | | TASK A | TASK A | | ROUTINE R | TASK B | | TASK B | | | MONITOR | MONITOR | Figure 7-2 Shared and Non-Shared Memory As an example of the usefulness of resident libraries, consider the current mechanism for access to RMS (Record Management Services) code. Every task image that references RMS code must currently have that code linked
into the task by means of the Task Builder. This process has a number of effects: - The Task Builder must resolve RMS global references each time RMS code is linked to a task. - The size of the task image on disk increases as a result of linking to the RMS code. - RMS code is duplicated in physical memory whenever two or more executing tasks use RMS. If you create an RMS resident library, the Task Builder makes only one resolution of RMS global symbols. Also, because your task references memory resident overlays in the library and not RMS disk overlays, disk I/O is minimized, task build time for other tasks that access RMS can be reduced, and execution speed for those tasks can be increased. Note that a resident library is contained in a contiguous portion of physical memory, called a region. A region is resident in physical memory only when a task references it. If no tasks are referencing the region, that portion of physical memory is available for user jobs. ### 7.1.1 Resident Library Installation A resident library is a collection of reentrant, shareable routines or data that the Task Builder links together into a task image file on disk. The MAKSIL program (see the RSTS/E Programmer's Utilities Manual) is used to format this disk file into Save Image Library (SIL) format. The UTILTY system program ADD LIBRARY command is then used to assign the task image portion of the SIL file to a contiguous region of physical memory. Note that you can use a Monitor SYS call (-18) to assign the task image portion of the SIL file to memory. Once the body of shareable routines or data is linked, formatted, and assigned to memory, it becomes a resident library that is accessible to user tasks through "windows" in their virtual address space. The creation, installation, and maintenance of resident libraries are tasks that require a variety of distinct operations. The nature of these operations causes them to be described in a number of different manuals in the RSTS/E document set. The following list highlights the operations involved and the manuals which contain the pertinent information: - The task building of user-created library code to produce a symbol table and task image. This information is contained in Section 7.2. - 2. Using the MAKSIL utility to format task builder output to produce suitable Monitor input. This information is contained in the RSTS/E Programmer's Utilities Manual. - 3. The loading of MAKSIL output into memory for use by system users. This operation can be performed in two ways. The Monitor SYS calls to add, remove, load, and unload resident libraries (SYS -18) are described in the RSTS/E Programming Manual. The use of the UTILTY system program to add, remove, load, and unload resident libraries is described in the RSTS/E System Manager's Guide. Consider the processes illustrated in Figure 7-3. Figure 7-3 Resident Library Access A task can link to as many as five resident libraries. Virtual address space must be allocated in 4K-word increments to map the resident library. To conserve address space, you can define a memory resident overlay structure for the library. In such a case, the entire library is resident in memory, but the task is mapped into only part of it at any one time. A resident library has a task image file and a symbol definition file associated with it. When a task links to a resident library, the Task Builder uses the symbol definition file of the resident library to link the task to storage and entry points within the library. # 7.2 CREATING A RESIDENT LIBRARY Use the /-HD switch (see Section 3.1.B) to signal creation of a resident library. For example, when you specify this switch with the task image file specification to the Task Builder command line: ### TKB>ZETA/-HD,ZETA,ZETA=Z1,Z2,Z3 it causes the Task Builder to create a task image file (ZETA.TSK) with no header. Because the task has no header, it is not executable. Thus, other users can link against this file to reference the code or data in the object modules (Zl, Z2, Z3) that compose the task. Note that the symbol table and task image that the Task Builder generates for resident library usage must be in an account that is accessible to users who attempt to link against that library. To create a resident library, request a task image output file and a symbol definition file (containing a list of global symbols and p-sections that reside within that task) from the Task Builder. Note that the symbol definition file is the vehicle whereby the Task Builder links a referencing task to specific data items and entry points within the resident library and, thus, is required for resident library usage. ### 7.2.1 Position Independent and Absolute Libraries A resident library can be either position independent or absolute. Position independent libraries can be placed anywhere in the task's virtual address space. Absolute libraries are fixed in the virtual address space. Declaring a library to be postion independent causes the Task Buidler to: 1. Include definitions for each root segment p-section in the symbol definition (.STB) file. A task can later reference this shared storage by p-section name. 2. Automatically select the set of virtual addresses in the referencing task that the resident library will occupy. You can supress automatic selection with an APR specification (that maps the library). See Sections 3.2.4.2 and 3.2.4.3. If the resident library is not position independent, only an absolute section (.ABS.) is included in the symbol definition file. All references to code or data in such a library must be by global symbol name. You should declare a resident library to be position independent if: - The library contains code that executes correctly regardless of its location in the address space of the referencing task. - 2. The library contains data that is not address dependent. - 3. The library contains data that is referenced by a program (such data must reside in a named common block). Because the p-section name is preserved in a position independent library, you should observe the following precautions when building and referencing such a library: - No code or data in the library should be included in the blank (unnamed) p-section. - No code or data in a referencing task should appear in a p-section of the same name as a section in the library. - The order in which memory is allocated to p-sections (alphabetic or sequential) must be the same for the library and its referencing task. When a task references a position independent resident library, the Task Builder automatically positions the library in the task's virtual address space. If a reference is being made from a program but the data is not position independent, you must supress automatic positioning by means of an APR (Active Page Register) specification (as described in Sections 3.2.4.2 and 3.2.4.3). The Task Builder uses the APR specification to map the library. Consider the following example: TKB>ZETA/-HD,ZETA,ZETA=Z1,Z2,Z3 In this example, the code contained in the task image file (ZETA.TSK) is referenced absolute. If the object module code (Z1, Z2, Z3) is position independent, you can specify the /PI switch (see Section 3.1.C) to the task image file and cause the Task Builder to produce a position independent task image. Without the /PI switch, you must use the PAR option (see Section 3.2.2.2) to position absolute code at the desired virtual base address. For example: TKB>ZETA/-HD,ZETA,ZETA=Z1,Z2,Z3 TKB>/ ENTER OPTIONS: TKB>PAR=ZETA:140000:20000 TKB>// where the base address of the resident library will be 140000 (octal) in every task that references this library. Note that the partition base address (the PAR option argument) should be set as high as possible to ensure that enough address space is left for the task. A task can now link to the library (ZETA); however, before the task can run, the library must be formatted (using MAKSIL) and made resident in memory (using SYS call -18 or UTILTY). These procedures are described in Section 7.1.1. ## 7.2.2 Resident Libraries with Memory Resident Overlays If the resident library is to contain memory resident overlays, you must define the overlay structure in an ODL (Overlay Description Language) file. The Task Builder does not include the overlay data base (segment descriptions, autoload vectors, etc.) or the overlay run-time system in the resident library task image. Rather, the data base is made part of the symbol definition file that the Task Builder links to the referencing task. Note that the overlay run-time system is the autoload mechanism that the Task Builder links into each task which references overlays. When you task build the referencing task, the following is automatically included in the task's root segment: - 1. The data base. - Global references to overlay support routines that reside in the system object module library. Each overlay segment in the resident library is marked with the NODSK attribute (see Section 5.1.3.3) to suppress overlay load requests. The symbol table file contains global definitions for only those symbols that are defined or referenced in the root segment of the library. Such symbols consist of the following: - Actual entry points to routines and data elements that are in the root. - 2. Autoload vector addresses that point to real definitions within a memory resident overlay (see Section 6.1.3). - Actual definitions of symbols defined in a memory resident overlay and referenced in the root. You can force the inclusion of a global reference in the root segment of the resident library by means of the GBLREF option. Thus, the necessary autoload vectors and definitions can be generated without explicitly including such references in an object module. The syntax for the GBLREF option is as follows: GBLREF=name where name is a 1- to 6-character name from the Radix-50 character set. If the definition resides within an autoloadable segment, the Task Builder creates an autoload
vector and includes it in the symbol table file. If the definition is not autoloadable, the real value is obtained and defined in the root segment. No global symbol appears in the symbol table file unless: - 1. It is defined in the root segment, or - It is referenced in the root segment and defined elsewhere in the overlay structure. The procedure used to create an overlaid resident library is as follows: - Define an overlay structure that contains only memory resident overlays. - 2. Include in the GBLREF option, or provide in the root segment, a module that contains the global references for defining entry points within the overlay segments. The Task Builder generates autoload vectors and global definitions for the entry points. This procedure is illustrated in the following example. The resident library being constructed consists of reentrant code that resides within the overlay structure defined as follows: ``` .ROOT A-!(*B,C-*D) .NAME A .END ``` Root segment A contains no code or data and has a length of zero. All executable code exists within memory resident overlay segments composed of the files B.OBJ, C.OBJ, and D.OBJ. These object modules contain global entry points for segments B, C, and D respectively. The task image, map, and symbol table files are generated with the following Task Builder commands: TKB>A/-HD,A,A=A/MP TKB>/ ENTER OPTIONS: TKB>GBLREF=B,C,D TKB>PAR=A:140000:20000 TKB>STACK=0 TKB>// NOTE The partition, task, and symbol table file (STB) names must be identical when creating a resident library. References to entry points B, C, and D are inserted in the root segment by the Task Builder and subsequently appear in the symbol table file as definitions. The definition for symbol C is resolved directly to the actual entry point. The definitions for symbols B and D are resolved to autoload vectors that are included in each referencing task. Unlike overlays that reside in the task image, each autoload vector in the resident library is included in each referencing task, regardless of whether the entry points are called during task execution. Only those global symbols defined or referenced in the root segment of the library appear in the symbol table file. The symbol table file also contains the data base required by the overlay run-time system, in relocatable object module format. The data base contains the following: - 1. All autoload vectors. - Segment tables linked to the task. - 3. Address window descriptors. - Memory region descriptor. The overlay structure, as reflected in the symbol table linkage, is preserved and conveyed to the referencing task by the STB file. Thus, path loading for the resident library can occur exactly as it does within a task. Aside from address space restrictions, there is no limit on the overlay structures that can be defined for a resident library. # 7.2.3 Run-Time System Support for Overlaid Resident Libraries Memory resident overlays within a resident library require additional support from the overlay run-time system of the task image. The resident library overlay data base that is linked within the image of the referencing task has a structure that is identical to the data created for an overlaid task. The only additional processing required of the overlay run-time system is to attach the library and obtain its identification for use by the mapping directives. Consider the following: - A resident library cannot use the autoload facility to reference memory resident overlays within itself or any other resident library. - Named p-sections in a resident library overlay segment cannot be referenced by the task. If reference to the storage is required, such sections must be included in the root segment of the library (this results in a loss of virtual address space). - 3. The number of autoload vectors is independent of the entry points actually referenced. The maximum number of vectors will be allocated within each referencing task. In some cases, the size of the allocation will be large. - There is an overhead of six instructions for each autoload call even when the segment is mapped. As implied in the previous list, you must exercise care to ensure that an efficient memory resident overlay is implemented. ### 7.3 ACCESS TO A RESIDENT LIBRARY In order to access a resident library, your task must first attach to the memory region that contains the library. This ensures that the library's own access requirements (protection code, for example) are fulfilled and that, once attached, the library will not be removed from memory while a task is accessing it. That is, a resident library need not be physically in memory when not in use (it can be marked as non-resident and read into memory when needed) but it cannot be removed from memory until all attached tasks are detached. After your task has attached to the resident library, a virtual address window must be created. The virtual address window defines the portion of your task's virtual address space that is used to access the code or data in the resident library. Finally, your task must map all or a portion of the created virtual address window into all or a portion of the resident library. These operations: attaching your task to a region, creating a virtual address window, and mapping the window into the library can be accomplished in one of two ways. The easiest (and recommended) method is to include one or more options (COMMON, LIBR, RESCOM, or RESLIB) in the Task Builder command line when you create the task. The options (described in Sections 3.2.4.2 and 3.2.4.3) cause the Task Builder to include the code to perform the attach, create, and map operations when your task references the code or data in the resident library. Alternatively, you can use Monitor directives (PLAS functions) to perform these operations. The use of these directives is described in the RSTS/E System Directives Manual. Once the attach, create, and map operations are completed, your task can directly access the code or data contained in the resident library. ## 7.3.1 Referencing a Resident Library When you construct the Task Builder command lines to link your task, you indicate in the ENTER OPTIONS: portion of the command that a resident library will be referenced. The options you use to generate the reference are as follows: 1. RESLIB (Resident Library) or RESCOM (Resident Common Block) RESLIB and RESCOM accept a file specification as one of their arguments, thus allowing you to specify an account, filename, and extension for the memory image and, by implication, the symbol table files. Note that device and unit number specifications are not allowed. LIBR (System Resident Library) or COMMON (System Common Block) LIBR and COMMON accept a 1- to 6-character name (from the Radix-50 character set) of a resident library; the library memory image and symbol table file must reside under the account specified by the system logical name LB: These four options (described in Sections 3.2.4.2 and 3.2.4.3) accept two additional arguments: - The type of access required (RO read only or RW read/write). - The first Active Page Register (APR) that is used to map the library within the task's virtual address space (valid only when the library is position independent). A symbol table file of the same name as the resident library (but with an .STB extension) must reside on the same device and under the same account as the resident library memory image file (.TSK extension). Consider the following example: TKB>TASK,MAP,SYMBOL=INPUT TKB>/ ENTER OPTIONS: TKB>COMMON=A:RO TKB>// The Task Builder expects to find files A.TSK and A.STB under account LB:. If the task is to reference a private resident library, the following command series might be used: TKB>TASK,MAP,SYMBOL=INPUT TKB>/ ENTER OPTIONS: TKB>RESLIB=C21,131A/RO TKB>// #### APPENDIX A #### ERROR MESSAGES This appendix lists the error messages the Task Builder produces. Most of the messages are self-explanatory. In some cases, the line in which the error occurred is printed. Task Builder produces diagnostic and fatal error messages. Error messages are printed in two forms: - TKB -- *DIAG*-error-message - TKB -- *FATAL*-error-message Some errors are correctable when command input comes from a terminal. With these errors, a diagnostic error message is printed: correct the error, and continue the task building sequence. If the same error occurs in an indirect file you cannot correct it on the terminal and proceed, so the task-build is aborted. You have to correct the indirect file in which the error occurred and rerun from the beginning. Some diagnostic error messages merely tell you about an unusual condition. If you consider the condition to be something you can live with, or to be normal to your task, you can go ahead and run the task image. If the explanation accompanying your error message refers to a system error, please send a Software Performance Report (SPR) to DIGITAL. #### ALLOCATION FAILURE ON FILE file-name The Task Builder could not find enough disk space to store the task image file, or did not have write access to the UFD or volume that was to contain the file. # BLANK PSECT NAME IS ILLEGAL overlay-description-line The overlay description line printed contains a .PSECT directive that does not have a PSECT name. #### COMMAND I/O ERROR An I/O error occurred on command input device. (The device may not be on line, or there may be a possible hardware error.) # COMMAND SYNTAX ERROR command-line The command line printed has incorrect syntax. # COMPLEX RELOCATION ERROR - DIVIDE BY ZERO: MODULE module-name A divisor having the value zero was detected in a complex expression. The result of the division was set to zero. (A probable cause is division by a global symbol whose value is undefined.) #### FILE filename HAS ILLEGAL FORMAT The file filename contains an object module in an invalid format. # ILLEGAL DEFAULT PRIORITY SPECIFIED option-line The option line printed contains a priority greater than 250.
ILLEGAL ERROR-SEVERITY CODE octal-list System error (no recovery). Please send DIGITAL an SPR with a copy of the message containing the octal-list as printed. # ILLEGAL FILENAME invalid-line The invalid line printed contains a wild card (*) in a file specification. The use of wild cards is prohibited. #### ILLEGAL GET COMMAND LINE ERROR CODE System error (no recovery). Please send an SPR to DIGITAL. # ILLEGAL LOGICAL UNIT NUMBER invalid-line The invalid line printed contains a device assignment to a unit number larger than the number of logical units specified by the UNITS keyword or assumed by default if the UNITS keyword is not used. # ILLEGAL MULTIPLE PARAMETER SETS invalid-line The invalid line printed contains multiple sets of parameters for a keyword that allows only a single parameter set. # ILLEGAL NUMBER OF LOGICAL UNITS invalid-line The invalid-line printed contains a logical unit number greater than 14. #### ILLEGAL ODT OR TASK VECTOR SIZE The ODT or SST vector size specified is greater than 32 words. # ILLEGAL OVERLAY DESCRIPTION OPERATOR invalid-line The invalid line printed contains an unrecognizable operator in an overlay description. This error occurs if the first character in a PSECT or segment name is a dot (.). # ILLEGAL OVERLAY DIRECTIVE invalid-line The invalid line printed contains an unrecognizable overlay directive. # ILLEGAL PARTITION/COMMON BLOCK SPECIFIED invalid-line The invalid line printed contains a partition or a common block that does not lie on a 32-word boundary. ### ILLEGAL PSECT/SEGMENT ATTRIBUTE invalid-line The invalid line printed contains a PSECT or segment attribute that is not recognized. #### ILLEGAL REFERENCE TO LIBRARY PSECT PSECT-name The task has attempted to reference a PSECT name existing in a shared run-time system but has not named the run-time system in a keyword. #### ILLEGAL SWITCH file-specification The file specification printed contains an illegal switch or switch value. #### INCOMPATIBLE REFERENCE TO LIBRARY PSECT PSECT-name The task has attempted to reference more storage in a run-time system than exists in the run-time system definition. # INCORRECT LIBRARY MODULE SPECIFICATION invalid-line The invalid line contains a module name with a non-Radix-50 character. # INDIRECT COMMAND SYNTAX ERROR invalid-line The invalid line printed contains a syntactically incorrect indirect file specification. #### INDIRECT FILE OPEN FAILURE invalid-line The invalid line contains a reference to a command input file that could not be located. ### INSUFFICIENT PARAMETERS invalid-line The invalid line contains a keyword with too few number of parameters to complete its meaning. #### INVALID KEYWORD IDENTIFIER invalid-line The invalid line printed contains an unrecognizable keyword. # INVALID PARTITION/COMMON BLOCK SPECIFIED invalid-line The invalid line contains a partition or common block that is invalid for one of the following reasons: - The base address of the partition is not on a 4K boundary or is not 0. - The memory bounds for the partition overlap a run-time system. #### I/O ERROR LIBRARY IMAGE FILE An I/O error has occurred during an attempt to open or read the .STB file of a Run-Time System. I/O ERROR ON INPUT FILE file-name I/O ERROR ON OUTPUT FILE file-name LABEL OR NAME IS MULTIPLY DEFINED invalid-line The invalid line printed defines a name that has already appeared as a .FCTR, .NAME, or .PSECT directive. #### LIBRARY FILE filename HAS INCORRECT FORMAT A module has been requested from a library file that has an empty module name table. ### LOAD ADDR OUT OF RANGE IN MODULE module-name An attempt has been made to store data in the task image outside the address limits of the segment. This problem is usually caused by one of the following: - an attempt to initialize a PSECT contained in a run-time system - an attempt to initialize an absolute location outside the limits of the segment or in the task header - 3. a patch outside the limits of the segment it applies to - an attempt to initialize a segment having the NODSK attribute # LOOKUP FAILURE ON FILE filename invalid-line The invalid line printed contains a filename that cannot be located in the directory. #### LOOKUP FAILURE ON SYSTEM LIBRARY FILE The Task Builder cannot find the system library (SY:[1,1]SYSLIB.OLB) file to resolve undefined symbols. # LOOKUP FAILURE RESIDENT LIBRARY FILE invalid-line No symbol table (.STB) file or task image file (.TSK) can be found in account [1,1] for the run-time system. # MAXIMUM INDIRECT FILE DEPTH EXCEEDED invalid-line The invalid line printed gives the file reference that exceeded the permissible indirect file depth (2). #### MODULE module-name AMBIGUOUSLY DEFINES PSECT PSECT-name The PSECT named has been defined in two modules not on a common path and referenced by a segment that is common to both paths. #### MODULE module-name AMBIGUOUSLY DEFINES SYMBOL sym-name The module named references or defines a symbol whose definition exists on two different paths but is referenced by a segment that is common to both paths. #### MODULE module-name ILLEGALLY DEFINES XFR ADDRESS PSECT-name addr - 1. The start address printed is odd. - The module named is in an overlay segment and has a start address. The start address must be in the root segment of the main tree. - The address is in a PSECT that has not yet been defined. Please send an SPR to DIGITAL if this is caused by DIGITAL-supplied software. #### MODULE module-name MULTIPLY DEFINES PSECT PSECT-name - 1. The PSECT named has been defined more than once in the same segment with different attributes. - 2. A global PSECT has been defined more than once with different attributes in more than one segment along a common path. #### MODULE module-name MULTIPLY DEFINES SYMBOL sym-name - 1. Two definitions for the relocatable symbol sym-name have occurred on a common path. - 2. Two definitions for an absolute symbol with the same name but different values have occurred. # MODULE module-name MULTIPLY DEFINES XFR ADDR IN SEG segment-name More than one module making up the root has a start address. #### MODULE module-name NOT IN LIBRARY The Task Builder could not find the module named on the /LB switch in the library specified. #### NO DYNAMIC STORAGE AVAILABLE The Task Builder needs additional symbol table storage and cannot find it. #### NO MEMORY AVAILABLE FOR LIBRARY library-name The Task Builder could not find enough free virtual memory to map the specified Run-Time System. #### NO ROOT SEGMENT SPECIFIED The overlay description did not contain a .ROOT directive. #### NO VIRTUAL MEMORY STORAGE AVAILABLE The maximum permissible size of the Task Builder work file was exceeded. Consult Appendix F for suggestions on reducing the size of the work file. #### OPEN FAILURE ON FILE file-name #### OPTION SYNTAX ERROR invalid-line The invalid line printed contains unrecognizable syntax. # OVERLAY DIRECTIVE HAS NO OPERANDS invalid-line All overlay directives except .END require operands. # OVERLAY DIRECTIVE SYNTAX ERROR invalid-line The invalid line printed contains a syntax error. #### PASS CONTROL OVERFLOW AT SEGMENT segment-name System error. Please send an SPR to DIGITAL with a copy of the ODL file associated with the error. #### PSECT PSECT-name HAS OVERFLOWED You have tried to create a PSECT larger than 28K words. #### REQUIRED INPUT FILE MISSING At least one input file is required for a task-build. # ROOT SEGMENT IS MULTIPLY DEFINED invalid-line The invalid line printed contains the second .ROOT directive encountered. Only one .ROOT directive is allowed. (Check Section 5.1.4.1 to see how to correctly specify co-trees.) ### SEGMENT seg-name HAS ADDR OVERFLOW: ALLOCATION DELETED Within a segment, the program has attempted to allocate more than 28K words. A map file is produced, but no task image file is produced. #### TASK HAS ILLEGAL MEMORY LIMITS An attempt has been made to build a task whose size exceeds the partition boundary. If a task image file was produced, it should be deleted. # TASK-BUILD ABORTED VIA REQUEST option-line The option line contains your request to abort the task-build. Retype your commands and correct the error to rerun. # TOO MANY NESTED .ROOT/.FCTR DIRECTIVES invalid-line The invalid line printed contains a .FCTR directive that exceeds the maximum nesting level (16). #### TOO MANY PARAMETERS invalid-line The invalid line printed contains a keyword with more parameters than required. #### TOO MANY PARENTHESES LEVELS invalid-line The invalid line printed contains a parenthesis that exceeds the maximum nesting level (16). #### TRUNCATION ERROR IN MODULE module-name You tried to load a global value greater than +127 or less than -128 into a byte. Only the low-order eight bits are loaded. #### UNABLE TO OPEN WORK FILE The work file device is not mounted. #### UNBALANCED PARENTHESES invalid-line The invalid line printed contains unbalanced parentheses. #### n UNDEFINED SYMBOLS SEGMENT seg-name The segment named contains n undefined symbols. If no memory allocation is requested, the symbols are printed on the terminal. #### WORK FILE I/O ERROR An I/O error occurred during an attempt to reference data stored by the Task Builder in its work file. | | - | |--|---| | | • | | | | | | | | | | | | | | | Ţ | | | | | | | | | | | | • | | | ۶ | | | | | | | | | | | | | #### APPENDIX B #### OCTAL TO DECIMAL CONVERSION TABLE #### B.1 INTRODUCTION Table B-1 (listed on the last four pages of this appendix) is the octal-decimal integer conversion table. It directly converts octal numbers ranging from 0 to 7777 to decimal numbers, and decimal numbers ranging from 0 to 4095 to octal numbers. In addition it can be used to convert octal numbers up to 77777 to decimal and decimal numbers up to 32767 to octal. Figure B-1 shows a portion of one page of the table. As shown in this figure, a group of numbers in the margin of each page (1) shows the range of octal and decimal numbers covered by that page. Use this group to locate the page
containing the number you wish to convert. Also located in the margin are two columns (2). One column is labeled "OCTAL" and the other "DECIMAL". Use these columns to convert octal numbers ranging from 10000 to 77777 to decimal and decimal numbers from 4096 to 32767 to octal. The left-most column and the top row of the table (3) contain the octal numbers. The top row contains the least significant digit of the octal number. The remaining columns contain the decimal numbers to be converted. Use these columns and rows to convert octal numbers to decimal and decimal numbers to octal. #### NOTE The left-most column and top row are shaded for easy identification. This appendix illustrates how to perform these conversion processes as follows: - Converting octal numbers ranging from 0 to 7777 to decimal numbers - Converting decimal numbers ranging from 0 to 4095 to octal numbers - Converting octal numbers ranging from 10000 to 77777 to decimal numbers - Converting decimal numbers ranging from 4096 to 32767 to octal numbers #### Table B-1 Octal-Decimal Integer Conversion Table Figure B-l Table B-l, Showing Table Parts for Conversion # B.2 CONVERTING OCTAL NUMBERS RANGING FROM 0 TO 7777 TO DECIMAL NUMBERS Three examples follow in Sections B.2.1 through B.2.3. The procedures outlined in Section B.2.1 apply to Sections B.2.2 and B.2.3. # B.2.1 Converting Octal 43 to Decimal Refer to Figure B-2. The numbers listed in the figure correspond to the steps presented below. Figure B-2 Steps for Converting Octal 43 to Decimal - Locate the page having the range of octal numbers that includes 43 (0000 to 0777). - 2. Locate the row containing 0040 in the left-most column of Table B-1. - Locate the vertical column containing 3 (the least significant digit). - 4. Read down the vertical column until you intersect the horizontal row for 0040. - 5. The number 35 where the column and row intersect is your answer (35 is the decimal equivalent of octal 43). #### B.2.2 Converting Octal 1000 to Decimal Figure B-3 illustrates the steps for converting octal 1000 to decimal 512. Figure B-3 Steps for Converting Octal 1000 to Decimal #### B.2.3 Converting Octal 7456 to Decimal Figure B-4 illustrates the steps for converting octal 7456 to decimal 3886. Figure B-4 Steps for Converting Octal 7456 to Decimal ### B.3 CONVERTING DECIMAL NUMBERS RANGING FROM 0 TO 4095 TO OCTAL Three examples in Sections B.3.1 through B.3.3 follow; all conform to the procedures outlined in Section B.3.1. #### B.3.1 Converting Decimal 17 to Octal Refer to Figure B-5. The numbers listed in the figure correspond to the steps listed below. Figure B-5 Steps for Converting Decimal 17 to Octal - 1. Locate the range of decimal numbers in the margin of table B-1 containing 17 (0000 to 0511 decimal). - 2. Locate the decimal number 0017 within the table. - 3. Reading left from 0017, locate 0020 in the left-hand column of the table. - Reading up from 0017, locate 1 at the top of the column. (The "1" is the least significant digit of the octal number.) - 5. Add 1 to 0020. The sum (0021) is your answer (21 is the octal equivalent of 17). #### B.3.2 Converting Decimal 870 to Octal Figure B-6 illustrates the steps for converting decimal 870 to octal 1546. Figure B-6 Steps for Converting Decimal 870 to Octal #### B.3.3 Converting Decimal 3826 to Octal Figure B-7 illustrates the steps for converting decimal 3826 to octal 7382. Figure B-7 Steps for Converting Decimal 3826 to Octal # B.4 CONVERTING OCTAL NUMBERS FROM 10000 TO 77777 TO DECIMAL NUMBERS Three examples follow. The procedures outlined in Section B.4.1 apply to Sections B.4.2 and B.4.3. ### B.4.1 Converting Octal 10042 to Decimal Figure B-8 illustrates the steps to convert octal 10042 to decimal 4130. Figure B-8 Steps for Converting Octal 10042 to Decimal - Locate the columns labeled "OCTAL" and "DECIMAL" in the margin of Table B-1. - Find 10000 under the "OCTAL" column. (This is the largest octal number listed in the column less than 10042.) - Locate the decimal equivalent of 10000 under the "DECIMAL" column (4096). - 4. Record this number. - 5. Subtract octal 10000 from octal 10042 (10042 10000 = 42). - 6. Take the difference (42) obtained in step 5 and use it to locate its decimal equivalent in Table B-1 as described in Section B.2.1. (The decimal equivalent of octal 42 is 34.) - 7. Add 34 to 4096. The sum (4130) is your answer (4130 is the decimal equivalent of octal 10042.) #### B.4.2 Converting Octal 67341 to Decimal Figure B-9 illustrates the steps for converting octal 67341 to decimal 28385. Figure B-9 Steps for Converting Octal 67341 to Decimal #### B.4.3 Converting Octal 30000 to Decimal Figure B-10 illustrates the steps for converting octal 30000 to decimal 12288. Figure B-10 Steps for Converting Octal 30000 to Decimal #### B.5 CONVERTING DECIMAL NUMBERS RANGING FROM 4096 TO 32767 TO OCTAL Two examples follow. The procedures outlined in Section B.5.1 apply to Section B.5.2. #### B.5.1 Converting Decimal 4787 to Octal Refer to Figure B-11. The numbers listed in the table correspond to the steps presented below. Figure B-11 Steps for Converting Decimal 4787 to Octal - Locate the columns labeled "OCTAL" and "DECIMAL" in the margin of Table B-1. - Find 4096 under the "DECIMAL" column. (This is the largest decimal number listed in the column less than 4787.) - Locate the octal equivalent of 4096 under the "OCTAL" column (10000). - 4. Record this number. - 5. Subtract 4096 from 4787. (4787 4096 = 691) - 6. Take the difference (691) obtained in step 5 and use it to locate the octal equivalent as described in Section B.3.1. The octal equivalent of 691 is 1263.) - 7. Add 1263 to 10000. The sum is your answer (10000 + 1263 = 11263. 11263 is the octal equivalent of decimal 4787.) #### B.5.2 Converting Decimal 26872 to Octal Figure B-12 illustrates the steps for converting decimal 26872 to octal 64370. Figure B-12 Steps for Converting Decimal 26872 to Octal Table B-1 Octal-Decimal Integer Conversion | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |] | | | |--|--|--|--|---|--|--|--|--|--|--|---|--|--|--|--|--|--|---|--|--| | 0020
0030
0040
0050 | 0008
0016
0024
0032
0040 | 0009
0017
0025
0033
0041 | 0010
0018
0026
0034
0042 | 0011
0019
0027
0035
0043 | 0012
0020
0028
0036
0044 | 0013
0021
0029
0037
0045 | 0006
0014
0022
0030
0038
0046
0054 | 0015
0023
0031
0039
0047 | 0410
0420 | 0264
0272
0280
0288
0296 | 0257
0265
0273
0281
0289
0297 | 0258
0266
0274
0282
0290
0298 | 0259
0267
0275
0283
0291
0299 | 0268
0268
0276
0284
0292
0300 | 0261
0269
0277
0285
0293 | 0262
0270
0278
0286
0294
0302 | 0263
0271
0279
0287
0295
0303
0311 | | | 0000
to
0511
(Decimal | | 0070
0100
0110
0120
0130
0140
0150
0160 | 0056
0064
0072
0080
0088
0096
0104
0112 | 0057
0065
0073
0081
0089
0097
0105
0113 | 0058
0066
0074
0082
0090
0098
0106
0114 | 0059
0067
0075
0083
0091
0099
0107
0115 | 0060
0068
0076
0084
0092
0100
0108
0116 | 0061
0069
007,7
0085
0093
0101
0109
0117 |
0062
0070
0078
0086
0094
0102
0110
0118
0126 | 0063
0071
0079
0087
0095
0103
0111
0119 | 0470
0500
0510
0520
0530
0540
0550
0560 | 0312
0320
0328
0336
0344
0352
0360
0368 | 0313
0321
0329
0337
0345
0353
0361
0369 | 0314
0322
0330
0338
0346
0354
0362
0370 | 0315
0323
0331
0339
0347
0355
0363
0371 | 0316
0324
0332
0340
0348
0356
0364
0372 | 0317
0325
0333
0341
0349 | 0318
0326
0334
0342
0350
0358
0366
0374 | 0319
0327
0335
0343
0351
0359
0367
0375 | | 10000
20000
30000
40000
50000
60000 | Decimal
- 4096
- 8192
- 12288
- 16384
- 20480
- 24576
- 28672 | | 0200
0210
0220
0230
0240
0250
0260 | 0128
0136
0144
0152
0160
0168
0176 | 0129
0137
0145
0153
0161
0169
0177 | 0130
0138
0146
0154
0162
0170
0178 | 0131
0139
0147
0155
0163
0171
0179 | 0132
0140
0148
0156
0164
0172
0180 | 0133
0141
0149
0157
0165
0173
0181 | 0134
0142
0150
0158
0166
0174
0182
0190 | 0135
0143
0151
0159
0167
0175
0183 | 0600
0610
0620
0630
0640
0650
0660 | 0384
0392
0400
0408
0416
0424
0432 | 0385
0393
0401
0409
0417
0425
0433 | 0386
0394
0402
0410
0418
0426
0434 | 0387
0395
0403
0411
0419
0427
0435 | 0388
0396
0404
0412
0420
0428
0436 | 0389
0397
0405
0413
0421
0429
0437
0445 | 0390
0398
0406
0414
0422
0430
0438 | 0391
0399
0407
0415
0423
0431
0439 | | | | | 0310
0320
0330
0340
0350
0360 | 0200
0208
0216
0224
0232
0240 | 0201
0209
0217
0225
0233
0241 | 0202
0210
0218
0226
0234
0242 | 0203
0211
0219
0227
0235
0243 | 0204
0212
0220
0228
0236
0244 | 0205
0213
0221
0229
0237
0245 | 0198
0206
0214
0222
0230
0238
0246
0254 | 0207
0215
0223
0231
0239
0247 | 0710
0720
0730
0740
0750
0760 | 0456
0464
0472
0480
0488
0496 | 0457
0465
0473
0481
0489
0497 | 0458
0466
0474
0482
0490
0498 | 0459
0467
0475
0483
0491
0499 | 0460
0468
0476
0484
0492
0500 | 0453
0461
0469
0477
0485
0493
0501
0509 | 0462
0470
0478
0486
0494
0502 | 0463
0471
0479
0487
0495
0503 | | | | | ſ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | | 1010 | 0520 | 0521 | 0522 | 0523 | 0524 | 0525 | 0518
0526
0534 | 0527 | 1410 | | | | | | 0773
0781 | | | | 1000 | 0512
to | | 1040
1050
1060 | 0536
0544
0552
0560 | 0537
0545
0553
0561 | 0538
0546
0554
0562 | 0539
0547
0555
0563 | 0540
0548
0556
0564 | 0549
0557
05 65 | 0542
0550
0558
0566
0574 | 0543
0551
0559
0567 | 1430
1440
1450
1460 | 0784
0792
0800
0808
0816 | 0785
0793
0801
0809
0817 | 0786
0794
0802
0810
0818 | 0787
0795
0803
0811
0819 | 0796
0804
0812
0820 | 0789
0797
0805
0813
0821
0829 | 0790
0798
0806
0814
0822 | 0791
0799
0807
0815
0823 | | to
1777
(Octal) | 1023
 (Decimal) | | 1040
1050
1060
1070
1100
1110
1120
1130
1140
1150 | 0536
0544
0552
0560
0568
0576
0584
0592
0600
0608
0616
0624 | 0537
0545
0553
0561
0569
0577
0585
0593
0601
0609
0617
0625 | 0538
0546
0554
0562
0570
0578
0586
0594
0602
0610
0618
0626 | 0539
0547
0555
0563
0571
0579
0587
0595
0603
0611
0619
0627 | 0540
0548
0556
0564
0572
0580
0588
0596
0604
0612
0620
0628 | 0549
0557
0565
0573
0581
0589
0597
0605
0613
0621
0629 | 0550
0558
0566
0574
0582
0590
0598
0606
0614
0622
0630 | 0543
0551
0559
0567
0575
0583
0591
0599
0607
0615
0623 | 1430
1443
1450
1460
1470
1500
1510
1520
1530
1540
1550
1560 | 0784
0792
0800
0808
0816
0824
0832
0840
0848
0856
0864
0872
0880 | 0785
0793
0801
0809
0817
0825
0833
0841
0849
0857
0865
0873 | 0786
0794
0802
0810
0818
0826
0834
0842
0850
0858
0866
0874 | 0787
0795
0803
0811
0819
0827
0835
0843
0851
0859
0867
0875 | 0796
0804
0812
0820
0828
0836
0844
0852
0860
0868
0876 | 0797
0805
0813
0821 | 0790
0798
0806
0814
0822
0830
0838
0846
0854
0852
0870
0878
0886 | 0791
0799
0807
0815
0823
0831
0839
0847
0855
0863
0871
0879
0887 | | 1777 | | | 1040
1050
1060
1070
1110
1120
1130
1140
1150
1160
1170
1220
1230
1240
1250
1250
1260 | 0536
0544
0552
0560
0568
0576
0584
0592
0608
0616
0624
0632
0640
0648
0656
0664
0667
0688 | 0537
0545
0553
0561
0569
0577
0585
0593
0601
0609
0617
0625
0633
0641
0649
0657
0665
0673
0681
0689 | 0538
0546
0554
0562
0570
0578
0586
0594
0602
0610
0618
0626
0634
0642
0650
0658
0666
0678
0678
0690 | 0539
0547
0555
0563
0571
0579
0587
0595
0611
0619
0627
0635
0643
0651
0659
0667
067
067
067 | 0540
0548
0556
0564
0572
0580
0588
0596
0612
0620
0628
0636
0644
0652
0660
0668
0676
0684
0692 | 0549
0557
0565
0573
0581
0589
0597
0605
0613
0621
0629
0637
0645
0663
0661
0669
0677
0685
0693 | 0550
0558
0566
0574
0582
0590
0598
0606
0614
0622
0630 | 0543
0551
0559
0567
0575
0583
0591
0599
0607
0613
0631
0639
0647
0655
0663
0671
0671
0687
0695 | 1430
1440
1450
1460
1470
1500
1510
1520
1530
1540
1550
1600
1610
1620
1630
1640
1650
1660 | 0784
0792
0800
0808
0816
0824
0832
0840
0848
0856
0864
0872
0880
0896
0912
0920
0920
0920 | 0785
0793
0801
0809
0817
0825
0833
0841
0849
0857
0865
0865
0905
0995
0991
09921
09937
09945 | 0786
0794
0802
0810
0818
0826
0834
0845
0866
0874
0882
0890
0914
0923
0923
0938 | 0787
0795
0803
0811
0819
0827
0835
0843
0851
0859
0867
0875
0883
0891
0899
0907
0915
0923
0931
0939
0947 | 0796
0804
0812
0820
0828
0836
0844
0852
0868
0876
0884
0892
0900
0908
0916
0924
0924
0934
0948 | 0797
0805
0813
0821
0829
0837
0845
0853
0861
0869
0877 | 0790
0798
0806
0814
0822
0830
0838
0846
0854
0852
0870
0878
0886
0894
0902
0910
0918
0926
0934
0942
0950 | 0791
0799
0807
0815
0823
0831
0839
0847
0855
0863
0871
0879
0887
0895 | | 1777 | | (Continued on next page) Table B-1 (Cont.) Octal-Decimal Integer Conversion | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ſ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--| | 2000 1024
to to 1535
(Octal) (Decimal) | 2010
2020
2030
2040
2050
2060 | 1024
1032
1040
1048
1056
1064
1072 | 1025
1033
1041
1049
1057
1065
1073 | 1026
1034
1042
1050
1058
1066
1074 | 1027
1035
1043
1051
1059
1067
1075 | 1028
1036
1044
1052
1060
1068
1076 | 1029
1037
1045
1053
1061
1069
1077
1085 | 1038
1046
1054
1062
1070
1078 | 1039
1047
1055
1063
1071
1079 | 2410
2420
2430
2440
2450
2460 | 1288
1296
1304
1312
1320
1328 | 1281
1289
1297
1305
1313
1321
1329
1337 | 1290
1298
1306
1314
1322
1330 | 1291
1299
1307
1315
1323
1331 | 1292
1300
1308
1316
1324
1332 | 1293
1301
1309
1317
1325
1333 | 1294
1302
1310
1318
1326
1334 |
1295
1303
1311
1319
1327
1335 | | 10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672 | 2100
2110
2120
2130
2140
2150
2160 | 1088
1096
1104
1112
1120
1128
1136 | 1089
1097
1105
1113
1121
1129
1137 | 1090
1098
1106
1114
1122
1130
1138 | 1091
1099
1107
1115
1123
1131
1139 | 1092
1100
1108
1116
1124
1132
1140 | 1093
1101
1109
1117
1125
1133
1141
1149 | 1094
1102
1110
1118
1126
1134
1142 | 1095
1103
1111
1119
1127
1135
1143 | 2500
2510
2520
2530
2540
2550
2560 | 1344
1352
1360
1368
1376
1384
1392 | 1345
1353
1361
1369
1377
1385
1393 | 1346
1354
1362
1370
1378
1386
1394 | 1347
1355
1363
1371
1379
1387
1395 | 1348
1356
1364
1372
1380
1388
1396 | 1349
1357
1365
1373
1381
1389
1397 | 1350
1358
1366
1374
1382
1390
1398 | 1351
1359
1367
1375
1383
1391
1399 | | | 2210
2220
2239
2240
2250
2260 | 1160
1168
1176
1184
1192
1200 | 1161
1169
1177
1185
1193
1201 | 1162
1170
1178
1186
1194
1202 | 1163
1171
1179
1187
1195
1203 | 1164
1172
1180
1188
1196
1204 | 1157
1165
1173
1181
1189
1197
1205
1213 | 1166
1174
1182
1190
1198
1206 | 1167
1175
1183
1191
1199
1207 | 2610
2620
2630
2640
2650
2660 | 1416
1424
1432
1440
1448
1456 | 1409
1417
1425
1433
1441
1449
1457 | 1418
1426
1434
1442
1450
1458 | 1419
1427
1435
1443
1451
1459 | 1420
1428
1436
1444
1452
1460 | 1421
1429
1437
1445
1453
1461 | 1422
1430
1438
1446
1454
1462 | 1423
1431
1439
1447
1455
1463 | | | 2310
2320
2330
2340
2350
2360 | 1224
1232
1240
1248
1256
1264 | 1225
1233
1241
1249
1257
1265 | 1226
1234
1242
1250
1258
1266 | 1227
1235
1243
1251
1259
1267 | 1228
1236
1244
1252
1260
1268 | 1221
1229
1237
1245
1253
1261
1269
1277 | 1230
1238
1246
1254
1262
1270 | 1231
1239
1247
1255
1263
1271 | 2710
2720
2730
2740
2750
2760 | 1480
1488
1496
1504
1512
1520 | 1473
1481
1489
1497
1505
1513
1521
1529 | 1482
1490
1498
1506
1514
1522 | 1483
1491
1499
1507
1515
1523 | 1484
1492
1500
1508
1516
1524 | 1485
1493
1501
1509
1517
1525 | 1486
1494
1502
1510
1518
1526 | 1487
1495
1503
1511
1519
1527 | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | 3000 1536
to to 2047
(Octal) (Decimal) | 3010
3020
3030
3040
3050 | 1544
1552
1560
1568
1576 | 1545
1553
1561
1569
1577
1585 | 1546
1554
1562
1570
1578
1586 | 1547
1555
1563
1571
1579
1587 | 1548
1556
1564
1572
1580
1588 | 1541
1549
1557
1565
1573
1581
1589
1597 | 1550
1558
1566
1574
1582
1590 | 1551
1559
1567
1575
1583
1591 | 3410
3420
3430
3440
3450
3460 | 1800
1808
1816
1824
1832
1840 | 1793
1801
1809
1817
1825
1833
1841
1849 | 1802
1810
1818
1826
1834
1842 | 1803
1811
1819
1827
1835
1843 | 1804
1812
1820
1828
1836
1844 | 1805
1813
1821
1829
1837
1845 | 1806
1814
1822
1830
1838
1846 | 1807
1815
1823
1831
1839
1847 | | | 3110
3120
3130
3140
3150 | 1608
1616
1624
1632
1646 | 1609
1617
1625
1633
1641 | 1610
1618
1626
1634
1642 | 1611
1619
1627
1635
1643 | 1612
1620
1628
1636
1644
1652 | 1653 | 1614
1622
1630
1638
1646 | 1615
1623
1631 | 3510
3520
3530
3540
3550
3560 | 1864
1872
1880
1888
1896
1904 | 1857
1865
1873
1881
1889
1897
1905
1913 | 1866
1874
1882
1890
1898
1906 | 1867
1875
1883
1891
1899
1907 | 1868
1876
1884
1892
1900
1908 | 1869
1877
1885
1893
1901
1909 | 1870
1878
1886
1894
1902
1910 | 1871
1879
1887
1895
1903
1911 | | | 3210
3220
3230
3240
3250
3260 | 1672
1680
1686
1696
1704 | 1673
1681
1689
1697
1705 | 1674
1682
1690
1698
1706 | 1675
1683
1691
1699
1707 | 1676
1684
1692
1700
1708 | 1677
1685
1693
1701
1709 | 1678
1686
1694
1702
1710 | 1671
1679
1687
1695
1703
1711
1719 | 3610
3620
3630
3640
3650
3660 | 1928
1936
1944
1952
1960
1968 | 1921
1929
1937
1945
1953
1961
1969
1977 | 1930
1938
1946
1954
1962
1970 | 1931
1939
1947
1955
1963
1971 | 1932
1940
1948
1956
1964
1972 | 1933
1941
1949
1957
1965
1973 | 1934
1942
1950
1958
1966
1974 | 1935
1943
1951
1959
1967
1975 | | | 331(
332(
333(
334(
335)
336(| 1736
1744
1752
1760
1768
0 1768 | 1737
1745
1753
1761
1769
1773 | 1738
1746
1754
1762
1770 | 1739
1747
1755
1763
1771
1779 | 1740
1748
1756
1764
1772 | 1773
1781 | 1742
1750
1758
1766
1774
1782 | 1743
1751 | 3710
3720
3730
3740
3750
3760 | 1992
2000
2008
2016
2024
2032 | 1985
1993
2001
2009
2017
2025
2033
2041 | 1994
2002
2010
2018
2026
2034 | 1995
2003
2011
2019
2027
2035 | 1996
2004
2012
2020
2028
2036 | 1997
2005
2013
2021
2029
2037 | 1998
2006
2014
2022
2030
2038 | 1999
2007
2015
2023
2031
2039 | (Continued on next page) Table B-1 (Cont.) Octal-Decimal Integer Conversion | | 0 | 1 | 2 | 3 | | 5 | 6 | 7 |] | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | |--|---|--|---|--|--|---|---|---|-----|---|--|--|--|--
---|--|---|--|---| | <u></u> | 2048
2056 | | | | | | | | | | | | | | | | | 2311
2319 | 4000 2048
to to | | | 2064 | | | | | | | | | 4420 | 2320 | 2321 | 2322 | 2323 | 2324 | 2325 | 2326 | 2327 | 4777 2559 | | | 2072 | | | | | | | | | 4440 | 2328 | 2329 | 2330 | 2331 | 2332 | 2333 | 2334 | 2335
2343 | (Octal) (Decimal) | | 4050 | 2088 | 2089 | 2090 | 2091 | 2092 | 2093 | 2094 | 2095 | l I | 4450 | 2344 | 2345 | 2346 | 2347 | 2348 | 2349 | 2350 | 2351 | Octal Decimal | | | 2096
2104 | | | | | | | | | | | | | | | | | 2359
2367 | 10000 - 4096 | | 10.0 | 2104 | 2103 | 2100 | 4. 0. | 2100 | 2.00 | 2110 | 2 | 1 | | | | | | | | | | 20000 - 8192
30000 - 12288 | | | 2112 | | | | | | | | | 4500 | 2368 | 2369 | 2370 | 2371 | 2372 | 2373 | 2374 | 2375 | 30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672 | | | 2128 | | | | | | | | | 4520 | 2384 | 2385 | 2386 | 2387 | 2388 | 2389 | 2390 | 2391 | 50000 - 20480
60000 - 24576 | | | 2136 | | | | | | | | | 4530 | 2392 | 2393 | 2394 | 2395 | 2396 | 2397 | 2398 | 2399 | 70000 - 24576 | | | 2144
2152 | | | | | | | | | | | | | | | 2403 | | | | | 4160 | 2160 | 2161 | 2162 | 2163 | 2164 | 2165 | 2166 | 2167 | | 4560 | 2416 | 2417 | 2418 | 2419 | 2420 | 2421 | 2422 | 2423 | | | 4170 | 2168 | 2169 | 2170 | 2171 | 2172 | 2173 | 2174 | 2175 | | 4570 | 2424 | 2425 | 2426 | 2427 | 2428 | 2429 | 2430 | 2431 | | | | 2176 | | | | | | | | | | | | | | | 2437 | | | | | | 2184
2192 | | | | | | | | | | | | | | | 2445
2453 | | | | | | 2200 | | | | | | | | | | | | | | | 2461 | | | | | 4240 | 2208 | 2209 | 2210 | 2211 | 2212 | 2213 | 2214 | 2215 | | | | | | | | 2469 | | | | | | 2216
2224 | | | | | | | | | | | | | | | 2477
2485 | | | | | | 2232 | | | | | | | | | | | | | | | 2493 | | | | | 4300 | 2240 | 2241 | 2242 | 2243 | 2244 | 2245 | 2246 | 2247 | | 4700 | 2496 | 2497 | 2498 | 2400 | 2500 | 2501 | 2502 | 2503 | | | | 2248 | | | | | | | | | 4710 | 2504 | 2505 | 2506 | 2507 | 2508 | 2509 | 2510 | 2511 | | | | 2256 | | | | | | | | | | | | | | | 2517 | | | | | | 2264
2272 | | | | | | | | | | | | | | | 2525
2533 | | | | | 4350 | 2280 | 2281 | 2282 | 2283 | 2284 | 2285. | 2286 | 2287 | | 4750 | 2536 | 2537 | 2538 | 2539 | 2540 | 2541 | 2542 | 2543 | | | | 2288
2296 | | | | | | | | | | | | | | | 2549
2557 | | | | | رينين | | | | | | | | لننت | | | | | | | 2330 | | | | | | | | | | | | | | | | | | | _ | _ | | | à | _ 1 | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Г | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | 2560 | 2561 | 2562 | 2563 | 2564 | 2565 | 2566 | 2567 | | | 2816 | 2817 | 2818 | 2819 | 2820 | 2821 | 2822 | 2823 | 5000 2560 | | 5010 | 2560
2568 | 2561
2569 | 2562
2570 | 2563
2571 | 2564
2572 | 2565
2573 | 2566
2574 | 2567
2575 | | 5410 | 2816
2824 | 2817
2825 | 2818
2826 | 2819
2827 | 2820
2828 | 2821
2829 | 2822
2830 | 2823
2831 | to to | | 5010
5020
5030 | 2560
2568
2576
2584 | 2561
2569
2577
2585 | 2562
2570
2578
2586 | 2563
2571
2579
2587 | 2564
2572
2580
2588 | 2565
2573
2581
2589 | 2566
2574
2582
2590 | 2567
2575
2583
2591 | | 5410
5420
5430 | 2816
2824
2832
2840 | 2817
2825
2833
2841 | 2818
2826
2834
2842- | 2819
2827
2835
2843 | 2820
2828
2836
2844 | 2821
2829
2837
2845 | 2822
2830
2838
2846 | 2823
2831
2839
2847 | to to 5777 3071 | | 5010
5020
5030
5040 | 2560
2568
2576
2584
2592 | 2561
2569
2577
2585
2593 | 2562
2570
2578
2586
2594 | 2563
2571
2579
2587
2587
2595 | 2564
2572
2580
2588
2596 | 2565
2573
2581
2589
2597 | 2566
2574
2582
2590
2598 | 2567
2575
2583
2591
2599 | į | 5410
5420
5430
5440 | 2816
2824
2832
2840
2848 | 2817
2825
2833
2841
2849 | 2818
2826
2834
2842-
2850 | 2819
2827
2835
2843
2851 | 2820
2828
2836
2844
2852 | 2821
2829
2837
2845
2853 | 2822
2830
2838
2846
2854 | 2823
2831
2839
2847
2855 | to to | | 5010
5020
5030
5040
5050 | 2560
2568
2576
2584 | 2561
2569
2577
2585
2593
2601 | 2562
2570
2578
2586
2594
2602 | 2563
2571
2579
2587
2595
2603 | 2564
2572
2580
2588
2596
2604 | 2565
2573
2581
2589
2597
2605 | 2566
2574
2582
2590
2598
2606 | 2567
2575
2583
2591
2599
2607 | | 5410
5420
5430
5440
5450
5460 | 2816
2824
2832
2840
2848
2856
2864 | 2817
2825
2833
2841
2849
2857
2865 | 2818
2826
2834
2842-
2850
2858
2866 | 2819
2827
2835
2843
2851
2859
2867 | 2820
2828
2836
2844
2852
2860
2868 | 2821
2829
2837
2845
2853
2861
2869 | 2822
2830
2838
2846
2854
2862
2870 | 2823
2831
2839
2847
2855
2863
2871 | to to 5777 3071 | | 5010
5020
5030
5040
5050
5060 | 2560
2568
2576
2584
2592
2600 | 2561
2569
2577
2585
2593
2601
2609 | 2562
2570
2578
2586
2594
2602
2610 | 2563
2571
2579
2587
2587
2595
2603
2611 | 2564
2572
2580
2588
2596
2604
2612 | 2565
2573
2581
2589
2597
2605
2613 | 2566
2574
2582
2590
2598
2606
2614 | 2567
2575
2583
2591
2599
2607
2615 | | 5410
5420
5430
5440
5450
5460 | 2816
2824
2832
2840
2848
2856
2864 | 2817
2825
2833
2841
2849
2857
2865 | 2818
2826
2834
2842-
2850
2858
2866 | 2819
2827
2835
2843
2851
2859
2867 | 2820
2828
2836
2844
2852
2860
2868 | 2821
2829
2837
2845
2853
2861 | 2822
2830
2838
2846
2854
2862
2870 | 2823
2831
2839
2847
2855
2863
2871 | to to 5777 3071 | | 5010
5020
5030
5040
5050
5060
5070 | 2560
2568
2576
2584
2592
2600
2608
2616 | 2561
2569
2577
2585
2593
2601
2609
2617 | 2562
2570
2578
2586
2594
2602
2610
2618 | 2563
2571
2579
2587
2595
2603
2611
2619 | 2564
2572
2580
2588
2596
2604
2612
2620 | 2565
2573
2581
2589
2597
2605
2613
2621 | 2566
2574
2582
2590
2598
2606
2614
2622 | 2567
2575
2583
2591
2599
2607
2615
2623 | | 5410
5420
5430
5440
5450
5460
5470 | 2816
2824
2832
2840
2848
2856
2864
2872 | 2817
2825
2833
2841
2849
2857
2865
2873 | 2818
2826
2834
2842-
2850
2858
2866
2874 | 2819
2827
2835
2843
2851
2859
2867
2875 | 2820
2828
2836
2844
2852
2860
2868
2876 | 2821
2829
2837
2845
2853
2861
2869 | 2822
2830
2838
2846
2854
2862
2870
2878 | 2823
2831
2839
2847
2855
2863
2671
2879 | to to 5777 3071 | | 5010
5020
5030
5040
5050
5060
5070
5100
5110 | 2560
2568
2576
2584
2592
2600
2608
2616
2624
2632 | 2561
2569
2577
2585
2593
2601
2609
2617
2625
2633 | 2562
2570
2578
2586
2594
2602
2610
2618
2626
2634 | 2563
2571
2579
2587
2595
2603
2611
2619
2627
2635 | 2564
2572
2580
2588
2596
2604
2612
2620
2628
2636 | 2565
2573
2581
2589
2597
2605
2613
2621
2629
2637 | 2566
2574
2582
2590
2598
2606
2614
2622
2630
2638 | 2567
2575
2583
2591
2599
2607
2615
2623
2631
2639 | | 5410
5420
5430
5440
5450
5460
5470
5500
5510 | 2816
2824
2832
2840
2848
2856
2864
2872
2880
2888 | 2817
2825
2833
2641
2849
2857
2865
2873
2881
2889 | 2818
2826
2834
2842-
2850
2858
2866
2874
2882
2890 | 2819
2827
2835
2843
2851
2859
2867
2875 | 2820
2828
2836
2844
2852
2860
2868
2876 | 2821
2829
2837
2845
2853
2861
2869
2877
2885
2893 | 2822
2830
2838
2846
2854
2862
2870
2878
2886
2894 | 2823
2831
2839
2847
2855
2863
2871
2879 | to to 5777 3071 | | 5010
5020
5030
5040
5050
5060
5070
5110
5120 | 2560
2568
2576
2584
2592
2600
2608
2616
2624
2632
2640 | 2561
2569
2577
2585
2593
2601
2609
2617
2625
2633
2641 | 2562
2570
2578
2586
2594
2602
2610
2618
2626
2634
2642 |
2563
2571
2579
2587
2595
2603
2611
2619
2627
2635
2643 | 2564
2572
2580
2588
2596
2604
2612
2620
2628
2636
2644 | 2565
2573
2581
2589
2597
2605
2613
2621
2629
2637
2645 | 2566
2574
2582
2590
2598
2606
2614
2622
2630
2638
2646 | 2567
2575
2583
2591
2599
2607
2615
2623
2631
2639
2647 | | 5410
5420
5430
5440
5450
5460
5470
5500
5510
5520 | 2816
2824
2832
2840
2848
2856
2864
2872
2880
2888
2896 | 2817
2825
2833
2641
2849
2857
2865
2873
2881
2889
2897 | 2818
2826
2834
2842-
2850
2858
2866
2874
2882
2890
2898 | 2819
2827
2835
2843
2851
2859
2867
2875
2883
2891
2899 | 2820
2828
2836
2844
2852
2860
2868
2876
2884
2892
2900 | 2821
2829
2837
2845
2853
2861
2869
2877
2885
2893
2901 | 2822
2830
2838
2846
2854
2862
2870
2878
2886
2894
2902 | 2823
2831
2839
2847
2855
2863
2871
2879
2887
2895
2903 | to to 5777 3071 | | 5010
5020
5030
5040
5050
5060
5070
5110
5120
5130
5140 | 2560
2568
2576
2584
2592
2600
2608
2616
2624
2632
2640
2648
2656 | 2561
2569
2577
2585
2593
2601
2609
2617
2625
2633
2641
2649
2657 | 2562
2570
2578
2586
2594
2602
2610
2618
2626
2634
2642
2650
2658 | 2563
2571
2579
2587
2595
2603
2611
2619
2627
2635
2643
2651
2659 | 2564
2572
2580
2588
2596
2604
2612
2620
2628
2636
2644
2652
2660 | 2565
2573
2581
2589
2597
2605
2613
2621
2629
2637
2645
2653
2661 | 2566
2574
2582
2590
2598
2606
2614
2622
2630
2638
2646
2654
2662 | 2567
2575
2583
2591
2599
2607
2615
2623
2631
2639
2647
2655
2663 | | 5410
5420
5430
5440
5450
5460
5470
5500
5510
5520
5530
5540 | 2816
2824
2832
2840
2848
2856
2864
2872
2880
2888
2896
2904
2912 | 2817
2825
2833
2841
2849
2857
2865
2873
2881
2889
2897
2905
2913 | 2818
2826
2834
2842-
2850
2858
2866
2874
2882
2890
2898
2906
2914 | 2819
2827
2835
2843
2851
2859
2867
2875
2883
2891
2899
2907
2915 | 2820
2828
2836
2844
2852
2860
2868
2876
2884
2892
2900
2908
2916 | 2821
2829
2837
2845
2853
2861
2869
2877
2885
2893
2901
2909
2917 | 2822
2830
2838
2846
2854
2862
2870
2878
2886
2894
2902
2910
2918 | 2823
2831
2839
2847
2855
2863
2871
2879
2887
2895
2903
2911
2919 | to to 5777 3071 | | 5010
5020
5030
5040
5050
5060
5070
5110
5120
5130
5140
5150 | 2560
2568
2576
2584
2592
2600
2608
2616
2624
2632
2640
2648
2656
2664 | 2561
2569
2577
2585
2593
2601
2609
2617
2625
2641
2649
2657
2665 | 2562
2570
2578
2586
2594
2602
2610
2618
2626
2634
2642
2650
2658
2666 | 2563
2571
2579
2587
2595
2603
2611
2619
2627
2635
2643
2651
2659
2667 | 2564
2572
2580
2588
2596
2604
2612
2620
2628
2636
2644
2652
2660
2668 | 2565
2573
2581
2589
2597
2605
2613
2621
2629
2637
2645
2653
2661
2669 | 2566
2574
2582
2590
2598
2606
2614
2622
2630
2638
2646
2654
2662
2670 | 2567
2575
2583
2591
2599
2607
2615
2623
2631
2639
2647
2655
2663
2671 | | 5410
5420
5430
5440
5450
5460
5470
5500
5510
5520
5530
5540
5550 | 2816
2824
2832
2840
2848
2856
2864
2872
2880
2888
2896
2904
2912
2920 | 2817
2825
2833
2641
2849
2857
2865
2873
2881
2889
2897
2905
2913
2921 | 2818
2826
2834
2842-
2850
2858
2866
2874
2882
2890
2898
2906
2914
2922 | 2819
2827
2835
2843
2851
2859
2867
2875
2883
2891
2899
2907
2915
2923 | 2820
2828
2836
2844
2852
2860
2868
2876
2884
2892
2900
2908
2916
2924 | 2821
2829
2837
2845
2853
2861
2869
2877
2885
2893
2901
2909
2917
2925 | 2822
2830
2838
2846
2854
2862
2870
2878
2886
2894
2902
2910
2918
2926 | 2823
2831
2839
2847
2855
2863
2871
2879
2887
2903
2911
2919
2927 | to to 5777 3071 | | 5010
5020
5030
5040
5050
5060
5070
5110
5120
5130
5140
5150
5160 | 2560
2568
2576
2584
2592
2600
2608
2616
2624
2632
2640
2648
2656 | 2561
2569
2577
2585
2593
2601
2609
2617
2625
2641
2649
2657
2665
2673 | 2562
2570
2578
2586
2594
2602
2610
2618
2626
2634
2642
2650
2658
2666
2674 | 2563
2571
2579
2587
2595
2603
2611
2619
2627
2635
2643
2651
2659
2667
2675 | 2564
2572
2580
2588
2596
2604
2612
2620
2628
2636
2644
2652
2660
2668
2676 | 2565
2573
2581
2589
2597
2605
2613
2621
2629
2637
2645
2653
2661
2669
2677 | 2566
2574
2582
2590
2598
2606
2614
2622
2630
2638
2646
2654
2662
2670
2678 | 2567
2575
2583
2591
2599
2607
2615
2623
2631
2639
2647
2655
2663
2671
2679 | | 5410
5420
5430
5440
5450
5460
5470
5500
5510
5520
5530
5540
5550
5560 | 2816
2824
2832
2840
2848
2856
2864
2872
2880
2888
2896
2904
2912
2920
2928 | 2817
2825
2833
2641
2849
2857
2865
2873
2881
2889
2897
2905
2913
2921
2929 | 2818
2826
2834
2842-
2850
2858
2866
2874
2882
2890
2898
2906
2914
2922
2930 | 2819
2827
2835
2843
2851
2859
2867
2875
2883
2891
2899
2907
2915
2923
2931 | 2820
2828
2836
2844
2852
2860
2868
2876
2884
2892
2900
2908
2916
2924
2932 | 2821
2829
2837
2845
2853
2861
2869
2877
2885
2893
2901
2909
2917 | 2822
2830
2838
2846
2854
2862
2870
2878
2886
2894
2902
2910
2918
2926
2934 | 2823
2831
2839
2847
2855
2863
2671
2879
2887
2903
2911
2919
2927
2935 | to to 5777 3071 | | 5010
5020
5030
5040
5050
5060
5070
5110
5120
5130
5140
5150
5170 | 2560
2568
2576
2584
2592
2600
2608
2616
2624
2632
2640
2648
2656
2664
2672
2680 | 2561
2569
2577
2585
2593
2601
2609
2617
2625
2633
2641
2649
2657
2657
2673
2681 | 2562
2570
2578
2586
2594
2602
2610
2618
2626
2634
2642
2650
2658
2658
2674
2682 | 2563
2571
2579
2587
2595
2603
2611
2619
2627
2635
2643
2651
2659
2667
2675
2683 | 2564
2572
2580
2588
2596
2604
2612
2620
2628
2636
2644
2652
2660
2660
2676
2684 | 2565
2573
2581
2589
2597
2605
2613
2621
2629
2637
2645
2653
2661
2677
2685 | 2566
2574
2582
2590
2598
2606
2614
2622
2638
2646
2654
2662
2670
2678
2686 | 2567
2575
2583
2591
2599
2607
2615
2623
2631
2639
2647
2655
2665
2667
2679
2687 | | 5410
5420
5430
5440
5450
5460
5470
5500
5510
5520
5530
5550
5550
5550
5570 | 2816
2824
2832
2840
2848
2856
2864
2872
2880
2888
2994
2912
2920
2928
2936 | 2817
2825
2833
2641
2849
2857
2865
2873
2881
2889
2897
2905
2913
2921
2929
2937 | 2818
2826
2834
2842-
2850
2858
2866
2874
2882
2890
2898
2906
2914
2922
2930
2938 | 2819
2827
2835
2843
2851
2859
2867
2875
2883
2891
2899
2907
2915
2923
2939 | 2820
2828
2836
2844
2852
2860
2876
2884
2892
2900
2908
2916
2924
2932
2940 | 2821
2829
2837
2845
2853
2869
2877
2885
2893
2901
2909
2917
2925
2933
2941 | 2822
2830
2838
2846
2854
2862
2878
2886
2894
2902
2910
2918
2924
2934 | 2823
2831
2839
2847
2855
2863
2871
2879
2887
2903
2911
2919
2927
2935
2943 | to to 5777 3071 | | 5010
5020
5030
5040
5050
5060
5070
5110
5120
5130
5140
5150
5160
5170 | 2560
2568
2576
2584
2592
2600
2608
2616
2624
2632
2640
2648
2656
2664
2672
2680 | 2561
2569
2577
2585
2593
2601
2609
2617
2625
2633
2641
2649
2657
2665
2673
2681 | 2562
2570
2578
2586
2594
2602
2618
2626
2634
2642
2650
2658
2666
2674
2682 | 2563
2571
2579
2587
2693
2611
2619
2627
2635
2651
2659
2667
2675
2683 |
2564
2572
2580
2588
2596
2604
2612
2620
2628
2636
2644
2652
2660
2668
2676
2684 | 2565
2573
2581
2589
2695
2613
2621
2629
2637
2645
2653
2661
2669
2677
2685 | 2566
2574
2582
2599
2696
2614
2622
2630
2638
2646
2654
2662
2670
2678
2686 | 2567
2575
2583
2591
2599
2607
2615
2623
2631
2639
2647
2655
2663
2671
2679
2687 | | 5410
5420
5430
5440
5450
5460
5470
5500
5510
5520
5530
5550
5550
5570 | 2816
2824
2832
2840
2848
2856
2864
2872
2880
2888
2896
2904
2912
2920
2928
2936 | 2817
2825
2833
2641
2849
2857
2865
2873
2881
2889
2897
2905
2913
2929
2937 | 2818
2826
2834
2842-
2850
2858
2866
2874
2882
2890
2898
2906
2914
2922
2930
2938 | 2819
2827
2835
2835
2851
2859
2867
2875
2883
2891
2899
2907
2915
2923
2931
2939 | 2820
2828
2834
2854
2852
2860
2868
2876
2884
2892
2900
2908
2916
2924
2932
2940
2948 | 2821
2829
2837
2845
2853
2861
2869
2877
2885
2901
2909
2917
2925
2933
2941
2949 | 2822
2830
2838
2846
2854
2862
2870
2878
2886
2991
2910
2918
2926
2934
2942 | 2823
2831
2839
2847
2855
2863
2671
2879
2887
2993
2911
2919
2927
2935
2943
2951 | to to 5777 3071 | | 5010
5020
5030
5040
5050
5060
5070
5110
5120
5130
5140
5150
5160
5170 | 2560
2568
2576
2584
2592
2600
2608
2616
2624
2632
2640
2648
2658
2654
2672
2680 | 2561
2569
2577
2585
2593
2601
2609
2617
2625
2633
2641
2649
2657
2665
2673
2681 | 2562
2570
2578
2584
2602
2610
2618
2626
2634
2634
2650
2658
2666
2674
2682
2698
2706 | 2563
2571
2579
2587
2595
2603
2611
2619
2627
2635
2643
2651
2659
2675
2683
2691
2699
2707 | 2564
2572
2580
2588
2596
2604
2612
2620
2628
2636
2644
2652
2668
2676
2684
2692
2700
2708 | 2565
2573
2581
2589
2597
2605
2613
2621
2629
2637
2645
2653
2669
2677
2685 | 2566
2574
2582
2598
2606
2614
2622
2630
2638
2646
2654
2664
2670
2678
2686 | 2567
2575
2583
2591
2599
2607
2615
2623
2631
2639
2647
2655
2663
2671
2679
2687 | | 5410
5420
5430
5440
5450
5460
5470
5500
5510
5520
5530
5550
5550
5560
5570 | 2816
2824
2832
2840
2848
2856
2864
2872
2880
2888
2896
2904
2912
2920
2928
2936
2944
2952 | 2817
2825
2833
2841
2849
2857
2865
2873
2881
2889
2905
2913
2921
2929
2937
2945
2953
2961 | 2818
2826
2834
2842-
2850
2858
2866
2874
2882
2890
2898
2906
2914
2922
2930
2938
2945
2954
2962 | 2819
2827
2835
2843
2851
2859
2867
2875
2883
2891
2899
2907
2915
2923
2931
2939
2947
2955
2963 | 2820
2828
2836
2844
2852
2860
2868
2876
2884
2892
2900
2908
2916
2924
2932
2940
2948
2956
2964 | 2821
2829
2837
2845
2853
2861
2869
2877
2885
2991
2917
2925
2933
2941
2949
2957
2965 | 2822
2830
2838
2834
2854
2862
2870
2878
2886
2894
2902
2910
2918
2926
2934
2942
2950
2958
2966 | 2823
2831
2839
2847
2855
2863
2871
2879
2887
2995
2903
2911
2919
2927
2935
2943
2951
2959
2967 | to to 5777 3071 | | 5010
5020
5030
5040
5050
5060
5070
5110
5120
5130
5140
5160
5170
5200
5220
5230 | 2560
2568
2576
2584
2592
2600
2608
2616
2624
2632
2640
2648
2656
2664
2672
2688
2696
2688
2696
2712 | 2561
2569
2577
2585
2593
2601
2609
2617
2625
2633
2641
2649
2657
2665
2673
2681
2689
2697
2713 | 2562
2570
2578
25786
2594
2602
2610
2618
2626
2634
2650
2658
2664
2664
2664
2664
2664
2664
2664
266 | 2563
2571
2579
2587
2595
2603
2611
2619
2627
2635
2643
2659
2667
2667
2683
2691
2699
2707
2715 | 2564
2572
2588
2596
2604
2612
2620
2628
2634
2652
2660
2668
2676
2684
2692
2700
2708
2716 | 2565
2573
2581
2589
2597
2605
2613
2621
2629
2637
2645
2653
2661
2669
2677
2685 | 2566
2574
2582
2590
2598
2606
2614
2622
2630
2638
2646
2654
2662
2670
2678
2686
2694
2710
2718 | 2567
2575
2583
2591
2599
2607
2615
2623
2631
2639
2647
2655
2663
2671
2679
2687
2695
2703
2711
2719 | | 5410
5420
5430
5440
5440
5460
5470
5510
5530
5530
5530
5550
5550
5560
5570 | 2816
2824
2832
2840
2848
2856
2864
2872
2880
2904
2912
2920
2928
2936
2944
2942
2956
2968 | 2817
2825
2833
2841
2849
2857
2865
2873
2881
2989
2995
2913
2929
2937
2945
2945
2945
2961
2969 | 2818
2826
2834
2842-2850
2858
2866
2874
2882
2890
2914
2922
2930
2938
2945
2962
2970 | 2819
2827
2835
2843
2851
2859
2867
2875
2883
2891
2907
2915
2923
2923
2923
2923
2923
2923
2923
292 | 2820
2828
2836
2852
2860
2868
2876
2892
2900
2908
2916
2924
2932
2940
2948
2956
2964
2972 | 2821
2829
2837
2845
2853
2861
2869
2877
2885
29901
2909
2917
2925
2925
2929
2933
2941
2949
2949
2955
2973 | 2822
2830
2838
2846
2854
2862
2870
2878
2990
2918
2912
2914
2924
2924
2934
2942
2950
2950
2974 | 2823
2831
2839
2847
2855
2871
2871
2872
2987
2993
2911
2919
2927
2935
2943
2951
2959
2957
2957 | to to 5777 3071 | | 5010
5020
5030
5040
5050
5060
5070
5110
5120
5130
5140
5150
5170
5220
5230
5230
5250 | 2560
2568
2576
2584
2592
2600
2608
2616
2632
2644
2656
2664
2672
2688
2664
2672
2680
2712
2720
27728 | 2561
2569
2577
2585
2593
2601
2609
2617
2625
2633
2641
2649
2657
2665
2673
2689
2713
2689
2713
2721
2722 | 2562
2570
2578
2586
2594
2602
2618
2626
2634
2642
2642
2658
2666
2674
2682
2714
2690
2714
2722
27722 | 2563
2571
2579
2587
2595
26013
2611
2619
2627
2635
2643
2651
2667
2667
2667
2683
2691
2707
2715
2723
2723
2723 | 2564
2572
2580
2588
2596
2602
2612
2620
2636
2644
2652
2668
2668
2676
2688
2716
2708
2718
2724
2732 | 2565
2573
2581
2589
2597
2605
2613
2621
2629
2637
2645
2669
2677
2685
2693
2701
2717
2709
2717
2725
2733 | 2566
2574
2582
2590
2598
2606
2614
2622
2630
2638
2646
2662
2670
2678
2686
2710
2718
2710
2718
2726
2734 | 2567
2575
2583
2591
2599
2607
2615
2623
2631
2639
2647
2675
2667
2679
2687
2703
2711
2719
2727
2727
2727
2735 | | 5410
5420
5430
5450
5450
5460
5470
5550
5550
5550
5550
5550
5550
5600
5610
5620
5620
5620
5630
5640 | 2816
2824
2832
2840
2848
2856
2867
2880
2896
2992
2912
2920
2928
2936
2936
2938 | 2817
2825
2833
2841
2849
2857
2865
2873
2881
2889
2897
2991
2992
2937
2921
2929
2937
2969
2969
2969
2977
2985 | 2818
2826
2834
2842-
2850
2858
2866
2874
2890
2998
2914
2922
2930
2938
2945
2954
2962
2978
2978
2986 | 2819
2827
2835
2843
2851
2859
2867
2875
2883
2891
2997
2915
2923
2931
2939
2947
2955
2963
2971
2979
2987 | 2820
2828
2838
2844
2852
2860
2868
2876
2990
2916
2914
2924
2932
2940
2940
2944
2956
2964
2972
2980
2988 | 2821
2829
2837
2845
2853
2861
2869
2877
2885
2901
2909
2917
2925
2933
2941
2949
2957
2965
2973
2978
2978
2978
2978
2978
2978
2978
2978 | 2822
2830
2838
2846
2854
2862
2870
2878
2990
2910
2918
2926
2934
2942
2950
2958
2966
2974
2982
2999 | 2823
2831
2839
2847
2855
2863
2871
2879
2887
2993
2911
2919
2917
2935
2943
2951
2959
2967
2975
2975
2973
2973
2973
2973
2973
2973
2973
2973 | to to 5777 3071 | | 5010
5020
5030
5040
5050
5060
5070
5110
5130
5140
5150
5170
5220
5230
5240
5250
5260 |
2560
2568
2576
2588
2592
2600
2608
2616
2624
2632
2640
2656
2664
2672
2680
2680
2680
2704
2712
2720
2712
2720
2728
2738 | 2561
2569
2577
2585
2593
2601
2609
2617
2625
2633
2641
2649
2657
2665
2665
2667
2667
2713
2721
2721
2721
2729
2737 | 2562
2570
25782
25784
2594
2610
2618
2626
2634
2642
2650
2658
26666
2674
2682
2714
2722
2730
2738 | 2563
2571
2579
2587
2595
2603
2611
2619
2627
2635
2651
2659
2667
2668
2699
2707
2715
2723
2731
2731 | 2564
2572
2580
2588
2596
2612
2620
2628
2636
2644
2652
2668
2676
2684
2700
2716
2724
2716
2724
2732
2732 | 2565
2573
2581
2582
2597
2605
2613
2621
2629
2637
2645
2653
2661
2669
2701
2725
2701
2725
2717
2725
2733
2731
2731 | 2566
2574
2582
2590
2598
2606
2614
2622
2630
2638
2646
2654
2662
2670
2678
2686
2710
2718
2726
2710
2718
2726
2734
2734 | 2567
2575
2583
2591
2599
2607
2615
2623
2631
2639
2647
2655
2663
2671
2679
2687
2727
2727
2727
2727
2735
2743 | | 5410
5420
5420
5440
5450
5460
5570
5500
5510
5520
5530
5550
5550
5560
560
5610
5620
5630
5640
5650
5660 | 2816
2824
2832
2840
2848
2856
2856
2864
2872
2888
2896
2904
2912
2920
2928
2936
2952
2952
2952
2958
2958
2968
2968
2978 | 2817
2825
2825
2833
2641
2849
2857
2865
2873
2881
2921
2913
2921
2929
2937
2945
2953
2969
2977
2969
2977
2978
2978
2978
2978
2978
2978
297 | 2818
2826
2826
2834
2842-
2850
2858
2866
2874
2890
2914
2922
2930
2938
2945
2954
2954
2970
2978
2978 | 2819
2827
2835
2843
2851
2859
2867
2875
2883
2899
2907
2915
2923
2931
2939
2947
2975
2971
2979
2971
2977
2977
2977 | 2820
2828
2836
2844
2852
2860
2868
2876
2990
2908
2916
2924
2932
2940
2948
2956
2964
2972
2980
2998 | 2821
2829
2837
2845
2853
2861
2869
2877
2885
2990
2917
2925
2923
2941
2949
2957
2965
2973
2989
2997 | 2822
2830
2838
2846
2854
2862
2870
2878
2990
2910
2918
2926
2934
2942
2950
2958
2966
2974
2982
2990
2998 | 2823
2831
2839
2847
2855
2863
2871
2879
2903
2911
2919
2927
2935
2943
2951
2957
2967
2975
2989 | to to 5777 3071 | | 5010
5020
5030
5040
5050
5060
5070
5110
5130
5140
5150
5170
5220
5230
5240
5250
5260 | 2560
2568
2576
2584
2592
2600
2608
2616
2632
2644
2656
2664
2672
2688
2664
2672
2680
2712
2720
27728 | 2561
2569
2577
2585
2593
2601
2609
2617
2625
2633
2641
2649
2657
2665
2665
2667
2667
2713
2721
2721
2721
2729
2737 | 2562
2570
25782
25784
2594
2610
2618
2626
2634
2642
2650
2658
26666
2674
2682
2714
2722
2730
2738 | 2563
2571
2579
2587
2595
2603
2611
2619
2627
2635
2651
2659
2667
2668
2699
2707
2715
2723
2731
2731 | 2564
2572
2580
2588
2596
2612
2620
2628
2636
2644
2652
2668
2676
2684
2700
2716
2724
2716
2724
2732
2732 | 2565
2573
2581
2582
2597
2605
2613
2621
2629
2637
2645
2653
2661
2669
2701
2725
2701
2725
2717
2725
2733
2731
2731 | 2566
2574
2582
2590
2598
2606
2614
2622
2630
2638
2646
2654
2662
2670
2678
2686
2710
2718
2726
2710
2718
2726
2734
2734 | 2567
2575
2583
2591
2599
2607
2615
2623
2631
2639
2647
2655
2663
2671
2679
2687
2727
2727
2727
2727
2735
2743 | | 5410
5420
5420
5440
5440
5450
5470
5510
5520
5550
5550
5550
5570
5600
5610
5620
5630
5640
5650
5660
5670 | 2816
2824
2832
2840
2848
2856
2856
2864
2872
2988
2991
2992
2992
2928
2936
2952
2968
2976
2984
2992
3000 | 2817
2825
2833
2641
2849
2857
2865
2873
2881
2995
2995
2995
2993
2997
2995
2997
2995
2997
2995
2997
2995
2993
3001 | 2818
2826
2826
2858
2858
2858
2866
2874
2890
2898
2902
2930
2938
2945
2954
2962
2978
2986
2994
3002 | 2819
2827
2835
2843
2851
2867
2875
2883
2891
2990
2915
2923
2931
2939
2947
2955
2963
2971
2997
2997
2997 | 2820
2828
2836
2844
2852
2868
2876
2990
2908
2924
2932
2940
2948
2956
2964
2964
2964
2988
2996
3004 | 2821
2829
2837
2845
2853
2853
2869
2877
2885
2991
2917
2925
2933
2941
2949
2957
2965
2973
2989
2997
3005 | 2822
2830
2838
2846
2854
2862
2870
2878
2990
2918
2926
2934
2934
2950
2958
2966
2974
2990
2998
3006 | 2823
2831
2839
2847
2855
2863
2671
2892
2903
2911
2919
2927
2935
2943
2951
2959
2967
2975
2975
2973
2993
2993
2993
2993
2993
2907 | to to 5777 3071 | | 5010
5020
5030
5040
5050
5070
5110
5120
5130
5140
5155
5160
5170
5220
5230
5240
5250
5250
5250
5250
5250
5250
525 | 2560
2568
2576
2582
2692
2600
2608
2616
2624
2632
2640
2648
2656
2688
2696
2704
2712
2720
2712
2720
2736
2744 | 2561
2569
2577
2585
2593
2601
2609
2617
2625
2633
2641
2649
2657
2665
2673
2681
2689
2713
2721
2729
2737
2745 | 2562
2570
25786
25986
2594
2602
2610
2618
2626
2634
2642
2642
2658
2666
2674
2682
2698
2706
2714
2722
2730
2738
2746 | 2563
2571
2579
2587
2595
2603
2611
2619
2627
2635
2643
2659
2667
2675
2689
2707
2715
2723
2747
2739
2747 | 2564
2572
2580
2588
2620
2612
2620
2628
2636
2636
2636
2636
2636
2636
2636 | 2565
2573
2581
2589
2697
2605
2613
2621
2629
2637
2645
2653
2661
2665
2677
2685
2701
2709
2717
2723
2732
2741
2749 | 2566
2574
2582
2590
2690
2614
2622
2630
2638
2646
2654
2662
2678
2688
2694
2702
2710
2718
2724
2750
2758 | 2567
2575
2583
2591
2697
2615
2623
2631
2639
2647
2655
2663
2667
2679
2687
2703
2711
2719
2727
2719
2727
2743
2751 | | 5410
5420
5420
5440
5450
5450
5540
5550
555 | 2816
2824
2832
2840
2848
2856
2864
2872
2880
2896
2992
2993
2993
2993
2994
2995
2998
2998
2998
2998
2998
2998
3000 | 2817
2825
2833
2641
2849
2857
2865
2873
2881
2889
2905
2913
2929
2937
2945
2969
2995
2995
2995
2995
3001 | 2818
2818
2826
2834
2842
2850
2850
2874
2892
2996
2914
2922
2930
2938
2945
2954
2954
2954
2954
2954
3002 | 2819
2827
2835
2843
2851
2867
2875
2883
2891
29907
2915
2923
2931
2931
2934
2955
2963
2971
2979
2973
3003 | 2820
2828
2836
2844
2852
2868
2876
2884
2892
2900
2916
2924
2932
2940
2948
2956
2964
2972
2983
2996
3004 | 2821
2829
2837
2845
2853
2853
2869
2877
2885
2991
2991
2925
2933
2941
2949
2957
2965
2973
2989
2997
3005 | 2822
2830
2838
2846
2854
2862
2870
2878
2990
2918
2926
2934
2942
2958
2958
2966
2974
2982
2990
2998
3006 | 2823
2831
2839
2847
2863
2871
2879
2887
2993
2911
2919
2927
2935
2943
2951
2951
2967
2975
2983
2999
3007 | to to 5777 3071 | | 5010
5020
5030
5040
5050
5060
5070
5120
5130
5130
5140
5150
5220
5220
5230
5240
5250
5240
5250
5260
5270
5230
5330 | 2560
2568
2576
2584
2692
2600
2608
2616
2624
2632
2640
2648
2656
2664
2672
2688
2696
2704
2712
2712
2712
2712
2712
2712
2712
271 | 2561
2569
2577
2585
2601
2609
2617
2625
2633
2641
2649
2657
2667
2667
2705
2713
2721
2729
2737
2745
2753
2761 | 2562
2570
25788
25986
2594
2602
2610
2618
2626
2634
2650
2650
2650
2666
2674
2682
2714
2722
2730
2714
2722
2738
2746 | 2563
2571
2579
2587
2595
2603
2611
2619
2627
2635
2651
2659
2675
2683
2691
2699
2707
2731
2731
2732
2737
2747 |
2564
2572
2580
2588
2596
2612
2620
2628
2636
2636
2664
2652
2664
2676
2700
2708
2700
2708
2712
2740
2732
2740
2732
2740
2732
2740
2748
2756 | 2565
2573
2581
2589
2597
2605
2613
2621
2629
2637
2645
2653
2661
2693
2701
2709
2717
2725
2733
2714
2749
2757
2765 | 2566
2574
2582
2590
2696
2614
2622
2630
2638
2646
2654
2662
2710
2718
2726
2734
2735
2736
2756 | 2567
2575
2583
2591
2592
2607
2615
2623
2631
2639
2647
2667
2667
2679
2687
2703
2711
2719
2727
2735
2743
2751
2759
2767 | | 5410
5420
5430
5440
5450
5547
5550
5550
5550
5550
555 | 2816
2812
2812
2812
2812
2812
2816
2816 | 2817
2825
2833
2841
2849
2857
2865
2873
2881
2889
29905
2913
2921
2929
2937
2945
2953
2961
2961
2967
2995
2993
3001 | 2818
2826
2834
2842
2850
2858
2866
2874
2892
2993
2993
2993
2993
2994
2996
2996
2996
2996
2996
2996
2996 | 2819
2827
2835
2843
2859
2867
2875
2883
2891
2990
2915
2923
2931
2939
2947
2955
2963
2971
2995
3003 | 2820
2828
2836
2844
2852
2860
2868
2876
2990
2916
2924
2932
2940
2948
2956
2978
2978
2978
2978
2978
2978
2978
2978 | 2821
2829
2837
2845
2853
2861
2869
2877
2885
2991
2909
2907
2925
2933
2941
2949
295
2973
2985
2997
3005
3013
3029 | 2822
2830
2838
2844
2862
2870
2878
2990
2910
2910
2926
2934
2942
2950
2950
2974
2992
2998
3006
3014
3030 | 2823
2839
2847
2863
2871
2879
2895
2903
2911
2927
2935
2943
2951
2952
2967
2973
2999
3007 | to to 5777 3071 | | 5010
5020
5030
5040
5050
5060
5070
5120
5130
5140
5150
5210
5220
5230
5240
5250
5230
5240
5250
5250
5250
5250
5250
5250
525 | 2560
2568
2576
2582
2692
2600
2608
2616
2624
2632
2640
2648
2656
2688
2696
2704
2712
2720
2722
2736
2744
2752
2760
2768 | 2561
2569
2577
2585
2693
2601
2609
2617
2625
2633
2641
2649
2657
2665
2673
2681
2705
2713
2721
2705
2713
2721
2737
2745
2753
2761
2769
2777 | 2562
2570
2578
2586
2602
2610
2618
2626
2642
2650
2658
2668
2674
2682
2706
2714
2722
2738
2746
2754
2754
2754
2778 | 2563
2571
2579
2587
2603
2611
2619
2627
2635
2643
2651
2659
2667
2675
2683
2691
2707
2715
2723
2739
2747
2755
2763
2771
2779 | 2564
2572
2580
2588
2620
2612
2620
2628
2636
2636
2636
2636
2636
2700
2708
2716
2724
2736
2742
2740
2748
2756
2767
2757
2757
2757
2757
2757
2757 | 2565
2573
2581
2587
2697
2605
2613
2621
2629
2637
2645
2653
2661
2667
2677
2685
2701
2709
2717
2725
2732
2741
2749
2757
2773
2773
2773
2773
2773
2773
2773 | 2566
2574
2582
2590
2614
2622
2638
2646
2654
2662
2678
2686
2702
2710
2718
2724
2750
2758
2766
2767
2778 | 2567
2575
2583
2591
2607
2615
2623
2631
2639
2647
2655
2663
2667
2679
2777
2711
2711
2711
2711
2727
2743
2751
2759
2767
2759
2767
2775
2775
2775
2775
2775
2775
2778 | | 5410
5420
5430
5440
5450
5450
5550
5550
5550
555 | 2816
2812
2812
2840
2848
2856
2864
2872
2880
2992
2912
2920
2928
2936
2968
2976
2968
2976
2968
2978
2978
2978
2978
2978
2978
2978
297 | 2817
2825
2833
2841
2849
2857
2865
2873
2881
2995
2913
2929
2937
2945
2953
2961
2969
2977
2978
2993
3001 | 2818
2818
2826
2834
2842
2858
2866
2874
2882
2996
2914
2930
2938
2945
2952
2970
2978
2978
2994
3002
3010
3018
3016
3016
3034 | 2819
2827
2835
2843
2859
2867
2875
2883
2907
2915
2931
2939
2947
2955
2963
2971
2979
2995
3003 | 2820
282828
2836
2844
2860
2868
2876
2898
2916
2990
2916
2932
2940
2948
2956
2964
2972
2980
2996
3004
3012
3020
3028
3036 | 2821
2829
2837
2845
2853
2861
2869
2877
2885
2990
2917
2909
2917
2949
2957
2965
2973
2981
2997
3005
3013
3021
3029
3037 | 2822
2830
2838
2846
2862
2870
2878
28962
2910
2912
2912
2914
2950
2950
2950
2950
2950
2950
2950
2950 | 2823
2831
2839
2847
2863
2871
2879
2887
2993
2911
2919
2927
2935
2943
2951
2951
2967
2975
2983
2999
3007 | to to 5777 3071 | | 5010
5020
5030
5040
5050
5060
5070
5120
5130
5140
5150
5210
5220
5240
5250
5240
5250
5260
5330
5330 | 2560
2568
2576
2584
2592
2600
2608
2616
2624
2640
2642
2656
2664
2672
2680
2704
2712
2712
2728
2736
2746
2752
2752
2768 | 2561
2569
2577
2585
2607
2609
2617
2625
2633
2641
2649
2657
2665
2773
2785
2792
2737
2737
2745
2753
2753
2753
2753
2753
2753
2753
275 | 2562
2570
25786
2586
2602
26118
2626
2634
2650
2658
2664
2674
2682
2714
2722
2738
2746
2774
27762
27762
27762
27762
2778 | 2563
2571
2579
2587
2603
2611
2619
2627
2643
2643
2651
2667
2675
2683
2691
2707
2715
2731
2739
2747
2755
2771
2779
2787 | 2564
2572
2580
2586
2694
2612
2620
2628
2636
2644
2652
2684
2692
2708
2716
2724
2732
2740
2756
2756
2756
27764
2772
2788 | 2565
2573
2581
2589
2629
2629
2629
2629
2645
2653
2669
2677
2685
2709
2717
2709
2717
2757
2757
2765
2773
2741
2757
2767
2773
2773
2773
2773
2773
2773
277 | 2566
2574
2582
2590
2606
2614
2622
2630
2646
2654
2670
2718
2710
2718
2710
2712
2710
2713
2742
2750
2758
2756
2778
2778
2778
2778
2778
2778
2778 | 2567
2575
2583
2599
2607
2615
2623
2639
2647
2655
2663
2671
2679
2687
2695
2793
2711
2719
2727
2735
2743
2751
2759
2757
2757
2758
2758
2758
2757
2758
2758 | | 5410
5420
5430
5440
5450
5550
5550
5550
5550
5570
5600
5610
5620
5630
5660
5670
5720
5720
5730
5740 | 2816
2824
2832
2840
2854
2856
2864
2872
2880
2904
2912
2920
2928
2936
2936
2936
2936
3016
3024
3032
3040 | 2817
2825
2833
2841
2849
2857
2865
2873
2881
2899
2905
2913
2929
2937
2945
2961
2969
2977
2985
2993
3001
3009
3017
3025
3033
3041 | 2818
2818
2826
2834
2842
2858
2866
2858
2966
2994
2914
2922
2930
2938
2945
2954
2966
2970
2986
3002
3018
3026
3018
3024
3034
3042 | 2819
2827
2835
2843
2859
2867
2875
2883
2997
2997
2923
2939
2947
2947
2949
3003
3011
3019
3027
3035
3043 | 2820
2828
2836
2844
2846
28660
28688
2876
29900
2908
2916
2924
2932
2940
2932
2940
2932
2940
3036
3036
3036
3036 | 2821
2829
2837
2845
2853
2861
2869
2877
2901
2909
2917
2925
2933
2941
2949
2957
2965
2973
2997
3005
3013
3021
3021
3027
3045 | 2822
2830
2838
2846
2854
2862
2870
2878
2990
2910
2926
2934
2942
2950
2950
2974
2990
3014
3022
3030
3038
3038 | 2823
2839
2847
2847
2871
2871
2872
2903
2911
2927
2935
2952
2967
2975
2975
3007
3015
3023
3031
3039
3047 | to to 5777 3071 | | 5010
5020
5030
5040
5050
5060
5070
5120
5130
5140
5150
5220
5220
5230
5240
5250
5230
5240
5250
5230
5230
5330
5340
5330
5330 | 2560
2568
2576
2582
2692
2600
2608
2616
2624
2632
2640
2648
2656
2688
2696
2704
2712
2720
2722
2736
2744
2752
2760
2768 | 2561
2569
2577
2585
2693
2601
2603
2617
2625
2633
2641
2649
2657
2665
2673
2681
2705
2713
2721
2705
2713
2721
2729
2737
2745
2753
2769
2777
2785
2793
2793 | 2562
2570
2578
2586
2602
2610
2618
2626
2642
2650
2658
2668
2674
2682
2796
2714
2722
2714
2722
2738
2746
2754
2754
2774
2772
2778
2778
2778
2778
2778
277 |
2563
2571
2579
2587
2603
2611
2619
2627
2635
2643
2651
2659
2667
2675
2683
2691
2707
2715
2723
2747
2755
2763
2779
2787
2779
2787
2787
2787
2787
2787 | 2564
2572
2580
2588
2620
2612
2620
2628
2636
2636
2636
2636
2636
2636
2730
2716
2724
2736
2748
2756
2768
2772
2772
2772
2772
2772
2772
277 | 2565
2573
2581
2587
2697
2605
2613
2621
2629
2637
2645
2653
2661
2667
2677
2685
2701
2709
2717
2725
2741
2749
2757
2773
2773
27741
2789
2787
2781
2789
2781 | 2566
2574
2582
2590
2614
2622
2630
2646
2654
2662
2670
2678
2686
2710
2718
2726
2710
2718
2726
2750
2758
2766
2782
2790
2782
2782
2782
2782
2782
2782
2782
278 | 25677
2575
2583
2591
2607
2615
2623
2631
2639
2647
2655
2663
2667
2679
2711
2719
2727
2711
2719
2727
2743
2751
2759
2767
2775
2783
2791
2792
2793
2791
2793
2791
2793
2791
2793
2793
2793
2793
2793
2793
2793
2793 | | 5410
5420
5420
5440
5440
5546
5546
5550
5530
5530
5540
5550
5550
5660
5660
5660
5670
5700
5710
5710
5720
5730
5740
5740
5770
5740
5770
5740
5770
5740
574 | 2816
2812
2812
2840
2848
2856
2864
2872
2880
2912
2912
2928
2936
2914
2952
2968
2976
2968
2976
3008
3016
3018
3014
3013
3044
3032
3040
3040
3056 | 2817
2825
2833
2841
2849
2857
2865
2873
2881
2995
2993
2993
2993
2993
2993
3001
3009
3017
3009
3013
3009
3013
3009
3013
3009
3013
3009
3013
3009
3013
3009
3013
3009
3013
3009
3013
3009
3013
3009
3013
3009
3013
3009
3009 | 2818
2826
2834
2842-
2858
2866
2874
2882
2996
2914
2993
2938
2945
2962
2970
2978
2978
2994
3002
3010
3018
3026
3034
3058 | 2819
2827
2835
2843
2849
2875
2875
2883
2907
2915
2939
2947
2955
2963
2971
2979
2979
2979
2979
2979
3003
3011
3019
3027
3035
3043
3051
3051 | 2820
28282
2836
2844
2866
2868
2876
2898
2916
2929
2920
2932
2940
2948
2956
2964
2972
2980
2996
3004
3012
3020
3028
3036
3044
3060 | 2821
2829
2837
2845
2853
2861
2869
2877
2885
2990
2917
2909
2917
2949
2957
2965
2973
2981
2997
3005
3013
3021
3029
3037 | 2822
2830
2838
2846
2862
2870
2878
2886
29910
2912
2912
2912
2914
2914
2915
2916
2914
2916
2917
2918
3006
3014
3032
3038
3038
3046
3062 | 2823
2823
2839
2847
2865
2871
2879
2887
2993
2911
2919
2927
2935
2943
2951
2951
2967
2975
2983
2999
3007
3015
3023
3031
3031
3047
3063 | to to 5777 3071 | (Continued on next page) # Table B-1 (Cont.) Octal-Decimal Integer Conversion | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | 0 | ı | 2 | 3 | 4 | 5 | 6 | 7 | |---|---|--|--|--|--|--|--|---|---
--|---|--|--|--|--|--|--| | 6000 3072 | 0 3072 | 3073 | 3074 | 3075 | 3076 | 3077 | 3078 | 3079 | | 3328 | | | | 3332 | | | | | to to 601 | 0 3080 | 3081 | 3082 | 3083 | 3084 | 3085 | 3086 | 3087 | | 3336
3344 | | | | 3340 | | | | | 6777 3583 602
(Octal) (Decimal) 603 | 0 3088
0 3096 | | 3090 | | | | | | 6430 | 3352 | 3353 | 3354 | 3355 | 3356 | 3357 | 3358 | 3359 | | 604 | 0 3104 | 3105 | 3106 | 3107 | 3108 | 3109 | 3110 | 3111 | 6440 | 3360 | 3361 | 3362 | 3363 | 3364 | 3365 | 3366 | 3367 | | 605 | 0 3112 | 3113 | 3114 | 3115 | 3116 | 3117 | 3118 | 3119 | 6450 | 3368
3376 | 3369 | 3370 | 3371 | 3372 | 3373 | 3374 | 3383 | | Octal Decimal | 0 3120
0 3128 | 3121 | 3130 | 3123 | 3132 | 3133 | 3134 | 3135 | 6470 | 3384 | 3385 | 3386 | 3387 | 3388 | 3389 | 3390 | 3391 | | 10000 4096 | | | | | | | | . | 6500 | 3392 | 2202 | 2204 | 2205 | 2206 | 2207 | 3308 | 2200 | | 30000 - 12288 | 0 3136
0 3144 | 3137 | 3138 | 3139 | 3140 | 3141 | 3142 | 3151 | | 3400 | | | | | | | | | E0000 20480 612 | 0 3152 | 3153 | 3154 | 3155 | 3156 | 3157 | 3158 | 3159 | | 3408 | | | | | | | | | 60000 - 24576 | 0 3160
0 3168 | 3161 | 3162 | 3163 | 3164 | 3165 | 3166 | 3167 | | 3416
3424 | | | | | | | | | 70000 - 28072 | 0 3176 | 3177 | 3178 | 3179 | 3180 | 3181 | 3182 | 3183 | 6550 | 3432 | 3433 | 3434 | 3435 | 3436 | 3437 | 3438 | 3439 | | 616 | 0 3184 | 3185 | 3186 | 3187 | 3188 | 3189 | 3190 | 3191 | | 3440
3448 | | | | | | | | | ľ | 0 3192 | | | | | | | | | 3456 | | | | | | | - 1 | | | 0 3200
0 3208 | | | | | | | | 6610 | 3456 | 3465 | 3466 | 3467 | 3468 | 3469 | 3470 | 3471 | | 622 | 0 3216 | 3217 | 3218 | 3219 | 3220 | 3221 | 3222 | 3223 | 6620 | 3472 | 3473 | 3474 | 3475 | 3476 | 3477 | 3478 | 3479 | | | 0 3224 | | | 3227 | 3228 | 3229 | 3230 | 3231 | 6630 | 3480
3488 | 3481 | 3482 | 3483 | 3484 | 3485 | 3486 | 3495 | | | 0 3232
0 3240 | | | 3235
3243 | 3236
3244 | 3245 | | | 6650 | 3496 | 3497 | 3498 | 3499 | 3500 | 3501 | 3502 | 3503 | | 626 | 0 3248 | 3249 | 3250 | 3251 | 3252 | 3253 | 3254 | 3255 | 6660 | 3504
3512 | 3505 | 3506 | 3507 | 3508 | 3509 | 3510 | 3511 | | | 0 3256 | | | | | | | ł | | | | | | | | | 1 | | | 0 3264 | | 3266
3274 | | 3268 | 3269
3277 | 3270 | 3271 | | 3520
3528 | | | | | | | | | 632 | 0 3272
0 3280 | 3281 | | 3283 | 3284 | 3285 | 3286 | 3287 | 6720 | 3536 | 3537 | 3538 | 3539 | 3540 | 3541 | 3542 | 3543 | | 633 | 0 3288 | | 3290 | 3291 | 3292 | 3293 | 3294 | 3295 | 6730 | 3544
3552 | 3545 | 3546 | 3547 | 3548
3556 | 3549
3557 | 3558 | 3551 | | 634
 635 | 0 3296
0 3304 | 3297
3305 | 3298
3306 | | 3300
3308 | | | | 6750 | 3560 | 3561 | 3562 | 3563 | 3564 | 3565 | 3566 | 3567 | | 636 | 0 3312 | 3313 | 3314 | 3315 | 3316 | 3317 | 3318 | 3319 | 6760 | 3568
3576 | 3569 | 3570 | 3571 | 3572 | 3573 | 3574 | 3575 | | [637 | 0 3320 | 3321 | 3322 | 3323 | 3324 | 3325 | 3326 | 3321 | 6770 | 3376 | 3311 | 3310 | 3313 | 3300 | 3,01 | 0302 | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | 1 " | • | _ | | | | | | | | | | | | | | | | 7000 3584 | | | 3586 | 3587 | 3588 | 3589 | 3590 | 3591 | 7400 | 3840 | 3841 | 3842 | 3843 | 3844 | 3845 | 3846 | 3847 | | to to 700 | 0 3584 | 3585 | 3586
3594 | 3587
3595 | 3596 | 3597 | 3598 | 3599 | 741 | 3848 | 3849 | 3850 | 3851 | 3852 | 3853 | 3854 | 3855 | | to to 700 | 0 3584
0 3592
0 3600 | 3585
3593
3601 | 3586
3594
3602
3610 | 3587
3595
3603
3611 | 3596
3604
3612 | 3597
3605
3613 | 3598
3606
3614 | 3607
3615 | 7410
7420
7430 | 3848
3856
3864 | 3849
3857
3865 | 3850
3858
3866 | 3851
3859
3867 | 3852
3860
3868 | 3853
3861
3869 | 3854
3862
3870 | 3855
3863
3871 | | to to 700 | 0 3584
0 3592
0 3600
0 3608 | 3585
3593
3601
3609 | 3586
3594
3602
3610 | 3587
3595
3603
3611
3619 | 3596
3604
3612
3620 | 3597
3605
3613
3621 | 3606
3614
3622 | 3607
3615
3623 | 7410
7420
7430
7440 | 3848
3856
3864
3872 | 3849
3857
3865
3873 | 3850
3858
3866
3874 | 3851
3859
3867
3875 | 3852
3860
3868
3876 | 3853
3861
3869
3877 | 3854
3862
3870
3878 | 3855
3863
3671
3879 | | to 7777 4095 700 700 700 700 700 700 700 700 700 70 | 0 3584
0 3592
0 3600
0 3608
10 3616 | 3585
3593
3601
3609
3617 | 3586
3594
3602
3610
3618
3626 | 3587
3595
3603
3611
3619 | 3596
3604
3612
3620
3628 | 3597
3605
3613
3621
3629 | 3598
3606
3614
3622
3630 | 3607
3615
3623
3631 | 7410
7420
7430
7440
7450 | 3848
3856
3864
3872
3880 | 3849
3857
3865
3873
3881 | 3850
3858
3866
3874
3882 | 3851
3859
3867
3875
3883 | 3852
3860
3868
3876
3884
3892 | 3853
3861
3869
3877
3885
3893 | 3854
3862
3870
3878
3886
3894 | 3855
3863
3671
3879
3887
3895 | | to to 7707 7017 7017 7017 7017 7017 7017 701 | 0 3584
0 3592
0 3600
3608
0 3616
50 3624 | 3585
3593
3601
3609 | 3586
3594
3602
3610
3618
3626 | 3587
3595
3603
3611
3619
3627
3635 | 3596
3604
3612
3620
3628
3636 | 3597
3605
3613
3621
3629
3637 | 3698
3606
3614
3622
3630
3638 | 3607
3615
3623
3631
3639 | 7410
7420
7430
7441
7450
746 | 3848
3856
3864
3872
3880
3888 | 3849
3857
3865
3873
3881 | 3850
3858
3866
3874
3882
3890 | 3851
3859
3867
3875
3883
3891 | 3852
3860
3868
3876
3884
3892 | 3853
3861
3869
3877
3885
3893 | 3854
3862
3870
3878
3886
3894 |
3855
3863
3871
3879
3887 | | to to 7707 7017 7017 7017 7017 7017 7017 701 | 0 3584
0 3592
0 3600
3608
0 3616
50 3624
70 3646 | 3585
3593
3601
3609
3617
3625
3633
3641 | 3586
3594
3602
3610
3618
3626
3634
3642 | 3587
3595
3603
3611
3619
3627
3635
3643 | 3596
3604
3612
3620
3628
3636
3644 | 3597
3605
3613
3621
3629
3637
3645 | 3698
3606
3614
3622
3630
3638
3646 | 3615
3615
3623
3631
3639
3647 | 7410
7420
7430
7440
7450
746
747 | 3848
3856
3864
3872
3880
3888
3896 | 3849
3857
3865
3873
3881
3889
3897 | 3850
3858
3866
3874
3882
3890
3898 | 3851
3859
3867
3875
3883
3891
3899 | 3852
3860
3868
3876
3884
3892
3900 | 3853
3861
3869
3877
3885
3893
3901 | 3854
3862
3870
3878
3886
3894
3902 | 3855
3863
3671
3879
3887
3895
3903 | | to 7777 4095 700 700 700 700 700 700 700 700 700 70 | 0 3584
0 3592
0 3600
0 3608
0 3616
50 3624
50 3632
70 3640
0 3648 | 3585
3593
3601
3609
3617
3625
3633
3641
3649
3657 | 3586
3594
3602
3610
3618
3626
3634
3642
3650
3658 | 3587
3595
3603
3611
3619
3627
3635
3643
3651
3659 | 3596
3604
3612
3620
3628
3636
3644
3652
3660
3668 | 3597
3605
3613
3621
3629
3637
3645
3653
3661
3669 | 3698
3606
3614
3622
3630
3638
3646
3654
3662
3670 | 3615
3623
3631
3639
3647
3655
3663
3671 | 7411
7421
7431
7441
745
746
747
750
751 | 3848
3856
3864
3872
3880
3888
3896 | 3849
3857
3865
3873
3881
3889
3897
3905
3913 | 3850
3858
3866
3874
3882
3890
3898
3906
3914 | 3851
3859
3867
3875
3883
3891
3899 | 3852
3860
3868
3876
3884
3892
3900
3908
3916
3924 | 3853
3861
3869
3877
3885
3893
3901
3909
3917
3925 | 3854
3862
3870
3878
3886
3894
3902
3910
3918
3926 | 3855
3863
3671
3879
3887
3895
3903
3911
3919
3927 | | to 7777 4095 700 700 700 700 700 700 700 700 700 70 | 0 3584
0 3592
0 3600
3608
0 3616
50 3624
50 3632
70 3640
00 3648 | 3585
3593
3601
3609
3617
3625
3633
3641
3649
3657
1 3665 | 3586
3594
3602
3610
3618
3626
3634
3642
3650
3658
3666 | 3587
3595
3603
3611
3619
3627
3635
3643
3651
3659
3667 | 3596
3604
3612
3620
3628
3636
3644
3652
3660
3668
3676 | 3597
3605
3613
3621
3629
3637
3645
3653
3661
3669
3677 | 3698
3606
3614
3622
3630
3638
3646
3654
3662
3670
3678 | 3615
3623
3631
3639
3647
3655
3663
3671
3679 | 7411
7421
7431
7441
745-
746
747
7500
751-
752
753 | 3848
3856
3864
3872
3880
3888
3896
3904
3912
3920
3928 | 3849
3857
3865
3873
3881
3889
3897
3905
3913
3921
3929 | 3850
3858
3866
3874
3882
3890
3898
3906
3914
3922
3930 | 3851
3859
3867
3875
3883
3891
3899
3907
3915
3923
3931 | 3852
3860
3868
3876
3884
3892
3900
3908
3916
3924
3932 | 3853
3861
3869
3877
3885
3893
3901
3909
3917
3925
3933 | 3854
3862
3870
3878
3886
3894
3902
3910
3918
3926
3934 | 3855
3863
3671
3879
3887
3895
3903
3911
3919
3927
3935 | | to 7777 4095 700 700 700 700 700 700 700 700 700 70 | 0 3584
0 3592
0 3600
3603
0 3616
50 3624
50 3632
70 3646
0 3656
20 3664
3630
3630
3630
3630
3630
3630
3630 | 3585
3593
3601
3609
3617
3625
3633
3641
3649
3657
3665
2 3673 | 3586
3594
3602
3610
3618
3626
3634
3642
3650
3658
3666
3674 | 3587
3595
3603
3611
3619
3627
3635
3643
3651
3659
3667
3683 | 3596
3604
3612
3620
3628
3636
3644
3652
3660
3668
3676
3684 | 3597
3605
3613
3621
3629
3637
3645
3653
3661
3669
3677
3685 | 3698
3606
3614
3622
3630
3638
3646
3654
3662
3670
3678
3686 | 3615
3623
3631
3639
3647
3655
3663
3671
3679
3687 | 7410
7421
7431
7444
7455
746
747
7500
7511
752
753
754 | 3848
3856
3864
3872
3880
3886
3896
3904
3912
3920
3928
3936
3936 | 3849
3857
3865
3873
3881
3889
3997
3905
3913
3921
3929
3937
3945 | 3850
3858
3866
3874
3882
3890
3898
3906
3914
3922
3930
3938
3946 | 3851
3859
3867
3875
3883
3891
3899
3907
3915
3923
3931
3939
3947 | 3852
3860
3868
3876
3884
3892
3900
3916
3924
3932
3940
3948 | 3853
3861
3869
3877
3885
3893
3901
3909
3917
3925
3933
3941
3949 | 3854
3862
3870
3878
3886
3894
3902
3910
3918
3926
3934
3942
3950 | 3855
3863
3671
3879
3887
3895
3903
3911
3919
3927
3935
3943
3951 | | to 7777 4095 700 700 700 700 700 700 700 700 700 70 | 0 3584
0 3592
0 3600
0 3616
50 3632
70 3640
0 3646
10 3656
20 366-
30 367
40 3688
50 368 | 3585
3593
3601
3609
3617
3625
3633
3641
3649
3657
3665
2 3673
3 3681
3 3681 | 3586
3594
3602
3610
3618
3626
3634
3642
3650
3658
3666
3674
3682
3690 | 3587
3595
3603
3611
3619
3627
3635
3643
3651
3659
3667
3673
3683
3691 | 3596
3604
3612
3620
3628
3636
3644
3652
3660
3668
3676
3684
3692 | 3597
3605
3613
3621
3629
3637
3645
3653
3661
3669
3677
3685
3693
3701 | 3598
3606
3614
3622
3630
3638
3646
3654
3662
3670
3678
3686
3694
3702 | 3697
3615
3623
3631
3639
3647
3655
3663
3671
3679
3687
3695
3703 | 7411
7421
7431
7441
745
746
747
750
751
752
753
754
755 | 3848
3856
3864
3872
3880
3880
3896
3904
3912
3920
3928
3936
3944
3952 | 3849
3857
3865
3873
3881
3889
3997
3905
3913
3921
3929
3937
3945 | 3850
3858
3866
3874
3882
3890
3898
3906
3914
3922
3930
3938
3946 | 3851
3859
3867
3875
3883
3891
3899
3907
3915
3923
3931
3939
3947
3955 | 3852
3860
3868
3876
3884
3892
3900
3916
3924
3932
3940
3948
3956 | 3853
3861
3869
3877
3885
3893
3901
3909
3917
3925
3933
3941
3949
3957 | 3854
3862
3870
3878
3886
3894
3902
3910
3918
3926
3934
3942
3950
3958 | 3855
3863
3671
3879
3887
3895
3903
3911
3919
3927
3935
3943
3951
3959 | | to 7777 4095 700 700 700 700 700 700 700 700 700 70 | 0 3584
0 3592
0 3600
0 3608
0 3608
0 3616
60 3624
50 3646
0 3656
20 3664
30 3667
30 367
40 368
50 369
70 370 | 3585
3593
3601
3607
3617
3625
3633
3641
3649
3657
3667
3681
3689
3689
3705 | 3586
3594
3602
3610
3618
3626
3634
3642
3650
3658
3666
3674
3682
3690
3698
3706 | 3587
3595
3603
3611
3619
3627
3635
3643
3651
3659
3667
3675
3683
3691
3699 | 3596
3604
3612
3620
3628
3636
3644
3652
3660
3668
3676
3684
3692
3700
3708 | 3597
3605
3613
3621
3629
3637
3645
3653
3661
3669
3677
3685
3693
3701
3709 | 3598
3606
3614
3622
3630
3638
3646
3654
3662
3670
3678
3686
3694
3702
3710 | 3697
3615
3623
3631
3639
3647
3655
3663
3671
3679
3687
3695
3703 | 7411
7421
7431
7441
745
746
747
750
751
752
753
754
755
755
757 | 3848
3856
3864
3872
3880
3888
3896
3912
3928
3928
3928
3936
3944
3952
3960 | 3849
3857
3865
3873
3881
3889
3997
3905
3913
3929
3937
3945
3953
3961 | 3850
3858
3866
3874
3882
3890
3998
3914
3922
3930
3938
3946
3954
3962 | 3851
3859
3867
3875
3883
3891
3899
3907
3915
3923
3931
3939
3947
3955
3963 | 3852
3860
3868
3876
3884
3990
3908
3916
3924
3932
3940
3948
3956
3964 | 3853
3861
3869
3877
3885
3893
3901
3909
3917
3925
3933
3941
3949
3957
3965 | 3854
3862
3870
3878
3886
3894
3902
3910
3918
3926
3934
3942
3950
3958
3966 | 3855
3863
3871
3879
3887
3895
3903
3911
3919
3927
3935
3943
3951
3959
3967 | | to 7777 4095 700 700 700 700 700 700 700 700 700 70 | 0 3584
0 3592
0 3600
0 3616
50 3624
50 3646
0 3648
10 3656
20 3666
367
36 368
50 369
70 370 | 3585
3593
3601
3609
3617
3625
3633
3641
3649
3657
3665
3667
3681
3689
3697
4 3705 |
3586
3594
3602
3610
3618
3626
3634
3642
3650
3658
3666
3674
3682
3698
3706 | 3587
3595
3603
3611
3619
3627
3635
3643
3651
3659
3667
3683
3691
3699
3707 | 3596
3604
3612
3620
3628
3636
3644
3652
3660
3668
3676
3684
3692
3700
3708 | 3597
3605
3613
3621
3629
3637
3645
3653
3661
3669
3677
3685
3693
3701
3709 | 3598
3606
3614
3622
3638
3646
3654
3662
3670
3678
3686
3702
3710 | 3697
3615
3623
3631
3639
3647
3655
3663
3671
3679
3687
3703
3711 | 7411
7421
7431
7441
7451
746
747
7501
7511
752
753
754
755
756
757 | 3848
3856
3864
3872
3880
3880
3896
3904
3912
3920
3928
3936
3944
3952 | 3849
3857
3865
3873
3881
38897
3905
3913
3921
3929
3937
3945
3953
3961 | 3850
3858
3866
3874
3882
3890
3914
3922
3930
3938
3946
3954
3954 | 3851
3859
3867
3875
3883
3891
3907
3915
3923
3931
3939
3947
3955
3971 | 3852
3860
3868
3876
3892
3900
3916
3924
3932
3940
3948
3956
3964
3972 | 3853
3861
3869
3877
3885
3893
3901
3909
3917
3925
3933
3941
3949
3957
3965 | 3854
3862
3870
3878
3886
3894
3902
3910
3918
3926
3934
3950
3958
3966 | 3855
3863
3671
3879
3887
3895
3903
3911
3927
3935
3943
3951
3959
3967
3975
3983 | | to 7777 4095 700 700 700 700 700 700 700 700 700 70 | 0 3584
0 3592
3600
10 3616
50 3624
50 3632
70 3646
00 3646
00 3646
00 3666
30 367
40 3686
30 367
70 370
370
370
370
370
370
370 | 3585
3593
3601
3609
3617
3625
3633
3641
3657
3667
3681
3689
3705
2 3713
3721
8 3728 | 3586
3594
3602
3610
3618
3626
3634
3642
3650
3658
3666
3674
3682
3690
3690
3714
37122
3730 | 3587
3595
3603
3611
3619
3627
3635
3643
3651
3659
3667
3675
3683
3691
3691
3707 | 3596
3604
3612
3628
3636
3644
3652
3668
3676
3684
3692
3700
3708 | 3597
3605
3613
3629
3637
3645
3653
3661
3669
3677
3685
3693
3701
3709 | 3598
3606
3614
3622
3630
3638
3646
3654
3654
3670
3678
3686
3694
3702
3710 | 3617
3615
3623
3631
3639
3647
3655
3667
3679
3687
3695
3703
3711
3719
3727
3735 | 7411
7421
7431
7441
745
746
747
751
752
753
754
755
756
757
760
761 | 3848
3856
3864
3872
3880
3896
3994
3912
3920
3920
3920
3936
3966
3966
3966
3976 | 3849
3857
3865
3873
3881
3897
3905
3913
3921
3929
3937
3945
3953
3961 | 3850
3858
3866
3874
3882
3890
3914
3922
3930
3938
3946
3954
3954
3970
3978 | 3851
3859
3867
3875
3883
3891
3997
3915
3923
3931
3939
3947
3955
3963 | 3852
3860
3868
3876
3884
3900
3918
3916
3924
3932
3940
3948
3956
3964 | 3853
3861
3869
3877
3885
3893
3901
3909
3917
3925
3933
3941
3949
3957
3965 | 3854
3862
3870
3878
3886
3894
3902
3910
3918
3926
3934
3942
3950
3958
3966
3974
3982
3990 | 3855
3863
3671
3879
3887
3895
3903
3911
3919
3927
3935
3945
3959
3967 | | to 7777 4095 700 700 700 700 700 700 700 700 700 70 | 0 3584
0 3592
0 3600
0 3600
0 3616
0 3616
0 3624
50 3632
70 3640
0 3656
30 3677
3660
3670
3670
3670
370
370
370
370
370
370
370
370
370
3 | 3585
3593
3601
3607
3617
3625
3633
3641
3649
3657
3665
2 3673
3681
3 3681
3 3721
3 3721
3 3721
3 3721
3 3721 | 3586
3594
3602
3610
3618
3626
3634
3642
3650
3658
3664
3698
3706
3714
3722
3738 | 3587
3595
3603
3619
3627
3635
3643
3651
3659
3667
3683
3691
3699
3707 | 3596
3604
3612
3620
3628
3636
3644
3652
3660
3668
3676
3684
3732
3716
3724
3732
3740 | 3597
3605
3613
3629
3637
3645
3653
3661
3669
3677
3685
3701
3709
3717
3723
3733
3741 | 3598
3606
3614
3622
3630
3638
3646
3654
3670
3678
3686
3694
3702
3710
3718
3726
3734 | 3599
3607
3613
3623
3631
3639
3647
3655
3667
3679
3687
3695
3703
3711
3719
3727
3735
3743 | 7411
7421
7431
7441
7451
7467
7511
752
753
754
755
756
757
760
761
762
763
763 | 3848
3856
3864
3872
3888
3888
3896
3912
3928
3936
3952
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3984
3966
3984
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966
3966 | 3849
3857
3865
3873
3889
3997
3905
3913
3921
3929
3937
3945
3953
3961
3969
3977
3985
3985 | 3850
3858
3866
3874
3882
3890
3914
3922
3930
3938
3946
3954
3962 | 3851
3859
3867
3883
3891
3899
3907
3915
3923
3931
3939
3947
3955
3963
3971
3979
3987
3987 | 3852
3860
3868
3876
3884
3892
3900
3908
3918
3924
3932
3940
3948
3956
3964
3972
3980
3986
4004 | 3853
3861
3869
3877
3885
3893
3901
3909
3917
3925
3933
3941
3949
3957
3981
3989
3997
4005 | 3854
3862
3870
3878
3886
3894
3910
3918
3926
3934
3958
3958
3958
3974
3982
3990
3990
3990 | 3855
3863
38671
3879
3887
3895
3903
3911
3919
3927
3935
3943
3951
3959
3967
3975
3983
3991
3991
3991 | | to 7777 4095 700 700 700 700 700 700 700 700 700 70 | 0 3584
0 3592
0 3608
0 3618
6 3618
6 3624
5 3632
7 3640
0 3648
1 0 3656
2 0 3667
3 363
3 3677
4 0 368
6 0 3697
7 0 370
0 371
1 0 372
2 0 372
2 0 372
3 0 374 | 3585
3593
3601
3609
3617
3625
3633
3641
3645
3657
3665
3673
3689
3689
3737
4 3705
2 3713
3 3722
2 3713
3 3722
3 3723
3 37 | 3586
3594
3602
3610
3618
3624
3650
3658
3658
3658
3658
3698
3706
3714
3722
3730
3733
3733 | 3587
3595
3603
3611
3619
3627
3643
3651
3659
3675
3683
3691
3707
3715
3723
3733
3733
3733
3733 | 3596
3604
3612
3620
3628
3636
3644
3652
3660
3668
3676
3700
3718
3716
3740
3740
3740 | 3597
3605
3613
3621
3629
3637
3645
3653
3661
3669
3677
3685
3701
3709
3717
3725
3733
3741
3749
3757 |
3696
3616
3612
3630
3638
3646
3654
3662
3670
3678
3686
3694
3702
3710
3718
3726
3734
3758 | 3699
3607
3615
3623
3631
3639
3647
3655
3663
3671
3677
3687
3793
3711
3719
3727
3735
3743
3759 | 7411
7421
7431
7441
7457
7467
7511
752
753
754
755
756
757
760
761
762
763
764 | 3848
3856
3856
3864
3876
3888
3896
3912
3920
3928
3936
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952
3952 | 3849
3857
3865
3873
3881
3889
3905
3913
3921
3929
3937
3945
3953
3961
3969
3977
3985
3993
4001 | 3850
3858
38658
3874
3882
3890
3914
3922
3930
3938
3946
3954
3970
3978
3986
3994
4010 | 3851
3859
3867
3883
3891
3997
3915
3923
3931
3939
3947
3955
3963
3971
3979
3987
3995
4011 | 3852
3860
3868
3876
3884
3990
3916
3924
3932
3948
3956
3964
3972
3980
3988
3996
4004
4012 | 3853
3861
3867
3885
3893
3901
3909
3917
3925
3933
3941
3949
3957
3965 | 3854
3862
3870
3878
3886
3894
3902
3918
3926
3934
3942
3950
3958
3966
3974
3982
3990
4006 | 3855
3863
38671
3879
3887
3897
3903
3911
3919
3927
3935
3943
3959
3967
3975
3983
3991
3999
4007
4015 | | to 7077 4095 701 702 702 703 703 703 704 705 705 705 705 705 705 705 705 705 705 | 0 3584
0 3592
0 3592
0 3600
0 3616
60 362
60 3636
60 3636
60 3686
60 3686
60 3686
60 3687
70 370
90 371
10 372
20 372
3340 374 | 3585
3593
3601
3609
3617
3625
3625
3633
3641
3665
3667
3665
3667
3705
3705
3705
3705
3705
3705
3705
370 | 3586
3594
3602
3610
3618
3626
3658
3658
3658
3658
3666
3674
3762
3768
3778
3778
3778 | 3587
3595
3603
3611
3619
3627
3633
3643
3651
3653
3675
3683
3691
3715
3723
3739
3737
3747
3755 | 3596
3604
3620
3628
3636
3644
3652
3660
3668
3676
3684
3700
3708
3716
3724
3732
3740 | 3597
3605
3613
3621
3629
3637
3645
3653
3661
3669
3677
3685
3701
3709
3717
3725
3733
3741
3749
3757 | 3696
3614
3622
3630
3638
3646
3654
3662
3670
3718
3726
3734
3712
3713
3718 | 3697
3667
3623
3631
3639
3647
3655
3663
3671
3679
3703
3711
3719
3727
3735
3743
3753 | 7411
7421
7431
7441
7451
7461
747
7501
751
752
753
754
755
766
7760
761
762
763
764
765
766 | 3848
3856
3864
3872
3880
3888
3991
3992
3912
3928
3936
3944
3952
3966
3966
3966
3976
3966
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976
3976 | 3849
3857
3865
3873
3881
3889
3905
3913
3921
3929
3937
3953
3953
3961
3969
3977
3985
23993
4001
4009 | 3850
3858
3868
3874
3882
3890
3914
3922
3930
3938
3954
3954
3954
3954
4002
4010 | 3851
3859
3867
3883
3891
3997
3915
3923
3931
3934
3955
3963
3971
3979
3987
3995
4003
4011 | 3852
3860
3876
3884
3990
3908
3916
3924
3932
3940
3956
3956
3972
3988
3996
4004
4012 | 3853
3861
3867
3885
3893
3901
3909
3917
3925
3933
3941
3957
3965
3973
3981
3989
3997
4005
4012 | 3854
3862
3870
3878
3886
3894
3910
3918
3926
3934
3942
3958
3958
3958
3958
4004
4014 | 3855
3863
38671
3879
3887
3895
3903
3911
3919
3927
3935
3943
3951
3957
3967
3975
3983
3991
3999
4007
4015
4023 | | to 7777 4095 700 700 700 700 700 700 700 700 700 70 | 0 3584
0 3592
0 3592
0 3600
0 3608
0 362
0 3646
50 363
70 3646
0 367
367
367
370
370
370
370
370
370
370
370
370
37 | 3585
3593
3601
3609
3617
3625
3633
3641
3649
3657
3667
3674
3702
3702
3702
3702
3702
3702
3702
3702 | 3586
3594
3602
3610
3618
3626
3634
3650
3658
3674
3682
3698
3706
3714
3722
3730
3738
3746
3754
3754
3754 |
3587
3595
3603
3611
3619
3627
3635
3659
3675
3683
3699
3707
3715
3733
3734
3733
3734
3735
3737
3737
373 | 3596
3604
3612
3620
3628
3636
3644
3652
3660
3668
3676
3700
3708
3716
3724
3732
3748
3756
3764
3772 | 3597
3605
3613
3621
3629
3637
3645
3653
3661
3677
3685
3693
3701
3717
3725
3733
3741
3749
3757
3757
3773 | 3598
3614
3622
3630
3638
3646
3654
3662
3702
3710
3718
3726
3734
3750
3758
3766
3774 | 3599
3607
3615
3623
3631
3639
3647
3655
3663
3679
3687
3695
3703
3711
3719
3727
3735
3743
3751
3759
3757 | 7411
7421
7431
7441
7451
7461
747
7501
752
753
753
754
755
756
757
760
761
762
763
764
765
766
766
766 | 3848
3856
3856
3866
3896
3912
3912
3928
3936
3944
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960
3960 | 3849 3857 3865 3873 3881 3889 3907 3905 3913 3921 3929 3937 3961 3961 3961 4009 4001 4009 | 3850
3858
3866
3874
3882
3890
3914
3922
3930
3938
3946
3954
3954
3970
3978
3978
4002
4010
4013
4026 | 3851
3859
3867
3875
3883
3891
3907
3915
3923
3931
3939
3947
3955
3963
3971
3979
3987
4003
4011
4019
4027 | 3852
3868
3876
3884
3990
3908
3916
3932
3940
3948
3956
3972
3980
3988
4004
4012
4020
4028 | 3853
3861
3877
3885
3893
3901
3909
3917
3925
3933
3941
3949
3957
3965
3973
3981
4005
4013
4021
4029 | 3854
3862
3870
3878
3886
3894
3910
3918
3926
3934
3942
3950
3958
3974
3982
3998
4006
4014
1022
4030 | 3853
3863
38671
3879
3887
3993
3993
3993
3997
3959
3959
3957
3959
3959 | | to 7777 4095 700 700 700 700 700 700 700 700 700 70 | 0 3584
0 3592
0 3592
0 3608
0 3616
0 3616
0 3656
0 3646
0 3656
0 3667
0 3660
3670
3670
370
370
370
370
370
370
370
370
370
3 | 3585
3593
3601
3609
3617
3625
3633
3641
3665
23673
3689
3689
3775
23713
3785
23713
3785
3795
3795
3795
3795
3795
3795
3795
379 | 3586
3594
3602
3610
3618
3626
3650
3658
3666
3674
3682
3708
3714
3712
3733
3738
3754
3754
3777
3777
3778 | 3587
3595
3603
3611
3619
3627
3635
3643
3651
3653
3693
3707
3715
3733
3733
3733
3733
3733
3733
373 | 3596
3604
3620
3620
3628
3636
3636
3636
3652
3660
3668
3676
3700
3710
3710
3724
3748
3756
3756
3776
3778 | 3597
3613
3621
3622
3637
3645
3653
3661
3669
3677
3709
3717
3725
3741
3749
3757
3757
3763 | 3598 3694 3692 3710 3718 3758 3774 3782 3790 | 3695
3697
3615
3623
3631
3647
3655
3663
3671
3679
3703
3711
3719
3727
3733
3751
3753
3763
3775 | 7411
7421
7431
7441
7451
7466
747
7501
751
752
753
754
755
766
767
762
763
764
765
765
766
767
767 | 38488 38488 3856 3886 3886 3886 3886 3886 3886 38 | 3849 3857 3873 3881 3889 3997 3905 3913 3921 3929 3937 3961 3969 3977 3963 4007 4017 | 3850
3858
3866
3874
3882
3898
3906
3914
3922
3930
3936
3954
4002
4010
4018
4026 | 3851
3859
3867
3875
3883
3899
3907
3915
3923
3931
39347
3955
3963
4003
4011
4019
4027 | 3852
3868
3876
3884
3892
3900
3916
3916
3924
3932
3948
3956
4004
4012
4028
4028 | 3853
3861
3861
3877
3893
39901
3993
3917
3925
3933
3941
3949
3957
3965
3973
3981
4005
4012
4029 | 3854
3862
3870
3878
3994
3902
3918
3926
3934
3950
3958
3958
3974
3982
4006
4014
4030 | 3853
3863
3871
3879
3887
3993
3993
3991
3927
3943
3951
3943
3951
3967
3975
3983
3991
4007
4015
4023
4031
4039 | | to 7777 4095 700 700 700 700 700 700 700 700 700 70 | 0 3584
0 3592
0 3592
0 3600
0 3608
0 362
60 363
70 3646
0 365
20 366
20 366
30 367
30 367
30 367
30 367
30 367
30 367
30 370
370 370
370 370
370 370
371 378
373 375 | 3585
3593
3601
3609
3617
3625
3633
3641
3649
3649
3649
3649
3705
3705
3705
3705
3705
3705
3705
3705 | 3586
3594
3602
3610
3618
3626
3650
3658
3658
3658
3706
3714
3712
3738
3738
3738
3738
3738
3738 | 3587
3603
3611
3627
3635
3643
3651
3657
3675
3683
3699
3707
3715
3733
3733
3733
3731
3733
3731
3773
3773
3773
3773
3773 | 3596
3604
3612
3620
3628
3636
3644
3652
3660
3684
3692
3700
3708
3716
3732
3740
3756
3764
3772 | 3597
3605
3613
3621
3629
3637
3645
3653
3661
3669
3677
3783
3790
3717
3725
3733
3741
3749
3757
3773 | 3598 3696 3614 3622 3630 3638 3646 3654 3654 3670 37710 3718 3726 3774 3782 37790 3799 | 3697
3615
3623
3631
3631
3647
3655
3663
3671
3679
3793
3791
3735
3753
3753
3753
3753
3775
3775 | 7411
7421
7431
7441
7451
7461
747
7501
752
753
754
755
756
757
760
761
762
763
764
765
766
765
766
765
766
765
766
767 |
38484846
3864846
38729
388686
389286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
399286
3992 | 3849 3857 3873 3881 3897 3995 3997 3995 3997 3996 3997 3996 4001 4009 4011 4002 | 3850
3858
3866
3874
3882
3890
3906
3914
3922
3930
3938
3954
3954
4020
4010
4018
4026 | 3851
3859
3867
3875
3883
3891
3907
3915
3923
3931
3939
3947
3955
3963
4011
4019
4027
4035
40451 | 3852
3860
3860
3876
3884
3892
3908
3916
3916
3924
3932
3940
3956
4044
4012
4020
4028
4036
4044
4044 | 3853
3861
3861
3877
3885
3893
39901
39907
39957
3957
3957
3957
3957
4005
4013
4021
4029
4037
4045 | 3854
3862
3870
3878
3886
3984
3902
3918
3926
3934
3942
3958
3958
3958
4014
4014
4034
4046
4046
4054 | 3853
3863
3871
3879
3887
3993
3993
3911
3919
3927
3935
3943
3951
3951
3957
3957
4007
4003
4003
4003
4003
4004
4005 | | to 7777 4095 700 700 700 700 700 700 700 700 700 70 | 0 3584
0 3592
0 3592
0 3600
0 3608
0 3616
60 3632
70 3646
00 3648
00 3663
30 3673
40 368
50 3693
70 370
00 371
10 372
20 372
373
40 374
374
374
374
374
375
375
375
375
375
375
375
375
375
375 | 3585
3593
3601
3609
3609
3625
3633
3641
3665
3665
3673
3689
3703
3703
2713
3703
3713
3765
3713
3765
3713
3765
3713
3765
3713
3765
3713
3765
3713
3765
3773
3765
3773
3765
3773
3765
3773
3765
3773
3765
3773
3775
3775 | 3586
3594
3602
3610
3618
3626
3650
3658
3658
3658
3706
3714
3722
3730
3730
3730
3730
3730
3730
3770 | 3587
3603
3611
3619
3627
3635
3643
3651
3683
3699
3707
3715
3723
3737
3747
3779
3787
3787
3787
3779 | 3596 3604 3612 3620 3628 3636 3644 3652 3660 3668 3670 3708 3716 3724 3740 3748 3756 3764 3772 3788 3764 3772 3788 3764 3772 3788 3764 3772 3788 3764 3772 | 3597
3613
3621
3629
3637
3645
3653
3661
3669
3701
3707
3717
3725
3733
3741
3749
3757
3757
3765
3773 | 3598 3614 3622 3630 3614 3622 3630 3638 3646 3674 3686 3674 3712 3718 3718 3718 3718 3718 3718 3718 3718 | 3695
3667
3615
3623
3631
3639
36647
3655
3663
3671
3687
3695
3703
3711
3719
3727
3735
3743
3751
3765
3765
3775 | 7411
7421
7431
7444
7451
7466
747
750
751
752
753
753
753
754
755
766
767
760
761
762
763
763
764
765
766
767
771
772
773 | 384848456
3864846
38722
388686
38722
388686
38968
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
3908
390 | 3849 3857 3873 3881 3897 3995 3913 3921 3929 3937 3945 4011 4009 4017 4025 4044 4049 4057 4065 | 3858
3858
3866
3874
3882
3890
3898
3914
3922
3913
3946
3954
4010
4013
4024
4050
4050
4050
4050
4050
4050
4050 | 3851
3859
3867
3875
3891
3899
3907
3915
3923
3939
3947
3955
3963
3971
3979
3987
3997
4003
4011
4012
4027
4035
4051
4051
4051
4051 | 3852 3860 3868 3876 3884 3892 3990 3916 3924 3932 3940 4044 4012 4020 4028 4068 4068 | 3851 3869 3877 3893 3901 3909 3917 3925 3933 3941 3949 3957 3965 4013 4021 4022 4034 4053 4061 4061 4061 | 3854
3870
3878
3886
3894
3902
3910
3918
3926
3934
3942
3950
3950
3950
3950
3950
4014
1022
4030
4038
4046
4054
4064
4064 | 3853
3863
3871
3879
3887
3993
3993
3991
3927
3943
3951
3953
3967
3975
3983
3991
4007
4015
4023
4047
4055
4063 | | to 7777 4095 700 700 700 700 700 700 700 700 700 70 | 0 3584
0 3592
0 3592
0 3608
0 3608
0 362
60 363
70 3646
0 365
20 366
20 366
30 367
30 367
30 367
30 367
30 370
370
370
370
370
370
370
370
370
370 | 3585
3593
3601
3609
3617
3625
36363
3641
3665
2 3673
3 3689
5 3687
4 3705
2 3713
3 365
2 3713
3 365
4 3705
4 3765
6 3737
4 3785
6 3777
4 3785
6 3777
8 3785
8 3800
8 3800
9 000
9 000
9 000
9 000
9 000
9 000 | 3586
3594
3602
3610
3618
3626
3658
3658
3658
3658
3706
3738
3738
3738
3738
3738
3738
3738
373 |
3587
3603
3611
3619
3627
3635
3643
3651
3659
3667
3707
3715
3737
3737
3737
3737
3737
3737
373 | 3596 3612 3620 3628 3636 3644 3652 3760 3768 3764 3772 3780 3778 3772 3780 3788 3782 3780 3788 3782 3780 3788 3782 3780 3788 3782 3780 3788 3782 3780 3788 3782 3780 3788 3782 3780 3782 3780 3788 3782 3780 3782 3780 3782 3780 3782 3780 3782 3780 3782 3780 3782 3780 3782 3780 3782 3780 3782 3780 3782 3780 3782 3780 3782 3780 3782 3780 3782 3780 3782 3780 3782 3782 3782 3782 3782 3782 3782 3782 | 3597
3613
3621
3629
3637
3645
3653
3661
3685
3693
3717
3725
3733
3741
3781
3783
3783
3783
3783
3783
3783
378 | 3598 3696 3614 3622 3630 3654 3654 3654 3670 3678 3686 3694 3770 3718 3718 3718 3718 3718 3718 3718 3718 | 3697
3615
3623
3631
3639
3647
3655
3663
3671
3687
3695
3791
3712
3712
3712
3713
3713
3759
3767
3775
3775
3775
3775
3775
3775
3775 | 7411
7421
7431
7444
7457
746
746
747
750
751
752
753
753
754
755
766
761
762
763
763
764
765
766
767
766
767
767
771
771
771
771
771 | 3848484
3872
3866
3872
3866
3872
3872
3886
3904
3912
3922
3933
3934
3934
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
3936
393 | 3849 3857 3873 3881 3897 3995 3995 3995 3995 3995 3995 3996 4001 4009 4040 4040 4040 4040 4040 4040 | 3850
3858
3874
3882
3890
3898
3914
3922
3930
3938
3946
3952
3970
4018
4026
4042
4042
4042
4042
4048
4048 | 3851
3859
3867
3875
3893
3899
3907
3915
3923
3947
3955
3971
3979
3987
4003
4014
4019
4027
4035
4043
4051
4059
4067
4075 | 3852
3860
3868
3876
3992
3990
3916
3916
3924
3934
3948
3956
4004
4012
4020
4020
4020
4040
4040
4040 | 3853
3861
3869
3877
3893
3901
3909
3917
3925
3933
3941
3949
3957
3981
4021
4021
4022
4037
4045
4045
4046
4046
4046
4061
4061
4061 | 3854
3862
3870
3878
3886
3894
3902
3910
3918
3924
3950
3950
3958
3958
4014
1022
4030
4030
4046
4054
4062
4070
4078 | 3853
3863
3871
3879
3887
3993
3993
3911
3919
3927
3935
3943
3951
3951
3957
3975
4007
4007
4003
4001
4003
4001
4003
4001
4003
4004
4005
4005
4005
4005
4005
4005 | | to 7777 4095 701 7777 (Octal) (Decimal) 702 703 703 704 705 705 705 705 705 705 705 705 705 705 | 0 3584
0 3592
0 3592
0 3600
0 3608
0 3616
60 3632
70 3646
00 3648
00 3663
30 3673
40 368
50 3693
70 370
00 371
10 372
20 372
373
40 374
374
374
374
374
375
375
375
375
375
375
375
375
375
375 | 3585
3593
3601
3609
3617
3625
3625
3633
3641
3649
3655
23673
3688
3705
23713
3745
2375
3745
3745
3745
3745
3745
3745
3745
3 | 3586
3594
3602
3610
3618
3626
3650
3650
3658
3766
3776
3778
3730
3730
3730
3730
3730
3730
3730 | 3587
3603
3611
3619
3627
3635
3643
3651
3657
3675
3683
3675
3723
3731
3731
3731
3731
3731
3731
3731 | 3596 3612 3620 3628 3636 3644 3652 3660 3708 3716 3724 3732 3732 3732 3732 3732 3732 3732 | 3597
3613
3621
3629
3637
3645
3653
3661
3669
3701
3709
3717
3725
3749
3757
3749
3757
3773
3781
3789
3773
3789
3773
3789
3789
3789
3789 | 3598 3696 3614 3622 3638 3646 3654 3654 3670 3718 3726 37710 3718 3726 3774 3782 3790 33788 33814 3822 3833 | 3697
3615
3623
3631
3639
3647
3655
3663
3679
3687
3713
3719
3727
3737
3737
3759
3767
3775
3775
3783
3791
3791
3791
3791
3791
3791
3791
379 | 7411 7421 7431 7441 7451 7461 747 7501 7511 752 753 754 7561 760 761 761 762 763 764 765 7665 7766 7777 7777 7777 | 38456 | 3849 3857 3873 3881 3897 3905 3913 3921 39393 3921 39393 3941 3961 3961 3961 3961 3961 3961 3961 396 | 3850
3858
3866
3874
3882
3890
3898
3906
3914
3922
3930
3938
3946
4010
4010
4010
4010
4010
4010
4010
40 | 3851
3859
3867
3875
3893
3997
3915
3923
3931
3939
3947
3953
3963
3971
3979
4003
4011
4027
4035
4043
4051
4067
4067 | 3852
3860
3868
3876
3984
3990
3916
3932
3940
3940
3956
3956
4004
4012
4028
4036
4044
4052
4068
4076
4088
4076
4088
4076
4088 | 3853
3861
3869
3877
3885
3893
3901
3909
3917
3925
3933
3941
3957
3989
3989
4013
4021
4029
4037
4045
4053
4069
4077
4085 | 3854
3870
3878
3886
3886
3894
3902
3910
3918
3926
3934
3942
3958
3958
3958
3958
4006
4014
4054
4054
4070
4078 | 3853
3863
3871
3879
3887
3993
3993
3991
3927
3943
3951
3953
3967
3975
3983
3991
4007
4015
4023
4047
4055
4063 | #### APPENDIX C #### TASK BUILDER DATA FORMATS An object module consists of variable length records of information that describe the contents of the module. Six record (or block) types are included in the object language. These records guide the Task Builder in the translation of the object language into a task image. The six record types are: - Type 1 Declare Global Symbol Directory (GSD) - Type 2 End of Global Symbol Directory - Type 3 Text Information (TXT) - Type 4 Relocation Directory (RLD) - Type 5 Internal Symbol Directory (ISD) - Type 6 End of Module Each object module must consist of at least five of the record types. The only record type that is not mandatory is the internal symbol directory. The appearance of the various record types in an object module follows a defined format. See Figure C-1. An object module must begin with a GSD record and end with an end-of-module record. Additional GSD records can occur anywhere in the file but must appear before an end-of-GSD record. An end-of-GSD record must appear before the end-of-module record, and at least one relocation directory record (RLD) must appear before the first text information record (TXT). Additional RLDs and TXTs can appear anywhere in the file. The internal symbol directory records (ISDs) can appear anywhere in the file between the initial GSD and end-of-module records. Object module records are of variable length, and are identified by a record type code in the first byte of the record. The format of additional information in the record depends on the record type. Figure C-1 General Object Module Format ### C.1 GLOBAL SYMBOL DIRECTORY Global symbol directory (GSD) records contain all the information necessary to assign addresses to global symbols and to allocate the memory required by a task. GSD records are the only records processed in the first pass. You can save a significant amount
of time if you put all GSD records at the beginning of a module, because less of the file must be read on the first pass. GSD records contain seven types of entries: | Туре | Entry | |------|----------------------| | 0 | Module Name | | 1 | Control Section Name | | 2 | Internal Symbol Name | | Туре | Entry | |------|--------------------------------| | 3 | Transfer Address | | 4 | Global Symbol Name | | 5 | Program Section Name | | 6 | Program Version Identification | There are four words in the GSD record for each entry type. The first two words contain six Radix-50 characters. The third word contains a flag byte and the entry type identification. The fourth word contains additional information about the entry. See Figure C-2 below. Figure C-2 GSD Record and Entry Format #### C.1.1 Module Name The module name entry, as illustrated in Figure C-3, declares the name of the object module. The name need not be unique with respect to other object modules because modules are identified by file, not module name. Only one module name entry can occur in any given object module. Figure C-3 Module Name Entry Format #### C.1.2 Control Section Name Control sections, which include ASECTs, blank CSECTs, and named CSECTs, are supplanted by PSECTs. For compatibility with other systems, Task Builder processes ASECTs and both forms of CSECTs. Section C.1.6 details the entry generated for a PSECT statement. In terms of the PSECT directive, ASECT and CSECT statements can be defined as follows: • For a blank CSECT, a PSECT definition is: .PSECT ,LCL,REL,CON,RW,I,LOW • For a named CSECT, the PSECT definition is: .PSECT name, GBL, REL, OVR, RW, I, LOW For an ASECT, the PSECT definition is: .PSECT . ABS., GBL, ABS, I, OVR, RW, LOW ASECTs and CSECTs are processed by the Task Builder as PSECTs with the fixed attributes defined above. The entry generated for a control section is shown in Figure C-4. Figure C-4 Control Section Name Entry Format #### C.1.3 Internal Symbol Name The internal symbol name entry declares the name of an internal symbol (with respect to the module). The Task Builder does not support internal symbol tables, so the detailed format of this entry is not defined (Figure C-5). Any internal symbol entry encountered while the Task Builder reads the GSD is ignored. Figure C-5 Internal Symbol Name Entry Format #### C.1.4 Transfer Address The transfer address entry, as illustrated in Figure C-6, declares the transfer address of a module relative to a PSECT. The first two words of the entry define the name of the PSECT, and the fourth word, the relative offset from the beginning of that PSECT. If no transfer address is declared in a module, a transfer address entry either must not be included in the GSD, or a transfer address 000001 relative to the default absolute PSECT (. ABS.) must be specified. Figure C-6 Transfer Address Entry Format NOTE If the PSECT is absolute and OFFSET is not 000001, then OFFSET is the actual transfer address. #### C.1.5 Global Symbol Name The global symbol name entry, as illustrated in Figure C-7, declares either a global reference or a definition. All definition entries must appear after the declaration of the PSECT they are defined in, and before the declaration of another PSECT. Global references can appear anywhere within the GSD. The first two words of the entry define the name of the global symbol. The flag byte declares the attributes of the symbol, and the fourth word, the value of the symbol relative to the PSECT it is defined in. The flag byte of the symbol declaration entry has the following bit assignments. Bit 0 - Weak Qualifier 0 = Symbol is a strong definition or reference, and is resolved in the normal manner. 1 = Symbol is a weak definition or reference. A weak reference (Bit 3=0) is ignored. A weak definition (Bit 3=1) is ignored unless a previous reference has been made. Bit 1 - Not used. #### Bit 2 - Definition Type - 0 = Normal Definition or reference. - 1 = Library definition. If the symbol is defined in a resident library STB file, the base address of the library is added to the value, and the symbol is converted to absolute (bit 5 is reset); otherwise the bit is ignored. #### Bit 3 - Reference or Definition 0 = Global symbol reference. 1 = Global symbol definition. Bit 4 - Not used. #### Bit 5 - Relocation 0 = Absolute symbol value. 1 = Relative symbol value. Bit 6 - 7 - Not used. Figure C-7 Global Symbol Name Entry Format #### C.1.6 PSECT Name The PSECT name entry, as illustrated in Figure C-8, declares the name of a PSECT and its maximum length in the module. It also declares the attributes of the PSECT via the flag byte. GSD records must be constructed such that once a PSECT name has been declared, all global symbol definitions pertaining to it must appear before another PSECT name is declared. Global symbols are declared in symbol declaration entries. Thus, the normal format is a series of PSECT names each followed by optional symbol declarations. The flag byte of the PSECT entry has the following bit assignments: #### Bit 0 - Memory Speed - 0 = PSECT is to occupy low speed (core) memory. - 1 = PSECT is to occupy high speed (i.e., MOS/Bipolar) memory. #### Bit 1 - Library PSECT - 0 = Normal PSECT. - 1 = Relocatable PSECT that references a resident library or common block. #### Bit 2 - Allocation - 0 = PSECT references are to be concatenated with other references to the same PSECT to form the total memory allocated to the PSECT. - 1 = PSECT references are to be overlaid. The total memory allocated to the PSECT is the largest request made by individual references to the same PSECT. ### Bit 3 - Reserved for the Task Builder #### Bit 4 - Access - 0 = PSECT has read/write access. - 1 = PSECT has read-only access. #### Bit 5 - Relocation - 0 = PSECT is absolute and requires no relocation. - 1 = PSECT is relocatable and references to the control PSECT must have a relocation bias added before they become absolute. #### Bit 6 - Scope - 0 = The scope of the PSECT is local. References to the same PSECT will be collected only within the segment in which the PSECT is defined. - 1 = The scope of the PSECT is global. References to the PSECT are collected across segment boundaries. The segment in which a global PSECT is allocated storage is determined either by the first module that defines the PSECT on a path, or by direct placement of a PSECT in a segment by the .PSECT directive. #### Bit 7 - Type - 0 = The PSECT contains instruction (I) references. - 1 = The PSECT contains data (D) references. #### NOTE Compare these bit assignments with the PSECT attributes in Table 4-1. Figure C-8 PSECT Name Entry Format #### NOTE The length of all absolute PSECTs is zero. ### C.1.7 Program Version Identification The program version identification entry, as illustrated in Figure C-9, declares the version of the module. The Task Builder saves the version identification of the first module that defines a nonblank version. This identification is then included on the memory allocation map and is written in the label block of the task image file. The first two words of the entry contain the version identification. The flag byte and fourth words are not used and contain no meaningful information. Figure C-9 Program Version Identification Entry Format #### C.2 END OF GLOBAL SYMBOL DIRECTORY The end-of-global-symbol-directory record, as illustrated in Figure C-10, declares that no other GSD records are contained farther on in the module. Exactly one end-of-GSD record must appear in an object module. Its length is one word. Figure C-10 End-of-GSD Record Format #### C.3 TEXT INFORMATION The text information record, as illustrated in Figure C-11, contains a byte string of information that is to be written directly into the task image file. The record consists of a load address followed by the byte string. Text records can contain words and/or bytes of information whose final contents have not been determined yet. This information will be bound by a relocation directory record that immediately follows the text record (see Section C.4). If the text record does not need modification, then no relocation directory record is needed. Thus, multiple text records can appear in sequence before a relocation directory record. The load address of the text record is specified as an offset from the current PSECT base. At least one relocation directory record must precede the first text record. This directory must declare the current PSECT. | 0 | 3 | |--------|--------| | LOAD A | DDRESS | | TEXT | TEXT | | TEXT | TEXT | | TEXT | TEXT | | | 2 | | TEXT | TEXT | Figure C-11 Text Information Record Format The Task Builder writes a text record directly into the task image file and computes the value of the load address minus four. This value is stored in anticipation of a subsequent relocation directory that modifies words and/or bytes that are contained in the text record. When added to a relocation directory displacement byte, this value yields the address of the word and/or byte to be modified in the task image. #### C.4 RELOCATION DIRECTORY Relocation directory records (see Figure C-12) contain the information necessary to relocate and link the preceding text information record. Every module must have at least one relocation directory record that precedes the first text information record. The first record does not modify a preceding text record but rather defines the current PSECT and location. Relocation directory records contain 15 types of entries. These entries are classified as relocation or location modification entries. The following types are defined: | Туре | Definition | |---------------|--------------------------------------| | 1 | Internal Relocation | | 2 | Global Relocation | | 3 | Internal Displaced Relocation | | 4 | Global Displaced Relocation | | 5 | Global Additive Relocation | | 6 | Global Additive Displaced Relocation | | 7 | Location Counter Definition | | 10 | Location Counter Modification | | 11 |
Program Limits | | ★ · 12 | PSECT Relocation | | 13 | Not used | | 14 | PSECT Displaced Relocation | | 15 | PSECT Additive Relocation | | 16 | PSECT Additive Displaced Relocation | | 17 | Complex Relocation | | 20 | Additive Relocation | | 1 | 1 | Each type of entry is represented by a command byte (specifies type of entry and word/byte modification), followed by a displacement byte, and then by the information required for the particular type of entry. The displacement byte, when added to the value calculated from the load address of the preceding text information record (see Section C.3), yields the virtual address in the image that is to be modified. The command byte of each entry has the following bit assignments. Bits 0 - 6 Specify the type of entry. Potentially, 128 command types can be specified although only 15 (decimal) are implemented. #### Bit 7 - Modification - 0 = The command modifies an entire word. - 1 = The command modifies only one byte. The Task Builder checks for truncation errors in byte modification commands. If truncation is detected, that is, if the modification value has a magnitude greater than 255, an error occurs. | | · | |------|------| | 0 | 4 | | DISP | CMD | | INFO | INFO | | INFO | INFO | | | | | | | | CMD | INFO | | INFO | DISP | | INFO | INFO | | " | " | | " | " | | ,, | ,, | | INFO | INFO | | DISP | CMD | | INFO | INFO | | INFO | INFO | | INFO | INFO | Figure C-12 Relocation Directory Record Format ### C.4.1 Internal Relocation The internal relocation entry illustrated in Figure C-13 relocates a direct pointer to an address within a module. The current PSECT base address is added to a specified constant, and the result is written into the task image file at the calculated address. (That is, a displacement byte is added to the value calculated from the load address of the preceding text block.) #### Example: A: MOV #A,R0 or .WORD A Figure C-13 Internal Relocation Entry Format ### C.4.2 Global Relocation The global relocation entry in Figure C-14 relocates a direct pointer to a global symbol. The definition of the global symbol is obtained and the result is written into the task image file at the calculated address. #### Example: MOV #GLOBAL, RO or .WORD GLOBAL Figure C-14 Global Relocation Entry Format ### C.4.3 Internal Displaced Relocation The internal displaced relocation entry in Figure C-15 relocates a relative reference to an absolute address from within a relocatable control section. The address plus 2 that the relocated value is to be written into is subtracted from the specified constant. The result is then written into the task image file at the calculated address. #### Example: CLR 177550 or MOV 177550,R0 Figure C-15 Internal Displaced Relocation Entry Format ### C.4.4 Global Displaced Relocation The global displaced relocation entry in Figure C-16 relocates a relative reference to a global symbol. The definition of the global symbol is obtained, and the address plus 2 that the relocated value is to be written into is subtracted from the definition value. The result is then written into the task image file at the calculated address. #### Example: CLR GLOBAL or MOV GLOBAL, RO Figure C-16 Global Displaced Relocation Entry Format #### C.4.5 Global Additive Relocation The global additive relocation entry in Figure C-17 relocates a direct pointer to a global symbol with an additive constant. The definition of the global symbol is obtained, the specified constant is added, and the resultant value is then written into the task image file at the calculated address. #### Example: MOV #GLOBAL+2,R0 or .WORD GLOBAL-4 Figure C-17 Global Additive Relocation Entry Format #### C.4.6 Global Additive Displaced Relocation The global additive displaced relocation entry in Figure C-18 relocates a relative reference to a global symbol with an additive constant. The definition of the global symbol is obtained, and the specified constant is added to the definition value. The address plus 2 that the relocated value is to be written into is subtracted from the resultant additive value. The result is then written into the task image file at the calculated address. #### Example: CLR GLOBAL+2 or MOV GLOBAL-5,R0 Figure C-18 Global Additive Displaced Relocation Entry Format #### C.4.7 Location Counter Definition The location counter definition in Figure C-19 declares a current PSECT and location counter value. The control base is stored as the current control section, and the current control section base is added to the specified constant and stored as the current location counter value. Figure C-19 Location Counter Definition #### C.4.8 Location Counter Modification The location counter modification entry in Figure C-20 modifies the current location counter. The current PSECT base is added to the specified constant and the result is stored as the current location counter. #### Example: .=.+N or .BLKB N Figure C-20 Location Counter Modification ## C.4.9 Program Limits The program limits entry in Figure C-21 is generated by the .LIMIT assembler directive. The first address above the header (normally the beginning of the stack) and highest address allocated to the task, are obtained and written into the task image file at the calculated address, and at the calculated address plus 2 respectively. ## Example: .LIMIT Figure C-21 Program Limits Entry Format #### C.4.10 PSECT Relocation The PSECT relocation entry in Figure C-22 relocates a direct pointer to the beginning address of another PSECT (other than the PSECT in which the reference is made) within a module. The current base address of the specified PSECT is obtained and written into the task image file at the calculated address. #### Example: .PSECT A В: .PSECT C MOV #B,R0 or .WORD B Figure C-22 PSECT Relocation Entry Format # C.4.11 PSECT Displaced Relocation The PSECT displaced relocation entry in Figure C-23 relocates a relative reference to the beginning address of another PSECT within a module. The current base address of the specified PSECT is obtained and the address plus 2 that the relocated value is to be written into is subtracted from the base value. The result is then written into the task image file at the calculated address. ## Example: PSECT APSECT C MOV B,R0 Figure C-23 PSECT Displaced Relocation Entry Format ### C.4.12 PSECT Additive Relocation The PSECT additive relocation entry in Figure C-24 relocates a direct pointer to an address in another PSECT within a module. The current base address of the specified PSECT is obtained and added to the specified constant. The result is written into the task image file at the calculated address. ## Example: PSECT A B: C: PSECT D MOV #B+10,R0 MOV #C,R0 or .WORD B+10 .WORD C Figure C-24 PSECT Additive Relocation Entry Format # C.4.13 PSECT Additive Displaced Relocation The PSECT additive displaced relocation entry in Figure C-25 relocates a relative reference to an address in another PSECT within a module. The current base address of the specified PSECT is obtained and added to the specified constant. The address plus 2 that the relocated value is to be written into is subtracted from the resultant additive value. The result is then written into the task image file at the calculated address. #### Example: Figure C-25 PSECT Additive Displaced Relocation Entry Format #### C.4.14 Complex Relocation The complex relocation entry in Figure C-26 resolves a complex relocation expression. In such an expression any of the MACRO-11 binary or unary operations are permitted. Any type of argument is permitted, regardless of whether the argument is unresolved global, relocatable to any PSECT base, absolute, or a complex relocatable subexpression. The RLD command word is followed by a string of numerically-specified operation codes and arguments. Each operation code occupies one byte. The entire RLD command must fit in a single record. The following operation codes are defined. - 0 No operation - 1 Addition (+) - 2 Subtraction (-) - 3 Multiplication (*) - 4 Division (/) - 5 Logical AND (&) - 6 Logical inclusive OR (!) - 10 Negation (-) - 11 Complement (^C) - 12 Store result (command termination) - 13 Store result with displaced relocation (command termination) - 16 Fetch global symbol. It is followed by four bytes containing the symbol name in Radix-50 representation. - 17 Fetch relocatable value. It is followed by one byte containing the sector number, and two bytes containing the offset within the sector. - 20 Fetch constant. It is followed by two bytes containing the constant. - 21 Fetch resident library base address. If the file is a resident library STB file, the library base address is obtained; otherwise, the base address of the Task Image is fetched. The STORE commands indicate that the value is to be written into the task image file at the calculated address. All operands are evaluated as 16-bit signed quantities using two's complement arithmetic. The results are equivalent to expressions that are evaluated internally by the assembler. The following rules should be noted. 1. An attempt to divide by zero yields a zero result. The Task Builder issues a nonfatal diagnostic. - 2. All results are truncated from the left in order to fit into 16 bits. No diagnostic is issued if the number was too large. If the result modifies a byte, the Task Builder checks for truncation errors as described in Section C.4. - 3. All operations are performed on relocated (additive) or absolute 16-bit quantities. PC displacement is applied to the result only. For example: .PSECT ALPHA Α: • .PSECT BETA В: • MOV #A+B-<G1/G2&^C<177120!G3>>,R1 Figure C-26 Complex Relocation Entry Format ## C.4.15 Additive Relocation The shared run-time system additive relocation entry in Figure C-27 relocates a direct pointer to an address within a SRTS. If the current file is a symbol table file (STB), the base address of the SRTS is obtained and added to the specified constant. The result is written into the task image
file at the calculated address. If the file is not associated with a SRTS, the task base address is used. Figure C-27 Additive Relocation Entry Format #### C.5 INTERNAL SYMBOL DIRECTORY Internal symbol directory records, as in Figure C-28, declare definitions of symbols that are local to a module. This feature is not supported by the Task Builder and therefore a detailed record format is not specified. If the Task Builder encounters this type of record, it ignores it. Figure C-28 Internal Symbol Directory Record Format #### C.6 END OF MODULE The end-of-module record in Figure G-29 declares the end of an object module. Exactly one end-of-module record must appear in each object module. It is one word in length. Figure C-29 End-of-Module Record Format # APPENDIX D #### TASK IMAGE FILE STRUCTURE The task image as it is recorded on the disk appears in Figure D-1. | BLOCK | |-------| | BLOCK | | | | BLOCK | | | | | | BLOCK | | BLOCK | | | | | Figure D-l Task Image on Disk #### D.1 LABEL BLOCK GROUP The label block group shown in Figure D-2 precedes the task on the disk, and contains data that need not be resident during task execution. This group is composed of two elements: - task and resident library data (Label Block 0) - table of LUN assignments (Label Block 1) The task and resident library data elements are described in the paragraphs following Figure D-3. The table of LUN assignments contains the name and logical unit number of each device assigned. Figure D-2 Label Block Group Task and resident library data are described below. L\$BTSK Task name consisting of two words in Radix-50 format. This parameter is set by the TASK keyword. L\$BPAR Partition name consisting of two words in Radix-50 format. This parameter is set by the PAR keyword. L\$BSA Starting address of task. Marks the lowest task virtual address. This parameter is set by the PAR keyword. L\$BHGV Highest virtual address mapped by address window 0. L\$BMXV Highest task virtual address. This value is set to L\$BHGV. L\$BLDZ Task load size in units of 64-byte blocks. This value represents the size of the root segment. L\$BMXZ Task maximum size in units of 64-byte blocks. This value represents the size of the root segment plus any additional physical memory needed to contain task overlays. L\$BOFF Task offset into partition in units of 64-byte blocks. L\$BWND Number of task windows (excluding SRTS). L\$BSEG Size of overlay segment descriptors (in bytes). L\$BFLG Task flags word. Contains flags meaningful to RSX-11M only. L\$BDAT Three words containing the task creation date as 2-digit integer values as follows: Year (since 1900) Month of year Day of month L\$BLIB Resident library entries L\$BPRI Task priority set by the PRI keyword (ignored by RSTS/E). L\$BXFR Task transfer address. (Not used by RSTS/E). L\$BEXT Task extension size in units of 64-byte blocks. This parameter is set by the EXTTSK keyword. L\$BSGL Relative block number of segment load list. Set to zero if no list is allocated. L\$BHRB Relative block number of header. L\$BBLK Number of blocks in label block group. L\$BLUN Number of logical units. The contents of the SRTS/common name block are described below. This block is constructed by referencing the disk image of the SRTS/common block. The format is identical to words 3 through 16 of the label block. R\$LNAM Library/common name consisting of two words in Radix-50 format. R\$LSA Base virtual address of library or common. R\$LHGV Highest address mapped by first library window. R\$LMXV Highest virtual address in library or common. R\$LLDZ Library/common block load size in 64-byte blocks. R\$LMXZ Library maximum size in units of 64-byte blocks. R\$LOFF (Not used by RSTS/E.) R\$LWND Number of window blocks required by library. R\$LSEG Size of library overlay segment descriptors in bytes. R\$LFLG Library flags word. The following flags are defined: Bit 15 LD\$ACC Access intent (1=RW, 0=RO) 3 LD\$REL PIC (Position-Independent Code) flag (1=PIC) R\$LDAT Three words containing the library/common block creation date in the following format: WORD 0: Year since 1900 WORD 1: Month of year WORD 2: Day of month #### D.2 HEADER The task header starts on a block boundary and is immediately followed by the task image. The task is read into memory starting at the base of the root segment. Because the root segment is a set of contiguous disk blocks, it is loaded with a single disk access. The header is divided into two parts: a fixed part as shown in Figure D-3, and a variable part as shown in Figure D-4. The variable part of the header contains window blocks that describe the following: - the task's virtual-to-physical mapping - logical unit data - task context The task header is used by RSTS/E mainly for setting the initial conditions for the task. Only locations 46 through 56 have identical meanings as in RSX-11M. | H.CSP | 0 | Current Stack Pointer (R6) | |-----------------|----------|--| | H.HDLN | 2 | Header length | | H.EFLM | 4 | Event flag mask | | | 6 | Event flag address | | H.CUIC | 10 | Current UIC | | H.DUIC | 12 | Default UIC | | H.IPS | 14 | Initial PS | | H.IPC | 16 | Initial PC (R7) | | H.ISP | 20 | Initial Stack Pointer (R6) | | H.ODVA | 22 | ODT SST vector address | | H.ODVL | 24 | ODT SST vector length | | H.TKVA | 26 | Task SST vector address | | H.TKVL | 30 | Task SST vector length | | H.PFVA | 32 | Power fail AST control block | | H.FPVA | 34 | Floating Point AST control block | | H.RCVA | 36 | Receive AST control block | | H.EFSV | 40 | Address of event flag context | | H.FPSA | 42 | Address of floating point context | | H.WND | 44 | Pointer to number of window blocks | | H.DSW | 46 | Directive Status Word | | H.FCS | 50 | Address of FCS impure storage | | H.FORT | 52 | Address of language impure storage | | H.OVLY | 54 | Address of overlay impure storage | | H.VEXT | 56 | Address of impure vectors | | H.SPRI
H.NML | 60
61 | Swapping priority Mailbox LUN | | H.RRVA | 62 | Receive by reference AST control block | | H.NNVA | | | | | 64 | Reserved | | | 66 | Reserved | | 11.04.55 | 70 | Reserved | | H.GARD | 72 | Header guard word pointer | | H.NLUN | 74 | Number of LUNs | Figure D-3 Task Header Fixed Part H.LUN Table (2 words/LUN) | Number of Window Blocks | Offsets | |---|---------| | Partition Control Block Address | w.врсв | | Low Virtual Address Limit | W.BLVR | | High Virtual Address Limit | W.BH∨R | | Address of Attachment Descriptor | W.BATT | | Window Size (in 32-word blocks) | w.BSIZ | | Offset into Partition (in 32-word blocks) | W.BOFF | | First PDR Address | W.BFPD | | Number of PDRs to Map | W.BNPD | | Contents of Last PDR | W.BLPD | **Current PS** INITIAL VALUES Current PC relative block Current R5 number of header Current R4 indent word #2 indent word #1 Current R3 task name word #2 Current R2 Current R1 task name word #1 program transfer Current R0 address Header Guard Word Figure D-4 Task Header Variable Part # NOTE To save the identification, the initial value set by Task Builder should be moved to local storage. When the program is fixed in memory and being restarted without reloading, the reserved program words must be tested for their initial values to determine whether the contents of R3 and R4 should be saved. The contents of R0, R1, and R2 are only set when a debugging aid is present in the task image. # D.2.1 Low Core Context The low core context for a task consists of the Directive Status Word and the Impure Area vectors. The Task Builder recognizes the following global names: .FSRPT File Control Services work area and buffer pool vector \$OTSV Language OTS work area vector N.OVPT Overlay Runtime System work area vector **\$VEXT** Vector extension area pointer The only proper reference to these pointers is by symbolic name. The Impure Area Pointers contain the addresses of storage used by the reentrant library routines described above. The address contained in the vector extension pointer locates an area of memory that can contain additional impure area pointers. The format of the vector extension area is shown in Figure D-5. Each location within this region contains the address of an impure storage area that is referenced by subroutines that must be reentrant. Addresses below \$VEXTA, referenced by negative offsets, are reserved for DIGITAL applications. Addresses above this symbol, referenced by positive offsets, are allocated for user applications. .PSECTs \$\$VEX0 and \$\$VEX1 have the attributes D, GBL, RW, REL, and OVR. The .PSECT attribute OVR, facilitates the definition of the offset to the vector, and the initialization of the vector location at link time as shown by the following example: .GLOBL \$VEXTA ; MAKE SURE VECTOR AREA IS LINKED .PSECT \$\$VEX1,D,GBL,RO,REL,OVR BEG=. ; POINT TO BASE OF POINTER TABLE .BLKW N ; OFFSET TO CORRECT LOCATION ; IN VECTOR AREA LABEL: .WORD IMPURE ; SET IMPURE AREA ADDRESS ; DEFINE OFFSET OFFSET==LABEL-BEG .PSECT IMPURE: Figure D-5 Vector Extension Area Format #### D.3 OVERLAY DATA STRUCTURE Figure D-6 illustrates the structure and principal components of the task-resident overlay data base. Figure D-6 Task-Resident Overlay Data Base Autoload vectors are generated whenever a reference is made to an autoloadable entry point in a segment located farther away from the root than the referencing segment. One segment descriptor is generated for each overlay segment in the task or shared region. The segment descriptor contains information on the size, virtual address, and location of the segment within the task image file. In addition, it contains a set of link words that point to other segments. The overlay structure determines the link word contents. The following sections describe the composition of each element. #### D.3.1 Autoload Vectors The autoload vector table consists of one entry per autoload entry point in the form shown in Figure D-7. Figure D-7 Autoload Vector Entry The
autoload vector contains a JSR to the autoload processor, \$AUTO, followed by a pointer to the descriptor for the segment to be loaded, and the real address of the entry point. # D.3.2 Segment Descriptor The segment descriptor is composed of a 6-word fixed length portion. Segment descriptor contents are shown in Figure D-8. | | 15 12 | 11 0 | | | | |---|--------------|-------------------|--|--|--| | 0 | STATUS | REL. DISK ADDRESS | | | | | 1 | LOAD ADDRESS | | | | | | 2 | LE | NGTH IN BYTES | | | | | 3 | LINK UP | | | | | | 4 | LINK DOWN | | | | | | 5 | | LINK NEXT | | | | | 6 | | SEGMENT | | | | | 7 | - | NAME | | | | Figure D-8 Segment Descriptor Word 0 contains the relative disk address in bits 0-11, and the segment status in bits 12-15. Each segment in the task image file begins on a disk block boundary. The relative disk address is the block number of the segment relative to the start of the root segment. The segment flags are defined as follows: | Bit 15 | Always set to 1 | |--------|---| | Bit 14 | <pre>0 = Segment loaded and mapped 1 = Segment is either not loaded or not mapped</pre> | | Bit 13 | <pre>0 = Segment has disk allocation 1 = Segment does not have disk allocation</pre> | | Bit 12 | <pre>0 = Segment not loaded from disk 1 = Segment loaded from disk</pre> | Word 1 contains the load address of the segment. This address is the first virtual address of the area where the segment will be loaded. Word 2 specifies the length of the segment in bytes. The next three words point to the following segment descriptor: | Link Up | points to the next segment away from the root. Link Up equals 0 if you are already at the leaf. | |-----------|---| | Link Down | points to the next segment toward the root. Link
Down equals 0 if you are already at the root. | | Link Next | points to the adjoining segment. Link Next equals the address of the current segment if there are no others on the same level with the same Link Down. Link Next links all segments on the same level that have the same Link Down in a circular fashion. Thus, in Figure D-9, Link Next in A3 points to A1, but Link Next in A11 points to A11 itself and Link Next in A0 points to A0 itself. | When a segment is loaded, the overlay run-time system follows the links to determine which segments are being overlaid, and should therefore be marked out of memory. Using the tree in Figure D-9 as an example: Figure D-9 Sample Tree The segment descriptors are linked as in Figure D-10: Figure D-10 Segment Linkage Directives If there is a co-tree, the link next for the root segment descriptor points to the co-tree root segment descriptor. Words 6 and 7 contain the segment name in Radix-50 format. Word 8 points to the window descriptor used to map the segment (0 = none). #### D.4 ROOT SEGMENT The root segment is written as a contiguous group of blocks. The root segment is the first segment loaded and remains in memory for the entire life of the program execution. ### D.5 OVERLAY SEGMENTS Each overlay segment begins on a block boundary. The relative block number for the segment is placed in the segment table. Note that a given overlay segment occupies as many contiguous disk blocks as it needs to supply its space request. The maximum size for any segment, including the root, is 28K words. | | | | , | |--|--|--|---| | | | | Ą | 7 | #### APPENDIX E #### RESERVED SYMBOLS All symbols and PSECT¹ names containing a . or \$ are reserved for DIGITAL-supplied software. Several global symbols and PSECT* names are reserved for use by the Task Builder. Special handling occurs when a definition of one of these names is encountered in a task image. The definition of a reserved global symbol in the root segment causes a word in the task image to be modified with a value calculated by the Task Builder. The relocated value of the symbol is taken as the modification address. Table E-1 shows global symbols reserved by the Task Builder: Table E-1 Task Builder Reserved Global Symbols | Global
Symbol | Modification
Value | |------------------|--| | .FSRPT | Address of File Storage Region work area (.FSRCB) | | .MOLUN | Error message output device | | .NLUNS | The number of logical units used by the task, not including the Message Output and Overlay units | | .NOVLY | The overlay logical unit number | | N.OVPT | The address of the Overlay Run-time System work area (.NOVLY) | | .NSTBL | The address of the segment description tables. Note that this location is modified only when the number of segments is greater than one. | | .ODTL1 | Logical unit number for the ODT terminal device TI: | (continued on next page) PSECTS are created by .ASECT, .CSECT, or .PSECT directives. The .PSECT directive eliminates the need for either the .ASECT or .CSECT directive, which are retained only for compatibility with other systems. In this document all sections are referred to as PSECTS unless the specific characteristics of .ASECT or .CSECT apply. # RESERVED SYMBOLS Table E-1 (Cont.) Task Builder Reserved Global Symbols | Global
Symbol | Modification
Value | |------------------|---| | .ODTL2 | Logical unit number for the ODT line printer device CL: | | \$OTSV | Address of Object Time System work area (\$OTSVA) | | .TRLUN | The trace subroutine output logical unit number | | \$VEXT | Address of vector extension area (\$VEXTA) | The PSECT names in Table E-2 are reserved by the Task Builder. In some cases, the definition of a reserved PSECT causes the PSECT to be extended if the appropriate option input is specified (see Section 3.2.3.2). Table E-2 PSECT Names Reserved by the Task Builder | PSECT
Name | Description | |---------------|--| | \$\$ALVC | Contains segment autoload vectors | | \$\$DEVT | The extension length (in bytes) is calculated from the formula EXT = <s.fdb+52>*UNITS Where the definition of S.FDB is obtained from the root segment symbol table and UNITS is the number of logical units used by the task, excluding the Message Output, Overlay, and ODT units.</s.fdb+52> | | \$\$RGDS | Contains region descriptors for resident libraries referenced by the task | | \$\$RTS | Contains return instruction | | \$\$SGD0 | PSECT adjoining task segment descriptors | | \$\$SGD1 | Contains task segment descriptors | | \$\$SGD2 | PSECT following task segment descriptors | | \$\$WNDS | Contains task window descriptors | #### APPENDIX F #### IMPROVING TASK BUILDER PERFORMANCE This appendix contains procedures and suggestions to help you maximize Task Builder performance. Procedures are given for: - Evaluating and improving Task Builder throughput - Modifying command switch defaults to provide a more efficient user interface ## F.1 EVALUATING AND IMPROVING TASK BUILDER PERFORMANCE Task Builder throughput is determined by these factors: - 1. The amount of memory available for table storage - 2. The amount of disk latency due to input file processing The discussion in the following paragraphs outlines methods for improving throughput in each case. The methods approach their goals through judicious use of system resources and Task Builder features. ## F.1.1 The Task Builder Work File The largest factor affecting Task Builder performance is the amount of memory available for table storage. To reduce memory requirements, the Task Builder uses a work file to store symbol definitions and other tables. If the total size of these tables is within the limits of available memory, the work file is kept in core and not shunted to a disk. If the tables exceed the amount of memory available, some information must be moved to the disk, which degrades performance. Work file performance can be gauged by consulting the statistics portion of the Task Builder map. The following parameters are displayed: Number of work file references: Total number of times that work file data was referenced. Work file reads: Number of work file references that resulted in disk accesses to read work file data. #### IMPROVING TASK BUILDER PERFORMANCE #### NOTE If work file reads and writes equal zero and the number of work file references is greater than zero, you can be sure that the work file remained in memory. #### Work file writes: Number of work file references that resulted in disk accesses to write work file data. #### Size of Core Pool: Amount of in-core table storage in words. This value is also expressed in units of 256-word pages (information is read from and written to disk in blocks of 256 words). #### Size of Work File: Amount of work file storage in words. If this value is less than the core pool size, the number of work file reads and writes is zero. That is, no work file pages are removed to the disk. This value is also expressed in pages (256-word blocks). #### Elapsed Time: Amount of time required to build the task image, and produce the map. This value excludes ODL processing, option processing, and the time required to produce the global cross-reference. The overhead for accessing the work file can be
reduced in one or more of the following ways: - by increasing the amount of memory available for table storage - by placing the work file on the fastest random access device - by decreasing system overhead required to access the file - by reducing the number of work file references The Task Builder automatically increases its size up to the maximum job size, which may be as large as 28K words. See the RSTS/E System Manager's Guide for information on how to change the maximum job size. The size of the work file can be reduced by: - Linking your task to a core-resident run-time system containing commonly used routines (e.g., BASIC-PLUS-2 Object Time System) whenever possible - Including common modules, such as components of an object time system, in the root segment of an overlaid task - Using an object library or file of concatenated object modules if many modules are to be linked In the last two cases, system overhead is also significantly reduced because fewer files must be opened to process the same number of modules. #### IMPROVING TASK BUILDER PERFORMANCE The number of work file references can be reduced by eliminating unneeded output files and cross-reference processing, or by obtaining the short map. In addition, selected files such as the default system object module library, can usually be excluded from the map. In this case, a full map can be obtained at less frequent intervals and retained. Try the following procedures to improve work file performance. - Increase maximum task size by raising the system limit for dynamic task extension. - Decrease work file size by using resident run-time systems, concatenated object files, and object libraries. - Decrease work file size by moving common modules into the root segment of an overlaid task. - Decrease the number of work file references by eliminating the map and global cross-reference, obtaining the short map, or excluding files from the map. # F.1.2 Input File Processing The suggestions for minimizing the size of the work file and number of work file accesses also drastically reduce the amount of input file processing. A given module can be read up to three times when building the task: - to build the symbol table - to produce the task image - to produce the long map Files that are excluded from the long map are read only twice. The third pass is completely eliminated for all modules when a short map is requested. So, if you do not need the long map, use the /SH switch (described in Section 3.1.8) to eliminate the third pass. | | | | | (| |---|--|--|--|----------| | | | | | | | | | | | ŕ | 1 | | | | | | , | <i>:</i> | | | | | | | | · | Constitution of the Consti | | | | #### APPENDIX G #### INCLUDING A DEBUGGING AID You can include a program that controls the execution of a task by naming the appropriate object module as an input file and applying the $/\mathrm{DA}$ switch. When such a program is read, the Task Builder causes control to be passed to the program when the task starts. Such control programs might trace a task, printing out relevant debugging information, or monitor the task's performance for analysis. The switch has the following effects: - The transfer address in the debugging aid overrides the task transfer address. - 2. On initial task load, the following registers have the indicated value: - RO Transfer address of task - R1 Task name in Radix-50 format (word #1) - R2 Task name (word #2) | | | 1 | |--|--|-----| | | | 1 | · · | | | | r | # APPENDIX H # GLOSSARY | AUTOLOAD | The method of loading overlay segments, in which the Overlay Run-Time System automatically loads overlay segments when they are needed and handles any unsuccessful load requests. | |------------------------------------|---| | CO-TREE | An overlay tree whose segments, including the root segment, are made resident in memory through calls to the Overlay Run-Time System. | | FRAGMENTED MEMORY | The state existing when portions of memory are non-contiguous. | | GLOBAL COMMON BLOCK | An area of memory reserved for a resident library or common block. | | GLOBAL SYMBOL | A symbol whose definition is known outside the defining module. | | MAIN TREE | An overlay tree whose root segment is loaded by the Monitor when the task is made active. | | MEMORY ALLOCATION FILE | The output file created by the Task Builder that describes the allocation of task memory. | | MEMORY RESIDENT OVERLAY | An overlay segment that shares virtual addresses with other segments, but which resides in its own portion of memory. The segment is read from disk at the same time as all other segments in the resident library; thereafter, mapping directives are issued in place of disk load requests. | | OVERLAY DESCRIPTION LANGUAGE (ODL) | A language that describes the overlay structure of a task. | | OVERLAY RUN-TIME SYSTEM | A set of subroutines linked as part of an overlaid task that are called to load segments into memory. | | OVERLAY SEGMENT | A segment that shares physical memory and/or virtual address space with other segments and is loaded when needed. | | OVERLAY TREE | A tree structure consisting of a root segment and optionally one or more overlay segments. | ### GLOSSARY PARTITION The area of memory where a task or resident library is located within the job's virtual address space. PATH A route that is traced from the root of the overlay tree to any one leaf in that tree. PATH-LOADING The technique used by the autoload method to load all segments on the path between a calling segment and a called segment. POSIITON INDEPENDENT Code that can be loaded and run anywhere in CODE (PIC) memory without modification. PSECT A section of memory that is a unit of the (P-SECTION) total allocation. A source program translated into object modules that consist of PSECTS with attributes describing access, allocation, relocatability, etc. RESIDENT LIBRARY A collection of reentrant, shareable routines or data that is accessible to user tasks. ROOT SEGMENT The segment of an overlay tree that, once loaded, remains in memory during the execution of the task. RUNNABLE TASK A task that can be executed. SEGMENT A group of modules and/or PSECTs that occupy memory simultaneously and that can be loaded by a single disk access. SYMBOL DEFINITION FILE The output file created by the Task Builder that contains the global symbol definitions and values in a format suitable for reprocessing by the Task Builder. Symbol definition files are used to link tasks to shared run-time systems. TASK IMAGE FILE The output file created by the Task Builder VIRTUAL ADDRESS SPACE The set of addresses ranging from 0 to 177777 octal that are contained in a 16-bit word and referenced directly by a user program. VIRTUAL ADDRESS WINDOW The amount of virtual address space that is allocated to a p-section or common block. # INDEX | ABORT option, 3-9 | Calls, overlay, 6-4 | |---------------------------------|---------------------------------| | use of, 3-16 | \$CBLMRG creates overlay | | ABSPAT option, 3-14 | description, 2-14 | | used for patching, 5-14 | /CC switch, 3-2 | | | see also Switch | | Access code, 4-3, 4-4 | Character, commercial at, | | Additive Relocation entry, C-19 | | | Global, C-13 | 2-6, 5-15 | | PSECT, C-16 | Characters, unique kernel, 5-19 | | Address register, 1-2 | Co-tree, | | Allocation code, 4-3, 4-4 | defining a,
5-16 | | Allocation option, 3-8, 3-10 | in multiple tree structure, | | ALTER statement, | 5-15 | | COBOL, 5-14 | linkage, 5-12 | | _ | root in .ROOT directive, | | ASECT, C-4 | | | see also PSECT | 5-16 | | ASG option, 3-12 | root segment descriptor, | | see also Option | D-11 | | Asterisk as autoload | Co-tree definition, | | indicator, 6-1 | comma operator in, 5-16 | | At character, | COBOL, | | commercial, 2-6 | ALTER statement, 5-14 | | Attribute, | compilation sequence, 2-13 | | attached to segment, 5-2 | example ODL file, 5-21 | | task, section contents, 4-8 | /KER:xx switch, 2-13 | | | ODL file, 5-20 | | \$AUTO, | | | autoload routine, 6-4 | PSECT names, 2-13 | | Autoload indicator, | Code, | | application, 6-2 | access, 4-3, 4-4 | | asterisk as, 6-1 | allocation, $4-3$, $4-4$ | | function, 6-3 | relocation, 4-3 | | in overlay tree, 5-13 | scope, 4-3, 4-4 | | Autoload mechanism, 6-1 | type, 4-4 | | Autoload routine (\$AUTO), 6-4 | Comma operator, 5-9, 5-10 | | Autoload vectors, | in co-tree definition, 5-16 | | excess, 6-4 | Command file, indirect, | | table, D-9 | contents, 2-7 | | cable, b 3 | primary, 2-7 | | | primary, 2 , | | | secondary, 2-7 | | | Command line, | | | examples of, 2-3 | | BASIC-PLUS-2, | format of, 2-2 | | compilation sequence, 2-13 | input file in, 2-2 | | example ODL file, 5-20 | output file in, 2-2 | | Bit assignments, flag byte, | task image file in, 2-2 | | C-5 | Command mode, 2-5 | | Blank CSECT, C-4 | Comments, 2-9 | | see also PSECT | Commercial at character, 5-15 | | Block, | COMMON statement creates | | | PSECT, 4-3 | | common name, D-3 | Common storage forced to | | shared run-time system | root, 5-20 | | (SRTS), D-3 | | | task label, D-4 | Compilation sequence, | | Block diagrams, 5-4 | BASIC-PLUS-2, 2-13 | | Branch in overlay tree, 5-4 | COBOL, 2-13 | | | | | Complex Relocation entry, | End of Module Record, C-20
Error messages, | |---|---| | Content-altering option, | diagnostic, A-1 to A-7 | | 3-8, 3-13
Control ontion 2 0 2 0 | fatal, A-1 to A-7 | | Control Option, 3-8, 3-9 | Extensions, filename see Defaults | | Control Section Name entry, | EXTSCT option, 3-10 | | Conversion table, | see also Option | | octal-decimal, B-11 to | EXTTSK option, 3-10 | | B-14 | see also Option | | Core pool size, F-2 | used to extend memory, 4-1 | | Cross-reference processing, | | | F-3 | | | CSECT, blank, C-4 | | | see also PSECT | Fatal error messages, A-1 to | | CSECT, named, C-4 | A-7 | | see also PSECT | .FCTR directive, 5-9, 5-11 | | | File, | | | BASIC-PLUS-2 ODL, 5-20 | | / . | COBOL ODL, 5-20, 5-21 | | /DA switch, 3-3 | complexity, COBOL ODL, | | see also Switch | 5-20 | | Data structure, | contents, | | overlay, D-8 | indirect command, 2-7 | | Debugging aid, including a, G-1 | memory allocation, 2-3,
4-7 | | Decimal to octal conversion, | | | B-1 to B-10 | symbol definition, 2-3
Task Builder map, 1-2 | | Defaults, | task image, 4-7 | | filename extensions, 2-2 | indirect reference, 2-9 | | table of filename extensions, | indirect command, using an, | | 2-2 | 2-6 | | Task Builder, 1-1 | input, | | Device-specifying option, | in task command line, 2-2 | | 3-8, 3-12 | processing, F-3 | | Diagnostic error messages, | specifications, 2-5 | | A-1 to A-7 | label block group in task | | Diagrams, block, 5-4 | image, 4-7 | | Directive, | output, | | co-tree root in .ROOT, | omitting, 2-3 | | 5-16
.END, in overlay descrip- | specifications, 2-5 | | tion, 5-10 | unnecessary, F-3 overhead for accessing work, | | .FCTR, 5-9, 5-11 | F-2 | | .NAME, 5-11, 5-12 | overlay description from | | .PSECT, 5-14 | indirect, 5-15 | | Directive Status Word, D-7 | primary indirect command, | | Displaced Relocation entry, | 2-7 | | Global, C-13 | secondary indirect command, | | Internal, C-12 | 2-7 | | PSECT, C-16 | Task Builder work, F-l | | /DL switch, 3-3 | task image, 2-3, C-10 | | see also Switch | work, F-1, F-2 | | | File extensions as default | | | entries, 2-2 | | Blanced time message B 2 | File extensions, default, | | Elapsed time message, F-2 | table, 2-2 | | .END directive in overlay description, 5-10 | Fixed part,
task header, D-4 | | GESCT TACTOIL 1-TA | cash Header, D-4 | Identification option, 3-8, Flag byte, bit assignments, C-5 3-10 Image file, task, C-10 Flow of control and path, 5-5 in task command line, 2-2 Flow of control in segment, 5-1 Impure Area Vectors, D-7 /FP switch, 3-3 Independence, logical, of see also Switch segment, 5-1 /FU switch, 3-4 Indicator, autoload, application, 6-2 see also Switch asterisk as, 6-1 function, 6-3 in overlay tree, 5-13 GBLDEF option, 3-13 Indirect command file, see also Option contents, 2-7 primary, 2-7 GBLPAT option, 3-15 see also Option secondary, 2-7 used for patching, 5-14 using an, 2-6 GBLREF option, 3-14 Indirect file, see also Option overlay description from, Global Additive Relocation 5-15 entry, C-13 reference, 2-9 Global Displaced Relocation Input, multi-line, 2-4 entry, C-13 Global PSECT resolution, 5-8 Input file, Global Relocation entry, C-12 in task command line, 2-2 Global symbol, processing, F-3 ambiguously defined, 5-7 specifications, 2-5 Internal Displaced Relocation definition, 1-1 in a tree, 5-7 entry, C-12 in multi-segment task, 5-6 Internal Relocation entry, in single-segment task, 5-6 C-11 multiply defined, 5-7 Internal Symbol Directory rules, 5-6 Record, C-20 undefined, 5-7 Internal Symbol Name entry, Global Symbol Directory entries, C-2, C-3 Global Symbol Name entry, C-5 Global symbol reporting, undefined, 5-8 /KER:xx, Global symbol resolution, 4-6, see Kernel switch 4-7 Kernel characters and object in a task, 5-6 module, 2-13 procedure, 5-6 Kernel characters, unique, Group, label block, 5-19 contents, D-1 Kernel switch, 2-13 in task image file, 4-7 use of, 5-19Header contents, 4-2 Label block, D-4 page, 4-8 Label block group, Header, task, D-4 contents, D-1 fixed part, D-4 in task image file, 4-7 in task image memory, 4-2 /LB switch, 3-4 variable part, D-4 see also Switch HISEG option, 3-11 Leaf in overlay tree, 5-4 Library, see also Option Hyphen operator, 5-9, 5-10 default object module, 5-8 | 5-18 | Module Name entry, C-3 /MP switch, 3-5 | |---|---| | Link down, D-11 | see also Switch | | Link next, D-11 | Multi-line input, 2-4 | | Link up, D-11 | Multi-segment task, | | Linkage, | global symbol in, 5-6 | | co-tree, 5-16 | | | co-cree, 5-10 | Multiple tree structure, 5-15 | | subroutine, 4-2 | co-tree in, 5-15 | | Load address, C-10 | main tree in, 5-15 | | Loading, overlay, and tree | parentheses in, 5-15 | | properties, 5-5 | Multiply defined global | | Local PSECT resolution, 5-8 | symbol, 5-7 | | Location Counter Definition | | | entry, C-14 | | | Location Counter Modification | .NAME directive, 5-11, 5-12 | | entry, C-14 | Named CSECT, C-4 | | Logical independence of | see also PSECT | | segment, 5-1 | Negating a switch, 3-1 | | Logical unit number, 3-12 | Null segment, 5-16 | | Low core context, D-7 | Null Dogmond, 5 16 | | | Object medule 1 1 | | | Object module, 1-1 | | /MA switch, 3-5 | generation, 1-1 | | see also Switch | kernel characters and, 2-13 | | Main tree in multiple tree | library, default, 5-8 | | structure, 5-15 | Octal calculations, 5-3, B-1
to B-10 | | Map, | Octal-decimal conversion | | debugging information in, | table, B-11 to B-14 | | 4-10 | ODL, | | Map file contents, | see Overlay Description | | Task Builder, 1-2 | Language | | MAP statement creates PSECT, | ODL file, | | 4-3
Machanian | BASIC-PLUS-2 example, 5-20 | | Mechanism, | COBOL example, 5-20, 5-21 | | autoload, 6-1 | COBOL-generated, 5-20 | | Memory, | Operator, | | EXTTSK option used to extend, | comma, 5-9, 5-10 | | 4-1 | hyphen, 5-9, 5-10 | | header in task image, 4-2 | parentheses, 5-10 | | PSECT in task image, 4-2 | Operator, comma, in co-tree | | stack in task image, 4-2 | definition, 5-16 | | task image, 4-2 Memory allocation file, | Option, | | 2-3, 4-7 | ABORT, 3-9, 3-16 | | Memory allocation synopsis, | ABSPAT, 3-14 | | 4-8 | ASG, 3-12 | | Memory parts, | EXTSCT, 3-10 | | physical, 4-1 | EXTTSK, 3-10 | | Memory structure, | GBLDEF, 3-13 | | task, 4-1 | GBLPAT, 3-15 | | Messages, error, A-1 to A-7 | HISEG, 3-11 | | Mode, | STACK, 3-11 | | command, 2-5 | table, 3-9 | | option, 2-5 | TASK, 3-10 | | Modification entry, | UNITS, 3-12 | | Location Counter, C-14 | Option mode, 2-5 | | Module, object, | Option used for patching, | | kernel characters and, 2-13 | ABSPAT, 5-14 | | relationship between, 5-5 | GBLPAT, 5-14 | | | | | References, | Segment number creates PSECT, | |---------------------------------|---------------------------------| | work file, F-l | 4-3 | | Relocation code, 4-3 | Segment status flags, D-10 | | Relocation Directory entries, | Segment table, 5-18 | | C-10 | Settings, switch, | | Relocation Directory Record, | recognized, 3-1 | | C-10 | /SH switch, 3-6 | | Relocation entry, | see also Switch | | Additive, C-19 | Single-segment task, | | Complex, C-18 | global symbol in, 5-6 | | Global, C-12 | Size, | | Global Additive, C-13 | core pool, F-2 | | Global Displaced, C-13 | decreasing stack, 3-11 | | Internal, C-11 | task, 5-19 | | Internal Displaced, C-12 | work file, F-2 | | PSECT, C-15 | Slash, | | PSECT Additive, C-16 | as switch identifier, 2-17, | | PSECT Displaced, C-16 | 3-1 | | Reserved symbols, E-1, E-2 | as terminator, | | Resolution, | double, 2-5, 2-6 | | global PSECT, 5-8 | return, double, 2-7 | | global symbol, 4-6, 4-7 | single, 2-5, 2-6 | | in a task, 5-6 | Source lines, | | procedure, 5-6 | example program, 2-10 | | local PSECT, 5-8 | Specifications, | | RMS-11 task, | input file, 2-5 | | /SQ switch and, 3-6 | output file, 2-5 | | Root, | /SQ switch, 3-6 | | common storage forced to, | see also Switch | | 5-20 | and RMS-11 task, 3-6 | | library module forced to, | PSECT placement and, 4-6 | |
5-18 | SRTS/common name block, D-3 | | .ROOT directive, | /SS switch, 3-6 | | co-tree root in, 5-16 | see also Switch | | Root segment contents, 5-18 | Stack, 4-2 | | Root segment descriptor, D-11 | in task image memory, 4-2 | | co-tree, D-11 | size, decreasing, 3-11 | | Rules, | STACK option discussion, 3-11 | | global symbol, 5-6 | Storage, | | Task Builder syntax, 2-14 | common, forced to root, | | | 5-20 | | | temporary, 4-2 | | | Storage altering option, 3-13 | | Scope code, 4-3, 4-4 | Storage sharing option, 3-8, | | Secondary indirect command | 3-11 | | file, 2-7 | Structure, | | Section Name, Control, entry, | co-tree in multiple tree, | | C-4 | 5-15 | | Segment, | main tree in multiple tree, | | attribute attached to, 5-12 | 5-15 | | flow of control in, 5-1 | multiple tree, 5-15 | | logical independence of, 5-1 | overlay data, D-8 | | null, 5-16 | parentheses in multiple tree, | | root, 5-18 | 5-15 | | Segment description, 4-8 | task memory, 4-1 | | Segment descriptor, D-9 to D-11 | task suited to overlay, 5-1 | | co-tree root, D-11 | task TK1 modified, 5-13 | | overlay, D-11 | Structure, overlay, and overlay | | root, D-11 | tree, 5-4 | | Subroutine linkage, 4-2 | Task (Cont.), | |----------------------------------|-----------------------------------| | Switch, | rebuilding a, 3-15, 3-16 | | /CC, 3-2 | size, 5-19 | | conflicting, 3-7 | /SQ switch and RMS-11, 3-6 | | /DA, 3-3 | suited to overlay structures, | | /DL, 3-3 | 5-1 | | /FP, 3-3 | Task attribute section, 4-8 | | /FU, 3-4 | Task Builder, 1-1, 2-4 | | /KER:xx, 2-13 | defaults, basis for, 1-1 | | use of, 5-19 | | | | functions, 1-1 | | /LB, 3-4 | map file contents, 1-2 | | /MA, 3-5 | options, table, 3-9 | | /MP, 3-5 | performance, F-1 | | negating a, 3-1 | prompt, 2-1 | | /PM, 3-6 | switches, table, 3-2 | | /SH, 3-6 | syntax rules, 2-14 | | /SQ, 3-6 | throughput, F-1 | | and RMS-11 task, 3-6 | work file, F-l | | PSECT placement and, 4-6 | Task command line, 2-2, 2-3 | | /SS, 3-6 | input file in, 2-2 | | table, 3-2 | output file in, 2-2 | | /WI, 3-7 | task image file in, 2-2 | | /XT, 3-7 | Task header, D-4 | | Switch identifier, | fixed part, D-4 | | | variable part, D-4 | | slash as, 2-17, 3-1 | Task image file, 2-3, C-10 | | Switch settings, | | | recognized, 3-1 | contents, 4-7 | | Switch specification, 2-17 | in task command line, 2-2 | | Symbol, global, 1-1 | label block group in, 4-7 | | ambiguously_defined, 5-7 | Task image memory, | | in a tree, 5-7 | contents, 4-2 | | in multi-segment task, 5-6 | header in, 4-2 | | in single-segment task, 5-6 | PSECT in, 4-2 | | multiply defined, 5-7 | stack in, 4-2 | | undefined, 5-7 | Task label block, D-4 | | Symbol definition file, 2-3 | Task memory structure, 4-1 | | Symbol Directory entries, | TASK option, 3-10 | | Global, C-2, C-3 | see also Option | | Symbol Directory Record, | Task size, 5-19 | | Internal, C-20 | Task suited to overlay | | Symbol Name entry, | structure, 5-1 | | Global, C-5 | Task TK1, | | Internal, C-4 | overlay calls, 6-4 | | | Task TK1 discussion, 5-2 | | Symbols, reserved, E-1, E-2 | Task TK1 modified structure, 5-13 | | Synopsis, memory allocation, 4-8 | _ | | Syntax rules, | Tasks, | | Task Builder, 2-14 | building multiple, 2-6 | | | Terminator, | | | double slash as, 2-5, 2-6, 2-7 | | | single slash as, 2-5, 2-6 | | Task, | Text Information Record, C-9 | | aborting a, 3-15 | Text record, C-10 | | global symbol in multi- | Throughput, | | segment, 5-6 | Task Builder, F-1 | | global symbol in single- | Time, elapsed, | | segment, 5-6 | message, F-2 | | global symbol resolution in | TK1, task, 5-2 | | a, 5-6 | modified structure, 5-13 | | | overlay calls, 6-4 | | memory structure, 4-1 | cyctral carry, o a | Transfer Address entry, C-5 Tree, main, in multiple tree structure, 5-15 Tree, overlay, 5-4 autoload indicator in, 5-13 branch in, 5-4 global symbol in, 5-7 leaf in, 5-4overlay structure and, 5-4 USER, 5-19 Tree properties, overlay loading and, 5-5 Tree search, 5-8 Tree structure, co-tree in multiple, 5-15 main tree in multiple, 5-15 parentheses in multiple, 5-15 Type code, 4-4 Variable part, task header, D-4 Vector table, autoload, D-9 Vectors, excess autoload, 6-4 Impure Area, D-7 /WI switch, 3-7 see also Switch Work file, overhead for accessing, F-2 reads, F-1, F-2 references, F-1 size, F-2 Task Builder, F-1 writes, F-2 Undefined global symbol, 5-7 reporting, 5-8 UNITS option, 3-12 see also Option USER overlay tree, 5-19 /XT switch, 3-7 see also Switch #### READER'S COMMENTS This form is for document comments only. DIGITAL will use comments submitted on this form at the company's discretion. Problems with software should be reported on a Software Performance Report (SPR) form. If you require a written reply and are eligible to receive one under SPR service, submit your comments on an SPR Did you find errors in this manual? If so, specify by page. Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement. Is there sufficient documentation on associated system programs required for use of the software described in this manual? If not, what material is missing and where should it be placed? Please indicate the type of user/reader that you most nearly represent. Assembly language programmer Migher-level language programmer Occasional programmer (experienced) User with little programming experience Student programmer] Non-programmer interested in computer concepts and capabilities Name ______ Date _____ Organization _____ Please cut along this line. City_____State____Zip Code_____or Country No Postage Necessary if Mailed in the United States # **BUSINESS REPLY MAIL** FIRST CLASS PERMIT NO.33 MAYNARD MASS. POSTAGE WILL BE PAID BY ADDRESSEE ATTN: Commercial Engineering Publications MK1-2/2H3 DIGITAL EQUIPMENT CORPORATION CONTINENTAL BOULEVARD MERRIMACK N.H. 03054 Cut Along Dotted Line # READER'S COMMENTS NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the company's discretion. Problems with software should be reported on a Software Performance Report (SPR) form. If you require a written reply and are eligible to receive one under SPR service, submit your comments on an SPR form. | Did you | find err | ors in | this manua | 1? If | so, | specif | y by p | age. | | | |----------|--|---------|--|---------------------------------------|-------|---------------------------------------|-------------|-------|-----------|----| and the second s | | | , | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | l understa
for impro | | | able, a | nd wel | l-org | anized? | | | | | | | require | d for use | of the | umentation
software
g and when | descri | bed i | n this | manua | ###################################### | · · · · · · · · · · · · · · · · · · · | | · | | | | | | Please | indicate | the typ | e of user/ | 'reader | that | you m | ost ne | arly | represent | • | | | Assembl | y langu | age progra | mmer | | | | | | | | | _ | | anguage pr | | | | | | | | | <u>_</u> | | _ | grammer (e | _ | | | | | | | | <u>_</u> | User wi
 Student | | le program | uning e. | xberi | lence | | | | | | | | | intereste | ed in c | omput | er con | cepts | and c | apabiliti | es | | Mama | _ | | | | D= |) † 0 | | | | | | | | | | | | t ce | | | | | | | | | | | * | ., | | | | | | Street_ | | | | | | | | | | | | City | | | Sta | te | | Zi | _ | | | | | | | | | | | Co | or
untry | | | | Please cut along this line No Postage Necessary if Mailed in the United States # **BUSINESS REPLY MAIL** FIRST CLASS PERMIT NO.33 MAYNARD MASS. POSTAGE WILL BE PAID BY ADDRESSEE ATTN: Commercial Engineering Publications MK1-2/2H3 DIGITAL EQUIPMENT CORPORATION CONTINENTAL
BOULEVARD MERRIMACK N.H. 03054 Do Not Tear - Fold Here and Tape - - - -