May 1979

This document describes the RSTS/E Teask Bulilder; its switches and options,
- overlays, resident libraries, and memory allocation.

RSTS/E Task Builder
Reference Manual

Order No. AA-5072A-TC
Including AD-5072A-T1

SUPERSESSION/UPDATE INFORMATION: This manual contains information on the
RSTS/E Task Builder and includes informa-
tion on V7.0 resident library capability.

OPERATING SYSTEM AND VERSION: RSTS/E V7.0
SOFTWARE VERSION: TKB V7.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, December 1977
Revised: May 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1977, 1979 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem=-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0S/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS~10
4/79-14

CONTENTS

PREFACE

CHAPTER 1 INTRODUCTION

INTRODUCTION
BRIEF DESCRIPTION OF THE TASK BUILDER
ORGANIZATION OF THIS MANUAL

=
.« s
wN -

CHAPTER

N

TASK BUILDER COMMANDS

INTRODUCTION

TASK COMMAND LINE

MULTIPLE LINE INPUT

OPTIONS

MULTIPLE TASK SPECIFICATIONS

INDIRECT COMMAND FILES

COMMENT LINES

THE EXAMPLE PROGRAMS
Entering the Source Language
Compiling the Programs
Task-Building the Programs

SYNTAX RULES

o o o

« e e
wN

e o o

DDNNDNNONNNDNDNDNDNDND
.
OCOOOOIANUITDWN

CHAPTER

w

SWITCHES AND OPTIONS

SWITCHES

/CC (Concatenated Object Modules)

/CM (Compatibility Mode Overlay Structure)

/DA (Debugging Aid)

/DL (Default Library)

/FP (Floating Point)

/FU (Full Search)

/HD (Header)

/LB (Library File)

/MA (Map Contents of File)

/MP (Overlay Description)

/PI (Position Independent)

/PM (Post-Mortem Dump)

/RO (Resident Overlay)

/SH (Short Map)

/SQ (Sequential)

/SS (Selective Search)

/WI (Wide Listing Format)

/XT (Exit on Diagnostic)

Conflicting Switches /LB and /CC
OPTIONS

HREREERROOO0OIOTU S W P

e e % e s s
N HEFERRRPRR R R R e
e s v o &
D WO

WWWWwWwWwWwWwWwWWwWwwwuwwwwwwww

iii

=
N =

[Y R N T A O N I |
HFHEFEFHOOUMMATVDL N

NNONNNNNNDNDNDNNNDNDN

S T N T U U J T T T O R N A O B B

WWWWwWwwWwuwwwwwwwwwwwwww

POWOWOUWoOoodIdJdJaovuiuiddcwww wH

CHAPTER

3.2.1
3.2.1.1
3.2.2
3.2.2.1
3.2.2.2
3.2.3
3.2.3.1
3.2.3.2
3.2.3.3
3.2.3.A
3.2.3.4
3.2.4
3.2.4.1
3.2.4.2
3.2.4.3
3.2.4.4
3.2.5
3.2.5.1
3.2.5.2
3.2.5.3
3.2.6
3.2.6.1
3.2.6.2
3.2.6.3
3.2.6.4
3.2.6.5
3.3
3.3.1

4

4.1

4.2
4.2.1
4.,2.2
4.2.3
4.3

4.4

4.5
4.5.1
4.5.2
4.6

4.7

CONTENTS (Cont.)

Control Option

ABORT (Abort the Building of the Task)
Identification Options

TASK (Task Name)

PAR (Partition)

Allocation Options

EXTSCT (PSECT Extension)

EXTTSK (Extend Task Memory)

STACK (Stack Size)

WNDWS (Number of Address Windows)
Example of Allocation Options

Storage Sharing Options

HISEG (High Segment)

COMMON (System Common Block) or LIBR
(System Resident Library)

RESCOM (Resident Common Block) or RESLIB

(Resident Library)

Examples of Resident Library Switches
and Options

Device Specifying Options

UNITS (Logical Unit Usage)

ASG (Device Assignment)

Example of Device Specifying Options
Storage Altering Options

GBLDEF (Global Symbol Definition)
GBLREF (Global Symbol Reference)
ABSPAT (Absolute Patch)

GBLPAT (Global Relative Patch)
Example of Storage Altering Options
ABORTS AND REBUILDING

Aborting the Task

MEMORY ALLOCATION

TASK MEMORY STRUCTURE
TASK IMAGE MEMORY
PSECTS
PSECT Allocation
PSECT Placement
GLOBAL SYMBOL RESOLUTION
TASK IMAGE FILE
MEMORY ALLOCATION FILE
Contents of the Memory Allocation File

Control of Memory Allocation File Contents

and Format
MEMORY ALLOCATION MAP FOR BASIC-PLUS-2
VERSION OF USER
MEMORY ALLOCATION MAP FOR COBOL VERSION
OF USER

iv

Page

3-12
3-12
3-12
3-12
3-12
3-14
3-14
3-14
3-15
3-15
3-15
3-16
3-16

3-16
3-17

3-17
3-18
3-18
3-19
3-19
3-20
3-20
3-20
3-21
3-21
3-22
3-22
3-23

|

L~ S S N S S S S
|
NN

O N
] i]
-
s o

CONTENTS (Cont.)

Page
CHAPTER 5 OVERLAY CAPABILITY
5.1 OVERLAY DESCRIPTION 5-1
5.1.1 Disk-~Resident Overlay Structures 5-2
5.1.2 Overlay Tree 5-4
5.1.2.1 Overlay Loading 5-5
5.1.2.2 Resolving Global Symbols in a
Multi-Segment Task 5-6
5.1.2.3 Resolving Global Symbols from the
Default Library 5-8
5.1.2.4 Resolving PSECTS in a Multi-Segment Task 5-8
5.1.3 Overlay Description Language (ODL) 5-9
5.1.3.1 .ROOT and .END Directives 5-10
5.1.3.2 .FCTR Directive 5-11
5.1.3.3 .NAME Directive 5-11
5.1.3.4 .PSECT Directive 5-14
5.1.3.5 Indirect Files 5-15
5.1.4 Multiple Tree Structures 5-15
5.1.4.1 Defining a Multiple Tree Structure 5-15
5.1.4.2 Multiple~Tree Example 5-16
5.1.5 Overlay Core Image 5-17
5.1.6 Overlaying Programs Written in a
Higher-Level Language 5-18
5.2 USER OVERLAY TREE 5-19
5.2.1 Defining the ODL File 5-19
5.2.2 Building the Task 5-19
5.3 SUBROUTINE COMMUNICATION 5-20
5.4 SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE 5-40
CHAPTER 6 THE AUTOLOAD MECHANISM
6.1 AUTOLOAD 6-1
6.1.1 Autoload Indicator 6-1
6.1.2 Path-Loading 6-3
6.1.3 Autoload Vectors 6-4
CHAPTER 7 RESIDENT LIBRARIES
7.1 INTRODUCTION 7-1
7.1.1 Resident Library Installation 7-3
7.2 CREATING A RESIDENT LIBRARY 7-5
7,2.1 Position Independent and Absolute Libraries 7-5
7.,2.2 Resident Libraries With Memory Resident
Overlays 7-7
7.2.3 Run-Time System Support for Overlaid Resident
Libraries 7-9
7.3 ACCESS TO A RESIDENT LIBRARY 7-10
7.3.1 Referencing a Resident Library 7-11

CONTENTS (Cont.)

Page
APPENDIX A ERROR MESSAGES
APPENDIX B OCTAL TO DECIMAL CONVERSION TABLE
B.1l INTRODUCTION B-1
B.2 CONVERTING OCTAL NUMBERS RANGING FROM
0 TO 7777 TO DECIMAL NUMBERS B-2
B.2.1 Converting Octal 43 to Decimal B-2
B.2.2 Converting Octal 1000 to Decimal B~-3
B.2.3 Converting Octal 7456 to Decimal B-3
B.3 CONVERTING DECIMAL NUMBERS RANGING FROM
0 TO 4095 TO OCTAL B-4
B.3.1 Converting Decimal 17 to Octal B-4
B.3.2 Converting Decimal 870 to Octal B-5
B.3.3 Converting Decimal 3826 to Octal B-5
B.4 CONVERTING OCTAL NUMBERS FROM 10000 TO -,
77777 TO DECIMAL NUMBERS B-6
B.4.1 Converting Octal 10042 to Decimal B-6
B.4.2 Converting Octal 67341 to Decimal B-7
B.4.3 Converting Octal 30000 to Decimal B-8
B.5 CONVERTING DECIMAL NUMBERS RANGING FROM
4096 TO 32767 TO OCTAL B-9
B.5.1 Converting Decimal 4787 to Octal B-9
B.5.2 Converting Decimal 26872 to Octal B-10
APPENDIX C TASK BUILDER DATA FORMATS
Cc.1 GLOBAL SYMBOL DIRECTORY c-2
c.1l.1 Module Name c-3
Cc.l1l.2 Control Section Name c-4
Cc.1.3 Internal Symbol Name c-4
c.1l.4 Transfer Address Cc-5
c.1.5 Global Symbol Name Cc-5
c.1l.6 PSECT Name Cc-6
C.1l.7 Program Version Identification c-8
C.2 END OF GLOBAL SYMBOL DIRECTORY c-9
c.3 TEXT INFORMATION 1 c-9
Cc.4 RELOCATION DIRECTORY Cc-10 16'5
c.4.1 Internal Relocation c-11 :
Cc.4.2 Global Relocation Cc-12
c.4.3 Internal Displaced Relocation c-12
c.4.4 Global Displaced Relocation c-13
c.4.5 Global Additive Relocation Cc-13
C.4.6 Global Additive Displaced Relocation Cc-13
C.4.7 Location Counter Definition Cc-14
c.4.8 Location Counter Modification c-14
c.4.9 Program Limits C-15
C.4.10 PSECT Relocation c-15
C.4.11 PSECT Displaced Relocation C-16
C.4.12 PSECT Additive Relocation Cc-16
C.4.13 PSECT Additive Displaced Relocation c-17

vi

CONTENTS (Cont.)

.14 Complex Relocation

.15 Additive Relocation

5 INTERNAL SYMBOL DIRECTORY

.6 END OF MODULE

APPENDIX TASK IMAGE FILE STRUCTURE

LABEL BLOCK GROUP

HEADER
Low Core Context

OVERLAY DATA STRUCTURE
Autoload Vectors
Segment Descriptor

ROOT SEGMENT

OVERLAY SEGMENTS

.
.

. .
Ut s L3 W
N =

lslvivivlvivivic e NN NO NS Ne!

U1 0 L LW RN
.
—

APPENDIX

=5}

RESERVED SYMBOLS

APPENDIX

o]

IMPROVING TASK BUILDER PERFORMANCE

!
.
[

EVALUATING AND IMPROVING TASK BUILDER
PERFORMANCE

1 Task Builder Work File

.2 Input File Processing

o
L]
-t b

APPENDIX

(2]

INCLUDING A DEBUGGING AID
APPENDIX H GLOSSARY

INDEX

FIGURES
FIGURE 2-1 Indirect File Interaction
4-1 Task Memory Structure
4-2 PSECT Allocations Grouped by Access Code
4-3 Memory Allocation File for BASIC-PLUS-2
Version of User
4-4 Memory Allocation File for COBOL Version
of User
TK1 Memory Allocation
Allocation for a Multi-Segment Task
How to Read a Block Diagram
Multi-Level Overlay Tree
Global Symbols in a Tree
Common Blocks in a Tree
A Simple Multi-Level Tree

11
3G

(GO O NG R,)
| |
NSO Ww

vii

]
H WO ddHH

L

[L

sBvRvivlvivivlvl

g
W =

| T I I
wm

(S2NE RO, RO RO I, O
O QU b WwWwk

(=]
.
—

| R R O T T A N I A B |
N O

QOO0 QQQUNNITTITTTOTTEIIIN
1
HFHOONOAUBWNHFRFEEOONAUTDS WNHF WN -

c-12

CONTENTS (Cont.)

TK1l Modified Tree Using the .NAME Directive
Co-Tree

Co-Tree Block Diagram

User Overlay Tree

User Block Diagram

BASIC-PLUS-2 User ODL File

COBOL User ODL File

User COBOL Memory Allocation Map

User BASIC-PLUS-2 Memory Allocation Map
Simple Tree (Summary Example)

Co-Trees (Summary Example)

The .FCTR Directive

System Memory Usage

Shared and Non-Shared Memory

Resident Library Access

Table B-1, Showing Table Parts for Conversion
Steps for Converting Octal 43 to Decimal
Steps for Converting Octal 1000 to Decimal
Steps for Converting Octal 7456 to Decimal
Steps for Converting Decimal 17 to Octal
Steps for Converting Decimal 870 to Octal
Steps for Converting Decimal 3826 to Octal
Steps for Converting Octal 10042 to Decimal
Steps for Converting Octal 67341 to Decimal
Steps for Converting Octal 30000 to Decimal
Steps for Converting Decimal 4787 to Octal
Steps for Converting Decimal 26872 to Octal
General Object Module Format

GSD Record and Entry Format

Module Name Entry Format

Control Section Name Entry Format

Internal Symbol Name Entry Format

Transfer Address Entry Format

Global Symbol Name Entry Format

PSECT Name Entry Format

Program Version Identification Entry Format
End-of-GSD Record Format

Text Information Record Format

Relocation Directory Record Format

Internal Relocation Entry Format

Global Relocation Entry Format

Internal Displaced Relocation Entry Format
Global Displaced Relocation Entry Format
Global Additive Relocation Entry Format
Global Additive Displaced Relocation

Entry Format ’

Location Counter Definition

Location Counter Modification

Program Limits Entry Format

PSECT Relocation Entry Format

PSECT Displaced Relocation Entry Format

viii

5-43

S L D AL I T O |
D WNDNDBNDEDN

[I T I T T T T A S B B
HOWOUOOAUVULIDDWNHFWYWO®OIN

Oﬁﬁ(‘lﬂ(’)ﬁﬂﬂﬁﬁﬁﬁ?mmwmmwmmmmwﬂ\l\lm

1
=
N

R L R

HFOoOoONOUTd WN K

vRBelvivivivlvivivlv]
]

[T T T)

DRSO WWNDN
NHEPELOWNFENDEHENF

CONTENTS (Cont.)

PSECT Additive Relocation Entry Format
PSECT Additive Displaced Relocation
Complex Relocation Entry Format
Additive Relocation Entry Format
Internal Symbol Directory Record Format
End-of-Module Record Format

Task Image on Disk

Label Block Group

Task Header Fixed Part

Task Header Variable Part

Vector Extension Area Format
Task-Resident Overlay Data Base
Autoload Vector Entry

Segment Descriptor

Sample Tree

Segment Linkage Directives

TABLES

Default File Extensions

Sample Task Builder Commands

Task Builder Switches

Task Builder Options

PSECT Attributes

PSECT Allocation

Allocation Totals

Global Reference Resolution
Octal-Decimal Integer Conversion Table
Task Builder Reserved Global Symbols
PSECT Names Reserved by the Task Builder

[

HHEOYOOOMNMIUONN

O

U????UUUU

| L R AL A N TR B |
[

—

BEESELDDIDWWNDN

NHFEFFMANUVWHENDWN

PREFACE

This manual introduces you to the basic concepts and capabilities of
the Task Builder. Examples that go from simple to complex introduce
and describe Task Builder features. Computer—-generated prompts and
user-typed responses (in color) are printed in terminal type font.

You will best be able to use this manual if you have compiled several
source language programs and are reasonably familiar with your source
language. You will find information in this manual that is relevant
to users on the systems programmer/analyst 1level, but 1is not
necessarily relevant for you. Most of this kind of material has been
confined to the appendices.

This manual has six chapters. They describe basic Task Builder
functions and show you how to use them. The appendices list error
messages and give detailed descriptions of the structures the Task
Builder uses.

The RSTS/E Documentation Directory tells you what you should know for
optimum usage of each manual. Other manuals that may help you if you
have a problem are described there.

xi

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

The Task Builder is a system program that transforms one or more
compiled modules into a single, executable image called a task.

Task Builder functions include:
e Linking compiled modules

e Resolving any references to system or user object module
libraries

e Allocating required system and task memory
e Producing an optional memory map

e Building an overlaid task according to your overlay
description

e Linking the task to run-time systems or resident libraries

An object module is the output from a compiler or assembler and the
input to the Task Builder. Object modules cannot be directly
executed. They must first be processed by the Task Builder.

1.2 BRIEF DESCRIPTION OF THE TASK BUILDER

The Task Builder connects, or links, object modules by using global
symbols to resolve references between modules. Global symbols are
labels that are defined in one module and referenced in others. Each
global symbol defined in the module can be associated with a unique
memory address when the Task Builder assigns a particular memory
location to an object module. The Task Builder then uses this address
to resolve references to these global symbols in other modules.

Often, the programs you write cannot stand alone. For example, they
may need library routines, subprograms, or object modules created by
another programming language. The Task Builder can gather the various
elements you need and combine them to produce a runnable task, the
task image.

The Task Builder makes a set of assumptions, or defaults, about the
task image based on typical usage and storage requirements. You can
override these defaults by including switches and options when vyou
build the task. This allows you to build a task that is tailored to
its own input/output and storage requirements.

INTRODUCTION

The Task Builder also produces, on request, a memory allocation file,
or map, that contains information describing storage allocation, the
separate modules that comprise the task, and the value of all global
symbols. Additionally, you may request that the 1list of global
symbols, accompanied by the name of each referencing module, be
appended to the file.

The Task Builder also enables you to build extremely large and complex
programs.

The Task Builder allows you to build overlayable tasks that may be
larger in aggregate size than the main memory size limitation.

Run-time systems are segments of code that are shared by numerous
tasks. If your task wuses resident subroutines to save memory, the
Task Builder lets you link to existing run-time systems.

As you read this manual you will encounter two similar sample programs
called USER. Written in COBOL and BASIC-PLUS-2, they show you how to
coordinate your source language and Task Builder as you build your
task.

1.3 ORGANIZATION OF THIS MANUAL
There are six more chapters in this manual:

e Chapter 2, TASK BUILDER COMMANDS, discusses the Task Builder
command and option modes and how to distinguish between them.

e Chapter 3, SWITCHES AND OPTIONS, covers Task Builder
assumptions that you can change.

e Chapter 4, MEMORY ALLOCATION, shows how the Task Builder
assigns memory to the various parts of your task.

e Chapter 5, OVERLAY CAPABILITY, discusses overlay design and
implementation.

e Chapter 6, THE AUTOLOAD MECHANISM, shows what happens when
your program calls for a segment that is not currently in
memory.

e Chapter 7, RESIDENT LIBRARIES, describes the <creation of
resident 1libraries, their position in memory, and user access
to them.,

The appendices contain convenient reference material for users on
varying levels:

e Appendix A contains Task Builder error messages.

e Appendix B contains an octal-decimal conversion table and
instructions for its use.

e Appendix C contains Task Builder data formats.

e Appendix D contains information on task image file structure.

INTRODUCTION
Appendix E contains symbol names reserved for the Task
Builder's use alone.

Appendix F contains information on how to improve Task Builder
performance.

Appendix G shows how to include a debugging aid in your task.

Appendix H contains a glossary for your convenience.

1-3

CHAPTER 2

TASK BUILDER COMMANDS

2.1 INTRODUCTION

This chapter describes basic command sequences that can be used to
build most tasks. The sequences are explained, then shown in an
example. A discussion of syntax for the commands ends the chapter.
Some examples in this manual begin with the command "TKB". If you
have TKB installed as a CCL (Concise Command Language) command, you
can invoke the Task Builder with that command. If not, use "RUN
STKB".

NOTE
The $ in RUN S$TKB shows that Task

Builder is stored under the system
library account {1,2]. The filename is

TKB.TSK. Task Builder usually runs
under the RSX Run-Time System. The CCL
command TKB 1is optional. See your

system manager for more information.

Task Builder prompts consist of the characters TKB>. Here is one way
to compile, load, and execute a simple task:

l. Write a program (BASIC-PLUS-2 is used here). (The filename
is MAIN.B2S).

2. As the sgsystem prompts for input, type the following
responses:

RUN $RASIC2

OLD MAIN.R2S

COMFILE /0RJ

EXIT

TKE

TRE USER.TSKyUSER . MAF=MAIN.ORJ
/

HISEG=RASTIC2

s/

RUN USER.TBK

The COBOL equivalent, for the filename MAIN.CBL, is:

CRL MAINJOBJYyMAIN.L.ST=MAIN.CEL/KER!MA
RUN $CRLMRG

MRGODL. . ODL

M

N

TASK BUILDER COMMANDS

MATIN.ONI.

<CR> or the appropriate PPN
N

TRE USER.TSK=MRGODL . ODL./MF
RUN USER.TSK

The COMPILE command causes the BASIC-PLUS-2 compiler to translate the
source language in the file MAIN.B2S into the relocatable object
module called MAIN.OBJ. The next command (TKB) causes the Task
Builder to process the file MAIN.OBJ, producing the task image file
USER.TSK. The last command (RUN) causes the task to execute.

The simplest use of the Task Builder is shown in the command:
TKB USER.TSK=MAIN.OBJ

This command gives the name of a single file as input - MAIN.OBJ - and
the name of a single file as output - USER.TSK. Note the filename
extensions: they may be default entries, but are specifically 1listed
here. Other forms of task command lines are discussed later in the
chapter.

If you do not give extensions for files that are input to or output
from the Task Builder, the Task Builder will assign default file
extensions. Table 2-1 lists these extensions and the applicable file.
If the files you specify do not have the extensions listed as defaults
in Table 2-1, you must name the file with its extension to the Task
Builder.

Table 2-1
Default File Extensions
Type of File Extension File Contents

Input .OBJ Object Module

.OLB Object Library

.ODL Overlay Description

.CMD Task Builder Commands
Output . TSK Task Image

.MAP Memory Allocation Map

.STB Ssymbol Definition Table

2.2 TASK COMMAND LINE
The task command line contains the output file specifications, an
equal sign, and then the input file specifications. There can be up
to three output files and any number of input files. The task command
line has the form:

TASK-IMAGE ,MAP,SYMBOL-DEFINITION=INPUT-FILE[, INPUT-FILE,...]
The output files must be given in a specific order:

1. The task image file

2. The memory allocation file

3. The symbol definition file

TASK BUILDER COMMANDS

The task image file (.TSK) contains the task to be run. The memory
allocation file (.MAP) contains information about the size and
location of components within the task. The symbol definition file
(.STB) contains the global symbol definitions in the task and their
virtual or relocatable addresses in a format suitable for reprocessing
by the Task Builder. See Section 5.1.2.2 for a discussion of global
symbols.

Any output file can be omitted by dropping the filename. Be sure to
place commas where necessary so that the Task Builder sees each output
file in its correct syntax location.

Please note that the only space in the line should fall immediately
after the TKB command and then only if you are using the CCL command
TKB to invoke the Task Builder. A space anywhere else 1in the 1line
terminates the command. The commands in Table 2-2 below illustrate
correct comma placement and ways in which the output filenames are
interpreted. Note that in all cases, the input file is IN1l, the
memory allocation file is MP1l, the symbol definition file is SF1l, and
the task image is 1IMGl, The file extensions have been omitted for
easier reading.

Table 2-2
Sample Task Builder Commands

Command Output Files

TKB IMG1l,MPl,SF1l=IN1 The task image file is IMGl.TSK, the
memory allocation file is MP1.MAP, the
symbol definition file is SF1.STB, and the
input file is IN1l.

TKB IMG1l=IN1 The task 1image file 1is IMG1l.TSK. The
other output files are omitted. The first
filename the Task Builder encounters is
assumed to be that of the task image file
unless there are one or two commas
preceding the filename. Putting a comma
after the 1last filename, when vyou are

naming less than three files, is
unnecessary.
TKB ,MPl1=IN1 The memory allocation £file 1is MP1l.MAP.

The comma preceding "MP1l" indicates that
the task image file has been omitted. The
symbol definition file 1is also omitted.
After picking up the task 1image filename
or recognizing the absence of a task image
filename, Task Builder looks for a memory
allocation file. The Task Builder assumes
that the next filename it encounters is
that of the memory allocation file. To
tell the Task Builder that there 1is no
memory allocation file you can do one of
three things:

(continued on next page)

TASK BUILDER COMMANDS

Table 2-2 (Cont.)
Sample Task Builder Commands

Command Output Files

TKB ,MP1=INl (Cont.) ° Put two commas in front of the symbol
definition file, whether you name a
task image file or not.

° Name only a task image file. (No
commas are necessary in this case.)

. Name no files at all. (See the last
example in this series to see how to
designate a diagnostic run.)

TKB ,,SF1=IN1 The symbol definition file is SF1.STB. The
two preceding commas show that both the
task image file and the memory allocation
file are omitted.

TKB IMGl,,SF1=INl The task image file is IMGl.TSK and the
symbol definition file 1is SF1.S8TB. Two
commas together in this case show that only
one file has been omitted - the memory
allocation file.

TKB IMGl,MPl=IN1l The absence of a third filename here tells
the Task Builder that the symbol definition
file is omitted.

TKB =IN1 This is merely a diagnostic run with no
output files. The Task Builder assumes
this from the fact that an equal sign heads
the parameter list.

2.3 MULTIPLE LINE INPUT

When several input files are used in building a task image, a more
flexible format 1is necessary. This multi-line format 1is also
necessary for including options, as discussed in the next section, or
for 1limiting the command line to 80 characters. (Task Builder lines
are limited to 80 characters.)

The Task Builder prompts for multi-line format input until it receives
a line consisting of only the terminating sequence "//". Here are two
ways to do the same thing:

The sequence

TKB
TKB>IMG1l,MP1=IN1
TKB>IN2,IN3
TKB>//

produces the same result as the single line command

TKB IMG1l,MP1=IN1l,IN2,IN3

TASK BUILDER COMMANDS

Either sequence produces the task image file IMG1.TSK and the memory
allocation file MP1.MAP from the input files IN1.0OBJ, IN2.0OBJ, and
IN3.OBJ.

The output file specifications and the separator "=" must appear on
the first TKB command line. 1Input file specifications can begin or
continue on later lines. The terminating pair of slashes directs the
Task Builder to stop accepting input, build the task, and return to
the system level.

2.4 OPTIONS

You can use options to specify or modify certain features of the task
being built. A single slash typed in response to a TKB prompt in
command mode! directs the Task Builder to request option parameters by
displaying "ENTER OPTIONS:" and prompting for input on the next line.
The "ENTER OPTIONS:" display notifies you that the Task Builder is now
in option mode and is looking for option input. Keep in mind that the
Task Builder is still looking for "//" to end the task input and
return to the system 1level. A representative Task Builder command
sequence might look like this:

TREXIMGL yMP1=1N1
INZ2y IN3

7
ROOPTIONS?

" TASK=USER
TREXHISEG=RBASIC2
TRE://

Here, the options TASK=USER and HISEG=BASIC2 appear followed by the
double slash terminator, which ends option input. Control then
returns to the system level.

The Task Builder provides several options more fully discussed in
Chapter 3, but mentioned briefly here. The general form of an option
is a keyword followed by an equal sign and an argument list. Two or
more options on a single line are separated by exclamation points (!).
Arguments, which may be qualified, are separated by commas.
Qualifiers are separated from their corresponding arguments by colons
(:). The following example shows all three separators in action:

TKB>UNITS=6!ASG=TI:5,SY:1
This is equivalent to:

TKB>UNITS=6

TKB>ASG=TI:5

TKB>ASG=SY:1

which does the same thing on three lines instead of one.

1 You are in command mode when you invoke Task Builder and when you
enter the command line(s).

TASK BUILDER COMMANDS

2.5 MULTIPLE TASK SPECIFICATIONS

If you want to build more than one task at a time, type a single slash
in answer to a prompt in option mode in the first task. The single
slash will direct the Task Builder to build the task you have Jjust
finished entering and prompt for the next one. The lines in the
following example are numbered for convenient reference:

TKE

TKE: MG « TOK=USER . OBJs INTRO . OR.J (first task)
TKE>CRUNCH . OEJ» CHATR . OB.)

TRE>/

ENTER OFTIONSS

TKE: TASK=USER

TKE>HISEG=RASIC?

TKES/

TRE: CUSER « TSK » CUSER « MAF=CUSER + 0L /MF (second task)
TKR://

OCOWONOUTdWN -

—

Two tasks are being built here. The names of the task image files are
IMG1.TSK and CUSER.TSK (see 1lines 2 and 9 above). The second
one-slash entry, on line 8, is the end of the first task. Task
Builder now looks for a new task to build and finds one:

TKB>CUSER.TSK,CUSER.MAP=CUSER.ODL/MP

As always, the double slash terminator (see line 10 above) ends Task
Builder input and directs the building of, in this case, two tasks.
Control then returns to the system level.

NOTE

Notice that line 6 above changed the name of the first
task (as displayed by SYSTAT) from IMGl to USER.
However, the name of the task image file 1is still
IMGl.TSK. See also Section 3.2.2.1 for more
information on the TASK option.

2.6 INDIRECT COMMAND FILES

It is also possible to enter Task Builder commands indirectly. They
may be stored on a permanent file for later processing. If you are
using a large number of options or switches, using an indirect file
could enable you to type those options or switches only once and run
with them whenever you wish. The Task Builder goes to the file for
information when you type, on a separate line, a commercial "at"
character (@) followed by the filename, as in

TKB QAFIL
If you typed this command and AFIL contained:

IMG1l,MP1=IN1
IN2,IN3

/

TASK=USER
HISEG=BASIC2
//

=)

TASK BUILDER COMMANDS

then the Task Builder would build the same task as that illustrated in
the first example in Section 2.3. Note that the contents of AFIL are
the same as the entries in that example, but without the TKB prompts.

When the Task Builder encounters a single slash in the indirect file,
it does one of two things, depending on which mode it is in at the
time:

° In command mode, the Task Builder enters option mode and
continues as if it were getting its input from a terminal
file.

° In option mode, the Task Builder stops accepting input for
the task, builds the task, and enters command mode to look
for a command line.

When the Task Builder encounters the double slash terminator in the
indirect file (AFIL.CMD, in this case), it:

® stops accepting input from the indirect file,
e builds the task,

® returns to the system level as if the contents of the indirect
file had been typed on the terminal.

If an end-of-file condition on the file occurs before the double slash
terminator, then the Task Builder returns to the terminal to look for
input.

CAUTION

A TKB prompt indicates that the Task
Builder has returned to the terminal,
but does not indicate whether the Task
Builder is 1looking for commands or
options. It is your responsibility to
be aware of the contents of an indirect
file and what the Task Builder is
looking for when it returns to the
terminal. One way to solve this problem
is to indicate in the filename or
extension where the Task Builder returns
(with a "C" for command mode and an "O"
for option mode, for instance).

The Task Builder permits two 1levels of indirection, primary and
secondary, in file references. That is, an indirect file referenced
in a sequence of terminal commands (called a primary indirect file)
may contain references to further indirect files (called secondary
indirect files). These secondary indirect files may not contain any
references to any other indirect files and can only return to the
primary indirect file by an end-of-file condition. Also, a secondary
indirect file can only return to the system level by the double slash
terminator.

In Figure 2-1, the primary indirect file is AFIL.CMD. BITBKT.CMD,
BFIL.CMD, and CFIL.CMD are all secondary indirect files.

TASK BUILDER COMMANDS

FROM THE TERMINAL...

TRE=@AFIL.

TRR:/7

ON THE DISK PACK...
.@ BITBKT
.@BFIL

@CFIL

o
ALL TOGETHER... ek
: : contents
S PECTTH AFIL
. contents contents
. CFIL
. contents

.

TRE://

.

.
another task

.

Figure 2-1 1Indirect File Interaction

The contents of each secondary indirect file, if any exist, are
inserted into the text of the primary indirect file at the point where
the secondary indirect file was referenced. The contents of the
primary indirect file are inserted into the terminal sequence of
commands at the point where the primary indirect file was referenced.

If AFIL contains:

IMG1,MP1=INl
IN2,IN3

/

TASK=USER
HISEG=BASIC2
@BFIL

//

2-8

TASK BUILDER COMMANDS

and BFIL contains:

UNITS=12
ASG=SY:1

then the result of the command
TKB@RAFIL

is the same as if you had typed:

2 IMGE v MP1=ENL
S IN2y TN

EROOFTITONS
L TABK=USER
HIGI

BASTER
g

The indirect file
as a separate

substitution will
Task Builder will

2.7 COMMENT LINES

Comment lines can

NOTE
reference must appear
line. Otherwise the

not take place and the
report the error.

containing

file

(;), which may or

comment ends with a carriage return.

; <CR>

;THIS COMMENT TAKES A WHOLE LINE.

be included anywhere in the sequence except in lines
specifications. A comment begins with a semicolon

may not be the first character in the line. A
Here are some examples:

This is a "null" comment

line wused for vertical

spacing on the page

<CR>
SET NUMBER OF UNITS <CR> This comment is wused to
explain a line of
executable TKB command
code. Task Builder
executes the command and

ignores the comment.

2.8 THE EXAMPLE PROGRAMS

The first step in developing your task is to write, compile, and build

the basic task.

UNITS=12;
e
.
.
. ;

Enter the
compiler,
Have them

To do this:

routines by a text editor or the BASIC-PLUS-2

translated by the appropriate compiler,

Use the Task Builder to build them into a task.

TASK BUILDER COMMANDS

The routines in the example programs called USER,TSK are:

2.8.1

USER which controls the processing

INTRO which accepts and reformats input data
necessary)

CRUNCH which performs the computations

CHATR which reports the results

Entering the Source Language

You can enter source lines for the example program by wusing
BASIC-PLUS-2 wusers can also use the BASIC-PLUS-2 compiler.
The example programs in BASIC-PLUS-2, then COBOL, are shown below:

editor.

(where

a text

10
20
30
40

CALL INTROCALXZsR1Z)

Call. CRUNCH(ALZyB1Zy SUMMZy PRODUCTZ y DIFFERX)
CALLL. CHATR(ALZ» R1Zy SUMMZyFRODUCTZ s NIFFERZ)
END

10
20
30

SUB INTROCAAZ»BAX)
INFUT ®"INPUT TWO NUMRERS®iAAZ»BAZ
SUREND

10
20
30

50

SUR CRUNCH(AAX y RAZy CAZYy CRACCX)
CAZ = AAZ + RAX

CRZ = AAYZ X RAZ

CCx = AA% — BAZL

SUREND

10
20
30
40
50

SUR CHATRC(AAZy RAZ»yCAXCRZCOX)

FRINT "THE SUM OF "3AA%5" AND “"SRAX:" IS “5CAX

FRINT *THE FRODUCT OF "5AAX: " AND "3jRAX: " I8 "3iCRZ
FRINT "THE DIFFERENCE OF "FAAXZ " AND "iRAX:" I8 "5CC%
SUREND

TRENTIFICATION DIVIGSION.
FROGRAM-TD. USER
ENVIFONMENT DIV
CONFIGURATION SEC
BOURCE~COMPUTER . 1
ORJECT-COMPUTER. POPF-11,
DATAH DIVISTON.
WORKING-STORAGE SECTION.
Ol DATA-STORAGE .

02 FIRST-NUMRBER FIC 5999 UalUE

GIGN LEADING SEFARATE CHAORACTER.

ZERD -,

TASK BUILDER COMMANDS

02 SBECOND-NUMEER FIC 8999 VALUE ZERO
SIGN LEADING SEFARATE CHARACTER.
01 COMPUTATION~AREA.,

02 NUMRER-1 FIC 8999 USAGE COMF.

02 NUMBER-2 FIC 8999 USAGE COMF.

02 UMM FIC 89(4) USAGE COMF.
02 PFRODUCT FIC 89(8) USAGE COMF.
02 DIFFERENCE CFIC $9¢(6) USAGE COMF.

01 NISFLAY-AREA.

02 SUM-OUT FIC ~Z2(35)9.

02 PFRODUCT--OUT FIC ~Z(35)9.

02 DIFFERENCE-OUT FIC -Z(3)9.

FROCEDURE DIVISION.
MAIN-MODULE .
CALL "INTRO" USING FIRST-NUMERERy SECOND-NUMEBER.
CAlL. "CRUNCH®" USING FIRST-NUMBERs SECOND-NUMEER» SUM-0OUT,
FRODUCT~0OUTy DIFFERENCE-OUT.
CALL "CHATR® USING FIRST-NUMBERy SECONDI~-NUMBER» SUM~0UT,
FRODUCT-0UTy DIFFERENCE-QUT.
STOF RUN.

ITNENTIFICATION DIVISTON.

FROGRAM~-ID. INTRO.

ENVIRONMENT DIVISTION.

FTGURATION SECTION.

GOURCE-COMPUTER. PRF~11.,

OBJECT-COMFUTER. FIF-11y SEGMENT-LIMIT IS 3.
NATA DIVISION,

LINKAGE SECTION.

77 FIRST-NUMRER FIC 8999
SIGN LEADING SEFARATE CHARACTER.
77 SECOND-NUMRER FIC 5999
SIGN LEADING SEFARATE CHARACTER.
77 NUMRER-1 FIC 8999 USAGE COMF.
77 NUMBER-2 FIC 8999 USAGE COMF.
77 8UMM FIGC 8906) USAGE COMF.
77 FRODUCT PIC S9(6) USAGE COMF.
77 DIFFERENCE FIC 89(6) USAGE COMF.
77 SUM-OUT FIC ~Z{5)9.
77 FPRODUCT-OUT FIC ~Z(3)9.
77 DIFFERENCE-DUT FIC —-Z(3)9.

FROCEDURE DIVISION USING FIRST-NUMBER: SECOND-NUMEER.

ML SECTION 5.

MATIN-MODULE .,
DESFLAY "THINK OF TWO NUMBERS THAT ARE SIGNED INTEGERSs".
UISPLAY " SUCH A8 +01% OR -256r THAT ARE LESS THAN 1000%,
nIsrLAY ° ANII GREATER THAN ~1000.",
DISPLAY SPACES.
NISFLAY "FLEASE ENTER THE FIRST NUMEERS ",
ACCERPT FIRST-NUMERER.

LAY "AND NOW THE SECONDS .,

AC T SECOND-NUMRER .

EXTT-FARAGRAFH ., '
EXIT FROGRAM.

DEFAULT-HALT .
STOF RUN.

TOENTIFICATION DIVISION.
FROGRAM-INI, CRUNCH,.
ENVIRONMENT DIVISION,

TASK BUILDER COMMANDS

CONFIGURATION SECTION.

SOURCE-COMFUTER. FOF-11.

ORJECT-COMPUTER. FOF-11y SEGMENT-LIMIT IS 3.
naTa DIVISION.

WORKING-STORAGE SECTION.

01 COMFUTATION-AREA.

02 NUMRER-~] FIC $999 USAGE COMF.
02 NUMEBER-2 FIC $999 USAGE COMF.
02 SUMM FIC 89(46) USAGE COMF.
02 FRODUCT FIC 89(4) USAGE COMF.
02 DIFFERENCE FIC 89(4) USAGE COMF.
LINKAGE SECTION.
77 FIRST-NUMBER FIC 8999
SIGN LEADING SEFARATE CHARACTER.
77 SECOND-NUMERER FIC 8999
SIGN ILEADING SEFARATE CHARACTER.
77 SUM-0UT FIC ~ZC(5)Y9,
77 FRODUCT-OUT FIC ~Z(5)9,
77 DIFFERENCE-OQUT PIC ~Z(35)9,

FROCEDURE DIVISION USING FIRST~NUMEER, SECOND-NUMEERS» SGUM-0UT y
FROGUCT-0UTy DIFFERENCE~QUT.
MIO2 SECTION 5.
MAIN-MOXULE .
MOVE FIRST-NUMEER TO NUMBER-1.
HMOVE SECOND-NUMEBER TO NUMBER-Z.
COMPUTE SUMM = NUMEER-1 + NUMBER-2.
COMPUTE FRODUCT = NUMRER~1 ¥ NUMEER-2.
COMPUTE DIFFERENCE = NUMEBER-1 ~ NUMBER-2.
MOVE SUMM TO SUM-0UT.
MOVE FRODUCT TO FRODUCT-0UT.
MOVE DIFFERENCE TO DIFFERENCE-QUT.
EXIT~FARAGRAFH .,
EXIT FROGRAM.
DEFAULT-HALT .
STOF RUN.

ITNENTIFICATION DNIVISION.

FROGRAM~-IN. CHATR.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMFUTER, FPROF-11.

ORJECT-COMPUTER., FPIFP-11, SEGMENT-LIMIT IS 3.
DATA DIVISION.

LINKAGE SECTION,.

77 FIRST-NUMERER FIC $999

SIGN LEADING SEFARATE CHARACTER.
77 SECOND-NUMEER FIC 5999

SIGN LEADING SEFARATE CHARACTER.
77 NUMBER-I FIC §999 USAGE COMF.
77 NUMBER-2 FIC S999 USAGE COMF.
77 SUMM FIC 89(6) USAGE COMF.
77 PRODUCT FIC 89(4) USAGE COMF.
77 DIFFERENCE FIC 89(6) USAGE COMF.
77 SUM~-0DUT FIC -Z(5)9.
77 FRODUCT-OUT FIC ~Z(35)%P.
77 DIFFERENCE-QUT FIC ~Z(5)9.

FROCEDURE DIVISION USING FIRST-NUMEERy SECOND-NUMERER, SUM-0UT,
FRODUCT-0UTy DIFFERENCE-QUT.

MD3 SECTION .

MATN-MOOULE .

TASK BUILDER COMMANDS

DNISPLAY "THE NUMBERS
"OAND "y SECONI- .
LAY CTHE SUM OF TH NUMRBERS 18 "y SUM-0UT.
LAY TTHE PRODUCT OF THESE NUMBERS I8 'y PRODUCT--OUT.
DIGFLAY "THE RESULT OF SUBTRACTING THE SECOND NUMEBER FROM"»
OTHE FIRST I8 " DIFFERENCE-QUT.
DISFLAY "USER PROGRAM ENI
EXTTFORAGRAFH .
EXLT FROGRAM .
TEFAULT - HALT .
SETOF RUN.

ELECTED WERE "y FIRST-NUMBERS

nres

2.8.2 Compiling the Programs

The BASIC-PLUS-2 programs are compiled by the following sequence:

s LG
e RAG
AN EN
OLIG TNTROR2G
COMPILE /70
OLIY CRUNCH . B2S
COMPTLE ZOR
QLI CHATR . B2S
COMPTLE /0RJ

FeUR e

After the call to the BASIC-PLUS-2 compiler, the first command of each
pair brings the source code into memory. The second command directs
the compiler to translate the source code and place the relocatable
object <code in the associated object file. The remaining commands
perform similar actions for the source files INTRO, CRUNCH, and CHATR.

The equivalent commands for COBOL users are shown below:

CRL CUSER
CRLCINT

OBy CUSET

LEBT=CUSER . CBL/RKER T CU
NTRO CRLZRERICT
CCRNCH CRL/ZKER$CR

:‘\n
Q ORIy CINTRO LSBT
CRLCCRNCH QBRI CORNCH L.ST:
CRL COMATR.OBRDy COHATR (LET=COHATR CRL/KER CH

Note that the letter C was used as a prefix for the filenames and that
the spelling of CRUNCH was changed. This is solely for the purpose of
differentiating the BASIC-PLUS-2 object module and task image files
from their COBOL equivalents in this section.

The /KER:xx switch in the COBOL version must be used |if you are
linking two or more COBOL object modules. The COBOL compiler cannot
generate PSECTs (see Section 4.2.1) with unique PSECT names across two
or more object modules because it can only compile one source program
at a time. The /KER:xx switch (see your PDP-11 COBOL User's Guide,)
lets you specify two characters of the PSECT names that the COBOL
compiler creates. If the /KER:xx switch arguments you use are
different for each object module, you will avoid multiple definition
errors.

2.8.3 Task-Building the Programs

Building your task is the last thing you have to do before trying the
first execution. To build the task, you need to create Task Builder
commands in one of three ways:

TASK BUILDER COMMANDS

e Through the BASIC-PLUS-2 BUILD command
e Through a text editor
e Through direct instructions to the Task Builder

Task Builder commands for the example program USER were formatted
through the creation of an overlay description file (see Chapter 5)
that was used as Task Builder input. In the BASIC-PLUS-2 version of
USER, the overlay description was created through the BUILD command
and adjusted to fit the trident-shaped structure by text editor. In
the COBOL version, the overlay description was created by the system
program CBLMRG, the MERGE program. The overlay description files are
shown in Figures 5-13 and 5-14 respectively.

The commands that actually built the task are
TKB USER,USER=USER/MP

and
TKB CUSER,CUSER=CUSER/MP

for the BASIC-PLUS-2 and COBOL versions, respectively.

2.9 SYNTAX RULES

Here are syntax rules for the interaction between you and the Task
Builder. They define in a more formal and concise way the syntax of
the commands already described in this chapter.

Task Builder syntax takes the following forms:

1. A task-building command can have one of several forms. The
first form is a single line:

TKB task-command-1line

The second form has additional lines for input file names:

The

The

TASK BUILDER COMMANDS

TKB
TKB>task~command-1line
TKB>input-line

TKB>terminating-symbol
third form allows the specification of options:

TKB ®ED

TKB>task-command-line
TKB>/

ENTER QOPTIONS:
TKB>option-line

TKB>terminating-symbol
fourth form has both input lines and option lines:

TKB @ED .
TKB>task-command-line
TKB>input-line

TKB>/
ENTER OPTIONS:
TKB>option-line

TKB>terminating-symbol

NOTES
1. The terminating symbol can be:

/ if more than one task is to be
built, or

// 1if control is to return to the
system level

2. No wild cards are permitted.

A task-command-line has one of the three forms:

output-file-list=input-£file,...
= input-file,...

@indirect-file

where indirect-file is a file-specification as described
Section 2.5.

2-15

in

TASK BUILDER COMMANDS

3. An output-file-list has one of the three forms:
task-file,map-file,symbol-file QMgﬁ
task-file,map-file
task-file

where task-file is the file specification for the task image

file; map-file 1is the file specification for the memory

allocation file; and symbol-file is the file specification

for the symbol definition file. Any of the specifications

can be omitted, so that, for example, the form:
task-file,,symbol-file

is permitted.

4. An input-line has either of the forms:
input-file,... PN
@indirect-file |

where input-file and indirect-file are file-specifications.

5. An option-line has either of the forms:
option!...

@indirect-file
where indirect-file is a file specification. -
6. An option has the form:
keyword=argument-list,...
where the argument-list is
arg:...
The syntax for each option is given in Chapter 3.
7. A file-specification consists of a filename that conforms to
standard RSTS/E conventions, plus optional Task Builder
switches. It has the form

device: [project,programmer] filename.extension/sw...

where everything is optional except the filename. The
components are defined as follows:

device is the name of the device that the volume
containing the desired file is mounted on.
The device name consists of two ASCII
characters followed by an optional 1- or
2-digit decimal unit number; for example,
LP or DT1l. Logical device names of up to
six alphanumeric characters may also be
used.

TASK BUILDER COMMANDS

[project, is the project-programmer identification
programmer] number associated with the file. The
default is your own PPN,

filename is the name of the desired file. The file
name can contain up to six alphanumeric
characters.

extension is the 3-character filename extension.
Files having the same name but a different
function can be distinguished from one
another by the file extension; for example,
CALC.TSK and CALC.OBJ.

/sw is a switch specification. More than one
switch can be used, each separated from the
previous one by its slash (/). The switch
name is a 2- to 4-character alphanumeric
code that identifies the switch and shows
whether or not it is negated. The
permissible switches and their syntax are
given in Chapter 3.

The device, the PPN, the extension, and the switch specifications are
all optional. The following default assumptions apply to missing
components of a file-specification:

Item Default

device? The device last specified (SY:, if none)
project-programmer the project-programmer number last
number! specified (your own, if there 1is no

previous entry)

extension (See Table 2-1.)

switch (See Chapter 3.)

For example:

DK1:IMGl,MP1=IN1,DBO:IN2, IN3

Device File
DK1 IMGl.TSK
DK1 MP1.MAP
SY IN1.OBJ
DBO IN2.0OBJ
DBO IN3.0BJ

When appearing in an overlay description, the default device is
always 8Y:, and the default PPN is your own. (For a discussion of e
PPNs, consult the RSTS/E System User's Guide. Overlays and overlay
descriptions are discussed in Chapter 5 of this manual.)

2-17

CHAPTER 3

SWITCHES AND OPTIONS

Switches and options give you more control over the construction of a
task image. Many of the functions described here deal with topics
discussed more fully later on. These functions are given here to
demonstrate the range of functions available and to serve as a
reference.

This chapter covers the following major topics.
e Switches
e Options

e Aborts and rebuilding

3.1 SWITCHES
The syntax for a RSTS/E Task Builder file specification is:
device:[project,programmer]fi1ename.extension/sw—l/sw—2.../Sw—n

The file specification ends with one or more switches (sw-1,
SW=2,...5W-n) from Table 3-1. When a switch is not given in a file
specification, the Task Builder uses the default setting for the
switch for that file only.

Task Builder recognizes a 2-character alphabetic code that is preceded
by a slash as a switch name. If the switch name is preceded by a
minus sign (~-) or the letters NO, the function of the switch |is
negated. Either method of negating a switch is acceptable. For
example, if the switch is /DA (the task contains a debugging aid),
then the switch settings Task Builder recognizes are:

/DA The task contains a debugging aid.
/-DA The task has no debugging aid.
/NODA The task has no debugging aid.

The switch codes allowed by the Task Builder are given in alphabetical
order in Table 3-1. After the alphabetical listing, a more detailed
description is given for each switch.
The following information is given for each switch:

° the switch name and meaning

° the file type(s) to which the switch can be applied

. the default value used if the switch is not present

3-1

SWITCHES AND OPTIONS

Table 3-1
Task Builder Switches

SWITCH FILE
NAME MEANING TYPE! DEFAULT
/CC Input file consists of concatenated I /CC
object modules.
/CM Memory resident overlays are T /-CM
aligned on 256-word boundaries.
/DA Task contains a debugging aid T,I /—-DA
/DL Specified library file is a replacement I /-DL
for the system object library.
/FP Task uses Floating Point Processor. T /FP
/FU All co-tree overlay segments are T /-FU
searched for matching definition or
reference when modules from the
default object module library are
being processed.

l /HD Task image includes a header. T,S /HD
/LB Input file is a library file. I /-LB
/MA Memory allocation output includes M, I 2

information from the file.
/MP Input file contains an overlay I /~-MP
description

I /PI Task is position independent. T,S /=PI
/PM Post-mortem dump requested. T /=PM
/RO Memory resident overlay operator (!) T /RO

is enabled.
/SH Short memory allocation file is M /SH
produced
/80 Task PSECTs are allocated sequentially. T /=-S0
/S8 Selective search for global symbols. I /-S8
/WI Memory allocation file is printed at a M /WI
width of 132 characters.
/XT:n Task Builder exits after n diagnostics. T /=XT
1 T task image file
M memory allocation file
I S symbol definition file
I input file
2 The default is /MA for an input file, and /-MA for system
and resident library .STB files.

3-2

‘ mullluulF!lu!l-umlu-unnn-u-uu-uuuu-u-uuulnuununnmuunnuunnnmnnn--uI-uuu'ﬁ-u-mg-:!nu-------u-nn-—a

SWITCHES AND OPTIONS

3.1.1 /CC (Concatenated Object Modules)
file: input

meaning: The file contains more than one object module and the
modules are positioned together within the file.

effect: The Task Builder includes in the task image all the modules
in the file. If this switch is negated, the Task Builder
uses only the first module in the file.

default: /CC

NOTE

Switch /LB overrides this switch. See
Section 3.1.15.

3.1.A /CM (Compatibility Mode Overlay Structure)

file: task image

meaning: The task is built in compatibility mode.

effect: The memory resident overlay segments are aligned on 256-word
boundaries to ensure compatibility with other

implementations of the mapping directives.

default: /-CM

3.1.2 /DA (Debugging aid)

file: task image or input

meaning: The task contains a debugging aid.

effect: The Task Builder performs the special processing described
in Appendix G. If this switch is applied to the task image

file, the Task Builder automatically 1includes the system
debugging aid SY:{1,1]0DT.OBJ in the task image.

default: /-DA

3.1.3 /DL (Default Library)
file: input

meaning: The file is a replacement for the system object module
library.

3-3

effect:

default:

SWITCHES AND OPTIONS

The specified library replaces the file
SY:[1,1]SYSLIB.OLB

as the library that is searched to resolve undefined global
references, This file 1is referenced only when undefined
symbols remain after all other user-specified files have
been processed. The DL switch can be applied to only one
input file.

/-DL

3.1.4 /FP (Floating Point)

file:
meaning:

effect:

default:

task image
The task uses the Floating Point Processor.

This switch directs the RSTS/E monitor to save the state of
the Floating Point Processor.

/FP

NOTE

Do not negate this switch on systems
that have the Floating Point Processor.
This switch has no effect on systems
without a Floating Point Processor.

3.1.5 /FU (Full Search)

Eile:

meaning:

effect:

default:

task image

When processing modules from the default object module
library, the Task Builder searches all co-tree overlay
segments for a matching definition or reference.

If the switch 1is negated, unintended global references
between co-tree overlay segments are eliminated.
Definitions of global symbols from the default library are
restricted 1in scope to references in the main root and the
current tree. Certain RMS-11 tasks may require you to use
this switch.

/-FU

SWITCHES AND OPTIONS

3.1.B /HD (Header)

task image or symbol definition
Includes a header in the task. A header 1is required for
executable tasks. You must negate this switch if the task

output is to be used as a resident 1library (see Section
7.2).

The Task Builder constructs a header in the task image.

/HD

3.1.6 /LB (Library File)

Alternate Form: /LB:mod-l:mod-2:...mod-8

i H file:
-
meaning:
effect:
default:
file:
. meaning:
A 4
-) effect:
-’
- H
-’

input

1. If the switch is applied without arguments, the input
file is assumed to be a library file of relocatable
object modules. These modules are to be searched for
the resolution of undefined global references.

2. If the switch is applied with arguments, the input file
is assumed to be a library file of relocatable object
modules from which up to eight modules named in the
argument list are to be taken for inclusion in the task
image.

1. 1If no arguments are specified, the Task Builder searches
the file to resolve undefined global references. It
then takes from the library the modules that contain
definitions for these undefined references.

N
.

If arguments are specified, the Task Builder includes
only the named modules in the task image.

NOTES

1. If you want the Task Builder to search a library
file both to resolve global references and to select
named modules for inclusion in the task 1image, you
must name the library file twice. Name the library
file once with arguments for the names of the
modules vyou want included. Name the library file
the second time with no arguments but with the /LB
switch to get the Task Builder to search the file
for undefined global references.

2. You can use the /SS switch (see Section 3.1.12) with
the /LB switch to perform a selective search for
global definitions.

SWITCHES AND OPTIONS

3. This switch overrides /CC. See Section 3.1.15.

default: /-LB -~~~

3.1.7 /MA (Map Contents of File)
file: input or memory allocation

meaning: The Task Builder will include information from the file in
the memory allocation output.

effect: Global symbols defined or referenced by the file are
displayed in the memory allocation file and global
cross-reference. The file is listed in the File Contents
section of the memory allocation listing.

When applied to the allocation file, the switch controls the
display of information about the default system library or
symbol table file that is associated with memory-resident
shared regions. -,

default: for input file, /MA
for system library and resident library .STB files, /-MA

3.1.8 /MP (Overlay Description)
file: input
meaning: The input file describes an overlay structure for the task. -

effect: The Task Builder receives all the input file specifications
from this file and allocates memory as directed by the
overlay description (ODL). It then automatically requests
option information by displaying ENTER OPTIONS:. Overlays
are discussed in Chapter 5.

NOTES

l. DO NOT type a slash (/) terminator on the line after the glgg
GET following the /MP switch unless you want to start a !
new task. The Task Builder automatically prompts for
option input after the @D following the ODL file
specification.

2. When you specify an overlay description file as the
input file for a task, it must be the only input filg.
The Task Builder accepts only one input file 1in this
case.

default: /-MP

SWITCHES AND OPTIONS

3.1.C /PI (Position Independent)

file:

meaning:

effect

default:

task image or symbol definition

The task or resident library contains only position

independent code or data.

The Task Builder sets the Position 1Independent Code (PIC)
attribute flag in the task label block flag word. Section
7.2.1 discusses position independent resident libraries.

/=PI

3.1.9 /PM (Post Mortem Dump)

file:

meaning:

effect:

default:

task image

If the task terminates abnormally, the system automatically
writes the <contents of task memory on a disk file created
for that purpose. For this file to be read, it must be
formatted by the PMDUMP program (refer to the RSTS/E System
User's Guide). The name of the file is:

PMDnnn.PMD
where:

nnn is your job number.
The Task Builder sets the post-mortem dump flag in the flag
gif? in the label block group (se Figure D-2, bytes 30 and

/—-PM

3.1.D /RO (Resident Overlay)

file:

meaning:

effect:

default:

task image

Enables recognition of the memory resident overlay operator
(!). See Section 5.1.3.1.

When the memory resident overlay operator is present in the
overlay description file (.ODL), the Task Builder uses the
operator to construct a task image that contains one or more
memory resident overlay segments. If you negate this
switch, the Task Builder checks the operator syntactically
but does not construct memory resident overlay segements.

/RO

3.1.10

file:

meaning:

effect:

default:

3.1.11

file:

meaning:

effect:

default:

3.1.12

file:

meaning:

effect:

default:

SWITCHES AND OPTIONS

/SH (Short Map)

memory allocation

The Task Builder produces a shortened version of the memory
allocation file. Chapter 4 describes the memory allocation
file.

The Task Builder does not produce the file contents section
of the memory allocation file.

/SH

/SQ (Sequential)

task image

The Task Builder constructs the task image from the
specified PSECTs in the order in which they are accessed.

The Task Builder does not reorder the PSECTs alphabetically.
Section 4.2 describes task image allocation.

/=8Q
CAUTION

Do not use the /SQ switch on RMS-11
tasks. RMS-11 assumes that PSECTs are
arranged alphabetically. See also
Section 4.2.3 for other reasons why the
use of /SQ is not advised.

/SS (Selective Search)

input

Do not include a global symbol definition from this module
unless a previously undefined reference to the global symbol
exists.

The Task Builder searches the Global Symbol Table for each
global symbol defined in the module. If an undefined
reference to a symbol is found, the corresponding definition
is included. When applied to a library or a concatenated
object file, the switch applies to every module in the file.

/=88

SWITCHES AND OPTIONS

3.1.13 /WI (Wide Listing Format)
file: memory allocation

meaning: Print the memory allocation file in wide (132-character)
format.

effect: The listing width is expanded to fill a 132-column hard copy
output device. Negating this switch normally produces
80-column hard copy, but see the NOTE below.

default: /WI

NOTE
Some systems are installed so that even
if you negate the /WI switch, you will

still get 132-column hard copy. See
your system manager for details.

3.1.14 /XT[:n] (Exit on Diagnostic)

file: task image

meaning: More than n error diagnostics is not acceptable.

effect: The Task Builder exits after n error diagnostics have been
produced. The number of diagnostics can be specified as a

decimal or octal number by using the convention:

n. indicates a decimal number (the decimal point
must be included)

#n or n indicates an octal number
The default value for n is 1.

default: /-XT

3.1.15 cConflicting Switches /LB and /CC

The /LB and /CC switches conflict when applied to the same file. If
you use both switches, the Task Builder applies the overriding switch.
Switch /LB overrides switch /CC. A comparison of the functions of the
two switches reveals the reason for the override.

In this example:
TKB IMG5=IN6,IN5/LB/CC
the input file IN5 is assumed to be a library file to be searched for

undefined global references, not an input file with several object
modules.

SWITCHES AND OPTIONS

3.2 OPTIONS

The Task Builder offers 18 options, which provide information about
the task being built. These options can be divided into six
categories. Brief descriptions of these categories with their
identifying mnemonics are listed below:

1. contr Control options are used to affect Task Builder
execution. ABORT 1is the only member of this
category.

2, ident Identification options are used to identify task

characteristics to the Task Builder. TASK and PAR
are members of this category.

3. alloc Allocation options are used to change the way the
task is laid out in memory. You can specify or
adjust the size of the stack, the size of the
PSECTs in the task, and the number and size of
work areas and buffers used by programs written in
higher-level languages. EXTSCT, EXTTSK, WNDWS,
and STACK are members of this category.

4. share Storage sharing options tell the Task Builder that
you intend to wuse a shared run-time system or
resident library. HISEG, COMMON, LIBR, RESCOM,
and RESLIB are members of this category.

5. device Device-specifying options give the number of units
required by the task. These options also assign
logical unit numbers to physical devices. ASG and
UNITS are members of this category.

6. alter Content—-altering options define a global symbol
and value or introduce patches in the task image.
ABSPAT, GBLDEF, GBLPAT, and GBLREF are members of
this category.

Table 3-2 lists all the options alphabetically and gives a brief
description of each. The options are then broken down by category and
described in more detail in Sections 3.2.1 through 3.2.6.

SWITCHES AND OPTIONS

Table 3-2
Task Builder Options

Option Meaning Category

ABORT Abort the building of the task contr

ABSPAT Declare absolute patch value(s) alter

ASG Declare device assignment to logical unit(s) device

COMMON Declare task's intention to access share
a memory resident library

EXTSCT Declare extension of a PSECT alloc

EXTTSK Declare extension of the amount of memory alloc
owned by a task

GBLDEF Declare global symbol definition(s) alter

GBLPAT Declare patch value(s) relative alter
to a global symbol

GBLREF Declare global symbol reference(s) alter

HISEG Associate the task with a specific high share
segment (run—-time system)

LIBR Declare task's intention to access share
a memory resident library

PAR Declare partition name and dimensions ident

RESCOM Declare task's intention to access share

RESLIB a memory resident library

STACK Declare the size of the stack alloc

TASK Declare the name of the task ident

UNITS Declare the maximum number of units device

WNDWS Declare the number of address alloc

windows required by the resident
library

SWITCHES AND OPTIONS

3.2.1 Control Option

3.2.1.1 ABORT (Abort the Building of the Task) - ABORT is useful when
you discover that an earlier error in the terminal sequence will cause
the Task Builder to produce an unusable task image. When the Task
Builder recognizes the ABORT command, it stops accepting input for the
task being built and prepares to accept input for a new task. You can
now, 1if you wish, rebuild the task you just ABORTed. Section 3.3.1
contains an example of the use of the ABORT option.

syntax: ABORT = n

where n is an integer. (The integer is required to satisfy
the general form of an option, but the value is ignored.)

default: (none)

NOTE

Typing a CTRL/Z at any time causes the
Task Builder to stop accepting input and
start building the task at hand. But
ABORT 1is the only proper way to restart
the Task Builder, if you find an error
and do not want the resulting Task
Builder output.

3.2.2 Indentification Options

3.2.2.1 TASK (Task Name) - The TASK option specifies the name of the
task being built. This name is displayed by the SYSTAT program. You
can use this option if you wish to give a name to a task other than
the name of the task image file. There is an example of how to use
the TASK option in Section 2.4.

syntax: TASK = task-name

where task-name is a 1l- to 6-character name from the
Radix-50 set identifying the task.

default: the task image filename

3.2.2.2 PAR (Partition)

The PAR option identifies the partition (the area of memory within the
job's virtual address space) for which the resident library task image
is built and allows you to specify a base address and length for the
library.

3-12

SWITCHES AND OPTIONS

syntax: PAR=pname(:base:length]
where;
pname is the name of the partition.
base is the octal byte address that defines the start of the
partition. If the library is position independent (see
Section 7.2.1), the base address 1is =zero. If the

library is not position independent, the base address
is non-zero.

length is the octal number of bytes contained in the
partition.

The Task Builder automatically extends the task size of the resident
library to make up the difference between the length specified for the
partition and the amount of memory required by the task. A length of
zero signifies that the task size is to equal the memory required.

If the task size is greater than the partition size, the Task Builder
issues the following error message:

$TKB---*DIAG*-TASK HAS ILLEGAL MEMORY LIMITS

You must specify a partition name if the task is to be wused as a
resident library. If you do not specify a partition base address or
length, the library is position independent, and the Task Builder
assigns a base of 0 and a length that equals the size of the created
task image.

The Task Builder attaches the task to the address defined by the
partition base and verifies that the task does not exceed the length
specification (if made).

To ensure that a usable task image is produced, the Task Builder must
consider two types of task: executable task images and resident
libraries. An executable task image must have a header and is capable
of direct execution. A resident library must not have a header and is
not directly executable. An executable task on RSTS/E cannot be
larger than 28K. However, if the task is built under the RSX Run-Time
System and executed with a Monitor that has RSX emulation support, you
can extend the task up to 31K. The Task Builder enforces address
limits according to the type of task, as follows:

Executable Resident
Task Library
base 0 on 4K
boundary
length multiple of multiple of
32 words 32 words
high
address (28K) (32K)
bound words words

SWITCHES AND OPTIONS

Refer to Section 7.2.1 for a description of the PAR option in command
lines that create resident libraries.

3.2.3 Allocation Options

3.2.3.1 EXTSCT (PSECT Extension) - The EXTSCT option declares an
extension 1in size for a PSECT in an input object file or in the
overlay description file. PSECTs and their attributes are described
in Section 4.2.1.

If the PSECT has the CON (concatenated) attribute, the PSECT 1is
extended by the specified number of bytes. If the PSECT has the
OVR (overlay) attribute, the section is extended by the length of the
extension if that extension is greater than the previously established
length of the PSECT.

syntax: EXTSCT = PSECT-name:extension

where: PSECT-name is the 1- to 6-character name from the
Radix-50 set of the PSECT to be extended.

extension is the octal number of bytes by which to
extend the PSECT.

default: none

In the following example, PSECT BUFF is initially 200 bytes long:
EXTSCT = BUFF: 250

The new size of the PSECT depends on the CON/OVR attribute:

e For CON the extension is an additional 250 bytes for a total
of 450 bytes.

e For OVR the extension is an additional 50 bytes for a total of
250 bytes.

3.2.3.2 EXTTSK (Extend Task Memory) - The EXTTSK option declares the
amount of additional memory to be allocated to the task up to a
maximum of 28K words.

The amount of memory available to the task is the sum of the task size
plus the increment specified in the EXTTSK keyword (rounded up to the
nearest 32-word boundary).
syntax: EXTTSK = length

where: length is a decimal number specifying the increase
in task memory allocation in words.

SWITCHES AND OPTIONS

default: The task is extended to the next multiple of 1K words.

3.2.3.3 STACK (Stack Size) - The STACK option declares the maximum
size of the stack required by the task.

The stack is an area of memory used for temporary storage, subroutine
calls, and other system functions. The stack 1is referenced by
hardware register 6 (the stack pointer).

syntax: STACK = stack-size

where: stack-size is a decimal 1integer specifying the
number of words required for the stack.

default: STACK = 256

CAUTION

Decreasing the size of the stack to less
than the default size <can lead to
unpredictable or fatal results in
certain higher level languages.

3.2.3.A WNDWS (Number of Address Windows)

The WNDWS option declares the number of address windows required by
the resident 1library in addition to those already declared (by
default) to map the task image, any mapped array, or resident library.

syntax: WNDWS=n
where;
n is an integer in range of 0 to 7.

If you do not specify a number of address windows, the Task Builder
assigns zero to the option. Note that the number of address windows
must be equal to the number of simultaneously mapped memory regions
that the task will use.

3.2.3.4 Example of Allocation Options - In the following example, the
size of PSECT AAAAAA is expanded to 20000 (octal) bytes.

The terminal sequence used to build the task is:

TKE
TR

KR

ENTER OFTIONS:
TREFEXTSCT=AAAAAA L 20000
TKE: 2/

TMGL e MP L =GR

3-15

SWITCHES AND OPTIONS

3.2.4 Storage Sharing Options

3.2.4.1 HISEG (High Segment) - The HISEG option associates the task
image with a high segment, or run-time system, of the name specified.
The symbol table of the high segment 1is automatically included to
resolve global references. The .STB file for the named high segment
must be in the account specified by the system logical name LB:. If
the HISEG option is not specified:

. The high segment associated with the task image is the same
as that associated with the Task Builder itself.

° No global references to symbols in that high segment are
resolved.

syntax: HISEG = high-segment-name

where: high-segment-name is a 1- to 6-character name from the
Radix-50 set specifying the run-time system.

default: the Task Builder high segment

3.2.4.2 COMMON (System Common Block) or LIBR (System Resident
Library)

By convention, the COMMON option indicates a resident 1library that
contains data; the LIBR option indicates a resident library that
contains code.

These options are identical and each declares a resident 1library for
use by your task.

syntax: COMMON=name:access code[:apr]
LIBR=name:access code[:apr]

where;

name is the 1- to 6-character Radix~-50 name (from the
Radix-50 character set) of the resident library
you wish to attach to your task. The Task Builder
expects to find a symbol table file and task image
file of the same name (name.STB and name.TSK)
under the account specified by the system logical
name LB:,

access code is the code RW (for read/write) or RO (for read

only) and indicates the type of access required by
your task.

3-16

SWITCHES AND OPTIONS

apr is an integer in the range of 1 to 7 that
specifies the first Active Page Register reserved
for the library. The APR can be omitted. It is
specified only if the resident library is position
independent.

There is no default for this option

3.2.4.3 RESCOM (Resident Common Block) or RESLIB (Resident Library)

By convention, the RESCOM option indicates a resident library that
contains data; the RESLIB option indicates a resident library that
contains code.

These options are identical and each declares a resident 1library for
use by your task, and unlike COMMON or LIBR, they allow you to include
a file specification. Note that comments must not appear on an option
line with RESCOM or RESLIB nor can you specify a device name and unit
number. However, you can specify an account, filename, and extension
on the option line.

syntax: RESCOM=file spec/access code[:apr]

RESLIB=file spec/access codel:apr]
where;

file spec is the file specification of the resident library.

access code is the code RW (for read/write) or RO (for read
only) and indicates the type of access required by
your task.

apr is an integer in the range of 1 to 7 that

specifies the first Active Page Register to be
reserved for the library. The APR can be omitted.
It is specified only for position independent
libraries.

The Task Builder expects to find a symbol definition file (name.STB)
and a task 1image file (name.TSK) of the same name as the specified
resident library on the public disk structure 1in the account Yyou
specify in the file specification. If you do not specify an account,
the Task Builder searches the account associated with your task. That
is, the Task Builder assigns the current account on the public
structure, and a file extension of .TSK as defaults for the file
specification.

3.2.4.4 Examples of Resident Library Switches and Options

In the following example, the task 1is composed of the MACRO-11
programs TST1 and TST. The task accesses the resident library, DTST,
which contains data, and the resident library, STST, which contains
code.

SWITCHES AND OPTIONS

The Task Builder command lines used to build the task are as follows:
RUN $TRE
TRE=TETy TRT=TETL o THTR
TR E

OFTTONS
OMMONIDTST IRW
IBRISTET RO

TRR=/ 7

In a similar fashion, the RESLIB and RESCOM options can be used to
link the task to user-created resident libraries. For example:

ETRKE

BTy TET=TEYL, THTR

s/

ROOFTIONSS

Rl Wy R20UNTET AU
RESL I MWy 2ONETET /RO
sy

3.2.5 Device Specifying Options

The two options in this category are UNITS and ASG. The UNITS option
declares the maximum number of input/output units that the task uses.
The ASG option declares the devices that are assigned to these units.

A logical unit number, or LUN, is assigned to each file or device used
by the task. (Each LUN corresponds to a channel number in BASIC-PLUS
and BASIC-PLUS-2 terminology.) The LUN provides the link between the
filename and the channel the file is associated with.

The number of logical units and the highest unit number assigned must
be compatible. An attempt to assign a physical device to a logical
unit number that is larger than the total number of units declared is
an error. Conversely, the number of units declared cannot be fewer
than the highest-numbered logical unit assigned. :

NOTE

To increase the number of wunits and
assign devices to these wunits, vyou
should enter the UNITS option first and
then the ASG option. Because the
options are processed as they are
encountered, entering the options in the
reverse order can produce an error
message.

3.2.5.1 UNITS (Logical Unit Usage) - The UNITS option declares the
number of logical units that are used by the task.

3-18

SWITCHES AND OPTIONS

syntax: UNITS = max-units

where: max-units is a decimal integer from 0 to 14 specifying
the maximum number of logical units.

default: UNITS = 6

NOTE

BASIC-PLUS-2 programmers should always
set max-units to 12.

3.2.5.2 ASG (Device Assignment) - The ASG option declares the
physical device that is assigned to one or more units.

syntax: ASG = device-name:unit-num-l:unit-num-2...:unit-num-8

where: device-name is a 2-character alphabetic device name
followed by an optional 1- or 2-digit decimal
unit number.

unit-num-1: are decimal integers indicating the Logical
unit-num-2: - Unit Numbers, or LUNs.

unit-num-8

default: ASG = SY:1:2:3:4,TI:5,CL:6

3.2.5.3 Example of Device Specifying Options - In the following
example, the BASIC-PLUS-2 programs specified in the file GRP1 require
a maximum of nine logical units. The device assignments for units 1-6
agree with the default assumptions. Logical wunits 7 and 8 are
assigned to magtape 1 (MT1l) and unit 9 is assigned to magtape 2. The
terminal sequence of the example 1in Section 3.2.3.4 is changed to
include device assignment options, as follows:

RUN S TIE
TR LML MPLs=GRPL
¥ .

3-19

SWITCHES AND OPTIONS

3.2.6 Storage Altering Options
Four options alter the task image:

e GBLDEF (global symbol definition)

® GBLREF (global symbol reference)

e ABSPAT (absolute patch)

® GBLPAT (global relative patch)
The GBLDEF option declares a global symbol and value; GBLREF declares
a global symbol reference. The options ABSPAT and GBLPAT introduce
patches into the task image.

CAUTION
The options in this section are for wuse

by the experienced programmer or analyst
only.

3.2.6.1 GBLDEF (Global Symbol Definition) - The GBLDEF option
declares the definition of a global symbol. A global symbol is a
label for a data item that is defined in one module and referenced in
others.

The symbol definition is considered absolute.

syntax: GBLDEF = symbol-name:symbol-value

where: symbol-name is the 1- to #6-character name from the
Radix-50 set of the defined symbol.

symbol-value is an octal number in the range 0-177777
assigned to the defined symbol.

default: none

3.2.6.2 GBLREF (Global Symbol Reference) - The GBLREF option declares
a global symbol reference. The reference originates in the root
segment of the task. A global symbol is a label for a data item that
is defined in one module and referenced in others.

syntax: GBLREF = symbol-name

where: symbol name is the 1- to 6-character name from the
Radix-50 set of the global symbol reference.

default: none

SWITCHES AND OPTIONS

3.2.6.3 ABSPAT (Absolute Patch) - The ABSPAT option declares a series
of patches starting at the specified base address within the specified
segment. Up to eight patch values can be given.

-
syntax: ABSPAT = seg-name:address:val-l:val-2...:val-8
where: seg—-name is the 1- to 6-character name from the
Radix—-50 set of the segment.
address is the octal address of the first patch. The
address must be on a word boundary. Two
bytes are always modified for each patch.
val-1 is an octal number in the range 0 - 177777 to
be stored at address.
val-2 is an octal number in the range 0 - 177777 to
be stored at address + 2 bytes.
- val-8 is an octal number in the range 0 - 177777 to
be stored at address + 16(octal) bytes.
default: none
NOTE
All patches must be within the segment
address 1limits or a fatal error is
generated.
-

3.2.6.4 GBLPAT (Global Relative Patch) - The GBLPAT option declares a
series of patch values starting at an offset relative to a global

symbol, Up to eight patch values can be given.
syntax: GBLPAT=seg—-name:sym-name[+/-offset] :val-1l:val-2 ...:val-8

where: seg-name is the 1- to 6-character name from the
Radix-50 set of the segment.

o sym—-name is the 1- to 6-character name from the
Radix-50 set specifying the global symbol.

offset is an octal number specifying the offset from
the global symbol.

val-1 is an octal number in the range 0 - 177777 to
be stored at the octal address of the first
patch.

SWITCHES AND OPTIONS

val-2 is an octal number in the range 0 - 177777 to
be stored at the first address + 2 bytes.

val-8 is an octal number in the range 0 - 177777 to
be stored at the first address + 16 (octal)
bytes.

default: none

NOTE

All patches must be within the segment
address 1limits, or a fatal error is
generated.

3.2.6.5 Example of Storage Altering Options - In the following
example, GAMMA is a referenced symbol whose value is specified as 25
(octal) when the task is built. Ten patch values relative to the
global symbol DELTA are also introduced.

The terminal command sequence looks like this:

TRESCHR y CHR=TETLy TETR

ENT R OFTITONS:
AMM 29
2L STLINELTALLISILOILGI20I2G 30030
(:Itl T = T‘»T LIDELTA+20: 408 4%
TR®://

3.3 ABORTS AND REBUILDING
The first execution of a task may have yielded several logical errors.
After correcting the program, you are now ready to make some changes.
You may also decide to make adjustments in the task image file. These
adjustments are based on the information obtained about the size of
the task in the first task-build.
To make the needed changes in the task image:

l. Change the text file for the program

2. Recompile (and remerge, if you are using COBOL)

3. Rebuild the task

3-22

SWITCHES AND OPTIONS

3.3.1 Aborting the Task

Rather than continue to build a task that you know will crash, you may
decide that you want to abort and start over. You may also decide to
abort the task when you discover that you forgot something.

Here is an example of such a situation:

1 TR
TRECALCy =ROINFROCL s RFRT
3 TRE=/
4 ENTER OFTIONS?
5 TRKEFUNTITS= 12
6 TR ABRORT =,
7 TR e XFATALY ~ TASK-BUTILI ABORTEDI VIA REQUES
8 TRECAOLCy CALC/S5H=ROINy FROCL s RIFRT
9 TRE- /S
10 ENTER OFTIONS?
11 TRER=UNT L2
12 TKE-HISEG=RASIC2
13
14 (command mode)

Notice lines 6 and 7 above. The ABORT option was wused to end the
task-build in this example because the memory allocation file was
omitted. After printing the abort message, Task Builder prompts in
command mode (line 8).

CHAPTER 4

MEMORY ALLOCATION

The Task Builder allocates the physical memory and virtual address
space required by a task. This allocation can consist of two parts:

1.

2.

A region containing the task itself

Memory that is not physically a part of the task image, but
contains subroutines shared by several tasks

This chapter covers the following major topics.

Task Memory Structure

Task Image Memory

Global Symbol Resolution

Task Image File

Memory Allocation File

Memory Allocation Map for BASIC-PLUS-2 Version of USER

Memory Allocation Map for COBOL Version of USER

4.1 TASK MEMORY STRUCTURE

Task memory structure (see Figure 4-1) is divided into two physically
contiguous areas containing:

1.

2.

The task image

Additional memory allocated while the task is running. (You
can allocate additional memory by using the Extend Task
system directive. If you use the Task Builder EXTTSK option,
RSTS/E can also extend memory.)

MEMORY ALLOCATION

nnnnnn
MEMORY ALLOCATED
DURING EXECUTION
r I
PROGRAM SECTIONS
(PSECTS)
TASK IMAGE
/
STACK
0 4 HEADER

Figure 4-1 Task Memory Structure

4,2 TASK IMAGE MEMORY
The area of memory allocated for task image storage contains

l. A header,

2. A stack, and
3. A group of PSECTs (see Section 4.2.1).

The header contains task parameters and data required by RSTS/E and
provides a storage area for saving the task's context. The contents
of the header are described in detail in Section D.2.

Note that a header is required only for executable tasks. 1If you are
creating a task for use as a resident library, you must omit the
header from the task image. That is, you must specify a /-HD switch
(negate the header) in the TKB command line to create a resident
library.

The stack is an area that can be used for temporary storage and
subroutine linkage. It is referenced by general register 6, the stack
pointer. You can change the size of the stack by using the STACK
option, as described in Section 3.2.3.3.

4.2.,1 PSECTs

A program section or PSECT, of variable size, is the basic unit of
task memory that contains code or data and can be referenced by name.
Associated with each PSECT is a set of attributes that controls the
allocation and placement of the PSECT within the task image. A PSECT
is composed of the following elements:

e A name by which it is referenced

® A set of attributes that define its contents, mode of access,
size allocation, and placement in memory

e A length that determines how much storage is to be reserved
for the PSECT

MEMORY ALLOCATION

PSECTs are created or referenced in either of the following ways:

e Language processors automatically include PSECTs in the object
module to reserve storage for code or data.

@ You can explicitly create PSECTs by using facilities present
in the language processors or Task Builder.

PSECTs are created through the COMMON and MAP statements in
BASIC-PLUS-2, or through the association of a segment number with a
section name in COBOL.

The Task Builder overlay processor allows PSECTs to be created and
inserted at specific points in the overlay structure. This facility
is described in Chapter 5.

As noted above, each reference to a PSECT is accompanied by a length
and set of attributes that describe memory allocation to that PSECT.
Task Builder collects scattered references to the PSECT in a single
area of task memory. The attributes, listed in Table 4-1, control the
way the Task Builder collects and places PSECT storage and determine
the contents of the PSECT name entry flag byte (see Section C.1l.6).

Table 4-1
PSECT Attributes

Attribute Value Meaning

Access code RW Read/Write - Data can be read from and
written into the PSECT.

RO Read Only - Data can be read from but

cannot be written into the PSECT.
Allocation CON Concatenate - All references to a given
code PSECT name are concatenated. The total

allocation 1is the sum of the individual
allocations.

OVR Overlay - All references to a given PSECT
name overlay each other. The total
allocation is the length of the longest
individual allocation.

Relocation REL Relocatable - The base address of the
code PSECT 1is relocated relative to the
virtual base address of the task.

ABS Absolute - The base address of the PSECT
is not relocated. It is always zero.

Scope code GBL Global - The PSECT name 1is recognized
across overlay segment boundaries. The
Task Builder allocates storage for the
PSECT from references outside the
defining overlay segment.

(continued on next page)

MEMORY ALLOCATION

Table 4-1 (Cont.)
PSECT Attributes

Attribute Value Meaning
Scope code LCL Local - The PSECT name is recognized only
(Cont.) within the defining overlay segment. The

Task Builder allocates storage for the
PSECT from references within the defining
overlay segment only.

Type code'’ D Data - The PSECT contains data.

I Instruction - The PSECT contains either
instructions, or data and instructions.

lThese codes should not be confused with the I and D space
hardware codes on PDP-11 systems.

The Task Builder uses the access code and allocation code to determine
the size of the PSECT and its placement in task memory.

The Task Builder divides storage into read/write and read-only memory,
and places PSECTs in the appropriate area according to access code.
Memory allocated to read-only PSECTs is not hardware protected.

The allocation code is used to determine the starting address and
length of memory allocated by modules that reference a common PSECT.
If the allocation code indicates that such a PSECT is to be overlaid,
the Task Builder places the allocation from each module at the same
location in task memory, and determines the total size from the length
of the 1longest reference to the PSECT. If the allocation code
indicates that a PSECT is to be concatenated, the Task Builder places
the allocation of each of the modules one after the other in task
memory, and determines the total allocation from the sum of the
lengths of each reference.

The allocation of memory for a PSECT always begins on a word boundary.
If the PSECT has the D (data) and CON (concatenate) attributes, all
storage contributed by subsequent modules within that PSECT is
appended to the last byte of the previous allocation. This occurs
regardless of whether or not that byte is on a word boundary. Thus,
the first allocation in the PSECT begins on a word boundary, but the
remaining allocations may not. For a PSECT with the I (instruction)
and CON attributes, however, all storage contributed by subsequent
modules begins at the nearest following word boundary.

The scope code and type code are meaningful only when an overlay
structure is defined for the task. The scope code is described in

Chapter 5, in the context of PSECT resolution. The type code is
described in Chapter 6, in the context of autoload vector generation.

4.2.2 PSECT Allocation
Here is an example of PSECT allocation:

TKB IMG1l,MP1/SH/MA=IN1,IN2,IN3,LBR1/LB

MEMORY ALLOCATION

This command directs the Task Builder to build a task image file,
IMG1.TSK, and a memory allocation file, MP1.MAP, from the input files
IN1.OBJ, IN2.0BJ, and IN3.0BJ. It also initiates a search of the
library file LBR1.OLB for any undefined global references. The input
files are composed of PSECTs with access codes, allocation codes, and
sizes as illustrated in Table 4-2:

Table 4-2
PSECT Allocation
Fil PSECT Access Allocation Size
flename Name Code Code (octal)

IN1 B RW CON 100

A RW OVR 300

C RO CON 150

IN2 A RW OVR 250

B RW CON 120

IN3 C RO CON 50

In Table 4-2, there are two occurrences of the PSECT named B with
attributes RW and CON. The total allocation for B is the sum of the
lengths of the references; that is, 100 + 120 = 220 blocks. If the
OVR attributes had been used instead of CON, as in PSECT A, the total
allocation would have been 120 blocks, which is the largest allocation
for PSECT B. The total allocation for each uniquely named PSECT is
shown in Table 4-3.

Table 4-3
Allocation Totals

PSECT Total
Name Allocation
B 220
A 300
C 200

The Task Builder then groups the PSECTs according to their
access-codes, and alphabetizes each group. Figure 4-2 shows the
results:

C (200) READ ONLY
B (220)
READ/WRITE
TASK MEMORY A (300)
STACK
HEADER

Figure 4-2 PSECT Allocations Grouped by Access Code

4-5

MEMORY ALLOCATION

4.2.3 PSECT Placement

The placement of PSECTs in task memory is affected by the /SQ
(sequential) switch. References to a given PSECT from object modules
are collected as described. All PSECTs are then grouped according to
access-code and, within these groups, are placed in memory in the
order they were input, rather than alphabetically.

The /SQ switch was intended to satisfy adjacency requirements of
existing code that was previously written for another PDP-11 operating
system. Using this feature is otherwise discouraged for the following
reasons:

) Standard library routines will not work properly.

° Sequential allocation can result in errors if the order in
which modules are linked is altered.

® RMS-11, BASIC-PLUS-2, and COBOL assume that PSECTs are
arranged in alphabetical sequence.

You can place PSECTs together by selecting names alphabetically to
correspond to the desired order.

4.3 GLOBAL SYMBOL RESOLUTION

When creating the task image file IMG1.TSK in the command in Section
4.2.3, the Task Builder resolves the global references shown in Table
4-4 in the following manner.

Table 4-4
Global Reference Resolution

File PSECT Global Global
Name Name Definition Reference
IN1 B B1 A1l

A B2 L1

C C1

XXX

IN2 A A1l B2

B B1
IN3 C B1

In processing the first file, IN1.0BJ, the Task Builder finds
definitions for Bl and B2 and references to Al, L1, Cl, and XXX.
Because no definition exists for these references in IN1.0OBJ, the Task
Builder defers the resolution of these global symbols. 1In processing
the next file, IN2.0BJ, the Task Builder finds a definition for Al,
which resolves the previous reference, and a reference to B2, which
can be immediately resolved. The third file 1IN3.0BJ contains a
reference to Bl. (The last paragraph in this section shows how
references to Bl are resolved.)

MEMORY ALLOCATION

When all the object files have been processed, the Task Builder has
three unresolved global references -- Cl, L1, and XXX. A search of
the library file LBR1 resolves L1, and the Task Builder includes the
defining module in the task image. A search of the System Library
resclves XXX. The global symbol Cl remains unresolved and 1is 1listed
as an undefined global symbol.

The relocatable global symbol Bl is defined in two different modules
and is 1listed as a multiply defined global symbol on the terminal.
The first definition of a multiply defined symbol is the one used by
the Task Builder. An absolute global symbol can be defined more than

once without being listed as multiply defined as 1long as all
occurrences of the symbol have the same value.

4,4 TASK IMAGE FILE

The task image file contains a copy of the task that can be read into
memory and started with little system overhead. The Task Builder does
all linking, memory allocation, and address resolution. The system
loads the task image and transfers control to it.

The task image file also contains a 1label block group. The label
block group contains data that is used by the system loader when the

task is run. The label block group is described in detail in Section
D.1.

4,5 MEMORY ALLOCATION FILE

The memory allocation file lists information about the allocation of
task memory and the resolution of global symbols.

4.5.1 Contents of the Memory Allocation File
The memory allocation file contains the following items:
e Page Header
e Task Attributes
e Overlay Description (if applicable)
e Segment Description
e Memory Allocation Synopsis
e Global Symbols
e File Contents
e Summary of Undefined Global Symbols
e Task Builder Statistics
Sample memory allocation files are shown in Figures 4-3 of Section 4.6

and 4-4 of Section 4.7, where each item is identified. The following
paragraphs discuss the map items in greater detail.

MEMORY ALLOCATION

The page header shows the name of the task image file and the
overlay segment name, along with the date, time, and version
of the Task Builder that was used.

The task attribute section may contain the following
information, some of which does not appear in Figure 4-3 or
4-4:;

a. Task name

b. Task partition (always GEN)

c. Identification (task version)

d. Task UIC (PPN)

e. Stack limits -- consisting of the low and high addresses,
followed by the length in octal and decimal bytes

£. ODT transfer address —-- starting address of the debugging
aid

g. Program transfer address

h. Task attributes -- shown only if you specify a switch

(see Table 3-1) that differs from the default. For
example, one or more of the following can be displayed:

DA task contains debugging aid
-FpP task does not use floating-point processor
PM task requests post-mortem dump
-HD task does not contain a header (resident
library)
PI task contains only position independent code
CM task built in compatibility mode
i. Total address windows —-- the number of address windows

allocated to the task

j. Task extension -- the 1increment of physical memory
allocated through the EXTTSK keyword

k. Task image —-- the amount of memory required to contain
task code

1. Total task size -- the amount of memory allocated to task
extension and task image listed above

m. Task address limits -- the 1lowest and highest wvirtual
addresses allocated to the task

MEMORY ALLOCATION

The overlay description shows the address limits, length, and
name of each overlay segment. Indenting is wused to
illustrate the overlay structure. The overlay description is
printed only when a multi-segment task is created.

The segment description gives the name of the segment, along
with the segment address and disk space limits.

The memory allocation synopsis gives information about the
PSECTs that make up the memory allocated to each overlay
segment. The information shown consists of the PSECT name,
attributes, starting address, and length in bytes, followed
by a list of modules that contributed storage to the section.
The entry for each module shows the starting address and
length of the allocation, the module name, module
identification, and file name.

MEMORY ALLOCATION

If the /SQ switch is applied, the PSECTs are 1listed in the
order of input; otherwise they appear in alphabetical order.

The following PSECT information is omitted:

a. The absolute section . ABS. is not shown because it
appears in every module and always has a length of 0.

b. The unnamed relocatable section . BLK. 1is not displayed
if its length is 0, because it appears in every module.

6. Global symbols that are defined in the segment are 1listed
along with their octal values. The code -R is appended to
the wvalue 1if the symbol 1is relocatable. The 1list is
alphabetized in columns.

7. The file contents section 1lists the module name, the
filename, and any PSECTs, and global definitions occurring in
the module.

8. A summary of undefined global references is printed after the
listing of file contents.

9. The display of Task Builder statistics 1lists the following
information, which may be wused to evaluate Task Builder
performance.

® Work File References -- The number of times that the Task
Builder accessed data stored in its work file.

® Work File Reads -- The number of times that the work file
device was accessed to read work file data.

® Work File Writes -- The number of times that the work file
device was accessed to write work file data.

e Size of Core Pool -- The amount of memory that was
available for work file data and table storage.

® Size of Work File -- The amount of device storage that was
required to contain the work file.

e Elapsed Time -- The amount of wall-clock time required to
construct the task image and produce the memory
allocation file. Elapsed time is measured from the
completion of option input to the completion of map
output. This value excludes the time required to
process the overlay description, parse the list of input
file names, and create the cross-reference 1listing (if
specified).

Section F.1l.1 contains a more detailed discussion of the
work file and its relationship to task performance.

4.5.2 Control of Memory Allocation File Contents and Format

By using the memory allocation and input file switches described
below, you can:

1. Eliminate nonessential information from the output

2. Improve Task Builder throughput

MEMORY ALLOCATION

3. Obtain output in a format that is more compatible with the
hard copy device

The /SH (short map) and /MA (map wanted) switches control the amount
of information presented in the memory allocation file. When the /SH
switch is included in the map file specification, the Task Builder
eliminates:

1. the file contents section of the allocation listing
2. the list of global definitions by module
3. the list of unresolved global references within each module

All other contents can be found elsewhere in the memory allocation
file.

In general, the short format gives enough information for debugging,
yet reduces the task-building time considerably. You can get listings
that contain a full description of the file contents at less frequent
intervals and keep them for later reference.

You can keep the contents of individual input files out of the listing
by negating the /MA switch (/NOMA or /=-MA). For each file so treated,
the following information is omitted:

1. PSECT contributions as shown in the memory allocation
synopsis

2. global symbol definitions
3. file contents

4. global definitions or references, and module names as shown
in the cross-reference listing

To disable map output for individual files, include /NOMA in the
appropriate input file specification. To disable such output for the
default system object module library and all memory-resident 1library
files, include /NOMA in the memory allocation file specification.

The width of the listing is controlled by the /WI (wide) switch. This
switch is included in the map file specification to increase the
listing format from 80 to 132 columns. The global symbols, overlay
description, and cross-reference output are expanded to fill the
additional space. Some systems are installed so that /-WI gives you
132-column output anyway. Check with your system management to be
sure.

4.6 MEMORY ALLOCATION MAP FOR BASIC-PLUS-2 VERSION OF USER

The first run of the BASIC-PLUS-2 version of USER, discussed 1in
Section 2.8, produces the memory allocation file shown in Figure 4-3.
The memory map shown results from a task containing no overlays. That
is, all four segments are in memory at all times. The overlaid
version of the memory map is shown in Section 5.3.

The task attributes section lists the principal characteristics of
interest, such as task size in words, and task address limits. 1Items
such as task attributes, that are not specified or that do not differ
from the default, have been omitted.

MEMORY ALLOCATION

¥ISN JO UOTSIdA Z-SNTId-DISVE 10J STTJ UOTIROOTTVY AIowsw €£-p oInbrg

£E0°¥LVHD
LE0°HONNYED
90" O¥INI

£40°3asn

£40"4LYHD
L9O0°HONNYID
£90°O¥INI
£dg0°9asn

LE0 " ¥LVHD
£90°HONQID
L£4d0°04dINI

rao-3ddsn

€710°201IsYe
g70°Z201svd
970°201Ssvd
g 10°Z01Isvd

3714

€0XTO0A ¥LIVHO °00000 000000 OLSE00
€0XTOA HONNED 00000 000000 0LSE00
€0XTOA O¥INI 00000 000000 0LSE00
€0XT0A ¥dasn “00000 000000 0LSE00
“00000 000000 0LS€00 (NOD‘TI3¥‘7TEDQ’MY) 1 UDVTIIS
€0XTOA NHIVHD °ZL0O00 OTTO00 09¥%€00
€0XTOA HONO¥ED °ZL000 OTIO00 O0SEEOO
€0XTOA OYINI °ZL000 OTTO00 0%ZEOO
£0XTO0A ¥asn °"8Z¢00 ¥PE€000 ¥L9Z00
"PP¥00 ¥L9000 $L9200 (NOO‘TIY‘TIITI‘I‘MM): FAODS
€0XTO0A YIVHO "00000 000000 $L9Z00
€0XTOA HONNYD °00000 000000 ¥L9Z00
€0XTOA OXINI °00000 000000 ¥.L9200
€0XT0A ¥asnN 00000 000000 ¥.L9Z0O
*00000 000000 ¥.9Z00 (NOD‘THEY’TIT‘A’‘MI) :AVHUVS
WOTO €0Sdr$ °8€000 9%0000 9Z9Z00
WOZ0 AOWALS "09000 ¥L0000 ZESZOO
WDOZO STI¥DS “80€00 ¥97000 9%0Z00
WDTO aavdrs °s€n000 9¥0000 000200
*¥¥¥00 ¥L9000 000200 (NOOD‘TIY'TOT/I‘MY):°¥1d °

INIAI IT1LIL NOILO3S

$SISJONXS NOILVDOTIV ZYOWIHW

“L0000 LOO0OO 0TOD00 Z00000 :SLIWIT ¥Td XSIA
*960€0 0€0900 £Z0900 000000 :SIIWIT WIW M/¥

YISN LNIWDIS LOOY x#*«x

LZ0900 000000 :SLIIWIT SSIIAAY ASYL

SQYOM °89ST : JZIS FOVWI MSVL

°Z $SMOONIM SS3¥YAAVY TVIOL

¥L9700 :SSI¥AAY YIX Di4

*CTS00 000TOO0 LLLTOO 000TO0 :SIIWIT AIVLS

let’tl @ JIN MSVL
£0XTOA * NOILVOIJIINAAI
N9 : IWUN NOILIINVA

vv:ze LL-T00-9T

T 39vd 9ZW €MIL dYW NOILV¥DOTIY XYOWIW 4SL YIS

4-11

MEMORY ALLOCATION

L0 "dLVYHD
90 HONOED
£40°OdINI
£d0°93sn

£40°¥LYHD
90 *HONMID
rd0°OdLNI

rgo°¥asn

rgo-y¥asn

£490"4LVHD
£4dO*HONYD
£40°*0dINI
£do¥3sn

£90 "4LYHD
£490° HONRYED
£490° O4INI

£a0°93asn

rqao°¥asn

£ "dLYHD
90 *HONNYD
£4d0° OdLNI
rga0°3asn

£90 "4LYHD
£490*HONNID
L4004 LNI

£90°93sn

€0XTNA
£0XT0A
€0XTOA
£0XT0A

€0XTOA
€0XT0A
£0XT0A
£0XT0A

€0XTNA

£0XTOA
£0XTO0A
€0XTO0A
£0XTOA

€0XT0A
£0XT0A
€0XTOA
€0XT0A

€0XT0A

€0XTO0A
€0XTO0A
€0XTOA
€0XT0A

£0XT0A
€0XT0A
€0XTO0A
£O0XTOA

¥ISN IO UOTSISA Z-SNTd-DISVE 103 OTTd UOTIRDOTTY

YLVHD
HONNAD
OY¥INI
Jyasn

YLVHD
HONOID
OYINI
gdasn

Jgasn

YILVHD
HONN¥D
OYINI
g3asn

YLVYHD
HONOQ¥D
OYINI
JIasn

yasn

YLVHD
HONOY¥D
OYINI
gasn

dLYHD
HONOYD
OYINI
JIasn

K1oway

*20000
“00000
*Z0000
*00000
*97000
‘00000
‘02000
00000
*00000
*00000
“00000
*00000
“00000
“00000
‘00000
*00000
“00000
°20000
*Z0000
“02000
“0Z000
©02000
*80T00
*89T00
°80000
*80000
*80000
“Z1800
*9€800
‘82100
*8C¢100
*00000
‘00000
‘00000
00000
‘00000
*20000
*20000
*20000
*20000
“80000

(*3uo0)) ¢-¢ 2inb14

200000
000000
200000
000000
020000
000000
¥20000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
200000
200000
¥Z0000
#20000
$20000
¥ST000
052000
010000
010000
010000
¥SYT00
#0ST00
002000
002000
000000
000000
000000
000000
000000
200000
Z00000
Z00000
z00000
010000

¥20900
$20900
220900
920900
200900
920900
95.S00
9GLS00
96L500
9G.S00
9GLS00
96L500
96.S00
96LS00
9GLS00
95LS00
95LS00
$SLS00
¥SLS00
0€L500
¥0L500
099500
¥0SS00
05500
¥L¥S00
¥9¥500
¥Gvso0
000%00
000%00
009€00
009€00
009€00
009€00
009€00
009€00
009€00
9LSE00
¥LSEOOD
TLGEOD
0LGE00
0LS€00

(YA 1AW TOT A’ M) :ZaDS$$
(A0 TIYTDT A’ M) 1 0aDS$$
(A0 TIY'T9D/ I/ M) ¢ STUSS
(A0 T3V’ 1T/ I 0Y) :D8Qus$
(A0 13T TOT' A’ M) :SHAOSS
(JAO’ T TOT1/0¥) SMANSS
(NOD/1EY /107’ 1/ MY) 29TTVSS

(NOD T 13Y ‘11 a’ M) 1YIVALS

(NOD* T34’ 10T A’ M) :ONULSS

(NOD ‘1Y’ TIT’ A’ M) :dSAVSS

(NOD‘TIEY’1TDT/ A’ M) 3VLVAdS

(NOD/ TV 1DT/a’ M) 3VLVAIS

(JA0‘T3U’ 19D a‘ MT) 1 TOIDIS

(NOD‘13¥ ‘1199 QM) : IOVIIS

(NOD*TI3¥‘11E9 ' G MY) : SOVIAS

4-12

MEMORY ALLOCATION

d-050700 YASLOS
d-9570C00 SLINIS

YIS JO UOTSIdA 7-SNTd-DISVY I10F STTd UOTIRIOTTIY AIoWSH

¥-0€£9200
¥y-259200
¥-9¢£9200
d-099200

d-999200

dssins
sd4$10s
adsins
Was1ns

vdd 1D

A-T¥9200
d-929200
g-09%€00
d-0G€€00

g-0vcteo00

¥-0T€Z00
¥-009200
¥-0T9200
g-$€G200

d-955¢00

LA

(S3o¥d °87) SAYOM °§9TL
(s39¥d *€€) SAYOM *8¥S8

‘0
‘0

(*3u0d) €~y @anbrg

00:00:IWIL QISAVII

$ETId MYOM d0 dZIS
1004 I¥OO 40 dZIS
SILIYM IFTId MYOM
fsSavIy ITId NIOM

“GET06 :SIONFYAIIY FTId NYOM ‘IVIOL

$SOILSILVLIS ¥IATING ASVL xx»

¥-Z¥5Z00 ddSIOW ¥-0Z9Z00
¥-ZLGTO0 WASIOW ¥-0TSZO0O
¥-$99200 Yd$ION ¥-%12Z00
¥-9%GZ00 dWSIOW ¥-Z00Z00

crmman wwdeora -

§-CESC00 dISION Y¥-v20¢00

d$ITD ¥-0T0Z00 ddS$IA¥

$990 ¥-Z€02Z00 Wasiav
$IYD ¥-0%0Z00 ¥4d$IAV

dS$IaV¥ ¥-$T0Z00 dWSIAV

- —m A mwde e

dSIAV ¥-000C00 4ISIAV

$STO09WAS TVHOID

4-13

MEMORY ALLOCATION

4.7 MEMORY ALLOCATION MAP FOR COBOL VERSION OF USER

Figure 4-4 shows the memory allocation map for the COBOL version of
USER.

NOTE

A single-segment task, such as that
illustrated by the memory allocation map
in Figure 4-4, does not require use of
the /KER:xx switch. Compare the PSECT
names in this map that begin with "C*
(along the left margin) with their
equivalents in Figure 5-15. Note that
in many cases "SC" has been replaced by
“gxx" where XX represents kernel
characters for each module.

MEMORY ALLOCATION

¥ASN JO UOTISISA TOG0D 103 STTd UOTIEOO0TTV AIOWSHW p-% 2Inbrg

g70°9I7900 60°YT ¥SdOSH °0ZE£Z0 0ZPH00 9ZHTEO

*0ZEZO 0ZHP¥00 9Z¥TE0 (MAO'TAV‘TAD’I‘0¥) *HSIDSH
g70°9IT900 60°YT ¥SdOSH °“90T00 ZSTO000 ¥LZZZ0

*90T00 ZSTO000 ¥LZZZO0 (WAQ‘TIY‘T9D‘A’MY) :ASIOSH
g70°9I7900 ¥$Z°¥l OIXI "OFEE0 $TH900 099ETO

*OVEEO0 FTIP900 099€T0 (VAO'TIV/TIED’I‘MY) :ZIDIXT
g70°9I7900 HZ°VT DJIXT °"ZHZ00 Z9E000 9LZETO

“ZHZ00 79€000 9LZETO (YAO‘TIY/TID'Q’MY) : TADIXET
970°9IT900 €°VYT XIIAI °ZZOOO 920000 0SZETO

*ZZ000 9Z0000 0SZET0 (JAO‘TIY'TAD ‘A’ M) :AXIIAT
g70°9I7900 €°¥T XIIAT °06800 ZZSTO00 92ZSTTO

“06800 ZTSTO00 9ZSTTO (YAOTAY‘TED’I‘MY) ¢ ILIAE
470°9IT90D LO°VT €0SAAVY °"8€LZ0 Z92ZS00 ¥HZ¥00

“8ELTZO ZT9ZSO00 ¥¥ZH00 (YAO‘TAY‘TED‘I‘MY) : HIINV
9707917900 LT°¥YT OIOADVY °0GL00 9SET00 999Z00

*0SL00 9GETO00 999200 (JYAO'TIY'TED‘I‘MI) :SNIADY
970°9I7900 LT°¥T OIDADY %9100 %2000 ZZHZ00

“$9T00 ¥¥2000 2Z%Z00 (WAO'TIY’TED‘A’MY) :IVAADY

“¥LZ00 ZTY000 000200 (NOD‘TIIE‘TIDTI‘MY):*NTd *

114 INIAI JTLIL NOILOES

$SISdONAS NOILVOOTIV XJOWIW

“ZE000 0¥0000 T?0000 Z00000 :SLIRKIT ¥T€ NSIA
“P009T ¥0ZLEO £0ZLED 000000 :SLIWIT WIW M/Y4

gdasn INIAWOIS LOOY xx»x

€0ZLED 000000 :SLIWIT SSTIAAV NSVL

SQYOM °Z€08 : JZIS HOVWI NSVL

*Z :SMOAGNIM SSFYAAV TVIOL

0LSHZ0 :SSIVAQAV ¥Y4X Dud

“CTS00 000TOO LLLTOO0 000TO0 :SIIWIT ADVLS

fandinsrl ~r o wrew

oIl ASYL

10870211 ¢
680Z8T 3 NOILVOIJILNJIQI
NID : FWYN NOILIILNVYd

16301 LL-T100-9T
T 3dvd 9ZH g93& dYH NOILVIOOTIV XJOWIW ASL"ASL

4-15

MEMORY ALLOCATION

il

g10°917900

g0 4LVHD
£€0°HONED
£90°O¥INI
rg0°33sn

€70°491790D
£490"dLYHD
£€0°HONNYED
£90°OdINI
rqo0-93asn
€10 417900
€70°9174900
£4d0*¥LVHD
£E0"HONOYED
£40°OdINI
rg0°93sn
970°4174d00
£€0 *¥LYHD
£90°HONNID
£4d0O° O¥dLNI
£g0°¥Isn
g70°49d17T1900
g70°491790D
90 dLYHD
£g0°HONAYD
£90°O¥LNI
rao°giasn
g710°€17490D
g70°91740D

g70°49I1790D

(

¥0°VI

680¢81
680281
880281
680281

#0°VY1
680281
680281
880¢81
680C8T

¥0°VT

§0°V1
68028T
680281
880781
680281

0 °¥1
680C8T
680¢C8T
880781
6802Z8T

¥0°V¥1

$0°VT
680Z8T
680Z8T
880281
680Z8T

¥0° VI

¥ VI

¥ VT

YOASYL

YIVHO
HONMED
OYINI
gdsn

YOMSYL
YLYHD
HONMOYO
OYdINI
qasn
¥OASYL
¥YOASYL
YIVHD
HONQYD
OYiINI
g3asn
YOASYL
YIVHD
HONO¥D
OYINI
Jqasn
YOASYL
YOMSYL
dLYHD
HONMYD
O4dINI
gasn
YOASYL
TIL0

TIL0

¥ESN JO UOTSISA TOH0D 103 STTd UOTIEDOTTIV AJIOWdN

*00000
*00000
‘06000
“06000
*06000
*06000
‘06000
‘00000
©00000
‘00000
“00000
‘00000
‘00000
“00000

200000

‘00000
*20000
*20000
00000
‘00000
*00000
‘00000
*00000
*00000
‘00000
00000
*00000
°00000
‘00000
*00000
‘00000
*00000
‘00000
‘00000
‘00000
‘00000
‘00000
‘00000
‘00000
*00000
©00000
*0T1000
‘0TO0NO
‘0¥ 100
‘0¥ 100

(

(*3uod) y-¢ 2anbia

000000
000000
ZETO00
¢ET000
TET000
ZETIN00
ZET000
000000
000000
000000
000000
000000
000000
000000
000000
000000
200000
200000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
210000
¢T10000
12000
¥12000

0€0EZO
0€0€TO
9L9ZZ0
9L9220
949220
9L9220
9L9270
9L9220
9£9¢20
9,920
9L9220
9.9220
9L9220
9L9220
9.9220
9.9220
¥L9220
L9220
¥L9220
¥L9220
¥L9220
¥L9220
¥L9ceo
¥L9220
L9220
L9220
L9270
L9220
LARTAAY
¥L9220
¥L9220
L9220
¥L9220
¥£9220
¥L9tZo0
L9220
L9220
¥L9220
¥L9220
L9220
¥L9220
799270
299220
9%¥#%220
9vvZeo

(JAQ/TIYTED‘ I/ M) 108 IEDS

(JAO! TAY 19D I/ MY) 2 1OIEDS

(JAQ’TIY’ 18D * I/ M) 1T AI4DS

(NOD/TITY 18D/ I MY) 2 TATEDS
(A0 139189’ I/ M) 2041903

(3A0’ 139’ 18D/ 1/ M) :12ad9D$

{NOD/I3Y 119D 1* MJ) : TAIEDS

(JA0‘13¥ 18D I/ M) : 043808

(JAO“ TV’ 18D/ I ‘M) 2 TVALOS$
(JAOT3¥’ TgD’ 1‘ MY) :0VIED$

(9AO‘13¥* 18D 1* M) :2agdad$

(NOD‘TH¥ ‘1G9’ 1“MY) * TALEDS
(A0’ 139199’ 1/ MY) : 0Q€EDS

(JAO‘TIY’T19DA'MY) ¢ @TILN

(JAO‘TEY/TED‘T‘MY) ¢ TIIN

4-16

MEMORY ALLOCATION

¥ISN JO UOTSIDA TOH0D 103 T1d UOTIROOTTV AIOWSK

£90°O¥LNI
rgo°3gdsn

470°9174d0D

£40 “dLVHD
L0 HONMID
£90°0¥INI
rdao°y¥dsn

g70° 417400
g70°9I1900

d70°917490D
40 ¥LVHD
£40°HONNYD
£490°OYLINI
r£do0°¥4dsn

g70°8174d0D

£d0"d9.LVHD
40 HONDID
£90°04LNI
rdao-ygdsn

d70°4917490D
d70°€I190D

g0 dLVYHD
£490O°HONNYD
40" O¥LINI
rdao°¥gdsn

g470°dI1I790D
g70°9I790D

£40°¥LYHD
L£40°HONONED

£d0° O4INI
£go°¥asn

880¢8T
68028T

0 °¥T

680281
680281
880281
680281

¥0° V1
¥0°¥I

¥0°VT
680281
680C8T
880281
680281

¥0° VY1

680281
680¢C8T
880281
680281

¥0°VvI
¥0°¥T

680281
68028T
880¢8T
680281

¥0 VI
%0 VI

680281
680281

880cel
680Z8T

OYINI
¥asn

¥OASYL

YLVYHD
HONOYD
OYINI
qasn

YONSVdL
VYONSYL

YONSVL
YLVHO
HONMNED
OYINI
¥yasn

¥YOASYL

dLVHD
HONOYO
OYINI
gasn

¥OASVYL
¥OASYL

YLVHD
HONMYD
OdLNI
g3asn

¥ONSVL

YOASYL

YLVHD
HONDYD

OdLNI
qdasn

‘00000
00000
00000
00000
“00000
‘00000
00000
00000
‘00000
*00000
“00000
00000
“2e000
*C€000
‘00000
°20000
°Z0000
“Z0000
°Z0000
°20000
“00000
“00000
‘00000
‘00000
‘00000
‘00000
00000
‘00000
‘00000
‘00000
‘00000
°00000
*00000
°00000
“00000
*0n000
‘00000
‘00000
00000
00000
‘00000
*00000
*00000
‘00000
*00000

(*3uo0)) -y =2anbra

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
0%0000
0v¥0000
000000
¢00000
200000
¢00000
200000
200000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
060000
000000
000000

ZLOEZO
ZLOEZO
ZLOEZO0
ZLOEZ0
ZLOEZ0
ZLOEZ0
ZLOEZO
ZLOEZO
ZLOEZO
ZLOEZO0
ZLOEZO
ZLOEZ0
ZE0EZ0
Z£0£20
0€£0£20
0£0£20
0£0£20
0£0£20
0£0£20
0€0€20
0£0£20
0£0£20
0£0£20
0€0€20
0£0£20
0£0£20
0£0£20
0£0£20
0£0£20
0£0£20
0£0EZ0
0£0£20
0£0£20
0£0£20
0€£0£20
0£0€£20
0£0£Z0
0£0£20
0£0€20
0£0€20
0€0€20
0£0€20
0E0£20
0£0£20
0£0£20

(NOD“13¥‘ 1189 I ' MYd) 1 1AV$E0S

(gA0“1EY’ 1997 1/ M) 2ZVXEDS

(4AO'T3Y/ 199/ I/ MY) 1 TUYXEDS
(JAO‘TIY 1G9/ I/ MY) $0¥XEDS

(JAO13¥ ‘19D I/ M) 2 NSIEDS

(JAO/THY’ 199/ 1/ MI) 2 IMSEDS

(A0 13Y 199 I/ M) 12axdds

(NOD‘113¥‘Ta9 I‘MY) : TANEDS
(A0 113Y¥‘1aD‘ T/ MY) 1 0aNED$

(JA0‘T13Y 199’ 1/ Ma) 2Z79N€DS

(NOD ‘113 TaD* I M) 2 TEMEDS
(JAO‘13Y’1aD’ I ‘M) 2 0ENEDS

(AO‘TAY 1 TaD‘ T/ MI) 229 I€D$

(NOD‘TEY 19D T/ MY) : T3 IEDS

4-17

MEMORY ALLOCATION

£90°OdLNI
rg0°-93asn

€0 "¥LYHD
£40°HONNIO
£490° 04 LNI
£g90°93sn

g0 "YLYHD
£9O*HONNY¥D
£490°O¥LNI
rgo°3gdsn

£90"¥LVYHD-
£90"HONNID
£40°O4INI
rgo-yasn

£90 " dLYHO
£4g0*HONNED
£490° O9LNI
£40°93asn

r90°d9LYHD
L9O"HONOID
LE0 " O¥LNI
rao-y4dsn

£40*dLVYHD
£49O°HONNAD
£90°04LNI
rg0°9dsn

£90*¥LYHD
£g0°HONNAD
£90°O¥INI
rdgo-y¥dsn

£90°¥4LYHD
£90° 04 LNI
£490*HONNAD
rgao0°d4asn

490 *¥LYHD
£90°HONNID

880281
680281

680281
680281
880¢8T
680Z8T

68028T
680C8T
880281
680C8T

680281
680281
880Z8T
68028T

680281
680781
880781
680281

680281
68028T
880781
68028T

680281
680281
880281
680281

680281
680¢C8T
880281
680281

680281
880¢C8T
680281
630281

68028T
680781

OYINI
gdasn

YLVHD
HONOYD
O¥INI
Jgasn

YLVHD
HONOQYD
OdINI
g3asn

YILVHD
HONNID
OdINI
g3sn

JLVHD
HONNYD
OYINI
¥yasn

YLVYHD
HONQYD
OYINI
gasn

YLVHD
HONDYO
O4dINI
Jgasn

YLVHO
HONQID
O LINI

gasn

YLVHD
OYINI
HONOED
yasn

YLVYHD
HONNYO

gaS0 JO UOTSISA TOg0D 10F OT1d UOTIRDOTTY AIOWSN

“80000
‘%0000
“82000
‘8¥000
*8T000
*¥5000
*ZT000
*TET00
*T000o0
*20000
“Z0000
*Z1000
“81000
“8LT00
‘v1000
*9T200
“ZT000
"0Cvoo0
00000
“00000
*00000
‘00000
“00000
*02000
‘0€000
*0€000
*9T000
‘907100
‘00000
‘8%¥000
“00000
"0€000
"8L000
“8¥100
“Z8T100
“8¥100
*20Z00
*08900
‘0€000
“Z1000
*0€000
‘00000
*ZL00O
‘00000
“00000

(*3u0)) -t 2inbta

010000
¥00000
$€0000
090000
220000
990000
¥T0000
$02000
200000
200000
200000
¥10000
220000
292000
910000
0EE€000
¥10000
¥%9000
000000
000000
000000
000000
000000
9€0000
9€0000
9€0000
020000
¢STO000
000000
090000
000000
9€0000
91T000
¥zZnoo
992000
¥22000
ZTE000
062100
9€£0000
¥10000
9€0000
000000
0TTO000
000000
000000

0%¥0920
v€0920
¥€0920
¥SLSZ0
TELSTO
¥%9520
0€9S20
0€9620
979620
$29920
2T9s20
909520
909s20
¥Z€STO
90€S20
96Lv20
TPLYZOo
TyLveo
TvLveo
ZvLyeo
ThLveo
Zhiveo
T¥LYTo
voLvzo
9%9%20
0T9%20
0LSYTO
0LS¥Z0
0LS¥2O
0TS¥Co
0TS¥20
(4 A XA\
zskveo
9ZZ%2o0
0vLETO
¥1S€20
Z0Z€TO0
z0zZeTn
rv1eco
ZLOETO
901€20
ZLOETO
CLOETO
TLOETO
TLOEZO

(NOO‘TE¥ 18D’ I/ M) 1 1ads$0s

(NOD‘TaY ‘119D I/ M) :aLTIO

(NOD'13Y‘ 199’ 1/ MY) IST$08

(NOD’T3Y ‘199’ I/ MY) 31174808

(NOD‘THY ‘118D I/ M) $90IS$DS

(NOD*T7AN‘1g9’ I M) 1 LNISOS

(NOD ‘134’189 1 M) :QAd$Os

(NOD/13Y ‘119D’ I ' MY) *LV¥A$ DS

(NOD*T13¥’ 199 I/ M) 1 D99V¥$DS

4-18

MEMORY ALLOCATION

43ISO JO UOTSISA TOHOD 103 ST1d UOTIROOTTY KIOWSH

g70°4917900
g70°d1I790D
g470°9I7490D
g70°491T7900
140911400
g70°4I1490D
g970°9IT90D

£40"YLVHD
90 HONNAD
£d0°OdINI

£490°dLVYHD
£490°HONNYD
£90°OYINI
r£rdo0°49dsn

£90°¥4LYHD
£490°HONNYD
rd0°O¥INI
rdao-g4dsn

€90 ¥LYHD
£€0*HONNYD
£490° OdINI
rao*y¥asn

£80"4LVHD
£490°HONOYD
£490° 04 LNI
rgo°¥asn

L£90dLVYHD
£E0° HONDQAD
£90° OYLINI
rao-4asn

£490°¥4LYHD
L£EO°HONMAED

80 ° VT
TZ°VI
TC V1
80 "Vl
80 °VT
TZ°V1
TZ°VI

680281
680C8T
880¢C8T

68028T
68028T
880Z8T
6802Z8T

680281
68028T
880Z8T
680281

68028T
680281
880781
680¢8T

680281
68028T
880Z8T
68028T

680Z8T
680Z8T
880281
6802Z8T

68028T
680281

TTYOX
05X
09X

TIVIX

TTYOX
09X
09X

d4LVYHD
HONMNYD
O4INI

YLVHD
HONDYD
OYINI
gasn

dLVHD
HONOYD
OYdLNI
qasn

YLYHD
HONQY¥D
OJINI
gasn

YLVHD
HONQID
OYINI
gasn

dLVHD
HONN¥D
OYINI
qdasn

YLVHD
HONMID

*CTI000
“Z1000
*9T000
‘91000
‘90100
‘90100
‘¥€000
“¥€000
“88000
°88000
*ZT000
*21000
“8T000
*8T000
“8L000
*8L000
*8¥000
“$0200
‘0¥T100
“98T100
“¥LT00
°88000
°88G00
*99000
“99000
°99000
“99000
*¥9200
“¥2000
‘%2000
*$2000
‘$2000
“96000
“00000
*00000
°00000
‘90000
‘90000
‘0¥ T00
‘0¥100
“0¥T00
*0vT00
"09500
°80000
°80000

(*3uop) #~-% 2inbtag

$T0000
¥10000
020000
020000
ZST000
ZST1000
Zv0000
Zv0000
0€T000
0€T000
¥10000
10000
220000
220000
9TT000
9T1T000
090000
¥1€000
¥12000
ZLZ000
952000
0ET000
yitt00
Z0T000
Z0T000
201000
¢0T000
0T%000
0£0000
0€0000
0£0000
0£0000
0%¥T000
000000
000000
000000
900000
900000
¥TZ000
¥1Z000
¥12000
¥12000
090100
010000
010000

0L%9€0
0L¥9€0
0S¥9¢€0
0S5%9¢0
9LZ9¢0
9L29¢0
¥ET9E0
v€z9¢€0
¥0T19¢€0
¥019€0
0L09¢€0
0L09¢€0
9%09¢€0
9709¢€0
0%CIED
ZCTTIED
ZV0TED
choteo
9Z90¢€0
veeoen
9G00€E0D
9ZLLZO
9CLLZO
¥Z9LZ0
[AATRAY
0zwLZo
9TELZ0
9T€LZO
99ZL20
9€TLTO
90ZLZ0
9STLZ0
9STLZ0
95TL20
9STLTO
9STLZO
0STLZ0
0STLZO
¥€L920
025920
¥0€920
0L09Z0
040920
090920
050920

(NOD‘Ta¥ 199 I/0¥) 3 LIXTXS
(NOD‘T13¥* 199’ 1/0Y9) ¢ ¥¥IXS
(NOD*73¥* 118D’ I/0Y) :dANIXS
(NOD‘ 1139’ 199‘ 1/0Y) :1a4AdXs$
(NOD ‘139’189 1/ 0¥) *TTYIXS
(NOD‘TT3Y‘19D'1/0¥) ¢ LTVXS

(NOD‘TEY ‘189’ 1 0Y) $IUEVXS

(NOOD/13Y‘TaD ‘' 1' M) 2200303

(NOD‘T3Y‘TaD ‘I Md) :T00D

(NOD‘TAY 1G9 ‘ I/ MY) : MUMEODS

(NOD‘1 139’189/ 1° Md) :aSNSOS

(NOD ‘139’789 I/ M) 31AS$DS

4-19

MEMORY ALLOCATION

¥-%0TLEOD
d-¥vL¥00
¥-0T19900
¥-9€0LED
d-020LED
¥-0Z¥%020
¥-709900
¥-002L00
¥-$ZTLOO
¥-0TSLO0
¥y-92G6L00
d-0€TETO
4-0T1T1020
¥y-pLISTO
¥y-9ZSTT0
¥-¥¥0LTO
g-902ZLT10
q-y¥9910
¥-09SLT0

qgnsxs$
agnsxs
q44nSXs
ddLSX$
doLsX$
ZISSX$
qgg99SXs
JdAMIXS
LYONX$
HINWXS
dINNXS
JYNKHX S
YNWX$
HLWXS
aanxs$
aawxs
AGawxs$
DOHX$
agnxs$

9gdSN JO UOTSIIA TOH0D 103 OT1J UOTIROOTTY AIOWSH

q-v€0220
d-9%9120
q-9¥%1220
¥-9L99¢€0
g-0LG9¢€0
¥-9099€0
J-y059¢€0
¥y-0099¢€0
d-$799¢0
g-¥059¢€0
d-0LY¥9¢€0
¥-0S¥9€0
¥y-9L79¢€0
¥-$€TE00
¥-ZLLZ00
¥-00€0TO
¥-90€0TO
g-$€Z9¢€0
¥y-0€€020

NOJIXS
NSJIXS
YAIXS
NNODX$
dYLOOXS
dsooxs
[3:(e}3) &
TJ09X$
qooxs

09X$
LIXIXS
yyaxs
JaNIX$
SI1a3IX$
J0VaAXS$
JAIAX$
gAIAaxs
104aaxs$
IANDX$

g-9LV 120
¥-%0T9€0
¥-216120
¥-0L09¢0
¥-9€v¥00
g-v¥ ¥ 00
¥-Z%9900
¥-$€9900
¥-999200
¥~-9¥09¢€0
¥-Z€0ETO
¥y-0€0€20
g-vESETO
d-$ZSETO
g-ySye10
g-Zvve10
¥y-ZZYETO0
¥-ZOVETO
gy-¥G€900

STYOX$ ¥-ZTE900 TAZ¥ON
TI¥OXS ¥-7ZLS00 ID4ON
TYOXS ¥-9€L566 049N
ITYX$ ¥-ZIZS00 aon
9aavx$ ¥-00Z0TO ¥E9N
gaavx$ ¥-zTOSTO dXAN
gaavx$ ¥-ZITPT10 vIAN
J8QvX$ ¥-0¥FS00 SOAn
SOOVX$ ¥-$S5900 AJON
I9gvX$ ¥-Z€0L00 QQvEN
¥SID$ ¥-99¥Z00 JNFAIL
IMSED$ ¥-Z09ETO 91IIAZS
T0dM ¥-9Z09€0 TALLSS
99dM ¥-009€TO0 DTIZIS
pgdM ¥-99GET0 JNOIS
£9dM ¥-pLPIN0 NOSJIS
z9dM ¥-7Z9ZZ0 IAVS
194M ¥-Z¥9220 NNISY
NDSSn ¥-ZLGETO ANOSY

g70°9174d0D
470°4917190D
g70°4dI74d0D
970 911900
470°9d174d0D
g970°4917900

g70°4IT1900

g-059¢€T0
d-0T9€ET0
Y-00¥%€T0
¥-0€NTTO
¥-ZLOTTO
¥-022910
d-90TTTO
4-$S¥1TO
¥-9LLEEO
¥y-$00v €0
g-TTEVED
¥-0EEVED
¥=-TLVZ00
¥-09€020
d-0LSETO
H-ZLEETO
d-¥09€TO
¥-0T9%20
Y-0v1S€E0

80°VYT 'TTYOX

T2 Y1
TZ YT
TZ°¥1
TZ°¥1
1Z°V¥1
TZ°NT

09X
09X
09X
09X
09X

09X

"Z20000
“00000
‘20000
*00000
‘91000
"00000
‘02000
°Z9000
*Z90no
*8€000
“8€000
“¥TI000
“¥1000
“95000
*95000
°92000
‘92000
*Tv000
*Z¥000
°08000
‘08000

(*3u0)) p-¥ @anbrg

TWYYYd
WYYvYd
X¥0d0

TATdON

00Td9ON

avioaN
araayu
a1da-w

NI¥OSKH

TILEOSKH

MIJOSKH

TLdDSH

9SH

LdMSYH
QTHNT

1071
aqaaxt
OYINI
SAINI

200000
000000
200000
000000
020000
000000
$20000
9.L0000
9L0000
9¥0000
9%¥0000
910000
910000
0L0000
0L0000
Z2€0000
Z€0000
250000
250000
0Z1000
021000

¥-90€E€TO €404 Y-9LSETO0 ¥ANOD
Y-v0EETO 2ddd ¥-%0L¥T0 W™IVHD
Y-ZOEETO 14038 ¥-¥LCETO NaD
¥d-0S¥900 dNOST ¥-$00YTO0 SNINIH
¥-952ST0 gXWa ¥-¥LEPOO gvd
¥-902STO drwa 3-vo¥v00 Nve
¥=-9GSTT0 JAWT Y-PHSETO TadMY
¥-9G0LTO aawd ¥-$TSETO0 9HIAMY
4-ZS0ETO JOWd ¥-p9VET0 vHAMY
¥y-9599T0 OJOW3 U-ZSHPETO ECHAMY
¥-ZOESTO XGWI ¥-ZEPETO CTHIMY
¥-0VESTO g9WT ¥-TTPETO0 THIMY
¥-%2ZL9TO TYWI ¥-Z¥HE00 NATSY
¥-9€.900 dILSVd Y-¥STE00 ILIASAY
¥-9L¥900 SAILISA VU-9S%Z00 NATAY
¥-pTS900 ONILISA Y-09%Z00 AIAAVY
¥-9ZL€00 0IDSIa ¥-¥SSE00 LIAAY
¥-7992Z0 I4TWOA ¥-909€00 OIDOOV
Y-¥ZLETO d€D ¥-9L¥Z00 JNIDOV

(24 4%
XA ARV
(A4 A%
COZLED
Z0vTEO
T0ZLED
9GETED
FOTLEOD
POTLEOD
9€0L€0
9€0LED
0Z0LEO
0ZOLED
0€L9€0
0€L9€ED
9L99¢0
9L99¢0
¥299¢0
$299¢0
¥0S9€0
¥059¢0

:STOIWAS TVEOTD

(JA0/ 13U’ 1T A’ Ma) 32A9S$S
(A0 T3Y’TI1/a’ MI) : 00DSS$
(9A0‘13Y’ 19D I MY) ¢ SI1¥SS
(JAO TIITOT* 1°0Y) :9Sq¥s$
(A0’ T3V’ 1T A’ M) :SUA0SS
(JAO0TIY'TOT 1/08) S SHINSS
(NOD*TFY*TOT! I‘MY) *¥ITYES
(NOD/Tad’ 199 I/0¥) :NENSXS
(NOD*113Y ‘189 1 /0¥) 2 ¥ALSXS
(NOD‘113¥’ 199 I/0Y) :dOLSXS
(NOD‘ 134 ‘T18D°T‘0¥) STINIXS
(NOD/113Y‘ 199’ 1/0¥) :NNODXS
(NOD'TFY‘19D‘1/0¥) ¢ QODXS

(NOD/EY‘1ED1‘0¥) ¢ O09X$

4-20

MEMORY ALLOCATION

¥-9.70Z0 DIZSXS
¥-Z¥¥020 IMSX$
¥-9€L%00 ¥ENSX$

¥daSN JO UOTSISA TOH0D 103 STTJ UOTIRDOTTY KIOWSH

¥-92€ESTO
d-ZTCETO
4-ZTL9TO
g-9TISTO

¥d-901IST0
g-0€L9€0

9w s
ATYRXS
TYWXS
dOXIXS
XEXIX$
LINIXS

¥-$0€£0Z20 JAHOXS
¥-0T€0Z0 dHOXS
¥-9G€TZ0 dAIX$
¥-7290Z0 DODXS$
¥-ZL0TZ0 €90X$

¥-%95900
d-0LS¥Z0
¥-20€S00
d-ZLT0Z0

g-0L00TO
g-ZSL9T0

(saovd
(saovd

g-9LEETO0
¥-7Tv200

g-9%¥220
¥-9G9€T1Nn

Y-%GS9€T0
¥-ZS9€TO

(*3u0d) p-% @2anb1g

*8T) SAQYOM °809%

€€30030023NWIL QISIVIA

*GZ) SAQUOM "9¢¥

“bSeELY

TJANT
944010

DWOLNd
PUVIYI

EWNVIYd
CHYIYd

‘0

SITIA MIOM 40 FZIS
77004 390D J40 IZIS
SSILIYM dTId MNUOM
$Savad ITId MIOM
SSIONTYIITY FTII MHOM TYLOL

$SOILSILVLS ¥AATING ASVL xxx

¥-¥99220
4-0LEETO
-9%95T0
¥-990%00

d-00€EETO
¥-0TEETO

TSWXAT
1dH

anLdd
IMSIIO

WSS WS

NOTIIA
S04

-TVLETO
¥-9L9€T0
gd-099€T0

¥-a00€CTO

[QLTIJUTC L

4y-9%9%20
q-TEEE00

1420
2420
2410

LSIID

WDl

HONOY¥O
104140

4-21

CHAPTER 5

OVERLAY CAPABILITY

The Task Builder gives you the means to reduce the memory and/or
virtual address space requirements of a task. Tree-like overlay
structures created with the aid of the Overlay Description Language
(ODL) enable you to have only the operating portion of your task in
memory at any given time.

This chapter covers the following major topics:
e Overlay Description
® USER Overlay Tree
® Subroutine Communication

e Summary of Overlay Description

5.1 OVERLAY DESCRIPTION

To create an overlay structure, divide a task 1into a series of
segments as follows: :

° A single, controlling, root segment (always in memory)

° Any number of overlay segments (residing on disk and sharing
virtual address space and memory with one another according
to your overlay structure)

A segment is a set of modules and PSECTs. Segments that overlay each
other must be logically independent; that is, the components of one
segment cannot reference components of any segment with which it
shares virtual address space.

Consider also the general flow of control within the task. There are
several large classes of tasks that can be handled effectively by an
overlay structure. For example, one that moves sequentially through a
set of modules is well-suited to an overlay structure. Another that
selects one of several modules according to the value of an item of
input data is also well-suited, if speed of execution is not critical.
Tasks having several distinct functions are overlay candidates, too.

You must decide what kind of overlay segment to have at a given
position in the structure and how to construct it. Dividing a task
into disk-resident overlays saves physical space, but introduces the
overhead activity of loading these segments each time they are needed
and not present in memory.

5-1

OVERLAY CAPABILITY

5.1.1 Disk-Resident Overlay Structures

Disk-resident overlays conserve memory by sharing it. Segments that
are logically independent need not be present in memory at the same
time. Therefore, they can be allocated a common physical area 1in
memory for use by each as needed.

The example task TK1 shows the use of disk-resident overlays. TK1
consists of four input files. Each input file contains a single
module having the same name as the file. The task 1is built by the
command:

TKB TK1=CNTRL,A,B,C

where the file extensions conform to the defaults listed in Table 2-1.
The complete filenames and extensions are:

TK1.TSK
CNTRL.OBJ
A.OBJ
B.OBJ
C.OBJ

Here, the modules A, B, and C are logically independent, so:

e A does not call B or C and does not use the data of B or C.
@ B does not call A or C and does not use the data of A or C.
@ C does not call A or B and does not use the data of A or B.

You can define a disk-resident overlay structure in which A, B, and C
are overlay segments that occupy the same storage area in memory. The
flow of control for the task is as follows:

TK1l starts in the segment CNTRL.

CNTRL calls A and A returns to CNTRL.

CNTRL calls B and B returns to CNTRL.

CNTRL calls C and C returns to CNTRL.

CNTRL calls A again and A returns to CNTRL.
TK1 ends in the segment CNTRL.

In this example, overlay loading occurs only four times during the
execution of the task. So you can reduce the memory requirements of a
similar task without unduly increasing the overhead activity.

The effect of an overlay structure on memory allocation for the task
is discussed in the following paragraphs.

The lengths of the modules (expressed in octal) are:

Module Length in Bytes
CNTRL 10000

A 6000

B 5000

C 1200

The memory allocation produced when you build the task as a single
segment is shown in Figure 5-1.

OVERLAY CAPABILITY

— 24200
c

— 23000
B

— 16000
A

— 10000

CNTRL
-0

Figure 5-1 TK1 Memory Allocation

Figure 5-2 shows the memory allocation produced when you use the
overlay capability and build a multi-segment task.

— 16000
— 10000

CTRL — 0
DENOTES UNUSED

MEMORY
Figure 5-2 Allocation for a Multi-Segment Task

The memory allocation for a single-segment task requires 24200 (octal)
bytes, and the multi-segment task requires 16000 (octal) bytes
resulting in a net saving of 6200 (octal) bytes. 1In addition to the
module storage, storage 1is required for overhead in handling the
overlay structure. This overhead 1is described further on and
illustrated in the examples.

NOTE

Module lengths are given in octal and
module length calculations are done
using octal arithmetic. See Appendix B
for an octal-to-decimal conversion table
and instructions.

You can determine the amount of storage required for the task by
adding the 1length of the root segment and the length of the longest
overlay segment. Overlay segments A and B in Figure 5-2 are much
longer than overlay segment C.

If you can divide A and B into sets of logically independent modules,
you can reduce task storage regquirements even more. As shown in
Figure 5-3, A can be divided into a control program (AO0) and two
overlays (Al and A2). A2 is then divided into a control module (A2)
and two overlays (A2l and A22). Similarly, the B overlay can be
divided 1into a control module (B0O) and two overlays (Bl and B2). The
unlabelled portions of the block diagram represent unused memory
space.

OVERLAY CAPABILITY

The memory allocation for the task produced by the additional overlays
defined for A and B is shown in Figure 5-3 below. The left side of
the figure is unmarked for clarity. The paragraphs following the
figure discuss the method of reading a block diagram.

— 13600 — preeees

11000 —

B1

AVAILABLE
CORE SPACE
7500

AVAILABLE

Al
CORE SPACE

O S B

BO

[
!
|
|
|
1
A B0 1 A0
t
1
1
I
|
t

CNTRL CNTRL

At

DENOTES UNUSED Task Execution Time
MEMORY

Task Execution Time

Figure 5-3 How to Read a Block Diagram

A vertical line can be drawn through a memory diagram to show which
modules are in memory at a given time. On the right side of Figure
5-3 the line at t shows memory when CNTRL, A0, and Al are loaded. The
line at t+At shows memory when CNTRL, A0, A2, and A2l are loaded, and
SO on.

A horizontal line can be drawn through a memory diagram to show which
segments share the same storage. The line at 11000 passes through Al,
A21, A22, Bl, B2, and C, all of which can use the same memory. The
line at 7500 passes through Al, A2, Bl, B2, and C, all of which can
use the same memory.

5.1.2 Overlay Tree

The arrangement of overlay segments in a task can also be represented
schematically as a tree-like structure. Each branch in the tree
represents a segment. Parallel branches rising from the same
horizontal bar denote segments that overlay one another; these
segments must be logically independent. Branches connected end-to-end
represent segments that do not share virtual or physical memory with
each other; these segments need not be logically independent. The
topmost segments, which contain no subroutine calls, are leaves.

The Task Builder provides a language for representing an overlay
structure consisting of one or more trees (described in Section
5.1.4).

The single overlay tree shown in Figure 5-4 below represents the
overlay structure for the block diagram in Figure 5-3.

OVERLAY CAPABILITY

A21 A22
Al 72 B1 B2
A0 BO C

CNTRL

Figure 5-4 Multi-level Overlay Tree

The tree in Figure 5-4 has a root (the main module, or driver, CNTRL)
and two main branches (the major subprograms A0 and BQO). It also has
five leaves (the minor = subroutines Al, A2l1, A22, Bl, and B2).
Subprogram C, which calls no other routines, can also be considered to
be a leaf.

Relationships between the modules in an overlay tree are expressed as
paths. Paths show the flow of control between modules in a tree, and
show how to access a given module. The tree has as many paths as it
has 1leaves. The path down is defined from the leaf to the root. For
example in Figure 5-4:

A21-A2-A0-CNTRL
The path up is defined from the root to the leaf:
CNTRL-B0-B1l

If you know the properties of the tree and its paths, you will better
understand overlay loading and global symbol resolution (see also
Section 4.3).

5.1.2.1 Overlay Loading - Modules can call other modules that exist
on the same path. Look at the tree in Figure 5-4. Module CNTRL is
common to every path of the tree and therefore can call and be called
by every module in the tree. Module A2 can call the modules A2l1, A22,
A0, and CNTRL because these modules are on the same paths as A2, But
A2 cannot «call Al, Bl, B2, B0 or C because these modules are on
different paths from A2.

When a module in one overlay segment calls a module in another overlay
segment, the called segment must be in memory or must be loaded. The
autoload mechanism, which handles all high-level language loading, is
described in Chapter 6.

OVERLAY CAPABILITY

5.1.2.2 Resolving Global Symbols in a Multi-segment Task - In
resolving global symbols for a multi-segment task, the Task Builder
performs the same activities as for a single-segment task. The rules
defined in Section 4.3 for the resolution of global symbols in a
single-segment task also apply in this case, but the scope of the
global symbols is restricted by the overlay structure.

In a single-segment task, any module can reference any global symbol.
In a multi-segment task, however, a module can reference only global
symbols that are defined on the same path.

The following points, illustrated in the tree shown in Figure 5-5,
describe the two distinct cases of multiply-defined symbols, and
ambiguously-defined symbols.

In a single segment task, if two global symbols with the same name are
defined, the symbols are considered multiply-defined and an error
message is produced.

In a multi-segment task:
° Two global symbols with the same name can be legally defined
if they are on separate paths and are not referenced from a
segment common ta.poth.
° A global symbol defined more than once on separate paths, but
referenced from a segment that 1is common to both, is
ambiguously defined.

° A global symbol defined more than once on a single path is
multiply defined.

The procedure for resolving global symbols can be summarized as
follows:

1. The Task Builder selects an overlay segment for processing.

2. Each module in the segment is scanned for global definitions
and references.

3. If the symbol is a definition, the Task Builder searches all
segments on paths that pass through the segment being
processed, and looks for references that must be resolved.

4, If the symbol is a reference, the Task Builder performs the
tree search as described in step 3, looking for an existing
definition.

5. If the symbol is new, it is entered in a 1list of global
symbols associated with the segment.

Overlay segments are selected for processing in an order corresponding
to their distance from the root. The Task Builder considers a branch
farther away from the root or a leaf before processing an adjoining
branch.

When a segment is being processed, the search for global symbols
proceeds in the following order:

) the segment being processed
) all segments toward the root
) all segments away from the root

) all co-trees (see Section 5.1.4)

5-6

OVERLAY CAPABILITY

A22
A21 R(ref)
—Fieefi- Q(ref)
Al
et - A2 B1
Q(ref) R{def) Q(ref) B2
A0
Qldef) BO
S(def) Q(def)
T(def) S(def) c

| I |

CNTRL
S(ref)

Figure 5-5 Global Symbols in a Tree

‘The following notes apply to the use of the symbols Q, R, S, and T,
shown in the tree structure in Figure 5-5 above:

1.

The global symbol Q is defined in the segment A0 and BQO. The
reference to @ in segments A22 and Al are resolved by the
definition in A0. The reference to Q in Bl is resolved by
the definition in B0. The two definitions of Q are distinct
in all respects and occupy different overlay paths
(CNTRL-AO-A2-A22 and CNTRL-B0-Bl, respectively).

The global symbol R is defined in the segment AZ2. The
reference to R in A22 is resolved by the definition in A2
because there is a path to the reference from the definition
(CNTRL-A(0-A2-A22) . The reference to R in Al, however, 1is
undefined because there is no definition for R on the path
through Al (CNTRL-AO0-Al). To correct this situation, move
the definition of R to AQ.

The global symbol S is defined in A0 and BO. References to S
from Al, A2l, or A22 are resolved by the definition in AOQ,
and references to S in Bl and B2 are resolved by the
definition in BO. However, the reference to S in CNTRL
cannot be resolved because there are two definitions of S on
separate paths through CNTRL (CNTRL-AQ0 and CNTRL-BO). S is
ambiguously defined. To correct this situation, move the
definition of S to CNTRL.

The global symbol T is defined in A21 and A(0. Because there
is a single path through the two definitions
(CNTRL-A0-A2-A21), the global symbol T is multiply defined.
To correct this situation, remove the erroneous definition
and, preferably, place the correct definition in AO0.

OVERLAY CAPABILITY

5.1.2.3 Resolving Global Symbols from the Default Library - The
process of resolving global symbols may require two passes over the
tree structure. The global symbols discussed in the previous section
are included in user-specified input modules that the Task Builder
scans on the first pass. If any undefined symbols remain, the Task
Builder makes a second pass over the structure to try to resolve such
symbols by searching the default object module library (normally
SY:[1,1]SYSLIB.OLB). Any undefined symbols remaining after the second
pass are reported to you at the terminal.

When you define multiple tree structures (see Section 5.1.4), you run
the risk of multiply or ambiguously defining global symbols. This can
occur when the Task Builder tries to resolve global symbols during its
second pass over the co-tree structures. Multiple or ambiguous
definitions of global symbols can cause overlay segments to be
inadvertently displaced from memory by the overlay loading routines,
thereby causing run-time failures to occur. To eliminate these
conditions, the tree search on the second pass is restricted to:

° The segment in which the undefined reference has occurred

° All segments in the current tree that are on a path through
the segment

° The root segment

When the current segment is the main root, the tree search is extended
to all segments. You can extend the tree search to all segments for
the entire tree by including the /FU (full search) switch in the task
image file specification for the entire tree.

5.1.2.4 Resolving PSECTS in a Multi-segment Task - A PSECT has an
attribute that indicates whether the PSECT 1is local (LCL) to the
segment in which it is defined or is global (GBL).

Local PSECTS with the same name can appear in any number of segments.
(Thus, an often-used routine can be called with minimum system
overhead from many places in your task.) Storage is allocated for each
local PSECT in the segment in which it is declared. Global PSECTS
that have the same name, however, must be resolved by the Task
Builder.

When a global PSECT is defined in several overlay segments along a
common path, the Task Builder allocates all storage for the PSECT in
the overlay segment closest to the root.

BASIC-PLUS-2 COMMON and MAP blocks are translated into global PSECTS
and given the overlay attribute. In the tree shown in Figure 5-6 the
common block COMA is defined in modules A2 and A21. The Task Builder
allocates the storage for COMA in A2, because that segment is closer
to the root than the segment that contains A2l.

If the programs A0 and B0 use a common block COMAB, however, the Task
Builder allocates the storage for COMAB in both the segment that
contains A0 and the segment that - contains BO. A0 and B0 cannot
communicate through COMAB. When the overlay segment containing B0 is
loaded, any data stored in COMAB by A0 is lost.

OVERLAY CAPABILITY

Figure 5-6 shows the tree for task TKl, including the allocation of
the common blocks COMA and COMAB.

A21
COMA A22
A2
A1l COMA B1 B2
AO BO
COMAB COMAB C

CNTRL

Figure 5-6 Common Blocks in a Tree

You can specify PSECT allocation. If A0 and BO need to share the
contents of COMAB, you can force the allocation of COMAB into the root
segment by using the .PSECT directive, described in Section 5.1.3.4.

5.1.3 Overlay Description Language (ODL)

The Task Builder provides a language that lets you describe the
overlay structure of a task. An overlay description is a text file
consisting of a series of ODL directives, one directive per line.
This file is entered in a Task Builder command line, and is identified
as an ODL file by the presence of the /MP switch (see Section 3.1.7)
after the filename. If an overlay description text file is entered,
it must be the only input file specified.

The format for an ODL line is:
label: directive argument-list;comment

The label is a necessary part of the .FCTR directive only (see Section
5.1.3.2).

Directives act upon argument lists:

Named input files

Overlay segments

PSECTS

Lines in the ODL file itself

The hyphen, exclamation point, and comma operators, described in
Section 5.1.3.1, group these named task elements, or attach attributes
to them.

If the name belongs to a file, a complete file specification can be
given. Defaults for omitted parts of the file specification are as
described in Chapters 2 and 3, except that the default device 1is
always SY, and the default PPN is your own.

5-9

OVERLAY CAPABILITY

In addition, the following restrictions apply to argument-lists:
e The dot character (.) can only be used in a filename.

e Comments cannot appear on a line ending with a filename (see
Section 2.6).

5.1.3.1 .ROOT and .END Directives - There must be one .ROOT directive
and one L.END directive in your ODL file. The .ROOT directive tells
the Task Builder where to start building the tree, and the .END
directive tells Task Builder where the input ends.

The arguments of the .ROOT directive use four operators to express
concatenation, overlaying, memory and library residency:

° A palr of parentheses delimits a group of segments that start
at the same virtual address and thus share storage. The
number of nested parenthetical groups cannot exceed 16.

) The hyphen operator (-) indicates the concatenation of
storage. For example, X-Y means that sufficient memory will
be allocated to contain X and Y simultaneously. X and Y are
allocated in sequence.

° The exclamation point operator (!) allows the specification
of resident 1library overlay segments that will permanently
reside in memory vrather than on disk. The wuse of the
operator for executable task images is not supported. Memory
residency is specified by placing an exclamation point
immediately before the 1left parentheses (in the .ODL file)
that enclose the desired segments. For example:

.ROOT A-!(B,C)

In this example, segments B and C are declared resident in
separate areas of memory. The single starting virtual
address for both B and C is determined by the Task Builder.
The Task Builder rounds the octal length of segment A up to
the next 4K boundary. It then determines the physical memory
allocated to segments B and C by rounding the actual length
of each segment to the next 32-word boundary (256-word
boundary if the /CM switch is in effect; see Section 3.1.A),
and adding the determined value to the total memory required
by the task.

The exclamation point operator applies only to segments at
the first 1level 1inside a pair of parentheses; segments of
the ODL that are nested within the first 1level are not
affected.

. The comma operator (,) appearing within parentheses indicates
a virtual memory overlay involving the two modules that are
separated by the comma. For example, Y,Z means that wvirtual
memory can contain either Y or Z.

5-10

OVERLAY CAPABILITY

The comma operator is also used to define multiple tree
structures, as described in Section 5.1.4, when it separates
two structures as in TFIL.ODL below.

The directives:

.ROOT X-(Y,2-(Z21,22))
. END

describe the tree and corresponding memory diagram in Figure 5-7:

Z1 Z2

DENOTES UNUSED
MEMORY

Figure 5-7 A Simple Multi-level Tree

The overlay description for the task TKl described in Section 5.1..1,
contains the directives:

.ROOT CNTRL- (AO-(Al,A2-(A21,A22)),B0-(Bl,B2),C)
. END

5-10.1

OVERLAY CAPABILITY

Assuming that this ODL description appears in a file named TFIL.ODL,
you can build the required structure with the 1l-line command:

TKB TK1l.IMG=TFIL.ODL/MP

The switch /MP tells the Task Builder that there is only one input
file, TFIL.ODL, and that this file contains an overlay description for
the task.

5.1.3.2 J.FCTR Directive - The Overlay Description Language includes
another directive, .FCTR, to help you build large, complex trees and
represent them more clearly.

The .FCTR directive has a label in the left margin that is referenced
in a .ROOT or another .FCTR statement. The .FCTR directive lets you
extend the tree description beyond a single line. (There can be only
one .ROOT directive.)

To simplify the tree in TFIL.ODL, you can introduce the .FCTR
directive into the overlay description:

.ROOT CNTRL- (AFCTR,BFCTR,C)

AFCTR: .FCTR AQ-(Al,A2~-(A21,A22))
BFCTR: .FCTR BO-(B1l,B2)
.END

The label AFCTR designates the structure A0O-(Al,A2-(A21,A22)), as
shown in the .FCTR directive on the next line.

The label BFCTR designates the structure BO-(Bl,B2). The resulting
overlay description is easier to interpret than the original
description. The tree consists of a root, CNTRL, and three main
branches. Two of the main branches have sub-branches.

The .FCTR directive can be nested to 16 levels. You can change TFIL
to read as follows:

.ROOT CNTRL-(AFCTR,BFCTR,C)

AFCTR: .FCTR AQ0-(Al,A2FCTR)
A2FCTR: .FCTR A2-(A21,A22)
BFCTR: .FCTR BO-(B1,B2)
+.END
NOTE

The order in which .FCTR and .NAME lines
appear is irrelevant.

5.1.3.3 .NAME Directive - The .NAME directive lets you specify a name"
for a segment and to attach desired attributes to the segment. The
name must be unique with respect to filenames, PSECT names, .FCTR
labels, and other segment names that are wused 1in the overlay
description.

The chief uses of the .NAME directive are:

1. to uniquely name a segment

2.

The format of the

OVERLAY CAPABILITY

to permit a segment that does not contain executable code to

be loa

ded

.NAME directive is

.NAME segname|,attr] [,attr]

where:

segname

brackets

attr

is a 1- to 6-character name from
characters A - 2, 0 - 9, and $§

([1) denote optional attributes

the

Radix-50

represents one of the following attributes:

NOTE

Attributes are not attached to a segment
until the name is wused in a .ROOT or
.FCTR statement that defines an overlay
segment. when multiple segment names
are applied to a segment, the attributes
of the latest name given go into effect.

GBL

NOGBL

DSK

NODSK

The name is entered in the segment's global
symbol table.

The GBL attribute make possible the loading
of non-executable overlay segments by means
of the autoload mechanism (see Chapter 6).

The name is not entered 1in the
global symbol table.

segment's

NOTE

If the GBL attribute is
present, NOGBL is assumed.

not

Disk storage is allocated to the named
segment.

No disk space is allocated to the named
segment.

If a data overlay segment has no initial
values, but will have its contents
established by the running task, no space

for the task image on disk need be reserved

in advance. If the NODSK attribute has
been specified, an attempt to initialize
the segment with data at task-build time

results in a fatal error.

NOTE

If the NODSK attribute is
present, DSK is assumed.

not

OVERLAY CAPABILITY

In Figure 5-8, a modified tree for TK1l, the three main branches, A0,
B0, and C, are named by specifying the names in the .NAME directive,
and using them in the .ROOT directive. The default attributes NOGBL
and DSK are in effect for BRNCH1 and BRNCH3. But BRNCH2 has the
complementary attributes (GBL and NODSK) that cause the name BRNCH2 to
be entered into its segment's global symbol table, and the allocation
of disk space for the segment to be suppressed. BRNCH2 contains
uninitialized storage to be used at run-time.

A21 A22
Al A2 B1 B2
A0 B0
\ = //
\

\ | /

BRNCH1 BRNCH2 BRNCH3
(NOGBL,DSK) (GBL,NODSK) (NOGBL,DSK)

/
\ /

|
I*
A

\AUTOLOADVECTOR

CNTRL

Figure 5-8 TK1 Modified Tree Using the .NAME Directive

.NAME BRNCH1

.NAME BRNCH2,GBL,NODSK

.NAME BRNCH3

.ROOT CNTRL-(BRNCH1-AFCTR,*BRNCH2-BFCTR,BRNCH3-C)

AFCTR: .FCTR AO-(Al,A2-(A21,A22))
BFCTR: .FCTR BO-*(B1,B2)
.END

(*, in the statement labelled BFCTR:, is the autoload indicator. It
is discussed in Section 6.1.1.)

Global segment names allow segments containing only data, such as
message text, constant values, etc. to be autoloaded. Such data
segments must have the autoload indicator applied. See Section 6.1.1
for more information about the autoload indicator.

BRNCH2 above does have the autoload indicator applied so it can be
loaded by the following statement in the CNTRL program.

CALL BRNCH2

OVERLAY CAPABILITY

This action is immediately followed by an automatic return to the next
instruction in the CNTRL program.

You can also use segment names to make patches with the options ABSPAT
and GBLPAT (described in Sections 3.2.6.3 and 3.2.6.4).

NOTE
If there is no unique .NAME
specification, the Task Builder

establishes a segment name, using the
first .PSECT, file, or library module
name occurring in the segment.

5.1.3.4 JPSECT Directive - The .PSECT directive lets you direct the
placement of a global PSECT in an overlay structure. The name of the
PSECT (a l- to 6-character name composed from the set A-Z, 0-9, and §)
and its attributes are given in the .PSECT directive. This allows use
of the name to indicate which segment the PSECT will be allocated to.
An example of the use of .PSECT is given in the modified version of
task TK1l shown below.

Be careful about logical independence of the modules in the overlay
segment, but do not forget to take into account the requirement for
logical independence in multiple executions of the same overlay
segment. In other words, if you call a segment twice, be sure you do
not change the flow of control between the first call and the second.
(COBOL programmers should particularly avoid the ALTER statement.)

The flow of task TK1 (described in Section 5.1.1) can be summarized
this way. CNTRL calls each of the overlay segments in the order A, B,
C, A and each overlay segment returns to CNTRL. Module A is executed
twice. The overlay segment containing A must be reloaded for the
second execution because it was overlaid when B was loaded.

Module A uses the common block DATA3. The Task Builder allocates
DATA3 to the overlay segment containing A. The first execution of A
stores some results in DATA3. The second execution of A requires
these values. In this disk-resident overlay structure, however, the
values calculated by the first execution of A are overlaid. When the
segment containing A is read in for the second execution, the common
block is in its initial state.

To permit the data in DATA3 to be accessed on the second execution of
A, use a .PSECT directive to force the allocation of DATA3 into the
root. One way to do this is to replace the last four statements of
the previous overlay description of TK1 (starting with the .ROOT
statement) with the following:

.PSECT DATA3,RW,GBL,REL,OVR
.ROOT CNTRL~DATA3-(AFCTR,BFCTR,C)

AFCTR: .FCTR A0-(Al,A2-(A21,A22))
BFCTR: .FCTR B0-(B1,B2)
.END

5-14

OVERLAY CAPABILITY

5.1.3.5 1Indirect Files - The Overlay Description Language processor
can accept ODL text from an indirect file, if the text is included in
a file specified in the proper format. If a commercial "at" (@) is
the first character in an ODL line, processor reads text from the file
specified immediately after the "@". It accepts the ODL text from the
file as input at the point in the overlay description where the file
is specified. Two levels of indirection are allowed.

For example, if the file BIND.ODL contains
B: .FCTR Bl1l-(B2,B3)

then this text can be replaced by a line beginning with @BIND, at the
position where the text would have appeared:

Direct Indirect
.ROOT A-(B,C) .ROOT A-(B,C)
C: .FCTR C1-(C2,C3) C: .FCTR C1-(C2,C3)
B: .FCTR B1-(B2,B3) @BIND
. END .END

Note that the extension of the filename BIND is assumed to be .ODL.
If the file you are using does not have the .0ODL extension, you must
specify the extension to the Task Builder.

5.1.4 Multiple Tree Structures

The Task Builder lets you define more than one tree in an overlay
structure. A multiple tree structure contains one main tree and one
or more co-trees. RSTS/E loads the root segment at the start of the
task. Segments of the co-tree(s) are loaded by the Overlay Run-time
System as they are called.

Except for this distinction, all overlay trees have identical
characteristics; a root segment that resides in memory, and, usually,
two or more overlay segments. The main property of a structure
containing more than one tree 1is that storage is not shared among
trees. Any segment in a tree can be referenced from another tree
without displacing segments from the calling tree. Routines that are
called from several main tree overlay segments, for example, can
overlay one another in a co-tree.

The next two sections describe the procedure for specifying multiple
trees in the Overlay Description Language, and illustrate the use of
co-trees to produce the memory allocation best suited to the needs of
the task.

5.1.4.1 Defining a Multiple-Tree Structure - The comma, when included
within parentheses, defines a pair of segments that share storage.
The comma outside all parentheses delimits overlay trees. The first
overlay tree so defined is the main tree. Other trees in the same ODL
file are co-trees. Here is an ODL description of a main tree and a
co-tree:

.ROOT X, Y
X: .FCTR X0-(X1,X2,X3)
Y: .FCTR Y0-(Y1l,Y2)
.END

OVERLAY CAPABILITY

You define co-trees in the .ROOT directive by placing the comma
operator outside all parentheses and immediately in front of the
co-tree root (Y, in the example above). Any number of co-trees can be
defined. Co-trees can access any module in the main tree or any other
co-tree. 1In the example above, there are two overlay trees. The main
tree X contains the root segment X0 and three overlay segments. The
co-tree Y contains the root segment Y0 and two overlay segments.
RSTS/E loads segment X0 into memory when the task starts. The Overlay
Run-time System then loads the remaining segments as they are called.

A co-tree must have a root segment to establish linkage with its own
overlay segments. But co-tree root segments need not contain code or
data. A segment of this type, called a null segment, can be created
using the .NAME directive. The previous example is modified as shown
below, to move file Y0.OBJ to the root, and include a null segment.

+ROOT X, Y

X: .FCTR X0-Y0-(X1,X2,X3)
. NAME YNUL

Y: .FCTR YNUL-(Y1,Y2)
.END

The .NAME directive creates the null segment YNUL which replaces the
co-tree root that formerly contained Y0.OBJ.

5.1.4.2 Multiple-Tree Example - You can use multiple trees to reduce
the size of a task.

In the example below, CNTRLX and CNTRLY are logically independent of
each other and must be accessed from modules on all the paths of the
main tree. A co-tree for CNTRLX and CNTRLY that names a root segment
(CNTRL2) satisfies these requirements and reduces the amount of
storage required by the task. The overlay description looks 1like
this:

.NAME CNTRL2
.ROOT CNTRL-(AFCTR,BFCTR,C) ,CNTRL2- (CNTRLX,CNTRLY)

.END

The tree for the task TK1l is shown in Figure 5-9.

OVERLAY CAPABILITY

A21 A22

A1l A2 B1 B2

L

A0 BO C CNTRLX CNTRLY

CNTRL CNTRL2

Figure 5-9 Co-tree

The corresponding memory diagram is shown in Figure 5-10.

— 6200
CNTRLX CNTRLY
CNTRL2
i o N — 2200
A21 I A22 B1
Al AZ
A0
— 1000
CNTRL
- 0
DENOTES UNUSED
MEMORY

Figure 5-10 Co-tree Block Diagram

Specifying a co-tree decreases the storage allocation by 4000 bytes.
CNTRLX and CNTRLY can be accessed by all modules in the main tree.
The co-tree only requires that CNTRLX and CNTRLY be independent.

5.1.5 Overlay Core Image

The contents of the core image for a task with an overlay structure
are discussed briefly 1in this section. (The header and stack are
described in Section 4.2.)

OVERLAY CAPABILITY

The root segment of the main tree contains:
e modules that are resident in memory throughout task execution

e segment tables and autoload vectors that are required by the
overlay loading routines

Segment tables contain a descriptor for every segment in the task.
The segment descriptor contains information about the load address,
the length of the segment, and the tree linkage. The segment table is
described in detail in Appendix D.

Autoload vectors appear in every segment that calls modules in another
segment located farther away from the root of the tree. The autoload
mechanism is described in Chapter 6. The detailed composition of the
autoload vector is given in Section D.3.1.

The main tree overlay region consists of memory allocated for the
overlay segments of the main tree. The overlays are read into this
area of memory as they are needed.

The co-tree overlay region consists of memory allocated for co-tree
overlay segments. The co-tree root segment contains modules that,
once loaded, must remain resident in memory. The first co-tree 1is
loaded above the main tree overlay region. Other co-trees are loaded
above the overlay region of the preceding co-tree in the same fashion.
Figure 5-10 shows the block diagram for the main tree and the co-tree
of TKl1.

5.1.6 Overlaying Programs Written in a Higher-level Language

Programs that are written in a higher-level language usually require a
large number of library routines in order to execute. Unless care is
taken when overlaying such programs, these problems can occur:

1. Task Builder throughput may be drastically reduced because of
the number of library references in each overlay segment.

2. Default object module library references resolved across tree
boundaries can cause unintentional displacement of segments
from memory at run-time.

3. Attempts to task-build such programs can result in multiple and
ambiguous symbol definitions when a co-tree structure is
defined.

Effective procedures for solving these problems are:

1. Linking commonly used library routines into the main root
segment. Task Builder throughput can thereby be increased.

2. Using the /-FU switch (the default) to restrict the scope of
the default library search. Ambiguous and multiple
definitions, and <cross-tree references can thereby be
eliminated.

You can force library modules into the root by preparing a list of the
appropriate global references and linking the object module containing
them into the root segment.

OVERLAY CAPABILITY

The User's Guide for the language you are using contains other ways to
reduce the size of your task.

NOTE
(COBOL USERS ONLY)

COBOL overlay procedures require that
you use the /KER:xx switch at
compile-time to generate unique names
for certain compiler-generated PSECTs.
See the PDP-11 COBOL User's Guide for an
explanation of this switch. Be sure
your kernel characters are unique within
the ODL file.

5.2 USER OVERLAY TREE
Figure 5-11 shows the overlay tree for USER.

INTRO CRUNCH CHATR

USER

Figure 5-11 USER Overlay Tree

5.2.1 Defining the ODL File

After you determine how the final structure is to operate, create ODL
directives to represent the overlay tree, such as the following:

.ROOT TREE
TREE: .FCTR USER-LIBR-* (INTRO-LIBR,CRUNCH-LIBR,CHATR-LIBR)
LIBR: .FCTR [1,1]BASIC2/LB
. END
(The * in the ODL description is the autoload indicator. It is

described in Section 6.1.1.)

This section applies only to BASIC-PLUS-2 users.

5.2.2 Bullding the Task

You can build the task with the same options used in the example in
Section 3.3.1. Here, the names of the input files are replaced by a
single filename that designates the file containing the overlay
description:

NECUSER y USER=NEWQDL. /MP
COFTIONS
TOEG=RASTCR

5-19

OVERLAY CAPABILITY

Note that the ODL file specification automatically terminates command
input and the Task Builder automatically prompts for options.

The memory diagram for the COBOL and BASIC-PLUS-2 versions of USER is
shown in Figure 5-12 below:

CRUNCH CHATR

USER

DENOTES UNUSED
MEMORY

Figure 5-12 USER Block Diagram

5.3 SUBROUTINE COMMUNICATION

The three subroutines of the example program USER (INTRO, CRUNCH, and
CHATR) cannot transfer data among themselves because of the
trident-shaped tree structure. Any data stored in one module's copy
of a storage area is lost when another module, with its unaltered copy
of the original storage area is loaded. To transfer data, common
storage areas must be forced to the root or to a segment accessible by
all three calling segments. If your common storage area is not in the
root segment, you run the risk of losing your data when the non-root
segment containing your data is overlaid.

A .PSECT directive added to the overlay description forces common
storage areas to the root of the tree. The actual allocation is made
by using the PSECT name in the .ROOT directive so that the three
modules can communicate with one another. An overlay description
solving this problem might look like this:

. ROOT RDIN-RPRT-ADTA-*(PROC1,PROC2,P3FCTR)
P3FCTR: .FCTR PROC3-(SUB1,SUB2)

.PSECT ADTA,RW,GBL,REL,OVR,D

. END

Figures 5-13 and 5-14 contain the ODL files for the BASIC-PLUS-2 and
COBOL versions of USER, respectively. The reason for the more complex
COBOL ODL file is that COBOL deals with PSECTs where BASIC-PLUS-2
deals with modules. Consult the PDP-11 COBOL User's Guide for
additional information on COBOL-generated ODL files. The COBOL ODL
file in Fiqure 5-14 was generated by the system program CBLMRG (the
COBOL Merge program).

LROOT USER-LIBR-X CINTRO-LIBRy CRUNCH-L IBR s CHATR-L.ITRR)
LITRR: SFCTR DLy 1ARASITIC2/7LR
« EENT

Figure 5-13 BASIC-PLUS-2 USER ODL File

OVERLAY CAPABILITY

SMERGED ODL FILE CREATED ON 20-JUL-77 AT 143111129
SCOROL STANDARD QDL FILE GENERATED ON:! 19-JUL.-77 081G6143
$ CORORJ=USER, OBJ
JCORMATIN
SCOROL. 8TANDARD ODL FILE GENERATED ON! 14-JUL-77 tiriiodiz
SCORORBJ=INTRO QR
$ CORKER=IN
+ NAME INGOO3Iy GRI.
fFOECT SINOO2yGRLy LyRWyCON
INOO3%: JFOTR XINSOO3-$INOOZ
«NAME INSOOE» GRIL.
JGECT $INOOLyGRLy Iy RWy CON
INCOGE: JFCTR XIN$OQOG~$INOOL
INOVR$: JFCTR INOOZS » INOOTS
SCOROL STANDARD OIN. FILE GENERATED ON! 14-JUL-77 15326819
$CORORJ=CRUNCH . QR
$CORKER=CR
+NAME CR$003yGEL.
JPBECT $CROO2yGRLy Ly RWs CON
CROO3%: JFCTR XCR$OOJ-$CROOR
«NAME CR$00Gy GRL.
SPEECT $CROOLGRLy TyRWs CON
CROQNS ! JFLTR XCR$00G-$CROOL
CROVE$! JFLTR CROO3$ y CROOGS
SCOROL STANDARD ODL FILE GENERATED ON! 14-JUL-77 15327819
$CORORS=CHATR . QR
s COBKER=CH
« NAME CH$003y GERIL.
SFSECT $CHOO2yGRLy TyRWy CON
CHOO3%: JFCTR XCH$003-$CHOOR
«NAME CH$000» GERL.
SBECT $CHOOLyGRL» Ty RW» CON
CHOONS: JFCTR XCH$00G-$CHOOL
CHOVR$: JFOTR CHOO3%y CHOON %
CRORJE S JFOTR UBEROBJ-INTRO.ORJ-CRUNCH . OBJ~CHATR . ORJ
CROVRS: +FCTR INOVR$» CROVRS s CHOVRS
CROTS%E JFCTR U1y 1ICORLIR/LE
RMG4 JCTR S DLy LIRMSGLTR/LE
OBRJRTE: FCTR CRORJE-CROTSHE-RMES
SROOT OBJRT S~ (CROVRS)
«ENID

Figure 5-14 COBOL USER ODL File

Figures 5-15 and 5-16 show the memory allocation maps that
to these ODL files.

correspond

OVERLAY CAPABILITY

deW uoT3e0OTTVY AJIOWSW 090D I9sn GT-G 3InbTd

¢ dovd

T 39vd

*1€000 LEOOOO O0¥0000 Z00000 *SLIWIT T8 ¥SIA
*ZS9ST ¥¥Y9IE0 EYYIE0 000000 :SIIWIT WIW M/3

OQW :INIWOAS IOOY xx+»

T03LT LL-T100-8T oawW
9ZW 931 dVYW NOILVOOTIV XYOWIW ASL ¥ISND

SO0$HD “o¥T00 ¥$IZ000 LG99€0 P¥¥9L0
€00$HD *08000 0ZT000 €9S9¢€0 ¥¥¥9E0D
S00$¥D ‘88100 ©LZNO0 LEL9ED P¥PVOLO
€00$¥D “08000 NZTO00 €9G9¢€N ¥»FHIEO
SO0O0SNI “9LT00 092000 €2L9€0 ©¥¥¥9E0
€00$NI ‘8¥000 090000 €ZS9€0 ¥¥PICO
OQH *ZS9ST FPP9E0 EVP9E0 000000

HLONIT dod asvd

INOIIJI¥OS3A AVTYIAO XSI ¥ISND

LELYEO 000000 :SLIWIT SSIYAAV ASVL

SQYOM °"9€6L : JAZIS HOVWI ASVL

*T :SMOONIM SSEYAAY TYIOL

0TZLZ0 :SSIVAAY ¥YdIX Did

"ZTIS00 000TOO LLLTOO 000TO0 :SLIWIT ADVLS

[Lv‘002] : JIn SVl
¥97607 ¢ NOILVOIJIINAAI
N3O : IWUYN NOILII¥Vd

T0:LT LL-T100-82
9ZW 9¥L dVW NOILVDOTIY XJOWIW ¥SL°¥ASND

5-22

OVERLAY CAPABILITY

£d0° €au
£dO°ZawW
£rdo° Taw
£dO° 0aNW
g70°9I74d0D
d70°€dI74d0d
£dO° €AW
£rdo°Zaw
£do-"1aun
£40°0aKW
g70°91790D
g970° 917400
g70° 4917400
g970° 4174900
g70°917d0D
970°9171490D
g70°9174d0D
g970°dIT40D
g70°9174d0d
g70°9d17900
g70°4d174900
g970°49171d0D

a1id

del uoT3eOO0TIV AIOWdK TOH0D I3S()

69T60Z
69T60C
691602
¥9160C
0 VT
¥0° VY1
69T60C
69160C
69160C
¥9T160C
¥0°V1
¥o¥Y1
(A4
60 °¥T
60 °¥T
yZ°VI
¥T°VT
€°Vvl
€°VT
LO°YT
LT VT
LT°V1

LNJIJT

YLYHD
HONOYD
OYdLNI
yiasn
¥ONSYL
YOMSVYL
dLYHD
HONMID
O¥INI
qasn
VOMSYL
TILO
TILN
YSdOSH
YSdOSH
Jaxd
oaxd
X103
XLIQd
ansaav
010ad0¥Y
010adv

ITLIL

‘00000
‘00000
‘00000
‘00000
“00000
‘00000
‘00000
‘00000
‘00000
“00000
“00000
“00000
‘00000
00000
*00000
‘00000
°00000
‘0T000
‘07000
‘0¥100
‘0v100
*02¢€20
‘0zeco
‘90100
‘90100
‘obeco
‘0veEeo
K4 444
“Zvzoo
*ZZ000
*ZZ000
‘06800
‘05800
“8€LTO
“8€ELZO
*0sL00

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
Z10000
¢10000
¥12000
12000
0Z¥¥00
0Zvvo0
ZSTO000
ZST000
¥1¥900
¥T¥%900
29€000
¢9€000
920000
920000
Z2S100
TZSTO0
292500
292500
9GETO00
9GS€T00
¥vC000
¥¥2o000
0¥¥000

(*3u0)) GI-G 2anbtd

AV XAA)]
2TLZeo
[AYXAAY
¢TLZZO
crLezo
c1Lzeo
c1Lezo
c1Lzeo
[AVEAAY
[ATXA4Y
IAVEAAY
[AVXAAY
[AVEAAY
[AYXA4Y
C¢TILZZ0
[AVAAA]
[AYEAAL
00L220
00LzZZo
¥9v2Z0
vovzzo
[AA4U2))
[44 43 %))
[ASX44Y)
ZT1€220
9L9¢€T0
9L9ETO
PIEETO
vIEETO
99Z¢T0
99Z¢ET0
¥y¥STTI0
¥ySTTO
z9Zv00
29Z%0n
¥0LZ00
¥0LZ00
A XAy
ov¥¥ oo
000200

(JA0‘ 198 199 1/ MY) 2 00d80$

(A0 T13Y 19D I/ M) 2 TVIEOS
(JAO‘TIU ‘19D’ T/ Ma) 30VIEDS

(4A0’Ta¥’ 19D I/ MY) :Z7agdd$

(NOD/13¥ /199 I/ MY) 2 TA9dD$
(A0 T3Y¥ ‘19D I/ M) 2 00990$

(JAO‘T1TY 199/ A M) ¢ QTIIN

(A0 TIETEDIMY) ¢ TILN
Am>o~amm~qmu»H~omv"mmmwmz
(JA0‘T3Y’ 199’ A’ MY) :ASIDSH
(9AQ’T3Y¥’ 718D I M) :Z10AXd
(9A0‘ 134’ 199 @’ M¥) 2 1aOAXT
(JAQ‘ 1A 199/ A MY) 1QXIIAT

(3A0*TA¥ 18D I/ MY) ¢ 1LIqE

(9A0“ 13U’ 19D/ I/ M9) ¢ HII¥Y
(JA01TY/ 19D’ 1 M) 3 SNIADVY

(4AO‘13¥’ 189’ A’ MY) 2 LVAAOY
(NOD' Ta¥’ TT’ I'Md) 3°91Td °

NOILO3S

:SISJONAS NOILVYDOTTIV AYOWIRW

5-23

OVERLAY CAPABILITY

£rdo° 1A
£40° 0an

g710° 49174800
4709174900

£g0"€an
£d0°ZAaH
rdo- 1an
£do°0awn

g70°9174900
g70°917900

£rd0° edn
£dO°ZAawW
rdo* TdW
£90° 00N

g70°dITd0D

£90° €AW
rdo°Zaun
£d0° 1AW
£40°0dW

g70° 9417400
rdo" edn
£4O°ZANW
LdO° TAW
9o 0an

d70°4I7800

g70°9174900
£do° €dn
£dO"ZANW
£90° TAW
£dO " 0an

d70°917400

de uoT3edOTTY AIowdy TOH0D I9sN

6916027
¥9160C

AV 4
0 V1

69160C
69160C
69160C
91602

v0°V1
¥o°vI

69160C
69T60C
69T60¢C
¥91602

¥0° VY1

691602
69160C
691602
791602

¥0°¥T
69160
69160
69160C
791602
¥0 "Y1
¥0°VI
69T60¢C
69160¢C
69160C
vo1602

0 VY1

OJdINI
gasn

¥OASYL
YONSYL

YLVYHD
HONOYD
OdLNI
gasn

YOASYL

¥OASVL

YLVHD
HONMQYO
OJINI
giasn

YONSYL

YLVHD
HONNID
OYINI
qasn

YOASYL
dLVHO
HONOYD
OYLINI
Jyasn
¥OASYL
¥OMSYL
YLYHD
HONNY¥D
OYINI
g3asn

YONSYL

“00000
‘00000
“00000
*00000
‘00000
‘00000
‘00000
“00000
*00000
“00000
*00000
‘00000
‘00000
‘00000
00000
°00000
‘00000
“00000
“00000
‘00000
“00000
‘00000
"00000
‘06000
‘06000
*06000
‘06000
‘06000
*00000
‘00000
*00000
‘00000
*00000
*00000
00000
‘00000
‘00000
*20000
*Zoono
00000
‘00000
*00000
*00000
00000
*00000

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
ZET000
¢ET000
ZET000
¢ET000
ZET000
000000
000000
000000
000000
000000
000000
000000
000000
000000
200000
200000
000000
000000
000000
000000
000000
000000

(*3u0d) ST1-G 2ianbtd

9%0€20
9%0€20
9v0ECO
9%0¢€20
9%¥0€20
9%0€20
9%0€20
9%0€20
9¥0€20
9%¥0€Z0
9%0€20
9%0€20
9¥nNEZO
9%¥0€20
9%0€2Z0
9%0€£20
9%0€20
9%0€20
9%0€Z0
9%0€Z0
9%¥0€20
9%¥0€Z0
9¥0¢EZ0
¥1LT20
[AVAAAY
ATAAAY
¥TL2Z0
P1L220
LAY AA4Y
ACXAAY
¥YTLTTO
L AVAA4Y
y1L220
LAY RAAY
LAYXAAY
$1L220
LAYAAAY
[AVRAAY
[AYXAAY
[AVAAA
[AvAAAY
Z1LTo
z1L2Z0
[A Y XA
Z1Lezo

{NOD‘113¥ 185 1/ MY) 1 TaNEDS
(4A0/113Y* 189 1 M) : 0a4ED$

(9A0/13Y’ 19D/ 1/ MY) 1Z7aN8IS

(NOD‘13Y 18D’ I/ MY) 2 TENEOS
(A0 TFI‘1E9/ T/ MY) 2 0E¥EDS

(dAQ 199189 I/ M) 329 1€08

(NOD'TIY 169’ I/ MY) s THIEDS

(JA0'13Y ‘18D T/ M) 0¥ IED$

(A0 TEY 1189/ I/ M) 1 10I€D$

(JAOTIY /19D 1/ M) 1241908

(NOD/TTY 119D T/ MY) 2 TAIEDS
(4A0’TIY 19D I/ M) :041€DS

(3A0‘13¥ ‘1G9 ' T/ MY) 2 2aadgds

(NOD’T3Y /1199’ 1/ MY) : TA49D$

5-24

OVERLAY CAPABILITY

de uor3leoOTTV AIOWSKW TOIOD Issn

£g0°€dn
£490° €AW
£d0 " €dn
£90° €An
£40°€dn
£4dO° €AW
LEO°€AN
£dO" Edn
rgo° edn
£dO”° €AW
£do" €an
g0 edn
g70°4917490D
rdo " €dn
£dO°ZAaKn
rg0° 1dn
£490°00n
g70°4d1790D
g70°4917800
g70°4d174900
Le0” €AW
£4dO°ZARW
L£40° TanN
£r4do° 0an
g170°917490D

£do* edn
rdo°Zan

691607
691602
69T60C
6916027
691602
69T60C
691607
697602
69160C
691602
69160
69160C
¥0 VT
691602
69T60¢C
69160C
$9T602
0 VT
0 °V1

70 ° VT
69T60C
69160
69160
¥9160¢

¥0°V1

691602
69160¢C

JYIYHD
YLVHD
YLVYHD
YLVYHD
dLVHD
YLVHD
YLVHD
dLVYHD
ULVHD
YILVHD
YLVHD
YLYHD
VOASYL
YLVHD
HONNID
OYdINI
gasn
YOASYL
¥OASYL
YOASYL
JLVHD
HONNID
O¥INI
gasn
¥OASYL

YLVYHD
HONNYD

00000
‘00000
‘0v1I00
‘0¥ 100
“80000
“80000
“8%¥000
“8%000
“Z0000
*20000
"8LT00
“8LT00
‘00000
“00000
*0€000
‘0€000
*00000
‘00000
‘8¥ 100
“8%¥100
*0€000
"0€000
‘00000
‘00000
00000
“00000
00000
‘00000
00000
°00000
“00000
‘00000
00000
“T€000
"Z€000
00000
"Z0000
*20000
©zoo000
*20000
*Z0000
°00000

‘nnnnNnN
AVASACAVAY)

*00000
“00000

000000
000000
¥12000
¥12000
0T0000
010000
N90n00
090000
200000
¢00000
292000
292000
000000
000000
9¢€0000
9€0000
000000
000000
¥2zz000
¥Zzo00
9€0000
9€0000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
ov0n000
0v¥0000
000000
z00000
200000
z00000
200000
200000
000000

nannnn
(CAVAVAVAVAS)

000000
000000

(*3uo0d) §1-G @inbrg

02220
0Z2%20
v00¥20
¥00¥20
VLLEZO
VLLEZO
YILEZO
YTILEZO
ZTLEZO
ZTLEZO
0E¥€20
0E¥E20
0EVEZ0
0EVE€20
ZLEEZO
TLEETO
TLEEZO
ZLEETO
9% TE€Z0
9¥TEZ0
0TTEZ0
0TTEZ0
0TTEZ0
0TTEZO
0TTEZO
0TTEZO
0TTEZ0
0TTEZ0
0TT£Z0
0TTEZ0
0TTEZO
0TTEZ0
0TTE20
0S0€Z0
0S0£20
9%0£20
9%0£20
9%0£20
9%0€20
9%0£20
9%0£20
9%0£20

aBnNeczn
svutly

9%¥0€20
9%0€20

(NOD ‘1199789 1/ Md) 1 LASHOS
(NOD‘T13¥‘ 189D I ' MY) *WAJHDS
(NOD“T3¥ ‘118D I/ Md) 2 1AdHDS
(NOD ‘T3’ 19D I ' Md) ALTHOS
(NOO*T9¥’ 79D’ I/ MY) 1 LSTHOS
(NOD‘TA¥‘1aD ' I MI) :LITHOS
(NOD‘T3¥’ 17199 1 M¥) :90IHDS
(NOD/1AY¥’ 195 I MY) :INIHOS
(NOD‘T3¥ ‘19D’ I/ M3) :AAAHOS
(NOD/13Y ‘19D I ' MY) :LVAHOS
(NOD* T3 * 119D’ I‘MY) :DIVHOS
(NOD'T3Y¥ 719D’ I ‘M) *ILAVHOS

(JAO’THY 19D I/ M) 1TVXEO$

(A0 TTY 19D’ I MY) s TVYXEDS
(JAQ/TIY‘TaD ' I/ M) 1 0¥XED$

(JAO‘TIIY /7D’ 1/ M) 2NSIEDS

AQ'TAY 1189 ! I/ MY) :IMSEOS

o

5-25

OVERLAY CAPABILITY

£g90° TAKW
£ra0° 1AW
rga0°zan
£do*Zan
£90°Zan
rg0°zaw
rdo°zaw
£4d0O°ZAr
£d0O°ZAaKn
£d0°TAN
rdo"Zan
£dO°ZAKW
£490° AR
rg0°ZawW
rdo°ZauW
£dO* ZaKW
£d0O°ZAwW
£do°Zan
£g90°can
£40° €dNn
£dO" €AW

fag: (OR el

del uot13edOTITVY AIOWSW TOL0D I8sn

69160C
69160C
69160C
69T160C
69160C
69160¢
69T60¢C
69T60¢C
69160¢C
69160¢C
691607
69160¢C
691607
69T60C
69T60C
69160¢C
69160
69160C
69160¢C
69160C
69160C

69160C

O¥INI

OJINI
HONNYD
HONDJD
HONDYD
HONQOAD
HONNID
HONOY¥D
HONOYD
HONQOAD
HONO¥D
HONO¥D
HONOYD
HONOQYD
HONOYD
HONMAD
HONNAD
HONOYD

¥LVYHD

YILVHD

YLYHD

YIVHD

“ZT000
*ZT000
“00000
‘00000
“8L000
“8L000
‘98100
‘98100
*99000
“99000
‘y2000
‘¥Z000
°00000
‘00000
0vTO00
‘0¥ 100
‘80000
‘80000
“ZT000
*ZT000
°20000
*20000
*0T000
“0T000
“00000
‘00000
‘0€000
“0€000
“8%¥000
‘8%¥000
“Z8100
“Z8T100
“0€000
‘0€000
*00000
“00000
“8L000
‘8L000
‘ov100
‘ov100
*99000
‘99000
*%TNO0
‘¥2000

$10000
$10000
000000
000000
911000
911000
2L2000
TLT000
201000
201000
0€£0000
0€0000
n00000
000000
¥12000
yTZ000
010000
0T0000
¥10000
¥10000
200000
200000
Z10000
¢T10000
000000
000000
9€0000
9€£0000
090000
090000
992000
992000
9€0000
9€£0000
000000
000000
911000
9TT000
12000
¥12000
201000
Z0T000
0€0000
0€0000

(*3u0)) §T-§ 2anbra

[44 AT4Y
geysen
Tvseeo
cTvseo
yvvoco
Pyvoc0
PP¥9€0
(24221
02€sCo
02€SZ0
0L2s20
0L2S2T0
0L2S20
0L2SZ0
$50620
750620
yv0s20
¥v0520
NEOSZO
0€0S20
920520
920620
¥10S20
y10SC0
¥10S20
¥T0S20
96L¥2C0
9SL¥20
9L9%20
9L9%20
LAS 2440
0TP¥2o
(433 24\
ZSEVTO
ZSEVTO
TSEVTO
pyv9c0
¥vvoco
P¥v9£0
¥P¥9€0
06Z¥20
0sZveo
0ZZveo
0zTveo

(NOD‘Tag*199° I * MY) s DYVUNIS
(NOD ‘1349’ 789 I/ MY) :IAVNIS
(NOD‘TaY’ 19D ‘ I° Md) :200¥OS
(NOD‘TaY ‘1D’ I/ MY) $TO0N¥DS
(NOD/ 13’ 19D ‘ 1 M) : MUMIDS
(NOD‘13¥“ 189/ I/ MJ) *ASN¥OS
(NOD'TIY‘TED ' I MY) :1AS¥IS
(NODTT39 118D I/ M) *WAJED$
(NOD*THY’ 18D/ I/ MY) 1 1AAUDS
(NOD/13¥’ 199’ I M) :ALTIOS
(NOD’119¥’ 119D I/ MY) *1STHOS
(NOD/TaY’‘1T18D‘ I MH) :IITIOS
(NOD’ T3’ 18D I/ M) 1 60TUOS
(NOD/TAY’T9D’ I ‘M) s INFWOS
(NOD‘TaY 199 I/ MY) :aaq¥D$
(NOD‘T3Y* 19D’ 1/ Md) :TVAIOS
(NOD‘/THY’ 19D’ I/ MY) :DYWIDS
(NOD‘13¥ ‘18D I MY) :1AVDS
(NOD‘TT3Y’ 199 1/ Md) :Z00HIS
(NOD‘13¥ ‘19D I ‘Md) :TOOHDS
(NOD/ T3 199 1 MY) : MUMHOS

(NOD 139’199 “ I ‘M) $ESNHDS

5-26

OVERLAY CAPABILITY

dey uotjedolTV AIOWSBK TOIOD I9SN

£40°0dKW
£4d0°0an
£rdO°0dKn
L40°0an
£dO°0aK
£90°0aw
LEO0°0aNW
£dO°0dNW
£490° TANW
£E0°TAKW
rgo0° 1aun
r€o0° 1aKn
£do° TaNn
rgo0” 1aw
ig:(ohmet’]
£490° 1aKW
£do” TawW
£dO° TAW
rdo° 1an
£4O° 1AW
£rgo0° 1au

£rdo” TaW

¥9160C
¥9160C
¥9T160C
¥9160C
$9160C
v9160C
v9t160C
¥9160C
69160¢
69160
69160C
69T60C
69T60C
691602
69T160C
69160¢C
69T60¢C
69160C
691602
69T160¢C
69T60C
69160¢C

| —

(*3u0d) ST-G @2ianb14

qasn
gasn
q3sn
qasn
qasn
gdasn
gasn
gasn
OYINI
OYINI
OY¥INI
OdLNI
OYLNI
OdINI
OYINI
OYINI
OY¥LNI
OY¥INI
OYINI
OYINI
OY.LNI

OYLINI

‘90000
°ZT000
“Z1000
‘80000
“80000
°00000
00000
‘91000
“9T000
*0€000
“0€000
*08TO00
‘08100
*00000
‘00000
“00000
*00000
“8%¥000
*8%000
“¥LT00
‘¥LTO0O
°99000
°99000
“¥2000
“v2000
00000
‘00000
“0v¥TO00
‘0%100
“80000
°80000
‘Zvo00
“Zvooo
“20000
°Z0000
‘v0Z00
*¥0200
“00000
00000
*0€000
‘0€000
00000

‘AnnNANN
(VAVAV VAV

‘8¥T00
‘8¥T00

900000
¥10000
¥10000
010000
0T0000
000000
000000
020000
020000
9€0000
9¢€0000
¥92000
¥92000
000000
000000
000000
000900
090000
090000
962000
952000
201000
¢0T000
0€£0000
0€0000
000000
000000
¥12000
y12000
0T0000
010000
750000
260000
¢00000
200000
¥1€000
¥T€000
000000
000000
9€0000
9€0000
000000

nannnn
(RAVAVAV RV AV

¥22000
¥zzo00

LATARAY
0¥2LZ0
0vTLZO
0€TLZ0
0€TLZ0
0€2L20
0€TLZO
0TZLZO
0t1zLZ0
¢STLZO
¢STLZO
999920
999920
999920
999920
999920
999920
P¥v9€0
1444 X2)
P¥v9€0
¥¥voco
$96920
95920
¥€5920
¥€5920
¥€£5920
v€5920
0Z€920
02€920
0T€920
01€920
9€7920
9€2920
¥€2920
¥€2920
0TLSZ0
02LSZ0
02¢.LS20
0ZLS20
299620
299520
299620

OQCTN
CIT3CVU

9e¥SZ0
23 AFAY)

(NOD‘113¥ 189 I’ MY) :aTTSN$
(NOD ‘194’ 189 I‘ MY) 31STSN$
(NOD“T3¥ ‘118D I/ M¥) :LITSN$
(NOD‘TA¥’ 79’ I “Ma) :€0ISNS
(NOD /139’ Ta9 1’ MY} 1 INISAS
(NOD*113¥* 119D 1/ Md) :aaasns
(NOD ‘139’199’ 1’ M) s1¥AsSn$
(NOD*TaY ‘789 “ 1/ MY) $99VSN$
(NOD‘T3¥’ 19D/ I/ MY) :1aVsSA$
(NOD/19¥“71d9‘ 1/ MY) 2ZOONIS
{NOD* T3’ 1991/ M) *TOONIS
(NOD* 139’ 19D I/ M) : NUMNIS
(NOD’Ta¥ ‘78D’ I MY) *TSANIS
(NOD/113¥* 76D 1‘ Md) 3IASNIS
(NOD/ 13’ 199 1/ MY) SWAANIS
(NOD/TI¥’ 18D I ' MY) :LA4NIS
(NOD*13¥ ‘1D I/ MY) :QLTINIS
(NOD*T3¥’ 19D’ I/ MY) :1,SINIS
(NOD ‘T3 * 19D/ I/ MY) :LIINIS
(NOD‘13¥ ‘1D ‘ I/ MY) :dOINIS
(NOD ‘T3’ 79D’ I MY) *ININIS
{NOD‘T3Y 19D I/ MY) *GUANIS

(NOD‘13¥ ‘199 1/ M) 1 IVANIS

5-27

OVERLAY CAPABILITY

g70°917900
g70°dIT40D
g70°91IT400
g70°9I174900
g70°dITE00
g70°dI17900
g70°4IT€00
€70°9179d00
g70°491790D
g70°917T400
g70°dI790D
g70°49174d00
g70°491740D
g70°9179d0D

£do°0an

£dO° 00K

£dO° 00K

£d0°0anW

£4d0° 0an

£40°0aW

£4dO° 0aNW

del uOT3ROOTIVY AIOWRW TOH0D 19sN

80°VT
TT°V1
TZ°VI
12 V1
12 VY1
TZ V1
1T VI
80°VT
T2 °¥I
TZ°VI
80 YT
80°VT
TZ°VI
TZ°Y1
¥91602
¥9160C
¥91602
91602
$9160C
¥9160C
¥9160¢C

¢

(*3u0D) ST-§ @2inbra

TIVOX
09X
019)4
09X
09X
09X
09X

TIVOX
09X
09X

TT¥DX

TT¥OX
09X
0DX

¥yasn
¥yasn
qasn
giasn
gasn
gasn

gasn

*Z9000
°88000
“8%¥000
‘02000
"29000
‘29000
“8€000
"8¢£000
‘¥1000
‘¥1000
‘95000
‘95000
‘92000
‘92000
“Zv000
*Z%000
*08000
"08000
“ZT000
“Z1000
“91000
*91000
‘90100
*90T00
“¥€000
‘y€000
“88000
°88000
*Z1000
“ZT000
*8T000
“81000
*88000
°88000
“99000
‘99000
‘v2000
*¥2000
‘90000
‘90000
*0¥TO00
‘0¥ 100
“%0000
0000
°90000

9L0000
0€1000
090000
¥20000
9L0000
9L0000
9%0000
9%0000
910000
910000
0L0000
0L0000
2€0000
Z2€0000
¢50000
¢50000
0ZT1000
021000
¥10000
$10000
020000
020000
251000
ZST1000
Zv0n00
Zv0000
0€T000
0€T000
$10000
¥10000
220000
2Z0n000
0€£T000
0€TO000
Z0T000
¢0T000
0€£0000
0€0000
900000
900000
12000
12000
¥00000
¥00000
900000

9LT9¢€0
9L00€0
9T00€0
cLLLZO
00T9€0
00T9¢0
¢€09¢€0
Z€09¢€0
¥109€0
¥109¢€0
PTLSED
PTLSED
TL9GE0
TL9SED
0295¢€0
029S¢0
00SS€0
00GS€0
¥9¥5¢€0
P9vSED
144433V
1244330
cLeseo
cLzseo
0€ZSEOD
0€TSED
00TSEOD
00TGE0
¥90s¢€0
¥905¢€0
Zv0seo
(443
(AL TRAY
cvoLeo
0¥sLZ0
0v¥SLZO
0TsLZO
0TSLTN
z0SLZ0
Z0SLZ0
99ZLZ0
992LT0
T92L70
z9zLTn
¥sTLeo

(JA0’ T3 TOT’ 1/0¥) :SMUNWSS
(NOD* 7Y’ TOT* I/ M) 20INVSS
(NOD* T3 TDT° A M) 1 DATYSS
(NOD/TaY* 10T I/ M) 3¥ATVSS
(NOD*' 139’ 19D’ 1/ 0¥) :¥LINSXS
{NOD* 139’7189 I/0¥) :9dLSXS$
(NOD‘ Ta¥’ 799 I/0Y) :dOLSXS
(NOD’T3¥*199* I/0¥) 3LINIXS
(NOD* 1Y ‘19D 1°0¥) :NNODXS
(NOD‘T3¥‘119D‘1/0¥) : AO9XS
(NOD/THY’IgD'I’0Y¥) ¢ 09XS
(NOD*THY’ 19D’ 1/0Y) 1 LIXEXS
(NOD‘739/TdD*1/0¥) = YYIXS
(NOD/TT3Y* 199 ° 1/0Y) :dANIXS
(NOD‘113¥’ 118D 1/0¥) : 1aAdX$
(NOD/13Y’ 199 I/ 0Y) :TIVOXS
(NOD/Td¥ ‘1891 0¥) ¢ IIVXS
(NOD/ 134’189 1/ 0¥) :1HLIVXS
(NOD‘13d’ 19D 1 ‘M) :T00SAS
(NOD'T3Y’ 19D 1/ MY) s MIMSNS
{NOD ‘134199 " 1* MY¥) :ISNSNS
(NOO‘1 1Y’ 185 1/ Md) :IASSNS
(NOD/TaY ‘199 I MY} WIdSNS

(NOD‘73¥’ 7dD’ I/ MY) :1.adsns

5-28

OVERLAY CAPABILITY

¥-yT€0Z0
d-09%020
¥-ySL¥00
4-00T9¢€0
d-29L%00
4~-929900
g-Z€09€0
g-y109¢€0
g-9€v020
¥-029900
g-912L00
¥-Z¥TLOO
¥4=-9€G6L00
d-$¥GSL00
d-9%ZET0
¥-9¢2T020
g-ZTTSTO
¥-¥¥ST10
¥-Z90LT0
4-p2CLTO0
d-299910
¥-9.GLT0

0HZSX$
IMSX$
¥4nsx$
¥49NSx$
agnsys$
adn0Sxs
¥dISX$
dOLSX$
ZISSX$
qg9SX$
qIMIX$
IVONXS
IONXS
gINNXS
HYNKWX S
UNWX$
MLHXS
aanxs
aanxs$
aanxs
JOHXS$
agwxs

4-y¥E€STO
g-0€ZETO0
¥-0€L9TO
d-vETISTO0
d-$ZISTO
g-yZLGSEO
¥-250220
q-$99T20
g-%91220
d-7L9G¢€0
¥~-y95G€0
¥-209G€0
d-005S€0
g-¥LSGE0
g-029G¢€0
¥-00SS€0
g-¥9¥S€0
d-p¥¥S€0
¥=-ZLTGE0
d-7S2€00
¥4-0T0€00
d-9T€E0TO
d-$C€0TO
d-0€2G¢€0
d-9v€020
q-72€020

de uot13edOTTV AJI0WdK T0d0D 19Sn

262170 €
aTYWXS
TYRX S
dOXIXS
XgXIXS
LINIXS
NQJIXS
NSJIXS
VAIXS
NNO9X$
4LO9X$
dS09X$
GY0OXS
TJ09X$
aoosxs

09X 3
LIXIXS
JgIx$
daNIxs$
SIgaxs
J0vAXS
YAIAXS
gAIdxS
104axs
LANDXS
JAHOX$

¥-9Z€020
d-yLETTO
¥4-9.9020
d-ZTL0TO0
d-0T1ITZO
-y 15120
d-00TS€0
¥-0€ESTCO
g-%90G€0
d-yS¥v00
d-79v¥ %00
d-099900
g-259900
d-$0L200
g-zv0s€en
¥-050€20
g-9%0€z0
¥-ZGGETO
d-ZHGETO
d-ZLVETO
4-09%€TO
q-0%vETO
g-0ZvETO
¥-ZLEI00
¥-209900
4-0T2LZ0

aHOX$
aaoxs
SD00XS
070 10) 4
g4d0¥% ¢
STVYOXS
TIVOXS
TVOXS
ITIVXS
dyaavxs
aqgavxs
4aavxs
q49avx$
SDOVXS
I99vX$
¥SI90$
IMS€D3
Tadm
9gdM
yaam
£daM
Z9dM
T94M
NOSSN
AdSn
¥asn

¥-02€S00
4-0TZ020
¥-90T0T0
d=-0LL9TO
d-0€£€900
d-0¥ LS00
g-ySLS00
¥-0€Z500
¥-9TZ0TO
d-0€0STO
4-0€1V 10
d-95%¥G600
d-ZL5900
d~-050L00
d-y05200
d-0C9€TO
¥-Z20s¢€0
¥-9T9€TO
d-$09¢€T0
¥-ZTS900
¥4-0%9220
¥-099220
d-0T9€TO
d-pTHETO
d-0%¥%200
q4-%9%220

asn
aNKD
OTIWN
ann
TAZYON
12450
2490
asn
¥g9n
axan
vaan
soan
AdON
agvdan
AN9GALL
9743%8
14LISS
D132IS
ANOIS
N9Sdds
IAVYS
NIILSYH
X¥0sy
TIANY
€4a010
DWOINd

(*3u0)) gT1-S 2anbtg

g-¥L9€T0
d-ZL9ETO
d-0L9€ETO
d-999€T0
¥-929¢€10
g-9Tv€10
g-9%0TT0
4d-0TTTTIO
¥-9€2910
4-$ZTTT0
d-ZLVTT0
d-7LLTE0
d4-000€€0
¥-9T€ECO
d-yZeeeo
¥-L06200
q-9£€020
¥-909€T10
d-0TvETO
d-ZTIETO
¥-9710n€D
¥-9200¢€0
4-299520
d-pETVEOD
¥-z0L220
g-90v€T0

00000
°Z0000
“¥8000

enannanm

vuuuvu

*20000.

“00000
“02000
“v0T100
‘91000
‘00000

PHVNYd
EWVIYd
ZWYNYd
TNVIYd
WYIvd
X90d0
TA1doN
0dTION
avooaN
alaavu
a1da“w
NIYOSH
TLIDSKH
MIdOSH
TLADSK
9SH
IdNSVH
QTHNT
a1
aaax1
SO0$NI
€00$NI
O¥INI
OAINI
TSHXAI
B(ei:]

000000
200000
¥ZT1000

AnnAnn

vvyuuuv
200000
000000
¥20000
051000
020000
000000

¥-%99%T0 €0LID Y-$Z9€T0 ISILD
4d-P0T¥00 IMSIID ¥~-9€00£0 S00SUD
¥-9TEETO0 NNTIIA Y¥-9%00E0 €003¥D
¥-9ZEETO S3d ¥-96.%Z0 HONNID
d-vZEETO0 €404 ¥-0S€€00 IDJTHD
J-ZZEETO 7dod ¥-$T9€T0 ¥ANOD
¥-0ZE€ETO Tddd ¥-9500€0 SOOSHD
¥-99%900 dJdNODST H¥-9900€£0 £00SHD
Y-$LZSTO 9XWH Y-ZL€€Z0 AIVHD
d-$ZZST0 ¥CLWI ¥-ZTIPETO Nao
d-$LSTTO 4aWd ¥-ZZO0%TO0 SNINIA
¥-%L0LT0 QAWI Y-ZTI¥¥00 uvd
¥-0L0€T0 IOWT ¥-ZZ¥H00 Nvd
d-%L99T0 ODWI Y-79SE€T0 TAIMY
¥-0Z€STO XGWI Y¥-ZESET0 9dIMY
¥-95€GT0 99WI Y-Z0SET0 HHIMVY
¥-ZHL9T0 TUWE Y-0LPET0 £HAMY
¥4-§GL900 dJISVI ¥-0SHET0 ZHaMY
d-pTS900 SALISA Y-0EPET0 THIMY
¥-ZE€S900 ONIISA Y-N9PE00 NOTISY
d-vyL€00 OIDSIA Y¥-ZLTIE00 JIISAVY
¥-004220 IdTIWOd ¥-bLPZ00 NOTAY
~-ZVLETO d€D ¥-9.L¥Z00 AIAAV
¥-09L€T0 Td4ZD Y¥-ZLSE00 IIAQAY
H~-$TLETO 24Z0 ¥-%Z9£00 OIDOOV
¥-9.9€T0 2410 ¥-¥1S200 J0EIDVY

zevoeo
0zvogo
PLTO0E0

ViZOE0

LlUTU

¢LZ0E0.

cLZOED
9¥coco
¥LZ9€0
9¢zoge0
000000

:STOdHAS TVHOTO

(NOD/ 139 TOT A’ M) :SANMS S
(A0’ 1Y 1DT1/a‘ M) 1 2aDsss
(NOD‘1aY“ TO1a’ M) : TADSSS
{4A0’ T39I T’ M) 2 00DS$3
(A0’ TIY IO 1 M) ¢ STHSS
(NOD’TaY*TOT/a’ MY) :SA9¥sS
(NOD‘THY T I ‘M) 1 1ST¥SS
(JA0' 1AW 1T I0Y) 298auss
(A0 TIY’ TOT* A’ M) :SHAOSS
(NOD‘SaV¥’ 10T I/MY) 21AAOSS

5-29

OVERLAY CAPABILITY

dey uo13eO0TTV Ai0owdW TOLHOD 19SS {*3u0)) ST-§ @anbtd

+z0000 Z00000 ZLZOEO (WAO’TI’TED‘I’‘MY): SI¥SS
*00000 000000 ZZLO9EO (NOD’TIY*TIT'A’MI) DATVSS
*$LT00 9SZ000 ¥PY9E0 (NOD‘TAH’TED’1’MI) STOONIS

3114 JIN3IAI JTIIL NOILOIS
:SISAONAS NOILYOOTIV XUOWIW

*10000 T00000 Z¥0000 Z¥0000 :SLIWIT ¥78 NSIA

*9.100 09Z000 €ZL9E0 ¥HH9€0 :SLIWIT WIK Mg

GOOSNI :INIWODIS xx»

T03LT LL-"IN0-8T SO00$NI
6 3Jovd 9ZW g1 dYW NOIIVDOTIV XYOWEW NSI 9ISAD

¥-ZLTZOED €O00SNI

! STOEWAS TYEOTO

*Z0000 Z00000 ZLZOEO (FAQ‘TIY/TAD‘I'MY): SIVSS
*00000 000000 $ZS9E0 (NOD'TIW/TI1’A’Md) 1DATYSS
*g¥000 090000 P¥FYSE0 (NOD'TIY‘ 19D’ I’MI) 1ZOONIS

714 INIAI JTLIL NOILO3S
:SISJONAS NOILVDOTTY XYOWEW

*10000 T00000 T¥0000 T¥0000 :SIIWIT ¥Td ASId
*R%000 090000 £ZGS9€N P¥YIED :SIIWIT WIAW mM/4

€ONSNI :INIWDIS xx»

T0:LT LL-T1NL-82 €00$NI
8 ID¥d 9ZW 931 dYW NOILVDOTIV X¥OWIW MSL "¥dSNd

5-30

OVERLAY CAPABILITY

dew uot3ed0TTV LIoWdW TOHOD 18sn

(*3u0)) GT1-G 2anbig

“T0000 TO0000 ¥¥0000 ¥¥0000 :SLIWIT ¥1Td MSIQ
“88T00 ¥.LZ000 LELI9EO ¥PPPIE0 :SLIWIT WIW M/Y

S00SYD INIWOIS xxx

10:LT LL-1I0C-82Z 500$49D

IT 39¥d 9ZW 831 dgVW NOILVYDOTIV XYOWIW ¥SI ¥ISND
¥-ZLZ0E0 £00$4¥D

:STOgWAS TVIOTO

*Z0000 Z00000 ZLZOEOD (JAO‘TIY‘TIGD’I‘MH): SIVSS

*00000 000000 Z9G9€0 (NOD‘TIU TII’A’MI) :DATVSS

*8L000 9TTO00 PPH9E0 (NOD’ITY*T9D* I‘MI) :Z00¥DS

3713 INIGI IIIIL NOILD3S
:SISAONXS NOIIVDOTIV XJOWIW

*T0000 T00ON0OO £%0000 €¥0000 :SILIWIT ¥T9 ASIA

‘08000 0ZT000 €9G9€0 PHP9E0 :SIIWIT WIW M/Y

€00%9D :INIWOIS vax

T0:3LT LL-I0P-8T £00$3D

0T 39¥d 9ZW €931 dVW NOIIVDOTIV XMOWAW MSI YISND

¥-ZLZOEO SOO$NI

:STOGWAS TTVLOTO

5-31

OVERLAY CAPABILITY

dew uot3edoTTY AJowsy 70400 I9sn (-3uod) GT-G 2anbra

714

J7I4d

¥-ZLZOEO0 :€00SHOD
:STOIWAS TVLOIO

*Z0000 200000 ZLZO0E0 (¥AO’TIY’'TED’I‘MA) 3 SIASS
“00000 000000 29G9€0 (NOD‘TIA’'TIT‘A’MY) 1DATVSS
*8L000 9TTINO0 $¥¥9EN (NOD'TIYW'ID’I‘MY) :ZOOHDS

IN3AI ITILIL NOILOJS
:SISAONAS NOIIVDOTIV AYOWIW

*10000 TONO00 SP0O0NO SPONO0 :SIIWIT AT8 ASIA
*08000 0ZTO00 £9S9€0 PPPIE0 :SIINIT WIW M/Y

€00SHD :INIAWODIS xx=»

T0:LT LL-100-82 €00SHD
(A9 9ZW 931 dVH NOILVOOTIV X¥OWHW ¥SL°¥3SsNd

¥-ZLZOEO S00$YD

:STTOIHAS TV¥E0TO

*Z0N00 200000 ZLZOEN (YAO'TIAY'TED'I‘MY): SIASS
*00000 000000 9€L9€0 (NOD/TAW’TOT' A’ MI) :DATVSS
*98T00 ZLZ000 HHHP9EO (NOD‘TIY'TI8D1‘Md) :T00UDS

IN3AI FILIL NOILDIS

:SISJONAS NOILVYDOTTIV XHOWIW

5-32

OVERLAY CAPABILITY

dey uot3ledolTVY AJOWdKW TOHOD ISsn

(*3u0)) STI-5 @inbrg

92:00:00IWIL AISAVIZ

(SF9¥d "97) SAQUOM °9699 :FTIJd MIOM JO FZIS
(SdD¥d *€£€) SAYOM °8%S8 31004 FYOD J0 HFZIS
‘0 :SALIYM TTIJ NUOM

‘0 :SAvVIY TTIJ NHOM

*€9069 :SHONIYTJITY TTIJ NUOM IVIOL

$SOILSILVLS d3ATING ASYL xx»

¥-ZLZOEO SOOSHOD

:STOHWAS 'IVHOTD

*Z0000 Z00000 ZLZOEND (YAO'TIU/TED’I‘MY): SIUSS
*00000 000000 0999€0 (NOD‘TIY’TITA’MI) :DATYSS
*0¥T00 ¥TIZ000 ¥¥H9€0 (NOD‘TIY'TED‘I ‘M) :TOOHDS

[-———— - -

d7Id INIAI 3JITLIL NOILO3S

€T dDvd

$SISAONAS NOIIVOOTIV XJOWIW

“I0000 TOO0000 9%0000 9%0000 :SLIWIT ¥T8 NSIA
*0¥T00 $TZT000 LG99E0 ¥HPP9E0 :SIIWIT WAW M/¥

SO00SHD :INAWDIS xxx

T0:LT LL-"INC-8T SO00$HD
9ZHW d¥L dVYW NOILVOOTIV XIOWIW MSL*¥ISND

5-33

OVERLAY CAPABILITY

deW uotjedoTTV AJoweW Z-SNTd-DISvE 19sQ 9T-§ 2Inbra

¢ 3ovd

T 39¥d

:SISJONAS NOILVOOTIV XJOWINW

*90000 900000 L00000 Z00000 *SIIWIT NT€ NASIA
*00820 09E£S00 LSES00 000000 :SLIWIT KWIW M/Y

¥ISN :INIWOIS LOOH »x=»

i1t LL-100-8T1 gasn
9ZW €31 dVW NOILVYDOTIV AYOWIAW ASL°YISN

¥LVHO *00%00 0Z9000 LLT900 09€SO0
HONNMYD *ZLZO0 O0TH000 LLLSOO0 09£S00
OdINI *9ET00 O0TZO00 L9SS00 09€S500
qasn *008Z0 09€£S00 LSESNO0 000000
HLONIT dod asvd

INOILAI¥OSIA AYTHIAO MSIL ¥ISN

LLT900 000000 :SIIWIT SSTYAAV NSVL

SAYOM °009T : d2IS dIOVWI NSYL

*Z :SMOONIM SSI¥AAY TYIOL

$9%Z00 :SSIYAQY ¥YJIX D¥d

*ZTS00 000TOO0 LLLTOO O0OTON :SLIWIT MOVLS
[Ly*002] : oIn NSVl

€0XTOA : NOIIVDIJIINIAI

N9 : IWYN NOILII¥Vd

TP:TT LL-TINL-8T
9ZW €3 d¥R NOILVDOTIV ZUOWIW ASL YIS

5-34

OVERLAY CAPABILITY

dely uoT3IEOOTTY AIOWdW Z-SNTIJ-JISVE I9sn

rgo-9dsn
rgo°¥g4dsn
rg0°394dsn
£d0°4¥dsn
£do°¥Isn
rdao°y¥asn
rao*yasn
rdo°¥asn
rqo°-34dsn
g0 gaEsh
rgao°gdsn

g70°201sVvd

J411d

€0XTOA
€0XT0A
€0XT0A
€0XTO0A
€0XTO0A
€0XTO0A
€0XT0A
€0XTO0A

£0XTO0A

LNIAI

gasn
Jasn

Jasn

gdsn

STIVIS

J1LIL

‘00000
*20000
‘8%000
“00000
°Z0000
00000
‘%0100
“9T1000
“00000
“Z9000
“88000
‘2000
“02000
“00000
*00000
“00000
‘00000
*20000
°¢0000
“0z000
‘0z000
“Z1800
*Z1800
“8Z100
"8¢100
00000
*00000
°Z0000
“80000
“00000
“00000

*roTAN
ceLvv

“ZETO00
‘00000
*00000
"80€00
‘80¢€00

(-3uo))

000000
200000
090000
000000
200000
000000
0ST000
020000
000000
9L0000
0€T000
0€0000
¥20000
000000
000000
000000
000000
¢00000
z00000
¥Z0000
¥20000
ySv100
#SPTOO
002000
002000
000000
000000
200000
010000
000000
000000

ENn7ANN
Yyucuvvu

02000
000000
000000
¥9%000
¥9%000

91~-S @inbt4

ZT1TS00
0TTS00
0€0S00
0€0500
920500
920500
012500
900500
000000
Z¢T1500
959700
92797%00
¢097%00
209700
¢09%00
¢09v00
709700
009%00
009700
¥Sssvo0
¥SSv00
00TENN
00TE00
00LZNo
00L200
00L200
004200
0L9200
0L9200
0L9200
0L9200

BOH7NN
yIJrvoevu

¥9v200
¥o9%C00
¥9¥ 200
000200
000200

:STTOHWAS TVEO0ID

(NOD*TI3Y ‘101’ Q' M) :SANMSS
(A0’ TEY 1T A’ M) :Zaosss
{NOD/IEA 1T/ a’ M) 2 TADSSS
(A0 13Y¥’ 10T/ QM) :0a9S8$$
(JAO‘ TV 19D/ T/ MI) ¢ STHSS
(NOD‘I3¥’ 1T/ Q' M) :SADUSS
(JAO‘TIY‘TOT’ 1°0¥) :95a¥s$
(JAOTIY/T1DT A’ M) :STA0SS
(NOD*SEY/10T’ 1'Md) LAAOSS
(A0 T1TY ' TOT10Y) SHUNSS
(NOD“13Y1DT* I/ M) 10LNYSS
(NOO’TaY‘ TOT*a’ Md) $DATVSS
(NOD/TIY ‘1D 1/ MY) $¥ITVSS

(NOD/T3Y ' TOT' A’ M) 1 YILVALS
(NOD“ 13U T1 A’ M) :ONYLSS
(NOD/THY ‘107 a‘ M) :dSAVYSS
(NOD“1I3Y /107 Q' M) :V¥IVAdS
(NOD 139’114 a’ M) $YIVAIS
(JA0“113¥ ‘19’ q’ M) : TOIDIS
(NOD/T13¥ /189’ A’ MY) *LOV'1IS
(NOD“13¥ /119D ‘ Q' MY) :SOV'IIS
(NOD‘113¥‘1a5* a‘ MY) 1 ¥OVIIS
(NOD/T1EY'TOT'1I/M¥) ¢ FAODS
(NOD“T3Y ‘10T Q' M) AVYUVS
ﬂzoohqmmnquqhH“szmomqm"

NOILO3AS

5-35

OVERLAY CAPABILITY

¥-000Z00 SLINIS ¥-Z%ZZ0O

(¢

de UOT3ROOTTIV AI0oWSW Z-SNTI-DISYd I9sn

LEO°OYINI €0XTOA O¥LINI
L0 OdINI €0XTOA OY¥LNI
L0 OYINI €0XTOA O¥LINI
LEO°OJINI €0XTOA OYLNI
LE0 OJINI €0XTOA OYINI
[E0°OdINI €0XTO0A O¥INI
LHO°OYLNI €0XTOA O¥INI
LEO0TOYINI €0XTOA OYLNI
L90°O¥INI €0XT0A OYINI

4114 INGQT FTLIE

¥ 39vd

$949S ¥-929%00 O¥ULNI

*20000
‘00000
‘00000
‘00000
‘00000
‘00000
*Z¥000
“Zv0noo
‘90000
‘90000
*00000
“00000
“Z0000
“80000
*00000
“00000
‘98000
“98000
‘00000
00000

(*3u0d) 9T1-§ 2inbra

¢00000
000000
000000
000000
000000
000000
2S0000
¢5s0000
300000
900000
000000
000000
200000
010000
000000
000000
9ZT000
921000
000000
000000

920500
996500
995500
996500
996500
996500
¥15500
$15S00
906SN0
9058500
I AA
00L200
zL9Tno
0L9200
0L9200
049200
09€S00
09€500
09€S00
09€S00

$STOdWAS TVdOTIO

(MAO‘TAY‘TED‘ I/ MY) * STHUSS
(NOO“TEY“TOT'A’ M) :DATVSS

(NOD'TAY T A’ M) :VIVALS
(NOD‘THY ‘10T’ A’ MY) :DNILSS
(NOD*TIY 10T a’ MY) 2¥IVAdS
(NOD'TEY‘IDT‘q‘ MY) 1 ¥IVATS
(NOD/1T3¥’‘ 189/’ M¥) 31OV
(NOD‘T3Y ‘19D ' MY) :SOVTAS
(NOD‘1139 199 q’ Md) :¥DV'TIS
(NOD/TaY* 107’ 1/ M¥) 3 FA0DS
(NOD/THY ' TOT/Q’ M) : AVIYVS

NOILOIS

:SISdONAS NOILVYDOTIY XUOWIHW

*10000 T00000 0TO000 0TO000 :SIIWIT 7€ ¥SIA
*9€T00 0TZ000 L9SS500 09£G00 :SIIWIT WIW M/¥

ISARNY

LL-100-8T
9ZW 93L dYW NOIIVOOTIV XYOWIW

¥-9€9%00 HONNYD ¥-9%¥9%¥00 JLVYHO A-TH¥Z00

OYINI :INIWODIS xx«

OYINI
ASL¥ISN

¥-0STE00 VASIOS
s¥gd ¥-9¥%1Z00 $T¥D

5-36

OVERLAY CAPABILITY

dew uoT3edoTTY AIOWdW Z-SNTJ-DISVd 19sn

*Z0000
*00000
LE0HONNY¥D €0XT0A HONOY¥D °00000
“00000
LEOHONNYD €0XTOA HONNYD °00000
“00000
LEO*HONNYD €0XTOA HONOD¥D °*0Z000
“02000
LE0°HONNYD €OXTOA HONNYD °ZT000
*ZT000
LEO*HONNYD €0XTOA HONOYD 00000
“00000
LEO°HONNYD €0XTOA HONOYED °Z0000
*80000
LHO*HONNYD £0XTO0A HONQMD °*00000
*00000
LE0°HONO¥D €0XTOA HONQMD “H0T00
‘%0100
LEO HONNYD €0XTOA HONMMD 00000
*00000
g70°Z0ISVE WOT0 €NSdr$ °8£000
g70°Z01svd WOZ0 AOWACLS °09000
€70°Z0ISvE WOTO0 Qavdrs °s€000
*9€T00

dTId4 INIAI JTLIL

“T0000 TO0000 TTO0000 TTI0000
“TLZO0 0TH000 LLLSOO 09ESNO

(*3u0d) 91-¢

200000
000000
000000
000000
000000
000000
¥20000
¥zoo000
¥T0000
¥10000
000000
000000
200000
0T0000
000000
000000
0ST000
0ST000
000000
000000
9%0000
¥L0000
9%0000
0TZ000

IS 2NNt
S IOVd 9ZW 4L dVW NOILVYDOTIV XYOWIW

9Z0500
000900
000900
000900
000900
000900
¥SLS00
¥SLS00
0vLS00
0v¥LS00
00L200
00,200
L9200
0L9200
049200
0L9200
0LSS00
045500
0LSS00
0LSS00
¢25S00
9Z%s00
09€500
09€500

sinbtr g

(9A0*TTY 19D T/ M) = STASS
(NOD/T3Y¥’ 1T’ a’ Md) 2DATYSS

(NOD/TIY'TOT’ A’ M) 2YIVALS

(NOD‘TI¥’ T/ MY) :ONJISS

(NOD ‘739’ 10T’ @’ MY) :¥LVAdS

(NOD/TIY‘TOT/A’ M) *YLVAIS

(NOD‘113¥ ‘199 Q" MY) :I1OYTd$

(NOD ‘11341189’ MY) : SOVTIS

(NOD ‘1734 ‘1189 A’ MY) 1 9OVTIS

(NOD“ 1AW TOT‘I‘MY) : TAODS

(NOD‘TIY ‘10T’ Q' MY) AVHUYS

(NOD‘TIY/TIOT/I'MY) s°N1d *

$SISAONAS NOIIVDO0TTIVY AJOWIW

HONQYID

LL-T0nr-8T

:SLIWIT Y179 JSIa
ISLIWIT WIW MY

SINTHOIS xxx

HONDYD
MSIL°¥ISn

gd-09€G500 OYLINI

5-37

OVERLAY CAPABILITY

¥-yZSS00 dSSINS

dey uOT3ROOTTIV AJIOWSK Z-SNTd-DISvVd I9sN

¥-9¥5500 SdS$INS
¥-Z€SS00 4d$1nS
¥g-$SSS00 WASINS
¥-z95S00 ¥d$INS

g0 "YLYHD £0XTOA
LE0"UILVYHD £0XTOA
r90°*¥YIYHD €0XTOA
rg0°"YLYHD £0XTOA
£90 "dLVHD €0XTOA
L£E0"VLVHD €0XTO0A
£40¥LVHD €0XTO0A

£g90*¥LYHD €0XTOA

(

YLVYHD 00000 000000

00000 000000

dLVHD °96000 0¥T000

*96000 0¥TO00

YLVHD °“ZT000 ¥T0000

*ZT000 ¥T0000

YILVYHD °00000 000000

00000 000000

YLVHD °Z0000 200000

*80000 010000

4dIVHD 00000 000000

00000 000000

YLVHD °“0€Z00 9%v€000

*0€Z00 9¥E£000

dLYHD 00000 000000

“00000 000000

(*3uo0d) 9T1-g @anbra

9LT900
9LT900
9£0900
9€0900
20900
220900
00,200
00L200
9L9200

{(NOO ‘- TEY‘TT° QM) ONELSS
(NOO/ T’ 11/ A’ M) 1Y¥IVAdS
(NOD*T13Y¥ 1T/ A M) :YIVAIS

(NOD/1 134’ 18D/ a‘ Ma) 2 IOVIIS

09200 (NOD‘T3¥’1TE9‘q’My) :SOVIIS

0L9200
0L9200
¥S¥S00
¥S¥S00
¥S¥S00
¥S¥S00
09€500
09€500

(NOD‘113Y9 /199 a0/ MY) 2 ¥OVTIS
(NOD/TI¥’TOT/I'Md) ¢ Q0D
(NOD“THY 11 QM) P AVIYS

(NOD/ 1EY’TOT ' I°Md) s °X'1d *

NOILD3S

$SISAONAS NOILVDOTIV XYOWIW

*10000 T00000 ZTN0NO ZTIN000 :SIIWIT N8 ASIA
*00v00 0Z9000 LLT900 09ESO0D

g70°Z201sve WOZO0 AOWALS °09000 ¥L0000
*09000 ¥L0000
714 INIAI FILIL
19311
9 IA9Yd 9ZH 931

¥-9€5500 dWSINS
¥-7ZSS00 4IsINS
¥-%L¥S00 dSINO
¥-$06500 dSION

d-DEPS00 dSSIONW
¥-ZSHSN0 SASIONW
d-9€$S00 ddSIONW
¥-99%500 WASIOW

¥-09%¥500 YdSIOKW
g-Z¥¥S00 JWSIOW
¥-92%5N0 JISIONW
¥-0L5G00 HONNYD

ISLIWIT WIW M/Y¥

YIVHD :INIWDIS xx=»

LL-100-81

d¥W NOILVDOTIV ZHOWIW

Yd-16S00 dSITD
¥-Z9£500 dSS$SIAV
d-%0%S500 SASIAY
¥4-0L€S00 4d$I1av

YLVHD
¥SL YIS

¥-ZT1yS00 WASIAY
4-0Z¥S00 ¥4$IaV
d-yLE€G00 JWSIAY
g-09€S00 4ISIAY

$STOEWAS TVHOTIO

5-38

OVERLAY CAPABILITY

dely UOTI3ERDOTIVY AIoWdK Z-SNTd-DISVd i9sa (°3uo)) 9T1-G @inbtg

80:T0:00:dIWIL QISAVTH

(Ss3o¥d °£9) SAYOM "8ZT9T :dTIJ MYOM 30 HZIS
(S39¥d °0L) SAYOM °“ZSO8T :700d FI0D 4O IZIS
‘0 :SALIYM FTIJd HI0OM

‘0 :SavI¥ ATId MHOM

“ZOLE6 :SIONITYFITY FTIJ MHOM TVIOL

$SOILSILYLS ¥IATING MSVYL xxx

¥-9€¥G00 dJdSION U-$0%S00 SISIOW Y-0ZHS00N WASIOW ¥-$L€500 dWSIOW ¥-9%$S00 dSITO
¥-9Z%S00 dSINO Y-Z9€SN0 dSSIOW ¥-0L£S00 ddSIOW J-ZTHS00 YASIOW ¥-09€500 JISIOW ¥-HSyS00 ALVHD

:STOIWAS TVEOTO

*Z0000 200000 920500 (¥MAO’TIY'TED I’ MY) : SIL¥SS

©00000 000000 9LT900 (NOD'TAA’TDOT’A’MI) :0ATYSS
LE0UIVHD €0XTOA MUIVYHD 00000 000000 9LT900

*00000 000000 9LT900 (NOD‘TIE’TIT’A’MI) :VIVALS

5-39

OVERLAY CAPABILITY

5.4 SUMMARY OF THE OVERLAY DESCRIPTION LANGUAGE

1.

An overlay structure consists of one or more trees. Each
tree contains at least one segment. A segment is a set of
modules and PSECTS that can be loaded by a single disk
access, A tree can have only one root segment, but it can
have any number of overlay segments or co-trees.

An overlay description is a text file consisting of a series
of ODL directives, one directive per line. This file is
entered in a Task Builder command line and is 1identified as
an ODL file by the presence of the /MP switch after the
filename. An overlay description text file, if entered, must
be the only input file specified.

The overlay description language provides five directives for
specifying the tree representation of the overlay structure,
namely:

. ROOT
. END

. PSECT
.FCTR
. NAME

These directives can appear in any order 1in the overlay
description subject to the following restrictions:

a. There can be only one .ROOT and one .END directive.

b. The .END directive must be the last directive, because it
terminates input.

The tree structure is defined by the operators hyphen (-),
exclamation point (!), and comma (,) and by the use of
parentheses.

] The hyphen operator indicates that the arguments
preceding and following it are concatenated and thus
coexist in memory.

o The exclamation point operator is only used for resident
libraries and allows you to specify library overlay
segments that will permanently reside in memory.

® The comma operator within parentheses indicates that its
arguments are to overlay each other physically.

. The comma operator outside parentheses delimits overlay
trees.

° Parentheses group segments that begin at the same address
in memory.

CAUTION

DO NOT treat parentheses in ODL 1like
parentheses in English or mathematics.
Putting parentheses around a series of
segments for grouping purposes changes
the meaning of any commas within the
parentheses.

For example, the directives

.ROO
. END

T A-B-(C,D-(E,F))

OVERLAY CAPABILITY

define an overlay structure with a root segment consisting of the
modules A and B. In this structure, there are four overlay segments:
C, D, E, and F. The outer pair of parentheses indicates that the
overlay segments C and D start at the same location in memory; and
similarly, the inner parentheses indicate that E and F start at their
own shared address. The resulting tree, assuming that the next line
is a .END directive, looks like Figure 5-17.

m
M

e~]

>

Figure 5-17 Simple Tree (Summary Example)

5. The .ROOT directive defines the overlay structure. The
arguments of the .ROOT directive are one or more of the
following:

e File specifications as described in Section 2.8, item 7

e Factor labels, which match the labels of .FCTR directives
in the same structure

& Segment names

® PSECT names, which match the labels of .PSECT directives
in the same structure

6. The .END directive terminates input.
7. The .FCTR directive provides a means for replacing text by a

symbolic reference (the factor label). This replacement is
useful for two reasons:

a. The .FCTR directive extends the text of the .ROOT
directive to more than one line and thus allows complex
trees to be represented.

b. The .FCTR directive allows the overlay description to be
written in a form that makes the structure of the tree
more apparent.

For example:

.ROOT A-(B-(C,D),E-(F,G) ,H)
. END

can be expressed, using the .FCTR directive, as follows:

10.

OVERLAY CAPABILITY

.ROOT A-(F1,F2,H)

Fl: .FCTR B-(C,D)
F2: .FCTR E-(F,G)
.END

The second representation shows more clearly that the tree
has three main branches and that branches B and E each have
two leaves.

The .PSECT directive provides a means for directly specifying
the segment in which a PSECT is placed. It accepts the name
of the PSECT and its attributes. For example:

.PSECT ALPHA,CON,GBL,RW,I,REL

ALPHA is the PSECT name and the remaining arguments are
attributes. PSECT attributes are described in Table 4-1.

The PSECT name (composed from the characters A-Z, 0-9, and §)
must appear first in the .PSECT directive, but the attributes
can appear in any order or be omitted. If an attribute is
omitted, a default condition is assumed. The defaults for
PSECT attributes are RW, I, LCL, REL, and CON.

NOTE

The use of the dollar sign ($) in PSECT names is
customarily reserved for system software. While § is
a valid character in a PSECT name, its wuse in
user-generated PSECTs is not recommended.

As in the example above, therefore, specify only those
attributes that do not correspond to the defaults:

.PSECT ALPHA,GBL

The .NAME directive provides a means for designating a
segment name for use in the overlay description, and for
specifying segment attributes. This directive is useful for
creating a null segment, naming a segment differently from
the name of the first module, or naming a non-executable
segment that 1is to be autoloadable. If the .NAME directive
is not used, the name of the first file, PSECTs, or library
module is used to identify the segment.

The .NAME directive creates a segment name as follows:
.NAME segname,attr,attr

where segname is the designated name (composed from the
character set A-Z, 0-9, and §$), and attr is an optional
attribute taken from the following: GBL, NODSK, NOGBL, DSK.
The defaults are NOGBL and DSK. The defined name must be
unique with respect to the names of PSECT, segments, files,
and factor labels referenced in the ODL file.

A co-tree can be defined by specifying an additional tree
structure in the .ROOT directive. The first overlay tree
description in the .ROOT directive is the main tree.
Subsequent overlay descriptions are co-trees. For example:

.ROOT A-B-(C,D-(E,F)) ,X-(¥,2),Q-(R,S,T)

OVERLAY CAPABILITY

The main tree in this example has the root segment consisting
of files A.OBJ and B.OBJ; two co-trees are defined; the
first co-tree has the root segment X and the second co-tree
has the root segment Q. The tree structure looks like Figure

5--18.
E F

c D

L Y z R S T
B

Figure 5-18 Co-trees (Summary Example)

If the preceding overlay description were written wusing the .FCTR
directive, it might look like this:

.ROOT ATREE,XTREE,QTREE
ATREE .FCTR A-B-(C,D-(E,F))
XTREE .FCTR X-(Y,2)
QTREE .FCTR Q-(R,S,T)

.END

It is now clear that there are three trees involved in this structure
and that ATREE is the main tree (because it was the first tree
mentioned in the .ROOT directive).

Contrast this ODL description with the one preceding. Notice how

difficult it 1is to see at first glance in the first description that
there are three trees.

5-43

CHAPTER 6

THE AUTOLOAD MECHANISM

The autoload mechanism is a method for loading disk-resident overlays.
In the autoload method, the Overlay Run-time System handles loading
and error recovery. Overlays are automatically loaded when referenced
through a transfer-of-control instruction in the <calling segment
(CALL, PERFORM, GO TO, or GOSUB). No specific calls to the Overlay
Run--time System are needed.

This section discusses the following topics.
e Autoload Indicator
e Path-Loading
® Autoload Vectors

e Autoloadable Data Segments

6.1 AUTOLOAD

All loading in higher level languages is done for you by the autoload
method. Once loaded, the root segment of a co-tree remains in memory
throughout the execution process. The execution of a
transfer-of-control instruction to an autoloadable segment farther
away from the root automatically initiates the autoload process.

6.1.1 Autoload Indicator

You can assist the autoload method by putting asterisks (*) in the ODL
description of the task at the points where autoloading should take
place. The autoload indicator can be applied to the following
elements:

° Filenames - Make all the components of the file
autoloadable.

) Portions of ODL tree descriptions enclosed in
parentheses - Make all the elements within the parentheses
autoloadable. This includes elements within any nested
parentheses.

) PSECT names - Make the PSECT autoloadable. The PSECT must
have the I (instruction) attribute.

° Segment names defined by the .NAME directive - Make all
components of the segment autoloadable.

THE AUTOLOAD MECHANISM

) .FCTR label names - Make the first component of the factor
autoloadable. All elements of the .FCTR are autoloadable if
they are enclosed in parentheses.

If the autoload indicator is applied to an ODL statement enclosed in
parentheses, then every task element named within the parentheses is
marked as autoloadable. Applying the autoload indicator at the
outermost parenthesis level of the ODL tree description marks every
module in the overlay segments as autoloadable.

In Figure 5-8, if segment C consisted of a set of modules Cl, C2, C3,
C4, and C5, the tree diagram would resemble Figure 6-1.

{— T _cpT:T_R-{
|
_________ 1
|[— AFCTR | } |
| e | o |
| A21 A22 : r_ i } |
| | : BFCTR | o3
| |1 | |
: Al A2 : I B1 B2 l A
| | I [| I |
I |1 |
| A0 || 8O | <
I S — 1 I R A I S A —— i
CNTRL

Figure 6-1 The .FCTR Directive

Placing the autoload indicator at the outermost parenthesis level
assures that, regardless of the flow of control within the task, a
module will be properly loaded when called. The ODL description for
the task with this provision is:

.ROOT CNTRL-* (AFCTR,BFCTR,CFCTR)

AFCTR: .FCTR A0~ (Al,A2-(A21,A22))
BFCTR: .FCTR B0-(B1,B2)
CFCTR: .FCTR C1-C2-C3-C4-C5

.END

To be sure that all modules of a co-tree are properly loaded, you must
mark its root segment as well as its outermost parenthesis level:

.ROOT CNTRL~-* (AFCTR,BFCTR,CFCTR) ,*CNTRL2-* (CNTRLX,CNTRLY)

The example above assumes that one or more modules containing
executable code reside in CNTRL2.

THE AUTOLOAD MECHANISM

Note in the following example, how two .PSECT directives, a .NAME
directive, and five autoload indicators are used:

.ROOT CNTRL-(*AFCTR,*BFCTR,*CFCTR)

AFCTR: .FCTR AO-*ASUB1-ASUB2-* (Al1,A2-(A21,A22))
BFCTR: .FCTR (B0-(B1,B2))
CFCTR: .FCTR CNAM-C1-C2-C3-C4~C5

.NAME CNAM,GBL
.PSECT ASUB1,I,GBL,0OVR
.PSECT ASUB2,I,GBL,0OVR
. END
The autoload indicators function as follows:
(*AFCTR, *BFCTR,*CFCTR)

The autoload indicator is applied to each factor name.

® *AFCTR = *A(Q
® *BFCTR = *(B0-(B1-B2))
® *CFCTR = *CNAM

CNAM is an element defined by a .NAME directive.
Therefore, all the components of the segment to which
the name applies are autoloadable: CCl1, C2, C3, C4, and
C5.

*ASUB1 The autoload indicator is applied to the name of a
PSECT having the I (Instruction) attribute, so the
PSECT ASUB1 is autoloadable.

* (Al,A2-(A21,A22))
The autoload indicator is applied to a portion of the
ODL description enclosed 1in parentheses, so every
element within the parentheses is autoloadable: Al,
A2, A21, and A22.

The net effect of this ODL description is to make every element
autoloadable except ASUB2. The others are all accounted for.

6.1.2 Path-Loading

Autoload uses the technique of path-loading. In the path-loading
method, all the segments on the path from the calling segment to the
called segment are brought into physical memory and mapped if they are
not already there. Path-loading is confined to the tree in which the
called segment resides. A call from a segment in one tree to a
segment in another causes all unloaded segments in the second tree on
the path from the root to the called module to be loaded.

Look at Figure 6-1. If CNTRL calls A2l, then all the modules between
the calling module CNTRL and the called module A2l are loaded. 1In
this case, modules A0 and A2 are loaded. This permits the loading of
A2l and the call can now be made.

The Overlay Run-time System keeps track of which segments are loaded
and mapped, and issues load requests only for segments that are not in
memory and mapped. (If CNTRL calls A2 after calling Al, A0 1is not
loaded again. It is already in memory and mapped).

THE AUTOLOAD MECHANISM

A reference from one segment to another segment closer to the root and
on the same path 1is resolved directly. For example, A2 can
immediately access AQ because AQ0 was path-loaded when A2 was called.

6.1.3 Autoload Vectors

When the Task Builder sees a reference to a global symbol in an
autoloadable segment farther up the tree, it generates an autoload
vector for the referenced global symbol. The reference is changed to
a definition that points to an autoload vector entry. A
transfer-of-control instruction to the global symbol executes the call
to the autoload routine, $SAUTO. But references from a segment to a
global symbol up-tree in a PSECT with the D attribute (see Table 4-1)
are resolved directly.

The Task Builder often generates more autoload vectors than are
necessary, because it knows very little about the flow of control in
the task. You can tell the Task Builder more about the path-loading
necessary and the flow of control. If you put autoload indicators
only where they are needed, you can minimize the number of autoload
vectors generated.

Assume that the root segment CNTRL has the following contents:

PROGRAM CNTRL
CALL Al
CALL A21
CALL A2
CALL A0
CALL A22
CALL BO
CALL Bl
CALL B2
CALL C1
CALL C2
CALL C3
CALL C4
CALL C5
END

Note that all calls to the overlays come from the root segment. If
you put the autoload indicator at the outermost parenthesis level,
thirteen autoload vectors are generated for this task; one for each
segment.

You can eliminate the unnecessary autoload vectors by placing the
autoload indicator only where explicit loading is required:

.ROOT CNTRL-(AFCTR,*BFCTR,CFCTR)

AFCTR: .FCTR AQ-(*Al,A2-*(A21,A22))
BFCTR: .FCTR (B0-(B1,B2))
CFCTR: .FCTR *C1-C2-C3-C4-C5

.END

With this ODL description, the Task Builder generates only seven
autoload vectors which act on the following modules: Al, A21 and A22,
B0, Bl, and B2, and Cl. A0 1is path-loaded when Al 1is called.
Likewise, A2 is path-loaded when A2l is called. Autoload vectors for
A0 and A2 are therefore unnecessary. All modules of BFCTR are
autoloaded, because BFCTR 1is autoloaded and its entire contents are
within parentheses in the .FCTR statement. Therefore, autoload
vectors for B0, Bl, and B2 are unnecessary. The call to Cl loads the
segment that contains C2, C3, C4, and C5. Therefore, autoload vectors
for these modules are unnecessary.

6-4

CHAPTER 7

RESIDENT LIBRARIES

7.1 INTRODUCTION

A resident library is a block of data or code that resides in memory
and can be used by any number of tasks. These libraries are useful

because they make efficient use of memory:

l. By providing a way 1in which two or more tasks can
communicate, and

2. By providing a way in which a single copy of a date base or
commonly used subroutine can be shared by several tasks.

The first case is illustrated by Figure 7-1.

RESIDENT LIBRARY RESIDENT LIBRARY
S S
TASK A
TASK B
MONITOR MONITOR

Figure 7-1 System Memory Usage

In Figure 7-1, task A stores some result in 1library S and task B
retrieves the data from the library at a later time.

In the second case, common reentrant subroutines are not included in
each task image. Rather, a single copy is shared by all tasks, as
shown in Figure 7-2.

RESIDENT LIBRARIES

ROUTINE R
ROUTINE R
TASK A TASK A
ROUTINE R TASK B
TASK B
MONITOR MONITOR

Figure 7-2 Shared and Non-Shared Memory

As an example of the usefulness of resident 1libraries, consider the
current mechanism for access to RMS (Record Management Services) code.
Every task image that references RMS code must currently have that
code linked into the task by means of the Task Builder. This process
has a number of effects:

1. The Task Builder must resolve RMS global references each time
RMS code is linked to a task.

2. The size of the task image on disk increases as a result of
linking to the RMS code.

3. RMS code is duplicated in physical memory whenever two or
more executing tasks use RMS.

If you create an RMS resident library, the Task Builder makes only one
resolution of RMS global symbols. Also, because your task references
memory resident overlays in the library and not RMS disk overlays,
disk I/0 is minimized, task build time for other tasks that access RMS
can be reduced, and execution speed for those tasks can be increased.

Note that a resident library is contained in a contiguous portion of
physical memory, called a region. A region is resident in physical
memory only when a task references it. If no tasks are referencing
the region, that portion of physical memory is available for user
jobs.

RESIDENT LIBRARIES

7.1.1 Resident Library Installation

A resident library is a collection of reentrant, shareable routines or
data that the Task Builder links together into a task image file on
disk. The MAKSIL program (see the RSTS/E Programmer's Utilities
Manual) is used to format this disk file into Save Image Library (SIL)
format. The UTILTY system program ADD LIBRARY command is then used to
assign the task image portion of the SIL file to a contiguous region
of physical memory. Note that you can use a Monitor SYS call (-18) to
assign the task 1image portion of the SIL file to memory. Once the
body of shareable routines or data is linked, formatted, and assigned
to memory, it becomes a resident library that is accessible to user
tasks through "windows" in their virtual address space.

The creation, installation, and maintenance of resident libraries are
tasks that require a variety of distinct operations. The nature of
these operations causes them to be described in a number of different
manuals in the RSTS/E document set. The following list highlights the
operations involved and the manuals which contain the pertinent
information:

1. The task building of user-created library code to produce a
symbol table and task image. This information is contained
in Section 7.2.

2. Using the MAKSIL utility to format task builder output to
produce suitable Monitor input. This information is
contained in the RSTS/E Programmer's Utilities Manual.

3. The loading of MAKSIL output into memory for use by system
users. This operation can be performed in two ways. The
Monitor SYS calls to add, remove, load, and unload resident
libraries (S5YS -18) are described in the RSTS/E Programming
Manual., The use of the UTILTY system program to add, remove,
load, and wunload resident 1libraries 1is described in the
RSTS/E System Manager's Guide.

Consider the processes illustrated in Figure 7-3.

RESIDENT LIBRARIES:

RESIDENT LIBRARY

CREATION e
SOURCE
CODE
ASSEMBLER
OBJECT
MODULE
TASK BUILDER ACCESS TO A
l RESIDENT LIBRARY -
TSk |---- SuRCE
X
1
L
MAKSIL , ASSEMBLER
‘ 1
1
: A,
SAVE . RESIDENT
IMAGE ' LIBRARY ﬁg‘[’ﬁ’;
LIBRARY TASK
uTILTY TASK BUILDER
MEMORY LINK &I
RESIDENT |===""~ TO LIBRARY _~ — ~
LIBRARY TASK
Figure 7-3 Resident Library Access

RESIDENT LIBRARIES

A task can link to as many as five resident 1libraries. Virtual
address space must be allocated 1in 4K-word increments to map the
resident library. To conserve address space, you can define a memory
resident overlay structure for the library. In such a case, the
entire library is resident in memory, but the task is mapped into only
part of it at any one time.

A resident library has a task image file and a symbol definition file
associated with it. When a task links to a resident library, the Task
Builder uses the symbol definition file of the resident 1library to
link the task to storage and entry points within the library.

7.2 CREATING A RESIDENT LIBRARY

Use the /-HD switch (see Section 3.1.B) to signal creation of a
resident 1library. For example, when you specify this switch with the
task image file specification to the Task Builder command line:

TRE: ZETA ~HD s ZETA vy ZETO=Z L o 220 23

it causes the Task Builder to create a task image file (ZETA.TSK) with
no header. Because the task has no header, it is not executable.
Thus, other users can link against this file to reference the code or
data in the object modules (Z1, Z2, Z3) that compose the task. Note
that the symbol table and task image that the Task Builder generates
for resident library usage must be in an account that is accessible to
users who attempt to link against that library.

To create a resident library, request a task image output file and a
symbol definition file (containing a 1list of global symbols and
p—sections that reside within that task) from the Task Builder. Note
that the symbol definition file 1is the vehicle whereby the Task
Builder links a referencing task to specific data items and entry
points within the resident library and, thus, is required for resident
library usage.

7.2.1 Position Independent and Absolute Libraries

A resident library can be either position independent or absolute.
Position 1independent libraries can be placed anywhere in the task's
virtual address space. Absolute libraries are fixed in the wvirtual
address space.

Declaring a library to be postion independent causes the Task Buidler
to:

1. Include definitions for each root segment p-section in the
symbol definition (.STB) file. A task can later reference
this shared storage by p—-section name.

RESIDENT LIBRARIES

2. Automatically select the set of wvirtual addresses in the
referencing task that the resident library will occupy. You
can supress automatic selection with an APR specification
(that maps the library). See Sections 3.2.4.2 and 3.2.4.3.

If the resident library is not position independent, only an absolute
section (.ABS.) is included in the symbol definition file. All
references to code or data in such a library must be by global symbol
name.

You should declare a resident library to be position independent if:

1. The library contains code that executes correctly regardless
of its location in the address space of the referencing task.

2. The library contains data that is not address dependent.

3. The library contains data that is referenced by a program
(such data must reside in a named common block).

Because the p-section name is preserved in a position independent
library, you should observe the following precautions when building
and referencing such a library:

1. No code or data in the library should be included in the
blank (unnamed) p-section.

2. No code or data in a referencing task should appear 1in a
p-section of the same name as a section in the library.

3. The order in which memory 1is allocated to p-sections
(alphabetic or sequential) must be the same for the library
and its referencing task.

When a task references a position independent resident 1library, the
Task Builder automatically positions the library in the task's virtual
address space. If a reference is being made from a program but the
data is not position independent, you must supress automatic
positioning by means of an APR (Active Page Register) specification
(as described in Sections 3.2.4.2 and 3.2.4.3). The Task Builder uses
the APR specification to map the library.

Consider the following example:

In this example, the code contained in the task image file (ZETA.TSK)
is referenced absolute. If the object module code (Zl, Z2, Z3) is
position independent, you can specify the /PI switch (see Section
3.1.C) to the task image file and cause the Task Builder to produce a
position independent task image. Without the /PI switch, you must use
the PAR option (see Section 3.2.2.2) to position absolute code at the
desired virtual base address. For example:

TR ZETA=ZLy 22y T3

RESIDENT LIBRARIES

where the base address of the resident library will be 140000 (octal)
in every task that references this library. Note that the partition
base address (the PAR option argument) should be set as high as
possible to ensure that enough address space is left for the task.

A task can now link to the library (ZETA); however, before the task
can run, the 1library must be formatted (using MAKSIL) and made
resident in memory (using SYS call -18 or UTILTY). These procedures
are described in Section 7.1.1.

7.2.2 Resident Libraries with Memory Resident Overlays

If the resident library is to contain memory resident overlays, you
must define the overlay structure in an ODL (Overlay Description
Language) file. The Task Builder does not include the overlay data
base (segment descriptions, autoload vectors, etc.) or the overlay
run-time system in the resident library task image. Rather, the data
base 1is made part of the symbol definition file that the Task Builder
links to the referencing task. Note that the overlay run-time system
is the autoload mechanism that the Task Builder links into each task
which references overlays.

When you task build the referencing task, the following is
automatically included in the task's root segment:

l. The data base.

2. Global references to overlay support routines that reside in
the system object module library.

Each overlay segment in the resident library is marked with the NODSK
attribute (see Section 5.1.3.3) to suppress overlay load requests.

The symbol table file contains global definitions for only those
symbols that are defined or referenced in the root segment of the
library. Such symbols consist of the following:

1. Actual entry points to routines and data elements that are in
the root.

2. Autoload vector addresses that point to real definitions
within a memory resident overlay (see Section 6.1.3).

3. Actual definitions of symbols defined in a memory resident
overlay and referenced in the root.

You can force the inclusion of a global reference in the root segment
of the resident 1library by means of the GBLREF option. Thus, the
necessary autoload vectors and definitions can be generated without
explicitly 1including such references in an object module. The syntax
for the GBLREF option is as follows:

GBLREF=name

RESIDENT LIBRARIES

where name is a 1- to 6-character name from the Radix-50 character
set. If the definition resides within an autoloadable segment, the
Task Builder creates an autoload vector and includes it in the symbol
table file. 1If the definition is not autoloadable, the real value is
obtained and defined in the root segment.

No global symbol appears in the symbol table file unless:
l. It is defined in the root segment, or

2. It is referenced in the root segment and defined elsewhere in
the overlay structure.

The procedure used to create an overlaid resident 1library is as
follows:

l. Define an overlay structure that contains only memory
resident overlays.

2. Include in the GBLREF option, or provide in the root segment,
a module that contains the global references for defining
entry points within the overlay segments. The Task Builder
generates autoload vectors and global definitions for the
entry points.

This procedure is illustrated in the following example. The resident
library being constructed consists of reentrant code that resides
within the overlay structure defined as follows:

ROCT e D ORTw Okl
<NEAME A
« T

Root segment A contains no code or data and has a length of zero. All
executable code exists within memory resident overlay segments
composed of the files B.OBJ, C.OBJ, and D.OBJ. These object modules
contain global entry points for segments B, C, and D respectively.

The task image, map, and symbol table files are generated with the
following Task Builder commands:

TRE:
T
ENT

A/ ke vy A0 MF

OFTTOMNE S

GRLEEF =Ry Co X

TR P Ak 140000320000
THE BTACK=0

TR/

NOTE

The partition, task, and symbol table
file (STB) names must be identical when
creating a resident library.

RESIDENT LIBRARIES

References to entry points B, C, and D are inserted 1in the root
segment by the Task Builder and subsequently appear in the symbol
table file as definitions.

The definition for symbol C is resolved directly to the actual entry
point. The definitions for symbols B and D are resolved to autoload
vectors that are included in each referencing task. Unlike overlays
that reside in the task image, each autoload vector in the resident
library is included in each referencing task, regardless of whether
the entry points are called during task execution. Only those global
symbols defined or referenced in the root segment of the 1library
appear in the symbol table file.

The symbol table file also contains the data base required by the
overlay run-time system, in relocatable object module format. The
data base contains the following:

1. All autoload vectors.

2. Segment tables linked to the task.
3. Address window descriptors.

4, Memory region descriptor.

The overlay structure, as reflected in the symbol table 1linkage, is
preserved and conveyed to the referencing task by the STB file. Thus,
path loading for the resident library can occur exactly as it does
within a task. Aside from address space restrictions, there is no
limit on the overlay structures that can be defined for a resident
library.

7.2.3 Run-Time System Support for Overlaid Resident Libraries

Memory resident overlays within a resident library require additional
support from the overlay run-time system of the task image. The
resident library overlay data base that is linked within the image of
the referencing task has a structure that is identical to the data
created for an overlaid task. The only additional processing required
of the overlay run—-time system is to attach the library and obtain its
identification for use by the mapping directives.

Consider the following:

1. A resident 1library cannot wuse the autoload facility ¢to
reference memory resident overlays within itself or any other
resident library.

2. Named p-sections in a resident library overlay segment cannot
be referenced by the task. If reference to the storage is
required, such sections must be included in the root segment
of the 1library (this results in a loss of virtual address
space) .

RESIDENT LIBRARIES

3. The number of autoload vectors is independent of the entry
points actually referenced. The maximum number of vectors
will be allocated within each referencing task. In some
cases, the size of the allocation will be large.

4, There is an overhead of six instructions for each autoload
call even when the segment is mapped.

As implied in the previous list, you must exercise care to ensure that
an efficient memory resident overlay is implemented.

7.3 ACCESS TO A RESIDENT LIBRARY

In order to access a resident library, your task must first attach to
the memory region that contains the library. This ensures that the
library's, own access requirements (protection code, for example) are
fulfilled and that, once attached, the library will not be removed
from memory while a task is accessing it. That is, a resident library
need not be physically in memory when not in use (it can be marked as
non-resident and read into memory when needed) but it cannot be
removed from memory until all attached tasks are detached.

After your task has attached to the resident 1library, a virtual
address window must be created. The virtual address window defines
the portion of your task's virtual address space that 1is wused to
access the code or data in the resident library.

Finally, your task must map all or a portion of the created virtual
address window into all or a portion of the resident library.

These operations: attaching your task to a region, creating a virtual
address window, and mapping the window into the 1library can be
accomplished in one of two ways. The easiest (and recommended} method
is to include one or more options (COMMON, LIBR, RESCOM, or RESLIB) in
the Task Builder command line when you create the task. The options
(described in Sections 3.2.4.2 and 3.2.4.3) cause the Task Builder to
include the code to perform the attach, create, and map operations
when your task references the code or data in the resident library.
Alternatively, you can use Monitor directives (PLAS functions) to
perform these operations. The use of these directives is described in
the RSTS/E System Directives Manual.

Once the attach, create, and map operations are completed, vyour task
can directly access the code or data contained in the resident
library.

RESIDENT LIBRARIES

7.3.1 Referencing a Resident Library

When you construct the Task Builder command lines to link your task,
you 1indicate in the ENTER OPTIONS: portion of the command that a
resident library will be referenced. The options you use to generate
the reference are as follows:

1. RESLIB (Resident Library) or RESCOM (Resident Common Block)

RESLIB and RESCOM accept a file specification as one of their
arguments, thus allowing you to specify an account, filename,
and extension for the memory image and, by implication, the
symbol table files. Note that device and wunit number
specifications are not allowed.

2. LIBR (System Resident Library) or COMMON (System Common
Block)

LIBR and COMMON accept a 1l- to 6-character name (from the
Radix-50 character set) of a resident library; the library
memory image and symbol table file must reside under the
account specified by the system logical name LB:.

These four options (described in Sections 3.2.4.2 and 3.2.4.3) accept
two additional arguments:

1. The type of access required (RO - read only or RW -
read/write).

2. The first Active Page Register (APR) that is used to map the
library within the task's virtual address space (valid only
when the library is position independent).

A symbol table file of the same name as the resident library (but with
an .STB extension) must reside on the same device and under the same
account as the resident library memory image file (.TSK extension).
Consider the following example:

PESTABK MOF » §YMBOL = LNFUT

: o DT TONE §
TREZCOMMOIN=0 3 R
TRE 7~

The Task Builder expects to find files A.TSK and A.STB under account
LB:.

If the task is to reference a private resident library, the following
command series might be used:

TREETAGK y MAF y BYMEBOL = TNPUT
TK
EMT

DETLONE
LER=f20 e L3AB/RG

APPENDIX A

ERROR MESSAGES

This appendix lists the error messages the Task Builder produces.
Most of the messages are self-explanatory. 1In some cases, the line in
which the error occurred is printed. Task Builder produces diagnostic
and fatal error messages. Error messages are printed in two forms:

° TKB -- *DIAG*-error-message
° TKB -~ *FATAL*-error-message

Some errors are correctable when command input comes from a terminal.
With these errors, a diagnostic error message is printed: correct the

error, and continue the task building sequence. If the same error
occurs in an indirect file you cannot correct it on the terminal and
proceed, so the task-build is aborted. You have to correct the

indirect file in which the error occurred and rerun from the
beginning.

Some diagnostic error messages merely tell you about an unusual
condition. 1If you consider the condition to be something you can live

with, or to be normal to your task, you can go ahead and run the task
image.

If the explanation accompanying your error message refers to a system
error, please send a Software Performance Report (SPR) to DIGITAL.

ALLOCATION FAILURE ON FILE file-name
The Task Builder could not find enough disk space to store the
task 1image file, or did not have write access to the UFD or
volume that was to contain the file.

BLANK PSECT NAME IS ILLEGAL
overlay-description-line

The overlay description line printed contains a .PSECT directive
that does not have a PSECT name.

COMMAND I/0 ERROR

An I/0 error occurred on command input device. (The device may
not be on line, or there may be a possible hardware error.)

COMMAND SYNTAX ERROR
command-line

The command line printed has incorrect syntax.

ERROR MESSAGES

COMPLEX RELOCATION ERROR - DIVIDE BY ZERO: MODULE
modul e-name

A divisor having the value zero was detected in a complex
expression. The result of the division was set to zero. (A
probable cause is division by a global symbol whose value is
undefined.)

FILE filename HAS ILLEGAL FORMAT

The file filename contains an object module in an invalid
format.

ILLEGAL DEFAULT PRIORITY SPECIFIED
option-line

The option line printed contains a priority greater than 250.
ILLEGAL ERROR-SEVERITY CODE octal-list

System error (no recovery). Please send DIGITAL an SPR with a
copy of the message containing the octal-list as printed.

ILLEGAL FILENAME
invalid-line

The invalid line printed contains a wild card (*) in a file
specification. The use of wild cards is prohibited.

ILLEGAL GET COMMAND LINE ERROR CODE
System error (no recovery). Please send an SPR to DIGITAL.

ILLEGAL LOGICAL UNIT NUMBER

invalid-line
The invalid line printed contains a device assignment to a unit
number larger than the number of logical units specified by the
UNITS keyword or assumed by default if the UNITS keyword is not
used.

ILLEGAL MULTIPLE PARAMETER SETS
invalid-line

The invalid line printed contains multiple sets of parameters for
a keyword that allows only a single parameter set.

ILLEGAL NUMBER OF LOGICAL UNITS
invalid-line

The invalid-line printed contains a logical unit number greater
than 14.

ILLEGAL ODT OR TASK VECTOR SIZE
The ODT or SST vector size specified is greater than 32 words.

ILLEGAL OVERLAY DESCRIPTION OPERATOR
invalid-line

The invalid line printed contains an unrecognizable operator in
an overlay description. This error occurs if the first character
in a PSECT or segment name is a dot (.).

ERROR MESSAGES

ILLEGAL OVERLAY DIRECTIVE
invalid-line

The invalid 1line printed contains an unrecognizable overlay
directive.

ILLEGAL PARTITION/COMMON BLOCK SPECIFIED
invalid-line

The invalid line printed contains a partition or a common block
that does not lie on a 32-word boundary.

ILLEGAL PSECT/SEGMENT ATTRIBUTE
invalid-line

The invalid line printed contains a PSECT or segment attribute
that is not recognized.

ILLEGAL REFERENCE TO LIBRARY PSECT PSECT-name
The task has attempted to reference a PSECT name existing in a

shared run-time system but has not named the run-time system in a
keyword.

ILLEGAL SWITCH
file-specification

The file specification printed contains an illegal switch or
switch value.

INCOMPATIBLE REFERENCE TO LIBRARY PSECT PSECT-name

The task has attempted to reference more storage in a run-time
system than exists in the run-time system definition.

INCORRECT LIBRARY MODULE SPECIFICATION
invalid-line

The invalid line contains a module name with a non-Radix-50
character.

INDIRECT COMMAND SYNTAX ERROR
invalid-line

The invalid 1line printed contains a syntactically incorrect
indirect file specification.

INDIRECT FILE OPEN FAILURE
invalid-line

The invalid line contains a reference to a command input file
that could not be located.

INSUFFICIENT PARAMETERS
invalid-line

The invalid line contains a keyword with too few number of
parameters to complete its meaning.

INVALID KEYWORD IDENTIFIER
invalid-line

The invalid line printed contains an unrecognizable keyword.

ERROR MESSAGES
INVALID PARTITION/COMMON BLOCK SPECIFIED
invalid-line

The invalid line contains a partition or common block that is
invalid for one of the following reasons:

1. The base address of the partition is not on a 4K boundary
or is not 0.

2. The memory bounds for the partition overlap a run-time
system.

I/0 ERROR LIBRARY IMAGE FILE

An I/O error has occurred during an attempt to open or read the
.STB file of a Run-Time System.

I/0 ERROR ON INPUT FILE file-name
I/0 ERROR ON OUTPUT FILE file-name

LABEL OR NAME IS MULTIPLY DEFINED
invalid-line

The invalid line printed defines a name that has already appeared
as a .FCTR, .NAME, or .PSECT directive.

LIBRARY FILE filename HAS INCORRECT FORMAT

A module has been requested from a library file that has an empty
module name table.

LOAD ADDR OUT OF RANGE IN MODULE module-name
An attempt has been made to store data in the task image outside
the address 1limits of the segment. This problem is usually
caused by one of the following:

1. an attempt to initialize a PSECT contained in a run-time
system

2. an attempt to initialize an absolute location outside the
limits of the segment or in the task header

3. a patch outside the limits of the segment it applies to

4. an attempt to initialize a segment having the NODSK
attribute

LOOKUP FAILURE ON FILE filename
invalid-line

The invalid line printed contains a filename that cannot be
located in the directory.

LOOKUP FAILURE ON SYSTEM LIBRARY FILE

The Task Builder cannot find the system library
(SY:[1,1]1SYSLIB.OLB) file to resolve undefined symbols.

ERROR MESSAGES

LOOKUP FAILURE RESIDENT LIBRARY FILE
invalid-line

No symbol table (.STB) file or task image file (.TSK) can be
found in account [1,1] for the run-time system.

MAXIMUM INDIRECT FILE DEPTH EXCEEDED
invalid-line

The invalid line printed gives the file reference that exceeded
the permissible indirect file depth (2).

MODULE module-name AMBIGUOUSLY DEFINES PSECT PSECT-name

The PSECT named has been defined in two modules not on a common
path and referenced by a segment that is common to both paths.

MODULE module-name AMBIGUOUSLY DEFINES SYMBOL sym-name

The module named references or defines a symbol whose definition

exists on two different paths but is referenced by a segment that

is common to both paths.
MODULE module-name ILLEGALLY DEFINES XFR ADDRESS PSECT-name addr

1. The start address printed is odd.

2. The module named is in an overlay segment and has 'a start
address. The start address must be in the root segment of
the main tree.

3. The address is in a PSECT that has not yet been defined.
Please send an 'SPR to DIGITAL if 'this 1is caused by
DIGITAL-supplied software.

MODULE module-name MULTIPLY DEFINES PSECT PSECT-name

1. The PSECT named has been defined more than once in the same
segment with different attributes.

2. A global PSECT has been defined more than once with different
attributes in more than one segment along a common path.

MODULE module-name MULTIPLY DEFINES SYMBOL sym-~name

1. Two definitions for the relocatable symbol sym-name have
occurred on a common path.

2. Two definitions for an absolute symbol with the same name but
different values have occurred.

MODULE module-name MULTIPLY DEFINES XFR ADDR IN SEG
segment-name ' :

More than one module making up the root has a start address.
MODULE module-name NOT IN LIBRARY

The Task Builder could not find the module named on the /LB
switch in the library specified.

NO DYNAMIC STORAGE AVAILABLE

The Task Builder needs additional symbol table storage and cannot
find it.

ERROR MESSAGES

NO MEMORY AVAILABLE FOR LIBRARY library-name

The Task Builder could not f£ind enough free virtual memory to map
the specified Run-Time System.

NO ROOT SEGMENT SPECIFIED
The overlay description did not contain a .ROOT directive.

NO VIRTUAL MEMORY STORAGE AVAILABLE
The maximum permissible size of the Task Builder work file was
exceeded. Consult Appendix F for suggestions on reducing the
size of the work file.

OPEN FAILURE ON FILE file-name

OPTION SYNTAX ERROR
invalid-line

The invalid line printed contains unrecognizable syntax.

OVERLAY DIRECTIVE HAS NO OPERANDS
invalid-line

All overlay directives except .END require operands.

OVERLAY DIRECTIVE SYNTAX ERROR
invalid-line

The invalid line printed contains a syntax error.
PASS CONTROL OVERFLOW AT SEGMENT segment-name

System error. Please send an SPR to DIGITAL with a copy of the
ODL file associated with the error.

PSECT PSECT-name HAS OVERFLOWED

You have tried to create a PSECT larger than 28K words.
REQUIRED INPUT FILE MISSING

At least one input file is required for a task-build.

ROOT SEGMENT IS MULTIPLY DEFINED
invalid-line

The invalid line printed contains the second .ROOT directive
encountered. only one .ROOT directive is allowed. (Check
Section 5.1.4.1 to see how to correctly specify co-trees.)

SEGMENT seg-name HAS ADDR OVERFLOW: ALLOCATION DELETED
Within a segment, the program has attempted to allocate more than
28K words. A map file is produced, but no task image file is
produced.

TASK HAS ILLEGAL MEMORY LIMITS

An attempt has been made to build a task whose size exceeds the
partition boundary. If a task image file was produced, it should
be deleted.

ERROR MESSAGES

TASK-BUILD ABORTED VIA REQUEST
option-~line

The option line contains your request to abort the task-build.
Retype your commands and correct the error to rerun.

TOO MANY NESTED .ROOT/.FCTR DIRECTIVES
invalid-line

The invalid line printed contains
the maximum nesting level (16).

TOO MANY PARAMETERS
invalid-line

The invalid line printed contains
than required.

TOO MANY PARENTHESES LEVELS
invalid-line

The invalid line printed contains
maximum nesting level (16).

TRUNCATION ERROR IN MODULE module-name

a .FCTR directive that exceeds

a keyword with more parameters

a parenthesis that exceeds the

You tried to load a global value greater than +127 or 1less than
-128 into a byte. Only the low-order eight bits are loaded.

UNABLE TO CPEN WORK FILE

The work file device is not mounted.

UNBALANCED PARENTHESES
invalid-line

The invalid line printed contains

n UNDEFINED SYMBOLS SEGMENT seg-name

unbalanced parentheses.

The segment named contains n undefined symbols. If no memory
allocation is requested, the symbols are printed on the terminal.

WORK FILE I/O ERROR

An I/0 error occurred during an attempt to reference data stored
by the Task Builder in its work file.

APPENDIX B

OCTAL TO DECIMAL CONVERSION TABLE

B.1 INTRODUCTION

Table B-1 (listed on the last four pages of this appendix) 1is the
octal-decimal integer conversion table. It directly converts octal
numbers ranging from 0 to 7777 to decimal numbers, and decimal numbers
ranging from 0 to 4095 to octal numbers. 1In addition it can be used
to convert octal numbers up to 77777 to decimal and decimal numbers up
to 32767 to octal. Figure B-1 shows a portion of one page of the
table.

As shown in this figure, a group of numbers in the margin of each page
(1) shows the range of octal and decimal numbers covered by that page.
Use this group to locate the page containing the number you wish to
convert. Also located in the margin are two columns (2). One column
is labeled "OCTAL" and the other "DECIMAL". Use these columns to
convert octal numbers ranging from 10000 to 77777 to decimal and
decimal numbers from 4096 to 32767 to octal.

The left-most column and the top row of the table (3) contain the
octal numbers. The top row contains the least significant digit of
the octal number. The remaining columns contain the decimal numbers
to be converted. Use these columns and rows to convert octal numbers
to decimal and decimal numbers to octal.

NOTE
The left-most column and top row are
shaded for easy identification.
This appendix illustrates how to perform these conversion processes as
follows:

® Converting octal numbers ranging from 0 to 7777 to decimal
numbers

e Converting decimal numbers ranging from 0 to 4095 to octal
numbers

e Converting octal numbers ranging from 10000 to 77777 to
decimal numbers

® Converting decimal numbers ranging from 4096 to 32767 to octal
numbers

OCTAL TO DECIMAL CONVERSION TABLE

Table B-1

Octal-Decimal Integer Conversion Table

0230 0?30 0257 0258 0259 0260 0261
0777 0511 0265 0266 0267 0268 0269
(Octal) | (Decimat) 0273 0274 0275 0276 0277
0281 0282 0283 0284 0285
0289 0290 0291 0232 0293
0297 0298 0299 0300 0301
Octa!l Decimal 0305 0306 0307 0308 0309
:128888- gcl)gtzi 0313 0314 0315 0316 0317
30000 - 12288 0321 0322 0323 0324 0325 -
40000 - 16384 0329 0330 0331 0332 0333
50000 - 20480 0337 0338 0339 0340 0341
60000 - 24576 0345 0346 0347 0348 0349
70000 - 28672 0353 0354 0355 0356 0357
0361 0362 0363 0364 0365
0369 0370 0371 0372 0373 .
0377 A 0379 0380 0381
@/’ 0388 0389

Figure B-1 Table B-1, Showing Table Parts for Conversion

B.2 CONVERTING OCTAL NUMBERS RANGING FROM 0 TO 7777 TO DECIMAL NUMBERS

Three examples follow in Sections B.2.1 through B.2.3. The procedures
outlined in Section B.2.l1 apply to Sections B.2.2 and B.2.3.

B.2.1 Converting Octal 43 to Decimal

Refer to Figure B-2. The numbers listed in the figure correspond to

the steps presented below.

Table B-1

Octal-Decimal Integer Conversion Table

0000

to
0777
(Octal)

0000
to
0511
(Decimal)

Octal

10000 -
20000 -
30000 -
40000 -
50000 -
60000 -
70000 -

Figure

Decimal

0000 0001 0002
0008 0009 0010
0016 0017 0018

0007
0015
0023
003t
0039
0047
0055
0063

0071
0079
0087
0095
0103
(1109}
o119
o -

0400
0410
0420
0430
0440
0450
0460
0470

0500
0510
0520
0530
0540
0550
0560
0570

0600

o~

0256
0264
0272
0280
0288
0296
0304
0312

0320
0328
0336
0344
0352
0360
0368
0376

0257
0265
0273
0281
0289
0297
0305
0313

0321
0329
0337
0345
0353
0361
0369

0258
0266
0274
0282
0290
0298
0306
0314

0322
0330
0338
0346
0354
0362
0370
0378

Steps for Converting Octal 43 to Decimal

0259
0267
0275
0283
0291
0299
0307
0315

0323
0331
0339
0347
0355
0363
03N
0379

0387
1395
"3

B.2.2

OCTAL TO DECIMAL CONVERSION TABLE

Locate the page having the range of octal numbers that
includes 43 (0000 to 0777).

Locate the row containing 0040 in the left-most column of
Table B-1.

Locate the vertical column containing 3 (the least
significant digit).

Read down the vertical column until you intersect the
horizontal row for 0040.

The number 35 where the column and row intersect 1is your
answer (35 is the decimal equivalent of octal 43).

Converting Octal 1000 to Decimal

Figure B-3 illustrates the steps for converting octal 1000 to decimal

512.

B.2.3

0300 |0192 0193 0194 0135 0196 0197 0198 0199 0700|0448 0449 0450 0451

0310|0200 0201 0202 0203 0204 0205 0206 0207 0710|0456 0457 0458 0459

0320|0208 0209 0210 0211 0212 0213 0214 0215 0720|0464 0465 0466 0467

0330|0216 0217 0218 0219 0220 0221 0222 0223 0730|0472 0473 0474 0475

0340 {0224 0225 0226 0227 0228 0229 0230 0231 0740|0480 0481 0482 0483

0350 {0232 0233 0234 0235 0236 0237 0238 0239 0750|0488 0489 0490 0491

0360 [0240 0241 0242 0243 0244 0245 0246 0247 0760 | 0496 0497 0498 0499

03700248 0249 0250 0251 0252 0253 0254 0255 0770|0504 0505 0506 0507

0o 1 2 3 4 5 6 1 0 \ 2 3

1000[0512 0513 0514 0515 0516 0517 0518 0519 1400]0768 0769 0779 0771

to 10100520 0521 0522 0523 0524 0525 0526 0527 1410|0776 0777 0778 0779
1777 10200528 0529 0530 0531 0532 0533 0534 0535 1420|0784 0785 0786 0787
(Octal) 1030/ 0536 0537 0538 0539 0540 0541 0542 0543 1430|0792 0793 0794 0795
1040) 0544 0545 0546 0547 0548 0549 0550 0551 14400800 0801 0802 0803

1050(0352 0553 0554 0555 0556 0557 0558 0559 1450|0808 0809 0810 0811

1060|0560 0561 0562 0563 0564 0565 0566 0567 1460|0816 0817 0818 0819

1070{ 0568 0569 0570 0571 0572 0573 0574 0575 1470|0824 0825 0826 0827

1100|0576 0577 0578 0579 0580 0581 0582 0583 1500|0832 0833 0834 0835

1110} 9584 0585 0586 0387 0588 0589 0590 0591 1510{0840 0841 0842 0843

1120|0592 0593 0594 0595 0596 0597 0598 0599 1520|0848 0849 0850 0851

1130|0600 0601 0602 0603 0604 0605 0606 0607 1530] 0856 0857 0858 0859

1140 0608 0609 0610 0611 0612 0613 0614 0615 1540]| 0864 0865 0866 0B67

Figure B-3 Steps for Converting Octal 1000 to Decimal

Converting Octal 7456 to Decimal

Figure B-4 illuétrates the steps for converting octal 7456 to decimal

3886.

OCTAL TO DECIMAL CONVERSION TABLE

3292 3293 3294 3295 6730 3544 3545 3546 3547 3548 3549 3550 3551
3300 3301 3302 3303 6740] 3552 3553 3554 3555 3556 3557 3558 3559
3308 3309 3310 3311 6750| 3560 3561 3562 3563 3564 3565 3566 3567 M
3316 3317 3318 3319 6760| 3568 3569 3570 3571 3572 3573 3574 3575 T
3324 3325 3326 3327 6770§ 3576 3577 3578 3579 3580 3581 3582 3583

s s 6 11(2) [1 2z 3 4

3588 3589 3590 3591 4001|3840 3841 3842 3843 3844 384 847 7000 3584
3596 3597 3598 3599 10} 3848 3849 3850 3851 3852 3853 855 to to
3604 3605 3606 3607 7920} 3856 3857 3858 3859 3860 3861 7777 4095

3612 3613 3614 3615 7430| 3864 3865 3866 3867 3868 3869 (Octal) I(Decimal)
3620 3621 3622 3623 130 3874 3875 3876 3877
3628 3629 3630 3631 5 . N g
3636 3637 3638 3639 14 3893 3894 3895

9669—3890—06851—3698-
3644 3645 3646 3647 7470} 3896 3897 3898 3899 3900 3901 3902 3903 -

500

3652 3653 3654 3655 7500 | 3904 3905 3906 3907 3908 3909 3910 3911
3660 3661 3662 3663 751013912 3913 3914 3915 3916 3917 3918 3919
3668 3669 3670 367! 75203920 3921 3922 3923 3924 3925 3926 3927 -
S76 3677 3678 3679 753013928 3929 3930 3931 3932 3933 3934 3935
‘4 3685 3686 3687 7540|3936 3937 3938 3939 3940 3941 3942 3943
3693 3694 3495 7550 3944 3945 3946 3947 3948 3949 3950 3951

1701 3707 h 7560{3952 3953 3954 13955 39°° ST 3958 3959

a9 3" 7570 3960 °° 62 3963 1966 3967

Figure B-4 Steps for Converting Octal 7456 to Decimal

B.3 CONVERTING DECIMAL NUMBERS RANGING FROM 0 TO 4095 TO OCTAL

Three examples in Sections B.3.1 through B.3.3 follow; all conform to
the procedures outlined in Section B.3.1.

B.3.1 Converting Decimal 17 to Octal
Refer to Figure B-5. The numbers listed in the figure correspond to
the steps listed below.

Table B-1
Octal-Decimal Integer Conversion Table

3 4 5 6 1 0o 1 2 3 -
0000 0000 002 0003 0004 0005 0006 0007 0400(0256 0257 0258 0259 q
to to B
0797 0511 010 0011 0012 0013 0014 0015 0410| 0264 0265 0266 0267
(Octal) ||(Deciman j §018 0019 0020 0021 0022 0023 0420| 0272 0273 0274 0275
0026 0027 0028 0029 0030 0031 0430| 0280 0281 0282 0283
0034 0035 0036 0037 0038 0039 0440| 0288 0289 0290 0291
005! 0042 0043 0044 0045 0046 0047 0450| 0296 0297 0298 0299
Octal Decimal y&% 0050 0051 0052 0053 0054 0055 0460| 0304 0305 0306 0307
10000 - 4096 0070|0056 0057 0058 0059 0060 0061 0062 0063 0470{ 0312 0313 0314 0315
20000 - 8192 -
30000 - 12288 0100} 0064 0065 0066 0067 0068 0069 0070 0071 0500| 0320 0321 0322 0323
40000 - 16384 0110} 0072 0073 0074 0075 0076 0077 0078 0079 0510(0328 0329 0330 0331
50000 - 20480 0120|0080 0081 0082 0083 0084 0085 0086 0087 0520(0336 0337 0338 0339
60000 - 24576 0130] 0088 0089 0090 0091 0092 0093 0094 0095 0530} 0344 0345 0346 0347
70000 - 28672 0140/ 0096 0097 0098 0099 0100 0101 0102 0103 0540 0352 0353 0354 0355
0150|0104 0105 0106 0107 0108 0109 0110 0111 05500360 0361 0362 0363
0160|0112 ~ 0114 0115 0116 0117 0118 0113 0560[0368 0369 0370 0371 -
01701 " 122 0123 0124 0125 0126 0127 a570| 0376 0377 0378 07"
1131 33 0134 * "4 0385 03°
- 0 193

Figure B-5 Steps for Converting Decimal 17 to Octal

OCTAL TO DECIMAL CONVERSION TABLE
Locate the range of decimal numbers in the margin of table
B-1 containing 17 (0000 to 0511 decimal).
Locate the decimal number 0017 within the table.

Reading left from 0017, locate 0020 in the 1left-hand column
of the table.

Reading up from 0017, locate 1 at the top of the column.
(The "1" is the least significant digit of the octal number.)

Add 1 to 0020. The sum (0021) is your answer - (21 1is the
octal equivalent of 17).

B.3.2 Converting Decimal 870 to Octal

Figure B-6 illustrates the steps for converting decimal 870 to octal
1546.

{Octal)

(Decimal) 1030(0536 0537 0538 0539 0540 0541 0542 0543

B.3.3

03400224 0225 0226 0227 0228 0229 0230 0231 0740|0480 0481 0482 0483 0484 0485 0486 0487
0350]0232 0233 0234 0235 0236 0237 0238 0239 075010488 0489 0490 0491 0492 0493 0494 0495
0360 {0240 0241 0242 0243 0244 0245 0246 0247 076010496 0497 0498 0499 0500 050! 0502 0503
0370]0248 0249 0250 0251 0252 0253 0254 0255 077010504 0505 0506 0507 0508 0509 0510 0511

1000/0512 0513 0514 0515 0516 0517 0518 0519
101010520 0521 0522 0523 0524 0525 0526 0527
1020|0528 0529 0530 0531 0532 0533 0534 0535

1040] 0544 0545 0546 0547 0548 0549 0550 0551
105010552 0553 0554 06555 0556 0557 0558 0559
1060|0560 0561 0562 0563 0564 0565 0566 0567
1070|0568 0569 0570 0571 0572 0573 0574 0575

1100|0576 0577 0578 0579 0580 0581 0582 0583
1110} 0584 0585 0586 0387 0588 0889 0590 0591
112010592 0593 0594 0595 0596 0597 0598 0599
1130|0600 0601 0602 0603 0604 0605 0606 0607
1140|0608 0609 0610 0611 0612 0613 0614 0615 B4 850 5 510y
115010616 0617 0618 0619 0620 0621 0622 0623 o HF-)—6874—08715—0876 0879

1160|0624 0625 0626 0627 0628 0629 0630 0631 0882 0883 0884 0885 0886 0887
117010632 0633 0634 0635 0636 0637 0638 0639 0830 0891 0892 0893 0894 0895
1200|0640 0641 0642 0643 0644 0645 0646 0647 1600 10896 0897 0898 0899 0900 0901 0902 0903
1210|0648 0649 0650 0651 0652 0653 0654 0655 1610 (0904 0905 0906 0907 0908 0909 0910 0911
1720|0656 0657 0658 0659 0660 0661 0662 0663 1620|0912 0913 0914 0915 0916 0917 0918 0919
0664 0665 0666 0667 0668 0669 0670 67! 1630 10920 0921 0922 0923 0924 0925 0926 0927

"7 0673 06" “75 0676 0677 067" 7 1640 {0928 0929 0930 0931 0932 0933 0934 0935

481 T 0684 0685 1650 |~ 0937 0938 0939 0940 0941 0942 0943

1692 0692 16F° “45 0946 0947 0948 0949 0950 08

N0 0" 0954 0e° "8 0957 0958

Figure B-6 Steps for Converting Decimal 870 to Octal

Converting Decimal 3826 to Octal

Figure B-7 illustrates the steps for converting decimal 3826 to octal

7382

OCTAL TO DECIMAL CONVERSION TABLE

|6360]J312 3313 3314 3315 3316 3317 3318 339 1616013568 3569 3570 3571 3572 3573 3574 3575

6370 {3320 3321 3322 3323 3324 3325 3326 3327 6770} 3576 3577 3578 3579 3580 3581 3582 3583
4 4 5 6 7 0 1 2 3 4 5 6 i
7000 3588 3589 3590 3591 7400 (3840 3841 3842 3843 3844 3845 3846 3847 7000 3584
7010 3596 3597 3598 3599 7410|3848 3849 3850 3851 3852 3853 3854 3855 to to
7020 3604 3605 3606 3607 7420] 3856 3857 3858 3859 3860 3861 3862 3863 7777 4095
7030 3612 3613 3614 3615 7430| 3864 3865 3866 3867 3868 3869 3870 3871 (Octal) |[(Decimal)
7040 3620 3621 3622 3623 7440|3872 3873 3874 3875 3876 3877 3878 3879
7050 3628 3629 3630 3631 7450| 3880 3881 3882 3883 3884 3885 3886 3887
7060 3636 3637 3638 3639 7460| 3888 3889 3890 3891 3892 3893 3894 3895
7070 3644 3645 3646 3647 7470 3896 3897 3898 3899 3900 3901 3902 3903
7100 3652 3653 3654 3655 7500 | 3904 3905 3906 3907 3908 3909 3910 3911
7110 3660 3661 3662 3663 751013912 3913 3914 3915 3916 3917 3918 3919
7120 3668 3669 3670 3671 752013920 3921 3922 3923 3924 3925 3926 3927
7130 3676 3677 3678 3679 7530} 3928 3929 3930 3931 3932 3333 3934 3935
1140 3684 3685 3686 3687 7540]3936 3937 3938 3939 3940 3941 3942 3943
7150 3692 3693 13694 3695 7550|3944 3945 3946 3947 3948 3949 3950 395!
7160 3700 3701 3702 3703 7560|3952 3953 3954 3955 3956 3957 3958 3959
170 3708 3709 3710 3711 7570|3960 3961 3962 3963 3964 3965 3966 3967
7200 3716 3717 3718 3719 7600|3968 3969 3970 3971 3972 3973 3974 3975
1210 3724 3725 3726 3727 7610|3976 3977 3978 3979 3980 3981 3982 3983
1220 3732 3733 3734 3735 7620|3984 3985 3986 3987 3988 3989 13990 3991
7230 3740 3741 3742 3743 76303992 3993 3994 3995 3996 3997 3998 3999
1240 3748 3749 3750 3751 7640|4000 4001 4002 4003 4004 4005 4006 4007
1250 3756 3757 3758 3759 7650 | 4008 4009 4010 4011 4012 4013 4014 4015
7260 3764 3765 3766 .3767 7660 (4016 4017 4018 4019 4020 4021 1022 4023
1270 3772 3773 3774 3175 7670|4024 4025 4026 4027 4028 4029 4030 4031
7300 3780 3781 3782 3783 7700|4032 4033 4034 4035 4036 4037 4038 4039
7310(3784 3785 3788 3789 3790 3791 7710|4040 4041 4042 4043 4044 4045 4046 4047
7320] 3792 3793 3796 3797 3798 3799 7720|4048 4049 4050 4051 4052 4053 4054 4055
7330|2800 3801 3804 3805 3806 3807 7730 (4056 4057 4058 4059 4060 4061 4062 4063
T340| 3808 3809 3B 3812 3813 3814 3815 7740|4064 4065 4066 4067 4068 4069 4070 4071
735013816 38.7 3820 3821 3822 3823 7750 (4072 4073 4074 4075 4076 4077 4078 4079
30243815 3828 3829 3830 3831 7760|4080 4081 4082 4083 4084 4085 4086 4087
0| -9033—3899 3836 3837 3838 3839 7770|4088 4089 4090 4091 4092 4093 4094 4095

Figure B-7 Steps for Converting Decimal 3826 to Octal

B.4 CONVERTING OCTAL NUMBERS FROM 10000 TO 77777 TO DECIMAL NUMBERS

Three examples follow. The procedures outlined in Section B.4.1 apply
to Sections B.4.2 and B.4.3.

B.4.1 Converting Octal 10042 to Decimal

Figure B-8 illustrates the steps to convert octal 10042 to decimal
4130.

OCTAL TO DECIMAL CONVERSION TABLE

10042

(5) { -10000

42

(w2 59 @
/ 1 3 4 5 6 1

0?00 O(t’oo 0000 J0000 000 03 0004 0005 0006 0007
xS, o 001/ 0008 0009 | 11 0012 0013 0014 0015
0038 | 0016 g1 019 0020 0021 0022 0023

p067 0068 0069 0070 0071
p075 0076 0077 0078 0079
po83 0084 0085 0086 0087
po91 0092 0093. 0084 0095
099 0100 0101 0102 0103
0107 0108 0109 0110 0'°
.5 0116 0117 01"

@ 0124 019¢

(Octal) | (Decimal) 27 0028 0029 0030 003}
5350 0035 0036 0037 0038 0039

0043 0044 0045 0046 0047

Degimal 0051 0052 0053 0054 0055

5810059 0060 0061 0062 0063
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

®

Answer: 4130

Figure B-8 Steps for Converting Octal 10042 to Decimal

1. Locate. the columns labeled "OCTAL" and "DECIMAL" in the
margin of Table B-1.

2. Find 10000 under the "OCTAL" column. (This 1is the largest
octal number listed in the column less than 10042.)

3. Locate the decimal equivalent of 10000 under the "DECIMAL"
column (4096).

4. Record this number.

5. Subtract octal 10000 from octal 10042 (10042 - 10000 = 42).

6. Take the difference (42) obtained in step 5 and use it to
locate its decimal equivalent in Table B-1 as described in

Section B.2.1. (The decimal equivalent of octal 42 is 34.)

7. Add 34 to 4096. The sum (4130) is your answer (4130 1is the
decimal equivalent of octal 10042.)

B.4.2 Converting Octal 67341 to Decimal

Figure B-9 illustrates the steps for converting octal 67341 to decimal
283685.

OCTAL TO DECIMAL CONVERSION TABLE

67341
@ —60000
7347 -

6000 3072

to to
6777 3583
(Octal) | (Decimal)

3587 3588 3589 3590 3591
3595 3596 3597 3598 3599
3603 3604 3605 3606 3607
3611 3612 3613 3614 3615 -
3619 3620 3621 3622 3623
3627 3628 3629 3630 3631
3635 3636 3637 3638 3639

Octal Decimal

10000 - 4096 3643 3644 3645 3646 3647 P o

20000 - 8192

30000 - 12288 3651 3652 3653 3654 3655 .
3659 3660 3661 3662 3663

40000 - 16384

' 3667 3668 3669 3670 3671
3675 3676 3677 3678 3679
3683 3684 3685 3686 1687
3691 3692 3693 3694 3695
3699 3700 3701 3702 3703
3707 3708 3709 3710 3711

3715 3716 3717 3718 3719 m
3723 3724 3725 3726 3727 i
3731 3732 3733 3734 3735
3739 3740 3741 3742 3743
3747 3748 3749 3750 3751
3755 3756 3757 3758 3759
3763 3764 3765 3766 3767
3771 3772 3773 3774 3775

17

37179 3780 3781 3782 3783
3787 3788 3789 3790 3791
3795 3796 3797 3798 3799
3803 3804 3805 3806 3807
3811 3812 3813 3814 3815
3819 3820 3821 3822 3823
3826 3827 3828 3829 3830 3831
3834 3835 3836 3837 3838 3839

e
73801 3824
7370 3832 /3833

4576
+3809
Answer: 28385

Figure B-9 Steps for Converting Octal 67341 to Decimal

B.4.3 Converting Octal 30000 to Decimal -~

Figure B-10 illustrates the steps for «converting octal 30000 to
decimal 12288.

0000 0000 i
to to
0777 0511

(Octal) | (Decimal)

Octal Decimal
10000 - 4096 .
O 819

50000 - 20480 @
60000 - 24576
70000 - 28672

@_

12288 Answer

Figure B-10 Steps for Converting Octal 30000 to Decimal

OCTAL TO DECIMAL CONVERSION TABLE

B.5 CONVERTING DECIMAL NUMBERS RANGING FROM 4096 TO 32767 TO OCTAL

Two examples follow. The procedures outlined in Section B.5.1 apply
to Section B.5.2. ‘
B.5.1 Converting Decimal 4787 to Octal
Refer to Figure B-1ll. The numbers listed in the table correspond to
the steps presented below.
4787
@ —4096
6 1
@ 0518 0519
0526 0527
0534 0535
0542 0543
0550 0551
0558 0559
0566 0567
0574 0575
§1 0582 0583
0000 0000 8 0590 0591
to to 0598 0599
0777 0511 0606 0607
(Octal) | (Decimal) 0614 0615
0622 0623
0630 0631
0638 0639
%‘ @ 0646 0647
0654 0655
0662 0663
g 0670 0671
0678 0679
0686 0687
0694 0695
0702 0703
0710 0711
0718 0719
0726 0727
0734 0735
@ 0742 0743
0750 0751
0758 0759
0766 0767

1000

(:) 126

+__3
Answer: 12263

Figure B-11 Steps for Converting Decimal 4787 to Octal

Locate the columns 1labeled "OCTAL" and "DECIMAL" in the
margin of Table B-1.

Find 4096 under the "DECIMAL" column. (This is the 1largest
decimal number listed in the column less than 4787.)

Locate the octal equivalent of 4096 under the "OCTAL" column

(10000) .

Record this number.

5.
6.

OCTAL TO DECIMAL CONVERSION TABLE

Subtract 4096 from 4787. (4787 - 4096 = 691)

Take the difference (691) obtained in step 5 and use it to
locate the octal equivalent as described in Section B.3.1.
The octal equivalent of 691 is 1263.)

Add 1263 to 10000. The sum is your answer (10000 + 1263 =
11263. 11263 is the octal equivalent of decimal 4787.)

B.5.2 Converting Decimal 26872 to Octal

Figure B-12 illustrates the steps for converting decimal 26872 to
octal 64370.

4000 2048 2131 2132 2133 2134 2135

to to 2139 2140 2141 2142 2143

1 4777 2559 2147 2148 2149 2150 2151
(Octal) | (Decimal) 2155 2156 2157 2158 2159

26872

(5) { 24867

(2290

2051 2052 2053 2054 2055
2059 2060 2061 2062 2063
2067 2068 2069 2070 2071
2075 2076 2077 2078 2079
2083 2084 2085 2086 2087
2091 2092 2093 2094 2095
2099 2100 2101 2102 2103
2107 2108 2109 2110 2111

®

2115 2116 2117 2118 2119
2123 2124 2125 2126 2127

2163 2164 2165 2166 2167
2171 2172 2173 2174 2175

Octal Decimal
10000 - 4096

20000- 8192
30000 - 12288

2179 2180 2181 2182 2183
2187 2188 2189 2190 2191
2195 2196 2197 2198 2199
2203 2204 2205 2206 2207
2211 2212 2213 2214 2215
2219 2220 2221 2222 2223
2227 2228 2229 2230 2231
2235 2236 2237 2238 2239

2243 2244 2245 2246 2247
2251 2252 2253 2254 2255
2259 2260 2261 2262 2263
2267 2268 2269 2270 2271
2275 2276 2277 2278 2279
2283 2284 2285 2286 2287
2291 2292 2293 2294 2295
2299 2300 2301 2302 2303

60000
(:) 4370

Answer: 64370

Figure B-12 Steps for Converting Decimal 26872 to Octal

-’

OCTAL TO DECIMAL CONVERSION TABLE

Table B-1
Octal-Decimal Integer Conversion

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
0000|0000 0001 €002 0003 0004 0005 0006 0007 0400) 0256 0257 0258 0259 0260 0261 0262 0263
0010|0008 0009 0010 0011 0012 0013 0014 0015 0410] 0264 0265 0266 0267 0268 0269 0270 0271
00200016 0017 (018 0019 0020 0021 0022 0023 0420| 0272 0273 0274 0275 0276 0277 0278 0219
0030|0024 0025 0026 0027 0028 0029 0030 0031 0430) 0280 0281 0282 0283 0284 0285 0286 0287
0040}0032 0033 0034 0035 0036 0037 0038 0039 0440 0288 0289 0290 0291 0292 0293 0294 0295
0050|0040 0041 0042 0043 0044 0045 0046 0047 0450 0296 0297 0298 0299 0300 0301 0302 0303
0060|0048 0049 (050 0051 0052 0053 0054 0055 0460| 0304 0305 0306 0307 0308 0309 0310 0311
0070§ 0056 0057 0058 0059 0060 0061 0062 0063 0470| 0312 0313 0314 0315 0316 0317 0318 0319
0100] 0064 0065 0066 0067 0068 0069 0070 0071 0500|0320 0321 0322 0323 0324 0325 0326 0327
0110/0072 0073 (074 0075 0076 0077 0078 0079 0510{ 0328 0329 0330 0331 0332 0333 0334 0335
0120|0080 0081 €082 0083 0084 0085 0086 0087 0520(0336 0337 0338 0339 0340 0341 0342 0343
0130(0088 0089 0090 0091 0092 0093 0094 0095 0530{ 0344 0345 0346 0347 0348 0349 0350 0351
01400096 0097 0098 0099 0100 0101 0102 0103 0540/ 0352 0353 0354 0355 0356 0357 0358 0359
0150(0104 0105 0106 0107 0108 0109 0110 0111 0550 0360 0361 0362 0363 0364 0365 0366 0367
01600112 0113 0114 0115 0116 0117 0118 0119 0560|0368 0369 0370 0371 0372 0373 0374 0375
017070120 0121 0122 0123 0124 0125 0126 0127 0570{ 0376 0377 0378 0379 0380 0381 0382 0383
0200|0128 0129 0130 0131 0132 0133 0134 0135 0600 (0384 0385 0386 0387 0388 0389 0390 0391
0210|0136 0137 0138 0139 0140 0141 0142 0143 0610]0392 0393 0394 0395 0396 0397 0398 0399
0220(0144 0145 0146 0147 0148 0149 0150 0151 0620)0400 0401 0402 0403 0404 0405 0406 0407
02300152 0153 0154 0155 0156 0157 0158 0159 0630|0408 0409 0410 0411 0412 0413 0414 0415
0240 {0160 0161 0162 0163 0164 0165 0166 0167 0640|0416 0417 0418 0419 0420 0421 0422 0423
0250|0168 0169 0170 0171 0172 0173 0174 0175 0650|0424 0425 0426 0427 0428 0429 0430 043
0260 {0176 0177 0178 0179 0180 0181 0182 0183 0660|0432 0433 0434 0435 0436 0437 0438 0439
0270 (0184 0185 0186 0187 0188 0189 0190 0191 0670} 0440 0441 0442 0443 0444 0445 0446 0447
0300 (0192 0193 0194 0195 0196 0197 0198 0199 0700|0448 0449 0450 0451 0452 0453 0454 0455
0310|0200 0201 0202 0203 0204 0205 0206 0207 0710[0456 0457 0458 0459 0460 0461 0462 0463
0320|0208 0209 0210 0211 0212 0213 0214 0215 0720|0464 0465 0466 0467 0468 0469 0470 0471
03300216 0217 0218 0219 0220 0221 0222 0223 0730|0472 0473 0474 0475 0476 0477 0478 0479
0340 {0224 0225 0226 0227 0228 0229 0230 0231 0740|0480 0481 0482 0483 0484 0485 0486 0487
0350 [0232 0233 0234 0235 0236 0237 0238 0239 0750 (0488 0489 0490 0491 0492 0493 0494 0495
0360|0240 0241 0242 0243 0244 0245 0246 0247 07600496 0497 04398 0499 0500 0501 0502 0503
0370 0248 0249 0250 0251 0252 0253 0254 0255 0770|0504 0505 0506 0507 0508 0509 0510 051

0 1 2 3] 5 6 7 0 1 2 3 4 5 6 7
1000[0512 0513 0514 0515 0516 0517 0518 0519 14000768 0769 0779 0771 0772 0773 0774 0775
1010]0520 0521 0522 0523 0524 0525 0526 0527 1410[0776 0777 0778 0779 0780 0781 0782 0783
1020|0528 0529 0530 0531 0532 0533 0534 0535 1420[0784 0785 0786 0787 0788 0789 0790 0791
103010536 0537 0538 0539 0540 0541 0542 0543 1430(0792 0793 0794 0795 0796 0797 0798 0799
104010544 0545 0546 0547 0548 0549 0550 0551 1442|0800 0801 0802 0803 0804 0805 0806 0807
10507 0552 0553 0554 0555 0556 0557 0558 0559 1450|0808 080Y 0810 0811 0812 0813 0814 0815
1060 0560 0561 0562 0563 0564 0565 0566 0567 1460(0816 0817 0818 0819 0820 0821 0822 0823
107040568 0569 0570 0571 0572 0573 0574 0575 1470|0824 0825 0826 0827 0828 0829 0830 0831
110010576 0577 0578 0579 0580 0581 0582 0583 1500|0832 0833 0834 0835 0836 0837 0838 0839
111010584 0585 0586 0387 0588 0889 0590 0591 1510(0840 0841 0842 0843 0844 0845 0846 0847
1120|0592 0593 0594 0595 0596 0597 0598 0599 1520|0848 0849 0850 0851 0852 0853 0854 0855
11300600 0601 0602 0603 0604 0605 0606 0607 1530(0856 0857 0858 0859 0860 0861 0852 0863
1140 0608 0609 0610 0611 0612 0613 0614 0615 1540|0864 0865 0866 0867 0868 0869 0870 0871
11500616 0617 0618 0619 0620 0621 0622 0623 1550|0872 0873 0874 0875 0876 0877 0878 0879
1160) 0624 0625 0626 0627 0628 0629 0630 0631 1560|0880 0881 0882 0883 0884 0885 0886 0887
1170[0632 0633 0634 0635 0636 0637 0638 0639 1570|0888 0889 0890 0891 0892 0893 0894 0895
1200} 0640 0641 0642 0643 0644 0645 0646 0647 1600 (0896 089T 0898 0899 0900 0901 0902 0903
1210] 0648 0649 0650 0651 0652 0653 0654 0655 1610|0904 0905 0906 0907 0908 0909 0910 0911
12200656 0657 0658 0659 0660 0661 0662 0663 1620|0912 0913 0914 0915 0916 0917 0918 0919
1230 | 0664 0665 0666 0667 0668 0669 0670 0671 1630|0920 0921 0922 0923 0924 0925 0926 0927
12400672 0673 0674 0675 0676 0677 0678 0679 1640|0928 0929 0930 0931 0932 0933 0934 0935
12500680 0681 0682 0683 0684 0685 0686 0687 1650 {0936 0937 0938 0939 0940 0941 0942 0943
12600688 0689 0690 0691 0692 0693 0694 0695 1660 (0944 0945 0946 0947 0948 0949 0950 0951
127010696 0697 05698 0699 0700 0701 0702 0703 1670 {0952 0953 0954 0955 0956 0957 0958 0959
1300 {0704 0705 0706 0707 0708 0709 0710 0711 1700 [0960 0961 0962 0963 0964 0965 0966 0967
13100712 0718 0714 0715 0716 0717 0718 0719 1710 (0968 0963 0970 0971 0972 0973 0974 0975
13200720 0721 0722 0723 0724 0725 0726 0727 1720 (0976 0977 0978 0979 0980 0981 0982 0983
1330|0728 0729 0730 0731 0732 0733 0734 0735 1730(0984 0985 0986 0987 0988 0989 0990 0991
1340|0736 0737 0738 0739 0740 0741 0742 0743 1740|0992 0993 0994 0995 0996 0997 0998 0999
1350|0744 0745 0746 0747 0748 0749 0750 0751 1750[1000 1001 1002 1003 1004 1005 1006 1007
1360{0752 0753 0754 0755 0756 0757 0758 0759 1760{1008 1009 1010 1011 1012 1013 1014 1015
1370|0760 0761 0762 0763 0764 0765 0766 0767 1770{1016 1017 1018 1019 1020 1021 1022 1023

B-11

0000

to
0777
(Octal)

Octal

10000 -
20000 -
30000 -
40000 -
50000 -
60000 -
70000 -

1000
to
1777
(Octal)

0000
to
0511
(Decimal)

Decimal

0512

to
1023
(Decimal)

(Continued on next page)

2000 1024
to to
2777 1535
(Octal) | (Decimal)

Octal Decimal
10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

3000 1536
t

] to
3777 2047
(Octal) | (Decimal)

OCTAL TO DECIMAL CORVERSION TABLE

Table B-1 (Cont.)

Octal-Decimal Integer Conversion

0 1 2 3 4 5 6 7 0 1 2 3 4 S 6 7
2000|1024 1025 1026 1027 1028 1029 1030 1031 24001 1280 1281 1282 1283 1284 1285 1286 1287
201011032 1033 1034 1035 1036 1037 1038 1039 2410/ 1288 1289 1290 1291 1292 1293 1294 1295
2020|1040 1041 1042 1043 1044 1045 1046 1047 2420] 1296 1297 1298 1299 1300 1301 1302 1303
203011048 1049 1050 105] 1052 1053 1054 1055 2430|1304 1305 1306 1307 1308 1309 1310 1311
2040|1056 1057 1058 1059 1060 1061 1062 1063 2440(1312 1313 1314 1315 1316 1317 1318 1319
2050|1064 1065 1066 1067 1068 1069 1070 1071 245011320 1321 1322 1323 1324 1325 1326 1327
2060 11072 1073 1074 1075 1076 1077 1078 1079 2460|1328 1329 1330 1331 1332 1333 1334 1335
2070]1080 1081 1082 1083 1084 1085 1086 1087 24701 1336 1337 1338 1339 1340 1341 1342 1343
21001088 1089 1090 1091 1092 1093 1094 1095 25001 1344 1345 1346 1347 1348 1349 1350 1351
2110|1096 1097 1098 1099 1100 1101 1102 1103 2510] 1352 1353 1354 1355 1356 1357 1358 1359
2120(1104 1105 1106 1107 1108 1109 1110 1111 2520] 1360 1361 1362 1363 1364 1365 1366 1367
2130(1112 1113 1114 1115 1116 1117 1118 1119 2530|1368 1369 1370 1371 1372 1373 1374 1375
2140|1120 1121 1122 1:23 1124 1125 1126 1127 2540|1376 1377 1378 1379 1380 1381 1382 1383
215011128 1129 1130 1131 1132 1133 1134 1135 2550] 1384 1385 1386 1387 1388 1389 1390 1391
21601136 1137 1138 1139 1140 1141 1142 1143 2560 1392 1393 1394 1395 1396 1397 1398 1399
2170|1144 1145 1146 1147 1148 1149 1150 1451 25701 1400 1401 1402 1403 1404 1405 1406 1407
220001152 1153 1154 1155 1156 1157 1158 1159 2600|1408 1409 1410 1411 1412 1413 1414 1415
22101160 1161 1162 1163 1164 1165 1166 1167 2610|1416 1417 1418 1419 1420 1421 1422 1423
2220|1168 1169 1170 1171 1172 1173 1174 1175 2620|1424 1425 1426 1427 1428 1429 1430 1431
2235|1176 1137 1178 1179 1180 1181 1182 1183 26301432 1433 1434 1435 1436 1437 1438 1439
22401184 1185 1186 1187 1188 1189 1190 1191 2640 1440 1441 1442 1443 1444 1445 1446 1447
22501192 1193 1194 1195 1196 1197 1198 1199 2650 | 1448 1449 1450 1451 1452 1453 1454 1455
226011200 1201 1202 1203 1204 1205 1206 1207 2660|1456 1457 1458 1459 1460 1461 1462 1463
227001208 1209 1210 1211 1212 1213 1214 1215 2670] 1464 1465 1466 1467 1468 1469 1470 1471
2300|1216 1217 1218 1219 1220 1221 1222 1223 27001472 1473 1474 1475 1476 1477 1478 1479
23101224 1225 1226 1227 1228 1229 1230 1231 2710} 1480 1481 1482 1483 1484 1485 1486 1487
23201232 1233 1234 1235 1236 1237 1238 1239 2720|1488 1489 1490 1491 1492 1493 1494 1495
2330|1240 1241 1242 1243 1244 1245 1246 1247 2730|1496 1497 1498 1499 1500 1501 1502 1503
2340|1248 1249 1250 1251 1252 1253 1254 1255 2740|1504 1505 1506 1507 1508 1509 1510 1511
2350|1256 1257 1258 1259 1260 1261 1262 1263 27501512 1513 1514 1515 1516 1517 1518 1519
23601264 1265 1266 1267 1268 1269 1270 1271 27601520 1521 1522 1523 1524 1525 1526 1527
23701272 1273 1274 1275 1276 1277 1278 1279 277011528 1529 1530 1531 1532 1533 1534 1535

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
3000|1536 1537 1538 1539 1540 1541 1542 1543 3400]1792 1793 1794 1795 1796 1797 1798 1799
3010|1544 1545 1546 1547 1548 1549 1550 1551 3410{ 1800 1801 1802 1803 1804 1805 1806 1807
302011552 1553 1554 1555 1556 1557 1558 1559 34201808 1809 1810 1811 1812 1813 1814 1815
30301560 1561 1562 1563 1564 1565 1566 1567 3430(1816 1817 1818 1819 1820 1821 1822 1823
3040|1568 1569 1570 1571 1572 1573 1574 1575 3440|1824 1825 1826 1827 1828 1829 1830 1831
3050)1576 1577 1578 1579 1580 1581 1582 1583 3450(1832 1833 1834 1835 1836 1837 1838 1839
3060]1584 1585 1586 1587 1588 1589 1590 1591 3460|1840 1841 1842 1843 1844 1845 1846 1847
3070|1592 1593 1594 1595 1596 1597 1598 1599 3470|1848 1849 1850 1851 1852 1853 1854 1855
3100{1600 1601 1602 1603 1604 1605 1606 1607 3500|1856 1857 1858 1859 1860 1861 1862 1863
31101608 1609 1610 1611 1612 1613 1614 1615 3510 1864 1865 1866 1867 1868 1869 1870 1871
3120|1616 1617 1618 1619 1620 1621 1622 1623 3520} 1872 1873 1874 1875 1876 1877 1878 1879
3130 (1624 1625 1626 1627 1628 1629 1630 1631 3530 1880 1881 1882 1883 1884 1885 1886 1887
314001632 1633 1634 1635 1636 1637 1638 1633 3540] 1888 1889 1890 1891 1892 1893 1894 1895
3150|1640 1641 1642 1643 1644 1645 1646 1647 3550|1896 1897 1898 1899 1900 1901 1902 1903
3160] 1648 1649 1650 1651 1652 1653 1604 1655 3560 1904 1905 31906 1907 1908 1909 1910 1911
317011656 1657 1658 1659 1660 1661 1662 1663 35701912 1913 1914 1915 1916 1917 1918 1919
3200|1664 1665 1666 1667 1668 1669 1670 1671 3600(1920 1921 1922 1923 1924 1925 1926 1927
3210f1672 1673 1674 1675 1676 1677 1678 1679 361011928 1929 1930 1931 1932 1933 1934 1935
3220)1680 1681 1682 1683 1684 1685 1686 1687 3620|1936 1937 1938 1939 1940 1941 1942 1943
32301688 1689 1690 1691 1692 1693 1694 1695 3630]1944 1945 1946 1947 1948 1949 1950 1951
32401696 1697 1698 1699 1700 1701 1702 1703 36401952 1953 1954 1955 1956 1957 1958 1959
32501704 1705 1706 1707 1708 1709 1710 1711 365011960 1961 1962 1963 1964 1965 1966 1967
32601712 1713 1714 1715 1716 1717 1718 1719 3660 (1968 1969 1970 1971 1972 1973 1974 1975
32701720 1721 1722 1723 1724 1725 1726 1727 3670|1976 1977 1978 1979 1980 1981 1982 1983
33001728 1729 1730 1731 1732 1733 1734 1735 3700|1984 1985 1986 1987 1988 1983 1990 1991
3310[1736 1737 1738 1739 1740 1741 1742 1743 3710|1992 1993 1994 1995 1996 1997 1998 1999
3320|1744 1745 1746 1747 1748 1749 1750 1751 3720]2000 2001 2002 2003 2004 2005 2006 2007
3330/1752 1753 1754 1755 1756 1757 1758 1759 373012008 2009 2010 2011 2012 2013 2014 2015
3340|1760 1761 1762 1763 1764 1765 1766 1767 3740|2016 2017 2018 2019 2020 2021 2022 2023
3350}1768 1769 1770 1771 1772 1773 1774 1775 3750] 2024 2025 2026 2027 2028 2029 2030 2031
3360[1776 1777 1778 1779 1780 1781 1782 1783 3760|2032 2033 2034 2035 2036 2037 2038 2039
3370}1784 1785 1786 1787 1788 1789 1790 1791 3770 2040 2041 2042 2043 2044 2045 2046 2047

(Continued on next page)
B-12

OCTAL TO DECIMAL CONVERSION TABLE

Table B-1 (Cont.)
Octal-Decimal Integer Conversion

4000 2048

to to
4777 2559
(Octal) | (Decimal)

Octal Decimal

70000 - 28672

0 i 2 3 4 5 6 1 0 1 2 3 4) & 7
4000] 2048 2049 2050 2051 2052 2053 2054 2055 4400 2304 2305 2306 2307 2308 2309 2310 2311
4010] 2056 2057 2058 2059 2060 2061 2062 2063 4410|2312 2313 2314 2315 2316 2317 2318 2319
4020] 2064 2065 2066 2067 2068 2069 2070 207 4420} 2320 2321 2322 2323 2324 2325 2326 2327
4030| 2072 2073 2074 2075 2076 2077 2078 2079 44302328 2329 2330 2331 2332 2333 2334 2335
4040] 2080 2081 2082 2083 2084 2085 2086 2087 4440) 2336 2337 2338 2339 2340 2341 2342 2343
4050] 2088 2089 2090 2091 2092 2093 2094 2095 4450(2344 2345 2346 2347 2348 2349 2350 2351
4060] 2096 2097 2098 2099 2100 2101 2102 2103 4460] 2352 2393 2354 2355 2356 2357 2358 2359
4070/ 2104 2105 2106 2107 2108 2109 2110 2111 4470(2360 2361 2362 2363 2364 2365 2366 2367
4100§ 2112 2113 2114 2115 2116 2117 2118 2119 4500 (2368 2369 2370 2371 2372 2373 2374 2375
4110} 2120 2121 2122 2123 2124 2125 2126 2127 451012376 2377 2378 2379 2380 2381 2382 2383
4120] 2128 2129 2130 2131 2132 2133 2134 2135 4520|2384 2385 2386 2387 2388 2389 2390 2391
4130|2136 2137 2138 2139 2140 2141 2142 2143 4530(2392 2393 2394 2395 239§ 2397 2398 2399
4140] 2144 2145 2146 2147 2148 2149 2150 2151 4540|2400 2401 2402 2403 2404 2405 2406 2407
4150 2152 2153 2154 2155 2156 2157 2158 2159 455012408 2409 2410 2411 2412 2413 2414 2415
4160|2160 2161 2162 2163 2164 2165 2166 2167 45602416 2417 2418 2419 2420 2421 2422 2423
4170 2168 2169 2170 2171 2172 2173 2174 2175 45702424 2425 2426 2427 2428 2429 2430 243
4200] 2176 2177 2178 2179 2180 2181 2182 2183 4600|2432 2433 2434 2435 2436 2437 2438 2439
4210} 2184 2185 2186 2187 2188 2189 2190 2191 4610 (2440 2441 2442 2443 2449 2445 2446 2447
4220] 2192 2193 2194 2195 2196 2197 2198 2199 4620|2448 2449 2450 2451 2452 2451 2454 2455
4230 2200 2201 2202 2203 2204 2205 2206 2207 4630|2456 2457 2458 2459 2460 2461 2462 2443
4240(2208 2209 2210 2211 2212 2213 2214 2215 4640|2464 2465 2466 2467 2468 2469 2470 2471
425Q| 2216 2217 2218 2219 2220 2221 2222 2223 465002472 2473 2474 2475 2476 2477 2478 2479
4260(2224 2225 2226 2227 2228 2229 2230 2231 4660|2480 2481 2482 2483 2484 2485 2486 2487
42707 2232 2233 2234 2235 2236 2237 2238 2239 46702488 2489 2490 2491 2492 2493 2494 2495
43002240 2241 2242 2243 2244 2245 2246 2247 4700|2496 2497 2498 2499 2500 2501 2502 2503
431072248 2249 2250 2251 2252 2253 2254 2255 4710 (2504 2505 2506 2507 2508 2509 2510 2511
432012256 2257 2258 2259 2260 2261 2262 2263 47202512 2513 2514 2515 2516 2517 2518 2519
4330] 2264 2265 2266 2267 2268 2269 2270 2271 473012520 2521 2522 2523 2524 2525 2526 2527
4340(2272 2273 2274 2275 2276 2277 2278 2279 474012528 2529 2530 2531 2532 2533 2534 2535
4350{ 2280 2281 2282 2283 2284 2285 2286 2287 47502536 2537 2538 2539 2540 2541 2542 2543
4360|2288 2289 2290 2291 2292 2293 2294 2295 47602544 2545 2546 2547 2548 2549 2550 2551
4370|2296 2297 2298 2299 2300 2301 2302 2303 477072552 2553 2554 2555 2556 2557 2558 2559

0 1 2 3 4 5 6 7 0 1 2 3 4 9 6 7
5000[2560 2561 2562 2563 2564 2565 2566 2567 5400|2216 2817 2818 2819 2820 2821 2822 2823
5010|2568 2569 2570 2571 2572 2573 2574 2575 54102824 2825 2826 2827 2828 2829 2830 2831
50202576 2577 2578 2579 2580 2581 2582 2583 5420]2832 2333 2834 2835 2836 2837 2838 2838
5030|2584 2585 2586 2587 2588 258Y 2590 2591 54302840 2641 2842. 2843 2844 2845 2846 1847
5040|2592 2593 2594 2595 2596 2597 2598 2599 5440(2848 2849 2850 2851 2852 2853 2854 2858
5050|2600 2601 2602 2603 2634 2605 2606 2607 54502856 2857 2858 2859 2860 2861 2862 2863
5060|2608 2609 2610 2611 2612 2613 2614 2615 5460|2864 2865 2866 2867 2868 2869 2870 287
5070|2616 2617 2518 2619 2620 2621 2622 2623 5470|2872 2873 2874 2875 2876 2877 2878 287Y
5100|2624 2625 2626 2627 2628 2629 2630 2631 5500|2880 2881 2882 2883 2884 2885 2886 2887
5110|2632 2633 2634 2635 2636 2637 2638 2639 55102888 2889 2890 2891 2892 2893 2894 289¢
5120|264C 2641 2642 2643 2644 2645 2646 2647 5520|2896 2897 2898 2899 2900 2901 2902 2903
5130 {2648 2649 2650 2651 2652 2653 2654 2655 5530|2904 2905 2906 2907 2908 2909 2910 2911
5140|2656 2657 2658 2659 2660 2661 2662 2663 554012912 2913 2914 2915 2916 2917 2918 2619
5150|2664 2665 2666 2667 2668 2669 2670 2671 555012920 2921 2922 2923 2924 2925 2926 2927
51602672 2673 2674 2675 2676 2677 2678 2679 55602928 2929 2930 2931 2932 2933 2934 2935
5170|2680 2681 2682 2683 2684 2685 2686 2687 557012936 2937 2938 2939 2940 2941 2942 2943
5200 2688 2689 2690 2691 2692 2693 2694 2695 5600 {2944 2945 2945 2347 2948 2949 2950 2951
521012696 2697 2698 2699 2700 2701 2702 2703 5610|2952 2953 2954 2955 2956 2957 2958 2959
52202704 2705 2706 2707 2708 2709 2710 2711 5620|2960 2961 2962 2963 2964 2965 2966 2967
523012712 2713 2714 2715 2716 2717 2718 2719 5630 12968 2965 2970 2971 2972 2973 2974 2975
5240|2720 2721 2722 2723 2724 2725 2726 2727 5640 {2576 2977 2978 2979 2980 2981 2982 2983
5250|2728 2729 2730 2731 2732 2733 2734 2735 5650 | 2584 2985 2986 2987 2988 2989 2990 2991
5260{2736 2737 2738 2739 2740 2741 2742 2743 5660 12992 2993 2594 2995 2996 2997 2998 2999
52702744 2745 2746 2747 2748 2749 2750 2751 567013000 3001 3002 3003 3004 3005 3006 3007
5300|2752 2753 2754 2755 2756 2757 2758 2759 5700|3008 3009 3010 3011 3012 3013 3014 3015
5310|2760 2761 2762 2763 2764 2765 2766 2767 5710{3016 3017 3018 3019 3020 3021 3022 3023
5320 (2768 2769 2770 2771 2772 2773 2774 2775 5720|3024 3025 3026 3027 3028 3029 3030 3031
5330|2776 2777 2778 2779 2780 2781 2782 2783 57303032 3033 3034 3035 3036 3037 3038 3039
5340 {2784 2785 2786 2787 2788 2789 2790 2791 57403040 3041 3042 3043 3044 3045 3046 3047
$350 {2792 2793 2794 2795 2796 2797 2798 2799 5750|3048 3049 3050 3051 3052 3053 3054 3055
5360 {2800 2801 2802 2803 2804 2805 2806 2807 57603056 3057 3058 3059 3060 3061 3062 3063
53702808 2809 2810 2811 2812 2813 2814 2815 57703064 3065 3066 3067 3068 3069 3070 3071

B-13

5000
to
5777

(Octal) | (Decimal)

2560
to
3071

(Continued on next page)

OCTAL TO DECIMAL CONVERSION TABLE

Table B-1 (Cont.)
Octal-Decimal Integer Conversion

o 1 2 3 4 5 6 1 o 1 2 3 4 5 6 1

6000 3072 8000 | 3072 3073 3074 3075 3076 3077 3078 3079 6400|3328 3320 3330 3331 3332 3333 3334 3335
to to 6010|3080 3081 3082 3083 3084 3085 3086 3087 6410|3336 3337 3338 3339 3340 3341 3342 3343
6777 3583 6020 | 3088 3089 3090 3091 3092 3093 3094 3095 6420 3344 3345 3346 3347 3348 3349 3350 3351
(Octal) | (Decimal) 6030|3096 3097 3098 3099 3100 310! 3102 3103 6430 3352 3353 3354 3355 3356 3357 3358 3359

6040|3104 3105 3106 3107 3108 3109 3110 3111 6440| 3360 3361 3362 3363 3364 3365 3366 3367
6050 (3112 3113 3114 3115 3116 3117 3118 3119 6450 3368 3369 3370 3371 3372 3373 3374 3375

Octal Decimal 6060|3120 3121 3122 3123 3124 3125 3126 3127 6460 3376 3377 3378 3379 3380 3381 3382 3383

10000 - 4096 6070|3128 3129 3130 3131 3132 3133 3134 3135| 6470/ 3384 3385 3386 3387 3388 3389 3390 3391
%.%’_lgégg 6100 [3136 3137 3138 3139 3140 3141 3142 3143 [6500| 3392 3393 3394 3395 3396 3397 3398 3399 N
20000 - 16384 6110|3144 3145 3146 3147 3148 3149 3150 3151 [6510] 3400 3401 3402 3403 3404 3405 3406 3407
50000 . 20480 6120|3152 3153 3154 3155 3156 3157 3158 3159] [6520{ 3408 3409 3410 3411 3412 3413 3414 3415
60000 - 24576 6130 3160 3161 3162 3163 3164 3165 3166 3167) [6530| 3416 3417 3418 3419 3420 3421 3422 3423
70000 - 28672 6140|3168 3169 3170 3171 3172 3173 3174 3175] |6540[3424 3425 3426 3427 3428 3429 3430 3431

61503176 3177 3178 3179 3180 3181 3182 3183 6550(3432 3433 3434 3435 3436 3437 3438 1439
6160 13184 3185 3186 3187 3188 3189 3190 3191 6560] 3440 3441 3442 3443 3444 3445 3446 3447
617013192 3193 3194 3195 3196 3197 3198 3199 6570| 3448 3449 3450 3451 3452 3453 3454 3455

6200 {3200 3201 3202 3203 3204 3205 3206 3207 6600(3456 3457 3458 3459 3460 3461 3462 3463
6210|3208 3209 3210 3211 3212 3213 3214 3215 6610] 3464 3465 3466 3467 3468 3469 3470 3471
6220|3216 3217 3218 3219 3220 3221 3222 3223 6620[3472 3473 3474 3475 3476 3477 3478 3479
6230 | 3224 3225 3226 3227 3228 3229 3230 3231 6630] 3480 3481 3482 3483 3484 3485 3486 3487
624013232 3233 3234 3235 3236 3237 3238 3239 6640(3488 3489 3490 3491 3492 3493 3494 3495

6250 | 3240 3241 3242 3243 3244 3245 3246 3247 6650(3496 3497 3498 3499 3500 3501 3502 3503 M
6260 | 3248 3249 3250 3251 3252 3253 3254 3255 6660| 3504 3505 3506- 3507 3508 3509 3510 3511
62703256 3257 3258 3259 3260 3261 3262 3263 6670 3512 3513 3514 3515 3516 3517 3518 3519

6300 {3264 3265 3266 3267 3268 3269 3270 3271 6700(3520 3521 3522 3523 3524 3525 3526 3527
6310|3272 3273 3274 3275 3276 3277 3278 3279 6710(3528 3529 3530 3531 3532 3533 3534 3535
6320 (3280 3281 3282 3283 3284 3285 3286 3287 6720(3536 3537 3538 3539 3540 3541 3542 3543
6330 {3288 3289 3290 3291 3292 3293 3294 3295 6730|3544 3545 3546 3547 3548 3549 3550 3551
6340|3296 3297 3298 3299 3300 3301 3302 3303 6740(3552 3553 3554 3555 3556 3557 3558 3559
6350 |3304 3305 3306 3307 3308 3309 3310 3311 6750| 3560 3561 3562 3563 3564 3565 3566 3567
6360 (3312 3313 3314 3315 3316 3317 3318 3319 §760{ 3568 3569 3570 3571 3572 3573 3574 3575
6370|3320 3321 3322 3323 3324 3325 3326 3327 6770} 3576 3577 3578 3579 3580 3581 3582 3583

o 1 2 3 4 5 6 1 o 1 2 3 4 5 6 1

7000 | 3584

7000| 3584 3585 3586 3587 3588 3589 3590 3501 7400|3840 3841 3842 3843 3844 3845 3846 3847
7;‘;7 4&’,5 1820 3592 3593 3504 13595 3596 3597 3598 3599 7410|3848 3849 3850 3851 3852 1853 3854 3855 Ac
(Octal) | (Decimal) 1020 3600 3601 3602 3603 3604 3605 3606 3607 7420|3856 3857 3858 3850 3860 3861 3862 3863

7030| 3608 3609 3610 3611 3612 3613 3614 3615 7430{ 3864 3865 3866 3867 3866 3869 3870 3871

7040] 3616 617 3618 3619 3620 3621 3622 3623 7440|3872 3873 3874 3875 3876 3877 3878 3879

1050 3624 3625 3626 3627 3628 3629 3630 3631 7450| 3880 3881 3882 3883 3884 3885 3886 3887

7060| 3632 3633 3634 3635 3636 3637 3638 3639 7460| 3888 3889 3890 3891 3892 3893 3894 3895
7070| 3640 3641 3642 3643 3644 3645 3646 3647 7470| 3896 3897 3898 3899 3900 3901 3902 3903

7100| 3648 3649 3650 3651 3652 3653 3654 3655 7500 | 3904 3905 3906 3907 3908 3909 3910 3911
7110] 3656 3657 3658 3659 3660 3661 3662 3663 7510(3912 3913 3914 3915 3916 3917 3918 3919
7120] 3664 3665 3666 3667 3668 3669 3670 3671 7520{3920 3921 3922 3923 3924 3925 3926 3927
7130] 3672 3673 3674 3675 3676 3677 3678 3679 7530(3928 3929 3930 3931 3932 3933 3934 3935
7140] 3680 3681 3682 3683 3684 3685 3686 3687 7540|3936 3937 3938 3939 3940 3941 3942 3943
7150| 3688 3689 3690 3691 3692 3693 3694 3695 7550 3944 3945 3946 3947 3948 3949 3950 3951
7160| 3696 3697 3698 3699 3700 3701 3702 3703 7560] 3952 3953 3954 3955 3956 3957 3958 3959
7170| 3704 3705 3706 3707 3708 3709 3710 3T 7570|3960 3961 3962 3963 3964 3965 3966 3967 M

7200 3712 3713 3714 3715 3716 3717 3718 3719 7600 | 3968 3969 3970 3971 3972 3973 3974 13975
7210| 3720 3721 3722 3723 3724 3725 3726 3727 7610(3976 3977 3978 3979 3980 1981 3982 3983
7220] 3728 3929 3730 3731 3732 3733 3734 3735 7620 | 3984 3985 3986 3987 3988 3989 3990 3991
7230| 3736 3737 3738 3739 3740 3741 3742 3743 76303992 3993 3994 3995 3996 3997 3998 3999
7240| 3744 3745 3746 3747 3748 3749 3750 3751 7640|4000 4001 4002 4003 4004 4005 4006 4007
7250] 3752 3753 3754 3755 3756 3757 3758 3759 7650|4008 4009 4010 4011 4012 4013 4014 4015
7260} 3760 3761 3762 3763 3764 3765 3768 3767 7660|4016 4017 4013 4019 4020 4021 1022 4023
7270{ 3768 3769 3770 3771 3772 3773 3174 3175 7670|4024 4025 4026 4027 4028 4029 4030 4031 4

7300} 3776 3777 3778 3779 3780 3781 3782 3783 7700|4032 4033 4034 4035 4036 4037 4038 4039
7310] 3784 3785 3786 3787 3788 3789 3790 3791 7710|4040 4041 4042 4043 4044 4045 4046 4047
7320|3792 3793 3794 3795 3796 3797 3798 3799 7720|4048 4049 4050 4051 4052 4053 4054 4055
7330/ 2800 3801 3802 3803 3804 3805 3806 3807 7730 {4056 4057 4058 4059 4060 4061 4062 4063
7340| 3808 3809 3810 3811 3812 3813 3814 3815 7740 {4064 4065 4066 4067 4068 4069 4070 4071 -
7353} 3816 38.7 3818 3819 3820 3821 3822 3823 7750 {4072 4073 4074 4075 4076 4077 4078 4079
7360|3824 3825 3826 3827 3828 3829 3830 3831 77604080 4081 4082 4083 4084 4085 4086 4087
7370| 3832 3833 3834 3835 3836 3837 3838 3839 77704088 4089 4090 4091 4092 4093 4094 4095

B-14

APPENDIX C

TASK BUILDER DATA FORMATS

An object module consists of variable length records of information
that describe the contents of the module. Six record (or block) types
are included in the object language. These records guide the Task
Builder in the translation of the object language into a task image.

The six record types are:
e Type 1 - Declare Global Symbol Directory (GSD)
e Type 2 - End of Global Symbol Directory
® Type 3 - Text Information (TXT)
® Type 4 - Relocation Directory (RLD)
® Type 5 - Internal Symbol Directory (ISD)
® Type 6 - End of Module

Each object module must consist of at least five of the record types.
The only record type that is not mandatory is the internal symbol
directory. The appearance of the various record types in an object
module follows a defined format. See Figure C-1,

An object module must begin with a GSD record and end with an
end-of-module record. Additional GSD records can occur anywhere in
the file but must appear before an end-of-GSD record. An end-of-GSD
record must appear before the end-of-module record, and at least one
relocation directory record (RLD) must appear before the first text
information record (TXT). Additional RLDs and TXTs can appear
anywhere in the file. The internal symbol directory records (ISDs)
can appear anywhere in the file between the initial GSD and
end-of-module records.

Object module records are of variable length, and are identified by a
record type code 1in the first byte of the record. The format of
additional information in the record depends on the record type.

TASK BUILDER DATA FORMATS

GSD INITIAL GSD A,
RLD INITIAL RELOCATION DIRECTORY
GSD ADDITIONAL GSD
TXT TEXT INFORMATION
TXT TEXT INFORMATION .
RLD RELOCATION DIRECTORY
NSNS
N A NS
GSD ADDITIONAL GSD
END GSD END OF GSD -~
ISD INTERNAL SYMBOL DIRECTORY
1SD INTERNAL SYMBOL DIRECTORY
TXT TEXT INFORMATION
TXT TEXT INFORMATION
TXT TEXT INFORMATION -~
END MODULE END OF MODULE

Figure C-1 General Object Module Format

C.1 GLOBAL SYMBOL DIRECTORY

Ay,
Global symbol directory (GSD) records contain all the information '
necessary to assign addresses to global symbols and to allocate the
memory required by a task.
GSD records are the only records processed in the first pass. You can .
save a significant amount of time if you put all GSD records at the
beginning of a module, because less of the file must be read on the
first pass.
GSD records contain seven types of entries: -
Type Entry
0 Module Name
1 Control Section Name
2 Internal Symbol Name

TASK BUILDER DATA FORMATS

Type Entry

3 Transfer Address
4 Global Symbol Name

5 Program Section Name

6 Program Version Identification

There are four words in the GSD record for each entry type. The first
two words contain six Radix-50 characters. The third word contains a
flag byte and the entry type identification. The fourth word contains
additional information about the entry. See Figure C-2 below.

RAD1X-50 NAME

ENTRY TYPE FLAGS

VALUE

RADIX-50 NAME

ENTRY TYPE FLAGS

VALUE

AN NN T
AN NSNS

RADIX-50 NAME

ENTRY TYPE FLAGS

VALUE

RADIX-50 NAME

ENTRY TYPE FLAGS

VALUE

Figure C-2 GSD Record and Entry Format

C.1.1 Module Name

The module name entry, as illustrated in Figure C-3, declares the name
of the object module. The name need not be unique with respect to
other object modules because modules are identified by file, not
module name. Only one module name entry can occur in any given object
module.

TASK BUILDER DATA FORMATS

MODULE NAME

Figure C-3 Module Name Entry Format

C.1.2 Control Section Name
Control sections, which include ASECTs, blank CSECTs, and named
CSECTs, are supplanted by PSECTs. For compatibility with other
systems, Task Builder processes ASECTs and both forms of CSECTs.
Section C.1.6 details the entry generated for a PSECT statement. 1In
terms of the PSECT directive, ASECT and CSECT statements can be
defined as follows:
e For a blank CSECT, a PSECT definition is:
.PSECT ,LCL,REL,CON,RW,I,LOW
® For a named CSECT, the PSECT definition is:
.PSECT name, GBL,REL,OVR,RW,I,LOW
e For an ASECT, the PSECT definition is:
.PSECT . ABS.,GBL,ABS,I,OVR,RW,LOW
ASECTs and CSECTs are processed by the Task Builder as PSECTs with the

fixed attributes defined above. The entry generated for a control
section is shown in Figure C-4.

CONTROL SECTION

NAME

1 (Ignored)

MAXIMUM LENGTH

Figure C-4 Control Section Name Entry Format

C.1.3 Internal Symbol Name

The internal symbol name entry declares the name of an internal symbol
(with respect to the module). The Task Builder does not support
internal symbol tables, so the detailed format of this entry is not
defined (Figure C-5). Any internal symbol entry encountered while the
Task Builder reads the GSD is ignored.

TASK BUILDER DATA FORMATS

SYMBOL NAME

UNDEFINED

Figure C-5 1Internal Symbol Name Entry Format

C.1l.4 Transfer Address

The transfer address entry, as illustrated in Figure C-6, declares the
transfer address of a module relative to a PSECT. The first two words
of the entry define the'name of the PSECT, and the fourth word, the
relative offset from the beginning of that PSECT. 1If no transfer
address is declared in a module, a transfer address entry either must
not be included in the GSD, or a transfer address 000001 relative to
the default absolute PSECT (. ABS.) must be specified.

PSECT NAME

OFFSET

Figure C-6 Transfer Address Entry Format

NOTE

If the PSECT is absolute and OFFSET is
not 000001, then OFFSET is the actual
transfer address.

C.1.5 Global Symbol Name

The global symbol name entry, as illustrated in Figure CC-7, declares
either a global reference or a definition. All definition entries
must appear after the declaration of the PSECT they are defined 1in,
and before the declaration of another PSECT. Global references can
appear anywhere within the GSD.

The first two words of the entry define the name of the global symbol.
The flag byte declares the attributes of the symbol, and the fourth
word, the value of the symbol relative to the PSECT it is defined in.

The flag byte of the symbol declaration entry has the following bit
assignments.

Bit 0 - Weak Qualifier

.0 = Symbol is a strong definition or reference, and is
resolved in the normal manner.

TASK BUILDER DATA FORMATS

1 = symbol 1is a weak definition or reference. A weak
reference (Bit 3=0) 1is ignored. A weak definition (Bit
3=1) is ignored unless a previous reference has been made.

Bit 1 - Not used.

Bit 2 - Definition Type

0 = Normal Definition or reference.

1 = Library definition. If the symbol is defined in a
resident library STB file, the base address of the library
is added to the value, and the symbol 1is converted to
absolute (bit 5 is reset); otherwise the bit is ignored.

Bit 3 - Reference or Definition

0

]

Global symbol reference.

1

[}

Global symbol definition.

Bit 4 - Not used.

Bit 5 - Relocation

0 = Absolute symbol value.
1 = Relative symbol value.
Bit 6 - 7 - Not used.
L SYMBOL
NAME
4 FLAGS
VALUE

Figure C-7 Global Symbol Name Entry Format

C.1.6 PSECT Name

The PSECT name entry, as illustrated in Figure C-8, declares the name
of a PSECT and its maximum length in the module. It also declares the
attributes of the PSECT via the flag byte.

GSD records must be constructed such that once a PSECT name has been
declared, all global symbol definitions pertaining to it must appear
before another PSECT name is declared. Global symbols are declared in
symbol declaration entries. Thus, the normal format is a series of
PSECT names each followed by optional symbol declarations.

TASK BUILDER DATA FORMATS

The flag byte of the PSECT entry has the following bit assignments:

Bit 0 - Memory Speed

0 PSECT is to occupy low speed (core) memory.

1

Library PSECT

0 Normal PSECT.

1

common block.

it 2 - Allocation

0 = PSECT references are to be concatenated with

PSECT is to occupy high speed (i.e., MOS/Bipolar) memory.

Relocatable PSECT that references a resident 1library

references to the same PSECT to form the total memory

allocated to the PSECT.

1 = PSECT references are to be overlaid. The total memory
allocated to the PSECT 1is the largest request made by

individual references to the same PSECT.

Reserved for the Task Builder

Access

0 = PSECT has read/write access.

1 = PSECT has read-only access.

Relocation

0 = PSECT is absolute and requires no relocation.

1 = PSECT is relocatable and references to the control
must have a relocation bias added before they become
absolute.

Scope

0 = The scope of the PSECT is local. References to the

PSECT will be collected only within the segment in which

the PSECT is defined.

1 = The scope of the PSECT is global. References to the PSECT
are collected across segment boundaries. The segment in
which a global PSECT is allocated storage 1is determined
either by the first module that defines the PSECT on a
path, or by direct placement of a PSECT in a segment

the .PSECT directive.

TASK BUILDER DATA FORMATS

Bit 7 - Type
0

i

The PSECT contains instruction (I) references.

1

The PSECT contains data (D) references.

NOTE

Compare these bit assignments with the
PSECT attributes in Table 4-1.

PSECT
NAME

5 FLAGS

MAX LENGTH

Figure C-8 PSECT Name Entry Format

NOTE

The length of all absolute PSECTs is
zero.

C.1.7 Program Version Identification

The program version identification entry, as illustrated in Figure
C-9, declares the version of the module. The Task Builder saves the
version identification of the first module that defines a nonblank
version. This identification is then included on the memory
allocation map and is written in the label block of the task image
file.

The first two words of the entry contain the version identification.
The flag byte and fourth words are not used and contain no meaningful
information.

VERSION
IDENTIFICATION

Figure C-9 Program Version Identification Entry Format

TASK BUILDER DATA FORMATS

C.2 END OF GLOBAL SYMBOL DIRECTORY

The end-of-global-symbol-directory record, as illustrated 1in Figure
C-10, declares that no other GSD records are contained farther on in
the module. Exactly one end-of-GSD record must appear 1in an object
module. 1Its length is one word.

Figure C~10 End-of~GSD Record Format

C.3 TEXT INFORMATION

The text information record, as illustrated in Figure C-11, contains a
byte string of information that is to be written directly into the
task image file. The record consists of a load address followed by
the byte string.

Text records can contain words and/or bytes of information whose final
contents have not been determined yet. This information will be bound
by a relocation directory record that immediately follows the text
record (see Section C.4). If the text record does not need
modification, then no relocation directory record 1is needed. Thus,
multiple text records can appear 1in sequence before a relocation
directory record.

The load address of the text record is specified as an offset from the..-
current PSBECT base. At least one relocation directory record mustw
precede the first text record. This directory must declare the
current PSECT. '

LOAD ADDRESS

TEXT TEXT
TEXT TEXT
TEXT TEXT

NINGANGANAAC ST

TEXT TEXT
TEXT TEXT
TEXT TEXT
TEXT TEXT
TEXT TEXT

Figure C-11 Text Information Record Format

C-9

TASK BUILDER DATA FORMATS

The Task Builder writes a text record directly into the task image
file and computes the value of the load address minus four. This
value is stored in anticipation of a subsequent relocation directory
that modifies words and/or bytes that are contained in the text
record. When added to a relocation directory displacement byte, this
value yields the address of the word and/or byte to be modified in the
task image.

C.4 RELOCATION DIRECTORY

Relocation directory records (see Figure C-12) contain the information
necessary to relocate and link the preceding text information record.
Every module must have at least one relocation directory record that
precedes the first text information record. The first record does not
modify a preceding text record but rather defines the current PSECT
and location. Relocation directory records contain 15 types of
entries. These entries are <classified as relocation or location
modification entries. The following types are defined:

Type Definition

1 Internal Relocation
2 Global Relocation
3 Internal Displaced Relocation
4 Global Displaced Relocation
5 Global Additive Relocation
6 Global Additive Displaced Relocation
7 Location Counter Definition
10 Location Counter Modification
11 Program Limits
e 12 PSECT Relocation
13
14
15
16
17
20

Not used

PSECT Displaced Relocation

PSECT Additive Relocation

PSECT Additive Displaced Relocation
Complex Relocation

Additive Relocation

Each type of entry is represented by a command byte (specifies type of
entry and word/byte modification), followed by a displacement byte,
and then by the information required for the particular type of entry.
The displacement byte, when added to the value calculated from the
load address of the preceding text information record (see Section
C.3), yields the virtual address in the image that is to be modified.
The command byte of each entry has the following bit assignments.

Bits 0 - 6 Specify the type of entry. Potentially, 128 command types
can be specified although only 15 (decimal) are
implemented.

Bit 7 - Modification
0 = The command modifies an entire word.

1 = The command modifies only one byte. The Task Builder
checks for truncation errors in byte modification
commands. If truncation is detected, that 1is, if the
modification value has a magnitude greater than 255, an
error occurs.

TASK BUILDER DATA FORMATS

0 4
DISP cMD
INFO INFO
INFO INFO

L//«\“\«“\/\w—'J ‘
T NN
CMD INFO
INFO DISP
INFO INFO

. "
INFO INFO
DISP CMD
INFO INFO

INFO INFO
INFO INFO

Figure C-12 Relocation Directory Record Format

C.4.1 1Internal Relocation

The internal relocation entry illustrated in Figure C-13 relocates a
direct pointer to an address within a module. The current PSECT base
address is added to a specified constant, and the result is written
into the task 1image file at the calculated address. (That is, a
displacement byte is added to the value calculated from the load
address of the preceding text block.)

Example:

A: MOV #A,R0
or
.WORD A

TASK BUILDER DATA FORMATS

DISP

B

CONSTANT

Figure C-13 Internal Relocation Entry Format

C.4.2 Global Relocation

The global relocation entry in Figure C-14 relocates a direct pointer
to a global symbol. The definition of the global symbol is obtained

and the result is written into the task image file at

address.
Example:
MOV #GLOBAL ,RO
or

.WORD GLOBAL

DISP

B

SYMBOL NAME

the

Figure C-14 Global Relocation Entry Format

C.4.3 Internal Displaced Relocation

The internal displaced relocation entr
relative reference to an absolute a

y in

C-~15

calculated

relocates a
ddress from within a relocatable

control section. The address plus 2 that the relocated value is to be

The result is
then written into the task image file at the calculated address.

written into is subtracted from the specified constant.

Example:
CLR 177550
or
MOV 177550,R0

DisP

CONSTANT

Figure C-15 Internal Displaced Relocation Entry Format

TASK BUILDER DATA FORMATS

C.4.4 Global Displaced Relocation

The global displaced relocation entry in . Figure C-16 relocates a
relative reference to a global symbol. The definition of the global
symbol is obtained, and the address plus 2 that the relocated value is
to be written into is subtracted from the definition value. The
result is then written into the task image file at the calculated
address.

Example:
CLR GLOBAL
or
MOV GLOBAL,RO

DisP B 4

SYMBOL NAME

Figure C-16 Global Displaced Relocation Entry Format

C.4.5 Global Additive Relocation

The global additive relocation entry in Figure C-17 relocates a direct
pointer to a global symbol with an additive constant. The definition
of the global symbol is obtained, the specified constant is added, and
the resultant value 1is then written into the task image file at the
calculated address.
Example:

MOV #GLOBAL+2,R0

or

.WORD GLOBAL-4

DISP B 5

SYMBOL NAME

CONSTANT

Figure C-17 Global Additive Relocation Entry Format

C.4.6 Global Additive Displaced Relocation

The global additive displaced relocation entry in Figure Cc-18
relocates a relative reference to a global symbol with an additive
constant. The definition of the global symbol is obtained, and the

TASK BUILDER DATA FORMATS

specified constant is added to the definition value. The address plus
2 that the relocated value is to be written into 1is subtracted from
the resultant additive value. The result is then written into the
task image file at the calculated address.

Example:
CLR GLOBAL+2
or
MOV GLOBAL-5,R0

DISP B 6

SYMBOL NAME

CONSTANT

Figure C-18 Global Additive Displaced Relocation Entry Format

C.4.7 Location Counter Definition

The location counter definition in Figure C-19 declares a current
PSECT and location counter value. The control base is stored as the
current control section, and the current control section base is added
to the specified constant and stored as the current location counter
value.

0 B 7

PSECT NAME

CONSTANT

Figure C-19 Location Counter Definition

C.4.8 Location Counter Modification
The location counter modification entry in Figure C-20 modifies the
current location counter. The current PSECT base is added to the
specified constant and the result is stored as the current location
counter.
Example:

.=.+N

or

.BLKB N

it}

TASK BUILDER DATA FORMATS

0 B 10

CONSTANT

Figure C-20 Location Counter Modification

C.4.9 Program Limits

The program limits entry in Figure C~21 is generated by the .LIMIT
assembler directive. The first address above the header (normally the
beginning of the stack) and highest address allocated to the task, are
obtained and written into the task image file at the calculated
address, and at the calculated address plus 2 respectively.

Example:

+LIMIT

DISP B 1

Figure C-21 Program Limits Entry Format

C.4.10 PSECT Relocation

The PSECT relocation entry in Figure C-22 relocates a direct pointer
to the beginning address of another PSECT (other than the PSECT in
which the reference is made) within a module. The current base
address of the specified PSECT is obtained and written into the task
image file at the calculated address.

Example:
.PSECT A
B:
.PSECT C
MOV #B,R0O
or
.WORD B

TASK BUILDER DATA FORMATS

DISP B 12

PSECT NAME

Figure C-22 PSECT Relocation Entry Format

C.4.11 PSECT Displaced Relocation

The PSECT displaced relocation entry in Figure C-23 relocates a
relative reference to the beginning address of another PSECT within a
module. The current base address of the specified PSECT is obtained
and the address plus 2 that the relocated value is to be written into
is subtracted from the base value. The result is then written into
the task image file at the calculated address.

Example:
.PSECT A
B:
.PSECT C
MOV B,R0O
DISP B 14
PSECT NAME

Figure C-23 PSECT Displaced Relocation Entry Format

C.4.12 PSECT Additive Relocation

The PSECT additive relocation entry in Figure C-24 relocates a direct
pointer to an address in another PSECT within a module. The current
base address of the specified PSECT is obtained and added to the
specified constant. The result is written into the task image file at
the calculated address.

Example:

.PSECT A
B: .
C:

.PSECT D

TASK BUILDER DATA FORMATS

MOV #B+10,R0
MOV #C,RO
or

.WORD B+10
+WORD C

DISP B 15

PSECT NAME

CONSTANT

Figure C-24 PSECT Additive Relocation Entry Format

C.4.13 PSECT Additive Displaced Relocation

The PSECT additive displaced relocation entry in Figure C-25 relocates
a relative reference to an address in another PSECT within a module.
The current base address of the specified PSECT is obtained and added
to the specified constant. The address plus 2 that the relocated
value is to be written into is subtracted from the resultant additive
value. The result 1is then written into the task image file at the
calculated address.

Example:
.PSECT A
B:
C:
.PSECT D
MOV B+10,R0
MOV C,RO
DISP B 16
PSECT NAME
CONSTANT

Figure C-25 PSECT Additive Displaced Relocation Entry Format

TASK BUILDER DATA FORMATS

C.4.14 Complex Relocation
The complex relocation entry in Figure C-26 resolves a complex
relocation expression. In such an expression any of the MACRO-11
binary or unary operations are permitted. Any type of argument is
permitted, regardless of whether the argument is unresolved global,
relocatable to any PSECT base, absolute, or a complex relocatable
subexpression.
The RLD command word is followed by a string of numerically-specified
operation codes and arguments. Each operation code occupies one byte.
The entire RLD command must fit in a single record. The following
operation codes are defined.

0 - No operation

1 - Addition (+)

2 - Subtraction (-)
-~ Multiplication (*)
Division (/)

- Logical AND (&)

=)} (8] o w
1

- Logical inclusive OR (!)

10 - Negation (-)

11 - Complement (°C)

12 - Store result (command termination)

13 - Store result with displaced relocation (command termination)

16 - Fetch global symbol. It is followed by four bytes containing
the symbol name in Radix-50 representation.

17 - Fetch relocatable value. It is followed by one byte
containing the sector number, and two bytes containing the
offset within the sector.

20 - Fetch constant. It is followed by two bytes containing the
constant.

21 - Fetch resident library base address. If the file 1is a
resident 1library STB file, the 1library base address is
obtained; otherwise, the base address of the Task 1Image is
fetched.

The STORE commands indicate that the value is to be written into the
task image file at the calculated address.

All operands are evaluated as 16-bit signed quantities using two's
complement arithmetic. The results are equivalent to expressions that
are evaluated internally by the assembler. The following rules should
be noted.

1. An attempt to divide by zero yields a zero result. The Task
Builder issues a nonfatal diagnostic.

C-18

TASK BUILDER DATA FORMATS

2. All results are truncated from the left in order to fit into
16 bits. No diagnostic is issued 1if the number was too
large. If the result modifies a byte, the Task Builder
checks for truncation errors as described in Section C.4.

3. All operations are performed on relocated (additive) or
absolute 16-bit quantities. PC displacement is applied to
the result only.

For example:

.PSECT ALPHA
A:

.
.
.
.

PSECT BETA

MOV #A+B-<G1/G2&°C<177120!G3>>,R1

DISP 8 17

COMPLEX STRING

12

Figure C-26 Complex Relocation Entry Format

C.4.15 Additive Relocation

The shared run-time system additive relocation entry in Figure C-27
relocates a direct pointer to an address within a SRTS.

If the current file is a symbol table file (STB), the base address of
the SRTS is obtained and added to the specified constant. The result
is written into the task image file at the calculated address. If the
file is not associated with a SRTS, the task base address is used.

DISP B 20

CONSTANT

Figure C-27 Additive Relocation Entry Format

TASK BUILDER DATA FORMATS

C.5 INTERNAL SYMBOL DIRECTORY

Internal symbol directory records, as in Figure (C-28, declare
definitions of symbols that are local to a module. This feature is
not supported by the Task Builder and therefore a detailed record
format 1is not specified. If the Task Builder encounters this type of
record, it ignores it.

NOT SPECIFIED

Figure C-28 1Internal Symbol Directory Record Format

C.6 END OF MODULE

The end-of-module record in Figure G-29 declares the end of an object
module. Exactly one end-of-module record must appear in each object
module. It is one word in length.

Figure C-29 End-of~Module Record Format

APPENDIX D

TASK IMAGE FILE STRUCTURE

The task image as it is recorded on the disk appears in Figure D-1.

AUTOLOAD VECTORS

CO-TREE OVERLAY BLOCK

AUTOLOAD VECTORS

CO-TREE ROOT
BLOCK

AUTOLOAD VECTORS

MAIN TREE

OVERLAY
BLOCK

AUTOLOAD VECTORS
SEGMENT TABLES

ROOT SEGMENT
CODE & DATA

STACK
FP/EA SAVE AREA
HEADER BLOCK

CHECKPOINT AREA
BLOCK

LABEL

Figure D-1 Task Image on Disk

D.1 LABEL BLOCK GROUP
The label block group shown in Figure D-2 precedes the task on the
disk, and contains data that need not be resident during task
execution. This group is composed of two elements:

® task and resident library data (Label Block 0)

e table of LUN assignments (Label Block 1)

The task and resident library data elements are described in the
paragraphs following Figure D-3.

The table of LUN assignments contains the name and logical unit number
of each device assigned.

Labet
L$BTSK

L$BPAR

L$BSA
LEBHGV
LEBMXV
L$BLDZ
L$BMXZ
L$BOFF
LSBWND
L$BSEG
L$BFLG
L$BDAT

L$BLIB

L$BPRI

L$BXFR
L$BEXT
L$BSGL
L$BHRB
L$BBLK
L$BLUN

TASK IMAGE FILE

Offset

10
12
14
16
20
22
24
26
30
32
34
36
40
42
44
46
50
52
54
56
60
62
64
66
70
72

344
346
350
352
354
356
360
362

Task

Name

Task

Partition

Base Address of Task

Highest Window O Virtual Address

Highest Virtual Address in Task

Load Size in 64-Byte Blocks

Max Size in 64-Byte Blocks

Task Offset Into Partition

Number of Task Windows (Less Libraries)

Size of Qverlay Segment Descriptors

Task Flag Word

Task Creation Date - Year

- Month

- Day

Library/Common

Name

Base Address of Library

Highest Address in First Library Window

Highest Address in Library

Library Load Size (64-Byte Blocks)

Library Max Size (64-Byte Blocks)

Library Offset into Region

Number of Library Window Blocks

Size of Library Segment Descriptors

Library Flags Word

Library Creation Date - Year

Month

- Day

1]

Task Priority

Task Transfer Address

Task Extension 64-Byte Blocks

Block Number of Segment Load List

Block Number of Header

Number of Blocks in Label

Number of Logical Units

0

Table of LUN assignments:

Device Name

LUN
BLOCK
1

Unit Number

Segment load list:

Device Name

Unit Number

Length of Root Segment

Length of First Overlay Segment

Length of Second Overlay Segment

STRUCTURE

R$LNAM
RSLSA
RSLHGV
R$LMXV
R$LLDZ
R$LMXZ
R$LOFF
RSLWND
R$LSEG
RSLFLG
RSLDAT

LUN 1

LUN 14

Figure D-2 Label Block Group

D-2

Library
Request
(maximum
of 7

14 word

entries)

TASK IMAGE FILE STRUCTURE

Task and resident library data are described below.

L$SBTSK Task name consisting of two words in Radix-50 format.
This parameter is set by the TASK keyword.

L$SBPAR Partition name consisting of two words in Radix-50
format. This parameter is set by the PAR keyword.

L$BSA Starting address of task. Marks the 1lowest task
virtual address. This parameter 1is set by the PAR
keyword.

L$BHGV Highest virtual address mapped by address window 0.

L$BMXV Highest task virtual address. This value is set to
L$BHGV.

L$BLDZ Task load size® in units of 64-byte blocks. This value

represents the size of the root segment.

LSBMXZ Task maximum size in units of 64-byte blocks. This
value represents the size of the root segment plus any
additional physical memory needed to contain task
overlays.

L$BOFF Task offset into partition in units of 64-byte blocks.

L$BWND Number of task windows (excluding SRTS).

LSBSEG Size of overlay segment descriptors (in bytes).

L$BFLG Task flags word. Contains flags meaningful to RSX-11M
only.

L$SBDAT Three words containing the task «creation date as

2~-digit integer values as follows:
Year (since 1900)
Month of year

Day of month

LSBLIB Resident library entries

LS$SBPRI Task priority set by the PRI keyword (ignored by
RSTS/E) .

LSBXFR Task transfer address. (Not used by RSTS/E).

L$BEXT Task extension size in units of 64-byte blocks. This
parameter is set by the EXTTSK keyword.

L$SBSGL Relative block number of segment 1load 1list. Set to
zero if no list is allocated.

LSBHRB Relative block number of header.

L$SBBLK Number of blocks in label block group.

LSBLUN Number of logical units.

The contents of the SRTS/common name block are described below. This
block 1is constructed by referencing the disk image of the SRTS/common

TASK IMAGE FILE STRUCTURE

block. The format is identical to words 3 through 16 of the label
block.

R$SLNAM Library/common name consisting of two words in Radix-50
format.

RSLSA Base virtual address of library or common.

RSLHGV Highest address mapped by first library window.

RSLMXV Highest virtual address in library or common.

RSLLDZ Library/common block load size in 64-byte blocks.

R$SLMXZ Library maximum size in units of 64-byte blocks.

RSLOFF (Not used by RSTS/E.)

R$SLWND Number of window blocks reqﬁired by library.

RSLSEG Size of library overlay segment descriptors in bytes.

RSLFLG Library flags word. The following flags are defined:
Bit

15 LDSACC Access intent (1=RW, 0=RO)
3 LDSREL PIC (Position-Independent Code) flag (1=PIC)

RSLDAT Three words containing the library/common block
creation date in the following format:

WORD 0: Year since 1900

WORD 1: Month of year
WORD 2: Day of month

D.2 HEADER

The task header starts on a block boundary and is immediately followed
by the task image. The task is read into memory starting at the base
of the root segment. Because the root segment is a set of contiguous
disk blocks, it is loaded with a single disk access.

The header is divided into two parts: a fixed part as shown in Figure
D-3, and a variable part as shown in Figure D-4.

The variable part of the header contains window blocks that describe
the following:

® the task's virtual-to-physical mapping
e logical unit data
e task context
The task header is used by RSTS/E mainly for setting the initial

conditions for the task. Only locations 46 through 56 have identical
meanings as in RSX-11M.

TASK IMAGE FILE STRUCTURE

H.CSP 0 Current Stack Pointer (R6)
H.HDLN 2 Header length
H.EFLM 4 Event flag mask
6 Event flag address
H.CUIC 10 Current UIC
H.DUIC 12 Default UIC
H.IPS 14 Initial PS
H.IPC 16 Initial PC (R7)
H.ISP 20 Initial Stack Pointer (R6)
H.ODVA 22 ODT SST vector address
H.ODVL 24 ODT SST vector length
HTKVA 26 Task SST vector address
H.TKVL 30 Task SST vector length
H.PFVA 32 Power fail AST control block
H.FPVA 34 Floating Point AST control block
H.RCVA 36 Receive AST control block
H.EFSV 40 Address of event flag context
H.FPSA 42 Address of floating point context
H.WND 44 Pointer to number of window blocks
H.DSW 46 Directive Status Word
_ H.FCS 50 Address of FCS impure storage

H.FORT 52 Address of language impure storage
H.OVLY 54 Address of overlay impure storage
HVEXT 56 Address of impure vectors
H.SPRI 60 Swapping priority
H.NML 61 Mailbox LUN
H.RRVA 62 Receive by reference AST control block

64 Reserved

66 Reserved

70 Reserved
H.GARD 72 Header guard word pointer
H.NLUN 74 Number of LUNs

Figure D-3 Task Header Fixed Part

D-5

TASK IMAGE FILE STRUCTURE

H.LUN LUN Table (2 words/LUN)
. A,

Number of Window Blocks Offsets

Partition Control Block Address W.BPCB

Low Virtual Address Limit W.BLVR v

High Virtual Address Limit W.BHVR

Address of Attachment Descriptor W.BATT

Window Size (in 32-word blocks) W.BSI1Z

Offset into Partition (in 32-word blocks) W.BOFF

First PDR Address W.BFPD A~

Number of PDRs to Map W.BNPD

Contents of Last PDR W.BLPD

Current PS

Current PC INITIAL VALUES %

relative block

Current RS number of header

Current R4 indent word #2

Current R3 indent word #1

Current R2 task name word #2

Current R1 task name word #1 m

program transfer

Current RO address

Header Guard Word

Figure D-4 Task Header Variable Part

NOTE .

To save the identification, the initial
value set by Task Builder should be

moved to local storage. When the
program is fixed in memory and being
restarted without reloading, the
‘ h
D-6

TASK IMAGE FILE STRUCTURE

reserved program words must be tested
for their initial values to determine
whether the contents of R3 and R4 should
be saved.

The contents of RO, Rl1, and R2 are only
set when a debugging aid is present in
the task image.

D.2.1 Low Core Context

The low core context for a task consists of the Directive Status Word
and the Impure Area vectors. The Task Builder recognizes the
following global names:

.FSRPT File Control Services work area and buffer pool
vector

$0TSV Language OTS work area vector
N.OVPT Overlay Runtime System work area vector
SVEXT Vector extension area pointer
The only proper reference to these pointers is by symbolic name.

The Impure Area Pointers contain the addresses of storage used by the
reentrant library routines described above.

The address contained in the vector extension pointer locates an area
of memory that can contain additional impure area pointers.

The format of the vector extension area is shown in Figure D-5. Each
location within this region contains the address of an impure storage
area that is referenced by subroutines that must be reentrant.
Addresses below S$VEXTA, referenced by negative offsets, are reserved
for DIGITAL applications. Addresses above this symbol, referenced by
positive offsets, are allocated for user applications.

.PSECTs S$SVEX0 and $$SVEX1l have the attributes D, GBL, RW, REL, and
OVR.

The .PSECT attribute OVR, facilitates the definition of the offset to
the vector, and the initialization of the vector location at link time
as shown by the following example:

.GLOBL SVEXTA ; MAKE SURE VECTOR AREA IS LINKED
.PSECT $$VEX1,D,GBL,RO,REL,OVR

BEG=. ; POINT TO BASE OF POINTER TABLE
.BLKW N OFFSET TO CORRECT LOCATION

~ we

IN VECTOR AREA

LABEL: .WORD IMPURE SET IMPURE AREA ADDRESS

DEFINE OFFSET

~. ~e

OFFSET==LABEL-BEG

TASK IMAGE FILE STRUCTURE

.PSECT

IMPURE:

~

SVEXT

.PSECT $SVEX0

Reserved for
DIGITAL use

SVEXTA Lo .PSECT $$VEX1

Reserved for
user applications

Figure D-5 Vector Extension Area Format

D.3 OVERLAY DATA STRUCTURE

Figure D-6 illustrates the structure and principal components of the
task-resident overlay data base.

AUTOLOAD -~ SEGMENT
VECTOR " | DESCRIPTOR o
REGION
WINDOW DESCRIPTOR
DESCRIPTOR >

AUTOLOAD - SEGMENT

VECTOR DESCRIPTOR .
AUTOLOAD SEGMENT - WINDOW

VECTOR ~| DESCRIPTOR DESCRIPTOR

Figure D-6 Task~Resident Overlay Data Base

Autoload vectors are generated whenever a reference is made to an
autoloadable entry point in a segment located farther away from the
root than the referencing segment.

One segment descriptor is generated for each overlay segment in the
task or shared region. The segment descriptor contains information on

TASK IMAGE FILE STRUCTURE

the size, virtual address, and location of the segment within the task
image file. In addition, it contains a set of link words that point
to other segments. The overlay structure determines the 1link word
contents.

The following sections describe the composition of each element.

D.3.1 Autoload Vectors

The autoload vector table consists of one entry per autoload entry
point in the form shown in Figure D-7.

JSR PC,sub

SAUTO

SEGMENT DESCRIPTOR ADDRESS

ENTRY POINT ADDRESS

Figure D-7 Autoload Vector Entry

The autoload vector contains a JSR to the autoload processor, S$SAUTO,
followed by a pointer to the descriptor for the segment to be loaded,
and the real address of the entry point.

D.3.2 Segment Descriptor

The segment descriptor is composed of a 6-word fixed 1length portion.
Segment descriptor contents are shown in Figure D-8.

15 12 11 0
0 STATUS REL. DISK ADDRESS
1 LOAD ADDRESS
2 LENGTH IN BYTES
3 LINK UP
4 LINK DOWN
5 LINK NEXT
6
SEGMENT
7 NAME

Figure D-8 Segment Descriptor

TASK IMAGE FILE STRUCTURE

Word 0 contains the relative disk address in bits 0-11, and the
segment status in bits 12-15. Each segment in the task image file
begins on a disk block boundary. The relative disk address is the
block number of the segment relative to the start of the root segment.

The segment flags are defined as follows:

Bit 15 Always set to 1
Bit 14 0 = Segment loaded and mapped
1 = Segment is either not loaded or not mapped
Bit 13 0 = Segment has disk allocation
1 = Segment does not have disk allocation
Bit 12 0 = Segment not loaded from disk
1 = Segment loaded from disk

Word 1 contains the load address of the segment. This address is the
first virtual address of the area where the segment will be loaded.

Word 2 specifies the length of the segment in bytes.

The next three words point to the following segment descriptor:

Link Up points to the next segment away from the root. Link
Up equals 0 if you are already at the leaf.

Link Down points to the next segment toward the root. Link
Down equals 0 if you are already at the root.

Link Next points to the adjoining segment. Link Next equals
the address of the current segment if there are no
others on the same level with the same Link Down.
Link Next links all segments on the same level that
have the same Link Down in a circular fashion.
Thus, in Figure D-9, Link Next in A3 points to Al,
but Link Next in All points to All itself and Link

Next in A0 points to AQ itself.

When a segment is loaded, the overlay run-time system follows the
links to determine which segments are being overlaid, and should
therefore be marked out of memory.

Using the tree in Figure D-9 as an example:

A21 A22

Figure D-9 Sample Tree

D-10

TASK IMAGE FILE STRUCTURE

The segment descriptors are linked as in Figure D-10:

Al A21

Al

AO
LINK UP

A22 | Al A21 A22 l @21 ﬁzz
1
1 i : :
_____ f] -E : —_——_ ————
! l‘////—~——4$-\\\\
! |)
A2 A3 | Al A2 A3 | Al - A2 A3
! !
:-__.: I J I | \

' o J

AD

LINK DOWN LINK NEXT

If there is a
points to the

Words 6 and 7

Figure D-10 Segment Linkage Directives

co-tree, the link next for the root
co-tree root segment descriptor.

segment descriptor

contain the segment name in Radix-50 format.

Word 8 points to the window descriptor used to map the segment
(0 = none).
D.4 ROOT SEGMENT

The root segment is written as a contiguous group of blocks.
the

segment is

The root

first segment loaded and remains in memory for the

entire life of the program execution.

D.5

Each overlay segment begins on a block boundary.
the

number for

given overlay
needs
including the

to supply its space request.

OVERLAY SEGMENTS

The relative block
segment is placed in the segment table. Note that a
segment occupies as many contiguous disk blocks as it
The maximum size for any segment,

root, is 28K words.

APPENDIX E

RESERVED SYMBOLS

All symbols and PSECT! names containing a . or §$ are reserved for
DIGITAL~supplied software. Several global symbols and PSECT* names
are reserved for use by the Task Builder. Special handling occurs
when a definition of one of these names is encountered in a task
image.

The definition of a reserved global symbol in the root segment causes
a word in the task image to be modified with a value calculated by the
Task Builder. The relocated value of the symbol 1is taken as the
modification address.

Table E-1 shows global symbols reserved by the Task Builder:

Table E-1
Task Builder Reserved Global Symbols

Global Modification
Symbol Value

.FSRPT Address of File Storage Region work area (.FSRCB)

.MOLUN Error message output device

.NLUNS The number of logical wunits used by the task, not
including the Message Output and Overlay units

.NOVLY The overlay logical unit number

N.OVPT The address of the Overlay Run-time System work area
(.NOVLY)

.NSTBL The address of the segment description tables. Note

that this location is modified only when the number of
segments is greater than one.

.ODTL1 Logical unit number for the ODT terminal device TI:

{continued on next page)

! PSECTS are created by .ASECT, .CSECT, or .PSECT directives. The
.PSECT directive eliminates the need for either the .ASECT or .CSECT
directive, which are retained only for compatibility with other
systems. In this document all sections are referred to as PSECTS
unless the specific characteristics of .ASECT or .CSECT apply.

RESERVED SYMBOLS

Table E-1 (Cont.)
Task Builder Reserved Global Symbols

Global
Symbol

Modification
value

.ODTL2

Logical unit number for the ODT line printer device CL:

$OTSV

Address of Object Time System work area ($OTSVA)

. TRLUN

The trace subroutine output logical unit number

SVEXT

Address of vector extension area (SVEXTA)

The PSECT names in Table E~2 are reserved by the Task Builder.
some cases, the definition of a reserved PSECT causes the PSECT to'be
extended if the appropriate option input is specified (see Section

3.2.3.2) .

Table E-2
PSECT Names Reserved by the Task Builder

In

PSECT
Name

Description

$SALVC

Contains segment autoload vectors

SSDEVT

The extension length (in bytes) is calculated from the
formula

EXT = <S.FDB+52>*UNITS

Where the definition of S.FDB is obtained from the root
segment symbol table and UNITS is the number of logical
units used by the task, excluding the Message Output,
Overlay, and ODT units.

$SRGDS

Contains region descriptors for resident 1libraries
referenced by the task

SSRTS

Contains return instruction

$$SGDO

PSECT adjoining task segment descriptors

$$SGD1

Contains task segment descriptors

$$SGD2

PSECT following task segment descriptors

$SWNDS

Contains task window descriptors

. TS S ——

APPENDIX F

IMPROVING TASK BUILDER PERFORMANCE

This appendix contains procedures and suggestions to help you maximize
Task Builder performance. Procedures are given for:

e Evaluating and improving Task Builder throughput

e Modifying command switch defaults to provide a more efficient
user interface

F.1l EVALUATING AND IMPROVING TASK BUILDER PERFORMANCE
Task Builder thfoughput is determined by these factors:
1. The amount of memory available for table storage
2. The amount of disk latency due to input file processing
The discussion in the following ©paragraphs outlines methods for

improving throughput in each case. The methods approach their goals
through judicious use of system resources and Task Builder features.

F.l.1 The Task Builder Work File

The largest factor affecting Task Builder performance is the amount of
memory available for table storage. To reduce memory requirements,
the Task Builder uses a work file to store symbol definitions and
other tables. If the total size of these tables is within the limits
of available memory, the work file is kept in core and not shunted to
a disk. If the tables exceed the amount of memory available, some
information must be moved to the disk, which degrades performance.

Work file performance can be gauged by consulting the statistics
portion of the Task Builder map. The following parameters are
displayed:
Number of work file references:

Total number of times that work file data was referenced.

Work file reads:

Number of work file references that resulted in disk accesses to
read work file data.

IMPROVING TASK BUILDER PERFORMANCE

NOTE
If work file reads and writes equal zero
and the number of work file references

is greater than zero, you can be sure
that the work file remained in memory.

Work file writes:

Number of work file references that resulted in disk accesses to
write work file data.

Size of Core Pool:
Amount of in-core table storage in words. This value 1is also
expressed 1in units of 256-word pages (information is read from
and written to disk in blocks of 256 words).

Size of Work File:
Amount of work file storage in words. If this value is less than
the core pool size, the number of work file reads and writes is
zero. That is, no work file pages are removed to the disk. This
value is also expressed in pages (256-word blocks).

Elapsed Time:
Amount of time required to build the task image, and produce the
map. This value excludes ODL processing, option processing, and
the time required to produce the global cross-reference.

The overhead for accessing the work file can be reduced in one or more
of the following ways:

e by increasing the amount of memory available for table storage

e by placing the work file on the fastest random access device

@ by decreasing system overhead required to access the file

e by reducing the number of work file references
The Task Builder automatically increases its size up to the maximum
job size, which may be as large as 28K words. See the RSTS/E System
Manager's Guide for information on how to change the maximum job size.
The size of the work file can be reduced by:

e Linking your task to a core-resident run-time system containing

commonly used routines (e.g., BASIC-PLUS~2 Object Time System)

whenever possible

® Including common modules, such as components of an object time
system, in the root segment of an overlaid task

® Using an object library or file of concatenated object modules
if many modules are to be linked

In the last two cases, system overhead is also significantly reduced
because fewer files must be opened to process the same number of
modules.

IMPROVING TASK BUILDER PERFORMANCE

The number of work file references can be reduced by eliminating
unneeded output files and cross-reference processing, or by obtaining
the short map. In addition, selected files such as the default system
object module library, can usually be excluded from the map. In this
case, a full map can be obtained at less frequent intervals and
retained.

Try the following procedures to improve work file performance.

® Increase maximum task size by raising the system 1limit for
dynamic task extension.

® Decrease work file size by wusing resident run-time systems,
concatenated object files, and object libraries.

® Decrease work file size by moving common modules into the root
segment of an overlaid task.

® Decrease the number of work file references by eliminating the

map and global cross-reference, obtaining the short map, or
excluding files from the map.

F.1.2 Input File Processing
The suggestions for minimizing the size of the work file and number of
work file accesses also drastically reduce the amount of input file
processing.
A given module can be read up to three times when building the task:

e to build the symbol table

® to produce the task image

® to produce the long map
Files that are excluded from the long map are read only twice. The
third pass 1is completely eliminated for all modules when a short map

is requested. So, if you do not need the long map, use the /SH switch
(described in Section 3.1.8) to eliminate the third pass.

APPENDIX G

INCLUDING A DEBUGGING AID

You can include a program that controls the execution of a task by
naming the appropriate object module as an input file and applying the
/DA switch.

When such a program is read, the Task Builder causes control to be
passed to the program when the task starts.

Such control programs might trace a task, printing out relevant
debugging information, or monitor the task's performance for analysis.

The switch has the following effects:

1. The transfer address in the debugging aid overrides the task
transfer address.

2. On initial task load, the following registers have the
indicated value:

RO - Transfer address of task
Rl - Task name in Radix-50 format (word #1)
R2 - Task name (word #2)

AUTOLOAD

CO--TREE

FRAGMENTED MEMORY
GLOBAL COMMON BLOCK
GLOBAL SYMBOL

MAIN TREE

MEMORY ALLOCATION FILE

MEMORY RESIDENT OVERLAY

OVERLAY DESCRIPTION
LANGUAGE (ODL)

OVERLAY RUN-TIME SYSTEM
OVERLAY SEGMENT

OVERLAY TREE

APPENDIX H

GLOSSARY

The method of loading overlay segments, in
which the Overlay Run-Time System
automatically loads overlay segments when
they are needed and handles any unsuccessful
load requests.

An overlay tree whose segments, including the
root segment, are made resident in memory
through calls to the Overlay Run-Time System.

The state existing when portions of memory
are non-contiguous.

An area of memory reserved for a resident
library or common block.

A symbol whose definition is known outside
the defining module.

An overlay tree whose root segment is loaded
by the Monitor when the task is made active.

The output file created by the Task Builder
that describes the allocation of task memory.

An overlay segment that shares virtual
addresses with other segments, but which
resides in its own portion of memory. The
segment is read from disk at the same time as
all other segments in the resident library;
thereafter, mapping directives are issued in
place of disk load requests.

A language that describes the overlay
structure of a task.

A set of subroutines linked as part of an
overlaid task that are called to 1load
segments into memory.

A segment that shares physical memory and/or
virtual address space with other segments and
is loaded when needed.

A tree structure consisting of a root segment
and optionally one or more overlay segments.

PARTITION

PATH

PATH-LOADING

I POSIITON INDEPENDENT
CODE (PIC)

PSECT
I (p-sEcTION)

I RESIDENT LIBRARY
ROOT SEGMENT

RUNNABLE TASK

SEGMENT

SYMBOL DEFINITION FILE

TASK IMAGE FILE
VIRTUAL ADDRESS SPACE

I VIRTUAL ADDRESS WINDOW

‘"ﬂﬂﬂlﬂlF-l-lH'-l-H-ﬂI"ﬂ'HHHlIIﬂl-lUl-I-l---ll'HI-lIll-!llII-!!ﬂq"IH'lIll.ll'!l'l.ll'ﬂ!ﬂ'ﬂ'ﬂu'

GLOSSARY

The area of memory where a task or resident
library 1is 1located within the job's virtual
address space.

A route that is traced from the root of the
overlay tree to any one leaf in that tree.

The technique used by the autoload method to
load all segments on the path between a
calling segment and a called segment.

Code that can be loaded and run anywhere in
memory without modification.

A section of memory that is a unit of the
total allocation. A source program is
translated into object modules that consist
of PSECTS with attributes describing access,
allocation, relocatability, etc.

A collection of reentrant, shareable routines
or data that is accessible to user tasks.

The segment of an overlay tree that, once
loaded, remains in memory during the
execution of the task.

A task that can be executed.

A group of modules and/or PSECTs that occupy
memory simultaneously and that can be loaded
by a single disk access.

The output file created by the Task Builder
that contains the global symbol definitions
and values 1in a format suitable for
reprocessing by the Task Builder. Symbol
definition files are used to 1link tasks to
shared run-time systems.

The output file created by the Task Builder
that contains the executable portion of the
task.

The set of addresses ranging from 0 to 177777
octal that are contained in a 16-bit word and
referenced directly by a user program.

The amount of virtual address space that 1is
allocated to a p-section or common block.

ABORT option, 3-9

use of, 3-16
ABSPAT option, 3-14

used for patching, 5-~14
Access code, 4-3, 4-4
Additive Relocation entry, C-19

Global, C-13

PSECT, C-16
Address register, 1-2
Allocation code, 4-3, 4-4
Allocation option, 3-8, 3-10
ALTER statement,

COBOL, 5-14
ASECT, C-4

see also PSECT
ASG option, 3-12

see also Option
Asterisk as autoload

indicator, 6-1

At character,

commercial, 2-6
Attribute,

attached to segment, 5-2

task, section contents, 4-8
S$SAUTO,

autoload routine, 6-4
Autoload indicator,

application, 6-2

asterisk as, 6-1

function, 6-3

in overlay tree, 5-13
Autoload mechanism, 6-1
Autoload routine ($SAUTO), 6-4
Autoload vectors,

excess, 6-4

table, D=9

BASIC-PLUS-2,
compilation sequence, 2-13
example ODL file, 5-20
Bit assignments, flag byte,
C=-5
Blank CSECT, C-4
see also PSECT
Block,
common name, D-3
shared run-time system
(SrRTS), D-3
task label, D-4
Block diagrams, 5-4
Branch in overlay tree, 5-4

INDEX

Calls, overlay, 6-4
SCBLMRG creates overlay
description, 2-14
/CC switch, 3-2
see also Switch
Character, commercial at,
2-6, 5-15
Characters, unigque kernel, 5-19
Co-tree,
defining a, 5-16
in multiple tree structure,
5-15
linkage, 5-12
root in .ROOT directive,
5-16
root segment descriptor,
D-11
Co-tree definition,
comma operator in, 5-16
COBOL,
ALTER statement, 5-14
compilation sequence, 2-13
example ODL file, 5-21
/KER:xx switch, 2-13
oDL file, 5-20
PSECT names, 2-13
Code,
access, 4-3, 4-4
allocation, 4-3, 4-4
relocation, 4-3
scope, 4-3, 4-4
type, 4-4
Comma operator, 5-9, 5-10
in co-tree definition, 5-16
Command file, indirect,
contents, 2-7
primary, 2-7
secondary, 2-7
Command line,
examples of, 2-3
format of, 2-2
input file in, 2-2
output file in, 2-2
task image file in, 2-2
Command mode, 2=5
Comments, 2-9
Commercial at character, 5-15
COMMON statement creates
PSECT, 4-3
Common storage forced to
root, 5-=20
Compilation sequence,
BASIC-PLUS-2, 2-13
COBOL, 2-13

Index-1

INDEX (Cont.)

Complex Relocation entry,
c-18
Content-altering option,
3-8, 3-13
Control option, 3-8, 3-9
Control Section Name entry,
c-4
Conversion table,
octal-decimal, B-1ll to
B-14
Core pool size, F=-2
Cross-reference processing,
F-3
CSECT, blank, C-4
see also PSECT
CSECT, named, C-4
see also PSECT

/DA switch, 3-=3
see also Switch
Data structure,
overlay, D-8
Debugging aid,
including a, G-1
Decimal to octal conversion,
B-1 to B-10
Defaults,
filename extensions, 2-2
table of filename extensions,
2-2
Task Builder, 1-1
Device~specifying option,
3-8, 3-12
Diagnostic error messages,
A-1 to A-7
Diagrams, block, 5-4
Directive,
co-tree root in .ROOT,
5-16
.END, in overlay descrip-
tion, 5-10
.FCTR, 5-9, 5-11
.NAME, 5-11, 5-12
.PSECT, 5-14
Directive Status Word, D-7
Displaced Relocation entry,
Global, C-13
Internal, C-12
PSECT, C-16
/DL switch, 3-3
see also Switch

Elapsed time message, F~2
.END directive in overlay
description, 5-10

Index~-2

End of Module Record, C-20
Error messages,
diagnostic, A-l to A-7
fatal, A-1 to A-7
Extensions, filename
see Defaults
EXTSCT option, 3-10
see also Option
EXTTSK option, 3-10
see also Option
used to extend memory, 4-1

Fatal error messages, A-1 to

aA-17 PN
.FCTR directive, 5-9, 5-11 T
File,
BASIC-PLUS-2 ODL, 5-20
COBOL ODL, 5-20, 5-21
complexity, COBOL ODL,
5-20
contents,
indirect command, 2-7
memory allocation, 2-3,
4-7
symbol definition, 2-3 -
Task Builder map, 1-2 T
task image, 4-7
indirect reference, 2-9
indirect command, using an,
2-6
input,
in task command line, 2-2
processing, F-3
specifications, 2-5
label block group in task
image, 4-7 -
output, R
omitting, 2-3
specifications, 2-5
unnecessary, F-3
overhead for accessing work,
F=2
overlay description from
indirect, 5-15
primary indirect command,
2-7
secondary indirect command,
2-7
Task Builder work, F-1
task image, 2-3, C-10
work, F-1, F=2
File extensions as default
entries, 2-2
File extensions, default,
table, 2-2
Fixed part, -,
task header, D-4

‘“ﬂﬂﬂﬂlﬂIFlll!lH!'lHHH!ﬁl-'--uu—--unu-u-n-n-nnu---u----unu-n"'qM!-.--!'.'-.-.-'.-'."'-FQ

INDEX (Cont.)

Flag byte,
bit assignments, C-5
Flow of control and path, 5-5
Flow of control in segment,
5-1
/FP switch, 3-3
see also Switch
/FU switch, 3-4
see also Switch

GBLDEF option, 3-13
see also Option
GBLPAT option, 3-15
see also Option
used for patching, 5-14
GBLREF option, 3-14
see also Option
Global Additive Relocation
entry, C-13
Global Displaced Relocation
entry, C-13
Global PSECT resolution, 5-8
Global Relocation entry, C-12
Global symbol,
ambiguously defined, 5-7
definition, 1l-1
in a tree, 5-=7
in multi-segment task, 5-6
in single-segment task, 5-6
multiply defined, 5-7
rules, 5-6
undefined, 5-7
Global Symbol Directory
entries, C-2, C-3
Global Symbol Name entry, C-5
Global symbol reporting,
undefined, 5-8
Global symbol resolution, 4-6,
4-7
in a task, 5-6
procedure, 5-6
Group, label block,
contents, D-1
in task image file, 4-7

Header contents, 4-2
page, 4-8
Header, task, D-4
fixed part, D-4
in task image memory, 4-2
variable part, D-4
HISEG option, 3-11
see also Option
Hyphen operator, 5-9, 5-10

Identification option, 3-8,
3-10
Image file, task, C-10
in task command line, 2-2
Impure Area Vectors, D=7
Independence, logical, of
segment, 5-1
Indicator, autoload,
application, 6-2
asterisk as, 6-1
function, 6-3
in overlay tree, 5-13
Indirect command file,
contents, 2=7
primary, 2-7
secondary, 2-7
using an, 2-6
Indirect file,
overlay description from,
5-15
reference, 2-9
Input,
multi-line, 2-4
Input £file,
in task command line, 2-2
processing, F=-3
specifications, 2-5
Internal Displaced Relocation
entry, C-12
Internal Relocation entry,
c-11
Internal Symbol Directory
Record, C=-20
Internal Symbol Name entry,
c-4

/KER:xx,
see ‘Kernel switch
Kernel characters and object
module, 2-13
Kernel characters, unique,
5-~19 '
Kernel switch, 2-13
use of, 5-19

Label block, D-4
Label block group,

contents, D-1

in task image file, 4-7
/LB switch, 3-4

see also Switch
Leaf in overlay tree, 5-4
Library,

default object module, 5-8

Index-3

INDEX (Cont.)

Library module, forced to root,
5-18

Link down, D-11

Link next, D-11

Link up, D-11

Linkage,
co-tree, 5-16
subroutine, 4-2

L.oad address, C-1l0

Loading, overlay, and tree
properties, 5-5

Local PSECT resolution, 5-8

Location Counter Definition
entry, C-14

Location Counter Modification
entry, C=14

Logical independence of
segment, 5-1

Logical unit number, 3-12

Low core context, D-7

/MA switch, 3-5
see also Switch
Main tree in multiple tree
structure, 5-15
Map,
debugging information in,
4-10
Map file contents,
Task Builder, 1-2
MAP statement creates PSECT,
4-3
Mechanism,
autoload,
Memory,
EXTTSK option used to extend,
4-1
header in task image, 4-2
PSECT in task image, 4-2
stack in task image, 4-2
task image, 4-2
Memory allocation file,
2-3, 4-7
Memory allocation synopsis,
4-8
Memory parts,
physical, 4-1
Memory structure,
task, 4-1
Messages, error,
Mode,
command, 2-=5
option, 2-5
Modification entry,
Location Counter, C-14
Module, object,
kernel characters and, 2-13
relationship between, 5-5

6-1

A-1 to A-~7

Module Name entry, C-3
/MP switch, 3-5
see also Switch
Multi-line input, 2-4
Multi-segment task,
global symbol in, 5-6
Multiple tree structure,
co-tree in, 5-15
main tree in, 5-15
parentheses in, 5-15
Multiply defined global
symbol, 5-7

.NAME directive, 5-12
Named CSECT, C-4

see also PSECT
Negating a switch, 3-~1
Null segment, 5-16

5-11,

Object module, 1-1
generation, 1l-1
kernel characters and,
library, default, 5-8

Octal calculations, 5-3, B-1

to B-10
Octal-decimal conversion
table, B-1l1l to B-14
oDL,
see Overlay Description
Language

ODL file,

BASIC-PLUS~2 example,
COBOL example, 5-20,
COBOL~generated, 5-20

Operator,
comma, 5-9,
hyphen, 5-9,
parentheses,

Operator, comma,

definition,

Option,

ABORT, 3-9,
ABSPAT, 3-14
ASG, 3-12
EXTSCT, 3-10
EXTTSK, 3-10
GBLDEF, 3-13
GBLPAT, 3-15
HISEG, 3-11
STACK, 3-11
table, 3-9
TASK, 3-10
UNITS, 3-12

Option mode, 2-5

Option used for patching,
ABSPAT, 5-14
GBLPAT, 5-14

5~20
5-21

5-10

5-10

5-10

in co-tree
5-16

3-16

Index-4

5-15

2-13

INDEX (Cont.)

Option used to extend memory,
EXTTSK, 4-1
Options,
allocation, 3-8, 3-10
content-altering, 3-8, 3-10
control, 3-8, 3-9
device~-specifying, 3-8, 3-12
extending memory, 4-1
format, 2-5
identification, 3-8, 3-10
patching, 5-14
storage altering, 3-13
storage sharing, 3-8, 3-11
Output file,
in task command line, 2-2
omitting, 2-3
specifications, 2-5
unnecessary, F-=3
Overhead for accessing work
file, F-2
Overlay calls, task TK1l, 6-4
Overlay data structure, D-8
Overlay description, 5-1
$CBLMRG creates, 2-14
comma within parentheses
in, 5-15
contents, 4-8
.END directive in, 5-10
from indirect file, 5-15
Overlay Description Language,
5-1
summary, 5-42 to 5-44
Overlay loading and tree
properties, 5-5
Overlay segment descriptor,
D-11
Overlay structure,
task suited to, 5-1
Overlay structure and overlay
tree, 5-4
Overlay tree, 5-4
autoload indicator in, 5-13
branch in, 5-4
leaf in, 5-4
overlay structure and, 5-4
USER, 5-19

Parentheses,
comma within, function, 5-15
in multiple tree structure,
5-15
operator, 5-10
treatment, 5-42
Patching,
ABSPAT option used for, 5-14
GBLPAT option used for, 5-14
Path down, 5-5

Path up, 5-5
Path-loading, 6-3
/PM switch, 3-6
see also Switch
Primary indirect command file,
2-7
Processing,
cross-reference, F-3
input file, F=-3
Program Limits entry, C-15
Prompt, task builder, 2-1
PSECT,
ASECT definition as, C-4
attributes, C-8
function of, 4-2
table, 4-3
blank CSECT definition as,
c-4
COMMON statement creates,
4-3
composition, 4-2
creation, 4-3
definition, 4-2
in task image memory, 4-2
length, maximum, C-6
MAP statement creates, 4-3
name, C-8
named CSECT definition as,
c-4
names and COBOL, 2-13
placement and /SQ switch,
4-6
referencing, 4-3
resolution,
global, 5-8
local, 5-8
segment number creates, 4-3
PSECT Additive Relocation
entry, C-16
.PSECT directive, 5-14
PSECT Displaced Relocation
entry, C-16
PSECT Name entry, C-6
PSECT Relocation entry, C-15

Reads,
work file, F-1, F-=-2
Rebuilding a task, 3-1, 3-15,
3-16
Record,
End of Module, C-20
Internal Symbol Directory,
C-20
Relocation Directory, C-10
text, C-10
Text Information, C-9

Index-5

INDEX (Cont.)

References,
work file, F-1
Relocation code, 4-3
Relocation Directory entries,
Cc-10
Relocation Directory Record,
c-10
Relocation entry,
Additive, C-~19
Complex, C-18
Global, C-12
Global Additive, C-13
Global Displaced, C-13
Internal, C-1l1
Internal Displaced, C=12
PSECT, C-15
PSECT Additive, C-16
PSECT Displaced, C-16
Reserved symbols, E-1, E=2
Resolution,
global PSECT, 5-8
global symbol, 4-6, 4-7
in a task, 5-6
procedure, 5-6
local PSECT, 5-8
RMS-11 task,
/SQ switch and, 3-6

Root,

common storage forced to,
5-20

library module forced to,
5-18

.ROOT directive,
co-tree root in, 5-16
Root segment contents, 5-18
Root segment descriptor, D=1l
co-tree, D-11
Rules,
global symbol, 5-6
Task Builder syntax, 2-14

Scope code, 4-3, 4-4
Secondary indirect command
file, 2-7
Section Name, Control, entry,
Cc-4
Segment,
attribute attached to, 5-12
flow of control in, 5-1

logical independence of, 5-1

null, 5-16
root, 5-18
Segment description, 4-8

Segment descriptor, D-9 to D-1ll

co-tree root, D-1l1
overlay, D-11
root, D-11

Segment number creates PSECT,
4-3
Segment status flags, D-10
Segment table, 5-18
Settings, switch,
recognized, 3-1
/SH switch, 3-6
see also Switch
Single-segment task,
global symbol in, 5-6
Size,
core pool, F-2
decreasing stack, 3-11
task, 5-19
work file, F-2
Slash,
as switch identifier, 2-17,
3-1
as terminator,
double, 2~5, 2-6
return, double, 2-7
single, 2-5, 2-6
Source lines,
example program, 2-10
Specifications,
input file, 2-5
output file, 2-5
/SQ switch, 3-6
see also Switch
and RMS-1l task, 3-6
PSECT placement and, 4-6
SRTS/common name block, D-3
/SS switch, 3-6
see also Switch
Stack, 4-~2
in task image memory, 4-2
size, decreasing, 3-11
STACK option discussion, 3-~11
Storage,
common, forced to root,
5-20
temporary, 4-2
Storage altering option, 3-13
Storage sharing option, 3-8,
3-11
Structure,
co-tree in multiple tree,
5-15
main tree in multiple tree,
5-15
multiple tree, 5-15
overlay data, D-8

parentheses in multiple tree,

5=15
task memory, 4-1
task suited to overlay, 5-1
task TK1l modified, 5-13

Structure, overlay, and overlay

tree, 5-4

Index-6

INDEX (Cont.)

Subroutine linkage, 4-2 Task (Cont.),
Switch, rebuilding a, 3-15, 3-16

/cc, 3=2 size, 5-19

conflicting, 3-7 : /SQ switch and RMS-1ll, 3-6

/DA, 3-=3 suited to overlay structures,

/DL, 3-=3 5-1

/FP, 3-3 Task attribute section, 4-8

/FU, 3-4 Task Builder, 1-1, 2-4

/XER:xx, 2-13 defaults, basis for, 1-1

use of, 5-19 functions, 1l-1

/LB, 3-4 map file contents, 1-2

/MA, 3-5 options, table, 3-9

/MP, 3-=5% performance, F-1

negating a, 3-1 prompt, 2-1

/PM, 3-6 switches, table, 3-2

/SH, 3-6 syntax rules, 2-14

/5Q, 3-6 throughput, F-1

and RMS-11 task, 3-6 work file, F-1
PSECT placement and, 4-6 Task command line, 2-2, 2-3

/S8, 3-6 input file in, 2-2

table, 3-2 output file in, 2-2

/W1, 3=7 task image file in, 2-2

/XT, 3-7 Task header, D-4
Switch identifier, fixed part, D-4

slash asg, 2-17, 3-1 variable part, D-4
Switch settings, Task image file, 2-3, C-10

recognized, 3-1 contents, 4-7
Switch specification, 2-17 in task command line, 2-2
Symbol, global, 1l-1 label block group in, 4-7

ambiguously defined, 5-7 Task image memory,

in a tree, 5-7 contents, 4-2

in multi-segment task, 5-6 header in, 4-2

in single-segment task, 5-6 PSECT in, 4-2

multiply defined, 5-7 stack in, 4-2

undefined, 5-7 Task label block, D-4
Symbol definition file, 2-3 Task memory structure, 4-1
Symbol Directory entries, TASK option, 3~10

Global, C-2, C-=3 see also Option
Symbol Directory Record, Task size, 5-19

Internal, C-20 Task suited to overlay
Symbol Name entry, structure, 5-1

Global, C-5 Task TK1,

Internal, C-4 overlay calls, 6-4
Symbols, reserved, E-1, E-2 Task TK1l discussion, 5-2
Synopsis, memory allocation, 4-8 Task TKl modified structure, 5-13
Syntax rules, Tasks,

Task Builder, 2-14 building multiple, 2-6

Terminator,

double slash as, 2-5, 2-6, 2-7
single slash as, 2-5, 2-6

Task, Text Information Record, C-9
aborting a, 3-15 Text record, C-10
global symbol in multi- Throughput,
segment, 5-6 Task Builder, F-1
¢global symbol in single- Time, elapsed,
segment, 5-6 message, F-2
global symbol resolution in TKl, task, 5-2
a, 5-6 modified structure, 5-13
memory structure, 4-1 overlay calls, 6-4

Index-7

INDEX (Cont.)

Transfer Address entry, C-5
Tree, main, in multiple
tree structure, 5-15
Tree, overlay, 5-4
autoload indicator in, 5-13
branch in, 5-4
global symbol in, 5-7
leaf in, 5-4
overlay structure and, 5-4
USER, 5-19
Tree properties,
overlay loading and, 5-5
Tree search, 5-8
Tree structure,
co~tree in multiple, 5-15
main tree in multiple, 5-15
parentheses in multiple, 5-15
Type code, 4-4

Undefined global symbol, 5-7
reporting, 5-8

UNITS option, 3-12
see also Option

USER overlay tree, 5-19

Variable part,

task header, D-4

Vector table,

autoload, D-9

Vectors,

excess autoload, 6-4
Impure Area, D=7

/WI switch, 3-7

see also Switch

Work file,

overhead for accessing, F=2
reads, F-1, F=2

references, F-1

size, F-2

Task Builder, F-1

writes, F=2

/XT switch, 3-=7

Index-8

see also Switch

[

RSTS/E

Task Buillder
Reference Manual
AA-5072A-TC

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form. : -

pid you find errors in this manual? If so, specify by page.

Pid you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Please cut along this line.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

(() Assembly language programmer

[(] Higher-level language programmer

[:) Occasional programmer (experienced)

E] User with little programming experience

(] student programmer

[[)] Non-programmer interested in computer concepts and capabilities

Name Date

Organization

Street

City State Zip Code
or
Country

- = — =~Do Not Tear - Fold Hereand Tape — = -I

No Postage
t Necessary
if Mailed in the

United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN: Commercial Engineering Publications MK1-2/2H3
DIGITAL EQUIPMENT CORPORATION

CONTINENTAL BOULEVARD

MERRIMACK N.H. 03054

O —

— — — Do Not Tear - Fold Here and Tape — — -~ — — e — — o= — — — — e —

)

Cut Along Dotted Line

)

-
I
|
I
I
(
I
l
|
|
I
|
I
(
I
|
I
|
|
|
|

Update Notice No. 1
RSTS/E Task Builder Reference Manual

AD-5072A-T1

READER'S COMMENTS

1

|

|

|

|

1

|

I

|

|

|

|

l NOTE: This form is for document comments only. DIGITAL will
| use comments submitted on this form at the company's
| discretion. Problems with software should be reported
| on a Software Performance Report (SPR) form. If you
| require a written reply and are eligible to receive
i one under SPR service, submit your comments on an SPR
| form.

|

|

I

1

I

1

|

|

I

I

|

I

|

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?

| o Please make suggestions for improvement.
(=4

{2

[

%=
'S

o

e

=

(3]

[)]

38

£§ Is there sufficient documentation on associated system programs

required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer {experienced)
User with little programming experience
Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date

Organization

Street

City State Zip Code
or
Country

+ =— — — ==Do Not Tear - Fold Here and Tape — — — — — — — — — — — — —~ —_ e — — — —_———

No Postage
t Necessary
if Mailed in the

United States

iR e

[]
L]
L]
BUSINESS REPLY MAIL [
FIRST CLASS PERMIT NO.33 MAYNARD MASS. S
I
POSTAGE WILL BE PAID BY ADDRESSEE L
I -~
ATTN: Commercial Engineering Publications MK1-2/2H3 _ |
DIGITAL EQUIPMENT CORPORATION I |
CONTINENTAL BOULEVARD |
]
MERRIMACK N.H. 03054 |
L]
|
]
|
I
_ I
— = = — Do Not Tear - Fold Here and Tape — — — — — — — — — — — — — - - — — /7
l
|
|
I
|
]
| 8
[
I3
[B
=)
| w0
§
| <
(3
|
I
|
|
|
!

