BASIC-PLUS

Language Manual

Order No. DEC-11-ORBPB-B-D

digital equipment corporation - maynard. massachusetts

First Printing, July 1975
Revised: December 1976

The information in this document is subject to change without notice and should not be construed as a commit-
ment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors
that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software on equipment

that is not supplied by DIGITAL.

Copyright @ 1975, 1976 by Digital Equipment Corporation

The postage prepaid READER’S COMMENTS form on the last page of this document requests the user’s critical

evaluation to assist us in preparing future documentation,

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10
DECCOMM DECsystem-20 TYPESET-11

10/77-14

PREFACE

PART I

CHAPTER

CHAPTER

CHAPTER

1

1.1
1.2
1.3
14

2

2.1
2.2
2.3
24
24.1
24.2
2.5
2.6
2.6.1
2.6.2
2.6.3
264
2.6.5

3.1
3.2
3.3
3.3.1
3.3.2
333
34
3.5
3.6
3.6.1
3.6.2
3.7
3.7.1
3.7.2
3.7.3
3.74
3.7.5
3.8
3.8.1
3.8.2
3.8.3
39

CONTENTS

Page
.. ix
AN INTRODUCTION TO RSTS/E BASIC-PLUS o141
INTRODUCTION TO PROGRAMMINGt et 1-1
INTRODUCTION TO TIME-SHARING0ennnnn. 1-1
THE BASIC-PLUS PROGRAMMING LANGUAGE 1-2
CONVENTIONS USED IN THIS MANUAL, 1-2
FUNDAMENTALS OF PROGRAMMING IN BASICPLUS 2-1
MODE SELECTION (EXTEND VS.NOEXTEND)ccuu..... 2-1
EXAMPLE BASIC-PLUSPROGRAMttt 2-1
LINE NUMBERS e s, 2-3
STATEMENTS 2-3
Multiple Statements on a Single Line 2-3
Line-to-Line Statement Continuation 2-4
SPACES AND TABS e e, 2-5
EXPRESSIONS e 2-5
Numeric Constants e, 2-7
Numeric Variables 2-7
Mathematical Operators i, 2-8
Relational Symbols 29
Logical Operatorsttt 2-10
ELEMENTARY BASIC-PLUS STATEMENTSot 3-1
REMARKS AND COMMENTS et e e e e 3.1
LET STATEMENT e e 3.2
PROGRAMMED INPUT AND OUTPUT oottt e, 33
READ, DATA, and RESTORE Statementsvo'vovnnnn... 3.3
PRINT Statement, 35
INPUT Statementt 39
UNCONDITIONAL BRANCH, GOTO STATEMENT 3-11
CONDITIONAL BRANCH, IF-THEN AND IF-GOTO STATEMENTS 3-12
PROGRAM LOOPSottt e e 3-15
FOR and NEXT Statements, 3-15
Subscripted Variables and the DIM Statement 3-19
MATHEMATICAL FUNCTIONS i 3.21
Sign Function, SGN(X) 3.22
Integer Function, INT(X) o, 3.22
Random Number Function, RND(X) 3.23
RANDOMIZE Statement v 3.24
User-Defined Functions 3-25
SUBROUTINES e e s 3.28
GOSUB Statement e, 3-32
RETURN Statement 3-33
Nesting Subroutines 3-33
STOP AND END STATEMENTS i, 3-33

iii

PART I

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

4.1
42
43
44

5.1
5.1.1
5.1.2
513
514
5.1.5
5.2
5.3
5.3.1
54
5.5
551
5.6
5.6.1
56.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.8.1

7.1
7.2
7.3
7.4
7.5
7.6
7.6.1
7.6.2

8.1
8.2
8.3

CONTENTS (Cont.)

Page
BASIC-PLUS ADVANCED FEATURES
IMMEDIATE MODE OPERATIONS e 4-1
USE OF IMMEDIATE MODE FOR STATEMENT EXECUTION 4.1
PROGRAM DEBUGGING ittt ittt it e et ca e ae e 4.2
MULTIPLE STATEMENTS PERLINE e 42
RESTRICTIONS ON IMMEDIATEMODE 4-3
CHARACTER STRINGS ittt ittt et 5-1
CHARACTER STRINGS . . ottt t it ittt et et iae e 5-1
String COnStantso v vt v vt e e n e 5-1
Character String Variables. i 5-1
Subscripted String Variables i 52
SEINE SIZ€ & v oo e et e e 5-3
Relational Operations. oot v it 5-3
ASCII STRING CONVERSIONS, CHANGE STATEMENT. 5-4
STRING INPUT . .ottt it it et et et e et 5-6
Line Input . . oo it e 5-7
STRING OUTPUT . . . vt vttt ettt e et i i e et 5-8
STRING FUNCTIONS ittt et e e e it et et e e e 59
User-defined String Functions 5-14
STRING ARITHMETIC FEATURE e 5-15
String Arithmetic Precision i 5-15
Combining String Functions i 5-17
INTEGER AND FLOATING POINT OPERATIONS 6-1
INTEGER CONSTANTS AND VARIABLES i 6-1
INTEGER ARITHMETICottt i e e e 6-1
INTEGER I/O .o oot e e e e e e e e e 6-2
USER-DEFINED INTEGER FUNCTIONS e 6-2
USE OF INTEGERS AS LOGICAL VARIABLES. e 6-3
LOGICAL OPERATIONS ON INTEGER DATA 6-4
MIXED MODE ARITHMETIC. e e 6-6
FLOATING-POINT AND SCALED ARITHMETIC e 6-7
The SCALE Commandottt e e 69
MATRIX MANIPULATION it it enn 7-1
BASIC-PLUS ARRAY STORAGE i 7-1
MAT READ STATEMENT ittt et e e a e a 7-1
MAT PRINT STATEMENT it e et eaes 72
MAT INPUT STATEMENT ittt ittt e it e ee e 7-3
MATRIX INITIALIZATION STATEMENTS e 7-5
MATRIX CALCULATIONSttt L. 76
Matrix Operationsov v v ittt e 7-6
Matrix FUNCHiONS . . . o v i e et i e et et e e e 7-7
ADVANCED STATEMENT FEATURES it 81
DEF STATEMENT, MULTIPLE LINE FUNCTION DEFINITIONS 8-1
ON-GOTO STATEMENT it e it et eaes 8-4
ON-GOSUB STATEMENT i e 84

iv

-

PART III

CHAPTER

CHAPTER

CONTENTS (Cont.)

Page
84 ON ERROR GOTO STATEMENTt ittt e e e 8-5
8.4.1 RESUME Statement'i it ieeneneeennn. 8-5
84.2 Disabling the User Error Handling Routine 8-6
8.4.3 The ERL Variable i et e i 8.7
8.5 IE.-THEN-ELSE STATEMENT e e 8-8
8.6 CONDITIONAL TERMINATION OF FORLOOPS 8-10
8.7 STATEMENT MODIFIERS i 8-13
8.7.1 The IF Statement Modifier i, 8-13
8.7.2 The UNLESS Statement Modifier v, 8-14
8.7.3 The FOR Statement Modifier 8-14
8.74 The WHILE Statement Modifier. 8-15
8.7.5 The UNTIL Statement Modifier.u... 8-16
8.7.6 Muitiple Statement Modifierst 8-16
8.8 SYSTEM FUNCTIONS AND STATEMENTS it 8-17

BASIC-PLUS DATA HANDLING

9 DATA STORAGE CAPABILITIESottt it e i e 9-1
9.1 FILE STORAGE e e e e e e e 9-1
9.2 OPEN STATEMENT i e e e 9-1
9.2.1 RECORDSIZE Option . ..o oo ittt e i et et e e 94
9.2.2 CLUSTERSIZE Option. « . v v vt vttt ettt e et e et e e 9-5
9.23 FILESIZE Optionottt ittt et e e e et e e 9-7
9.2.4 MODE Option.ottt e et e e 9-7
9.2.5 File-Structured Vs. Non-File-Structured Devices, 9-8
9.3 CLOSE STATEMENT e e 9-8
94 NAME-AS STATEMENT, FILE PROTECTION AND RENAMING 9.8
9.5 KILL STATEMENT e, 99
9.6 CHAIN STATEMENT e e 9-10
10 BASIC-PLUS INPUT AND OUTPUT OPERATIONS 10-1
10.1 READ AND DATA STATEMENTS i 10-1
10.2 RESTORE STATEMENT i i e 10-1
10.3 PRINT STATEMENT e e e 10-2
10.3.1 Formatted ASCILI/O. i 10-3
10.3.2 Output to Non-Terminal Devices, 104
10.3.3 PRINT-USING Statement v ittt e et et e e 10-5
10.3.3.1 Exclamation Point 10-5
103.3.2 String Field 10-5
103.3.3 Numeric Field.o 10-6
10.3.34 Asterisks 10-6
10.3.3.5 Exponential Format. 10-7
10.3.3.6 Trailing Minus Sign 10-7
10.3.3.7 Dollar Signs oot e e e 10-7
10.3.3.8 COMmMAS . . o ot e e 10-8
10.3.3.9 Insufficient Format 10-8
10.3.3.10 Format Too Large oottt e e 10-8
10.3.3.11 PRINT Statement Punctuation uuvuno... 10-9
1034 MAT PRINT Statementttt e 10-9
10.3.5 PRINT Functionsttt i, 10-10

CHAPTER

CHAPTER

APPENDIX

APPENDIX

APPENDIX

APPENDIX

10.4
104.1
104.2

11
11.1
11.2
11.3
11.3.1
11.3.2
114
114.1
11.4.2
11.4.3
1144
114.5
11.5

12
12.1
12.2
12.3
12.3.1
12.3.2
12.3.3
12.34
12.3.5
124
12.4.1
12.4.2
1243
124.4
12.5
12.6
12.7

Al
A2
A3
A4

C1
C.2

CONTENTS (Cont.)

INPUT STATEMENT et e e e e
MAT INPUT Statementot
Opening the User Terminal as an 1/O Channel

VIRTUAL ARRAY STORAGE e
VIRTUAL MEMORY DIM STATEMENT
VIRTUAL ARRAY STRING STORAGE. i
OPENING AND CLOSING A VIRTUAL MEMORY FILE
Pre-Extending a Virtual Array oo v inii i
Closing a Virtual Array Filey
VIRTUAL ARRAY PROGRAMMING CONVENTIONS.
Array STOTAZE . . o vt i ittt e e e e
Translation of Array Subscripts into File Addresses
Access to Data in Virtual Arrayso
Allocating Disk Storage to Virtual Files
Simultaneous Access of a Virtual Core Array by Several Programs
PROGRAMMING EXAMPLE i

RECORD I/O . .ot i it ettt et e et et
OPENING A RECORD I/O FILE i i e
CLOSING ARECORDI/OFILE it
THE GET AND PUT STATEMENTS i
The RECOUNT Variablet e et et e i as
The COUNT Option. . . .o oot ittt i it it i e e e as
The RECORD Optionottt
BUFSIZ Functioncvv ittt ittt ettt et et eaieenananss
STATUS Variableo v oottt i e et e e et e e e e e eae s
WORKING WITH RECORD I/O FILES
Extending Disk Filesottt
The FIELD Statement ot ittt it i e e e e ae e ans
LSET and RSET Statements oo ittt i i e e e e
Differences Between the LET Statement and the LSET/RSET Statement . . .
CVT CONVERSION FUNCTIONS it it e e e
EXAMPLES OF RECORDI/OUSAGE i
THE XLATE FUNCTION o e et i e

BASIC-PLUS LANGUAGE SUMMARY. i
SUMMARY OF VARIABLE TYPES. e
SUMMARY OF OPERATORS i i e
SUMMARY OF FUNCTIONS e
SUMMARY OF BASIC-PLUS STATEMENTS.

BASIC-PLUS COMMAND SUMMARY
ERRORMESSAGES it
USER RECOVERABLE s
NON-RECOVERABLE e

BASIC-PLUS CHARACTER SET et

vi

CONTENTS (Cont.)

Page
APPENDIX E RSTS/E FLOATING-POINT AND INTEGER FORMATS E-1
E.l1 FLOATING-POINT FORMATSottt e et et e e E-1
E.2 INTEGER FORMAT et E-2
BIBLIOGRAPHY . . .o i e e Bibliography-1
INDE X .. e e e e e e Index-1
FIGURES
FIGURE 2-1 Sample BASIC-PLUS Programttt 22
3-1 Correct and Incorrect Nestingo vttt in i iine e 3-17
32 Matrix Structure oo vttt e e 3-19
3.3 Modulus Arithmetic . . . oo oo vt e e e 329
11-1 Virtual Array File Layout. e 11-8
112 Virtual Array Addressing Algorithm, 119
12-1 Record I/O Example #1 . . . oo it et e 12-13
122 Record I/O Example #2ot e 12-13
12-3 FIELD Statement Exampleottt 12-14
124 CVT Function Example i ittt 12-14
TABLES
TABLE 3-1 Mathematical Functions 0. ittt e 321
5-1 Relational Operators Used with String Variables. 5-4
5-2 String Functionsottt 59
8-1 System Functions 8-17
9.1 Open Statement Errors. i 9.3
92 Default Device Buffer Sizeottt 9-4
9-3 Use of RECORDSIZE e e 9.5
111 Virtual Array Storage Capabilitiesc.. i, 11-5
12-1 Device Record Characteristicsot ii i e 12-2
12-2 RSTS Variable STATUS i 12-5
12-3 CVT Conversion Functionsttt it 12-10
C-1 Severity Standard in Error Messages i C-2
C-2 Special Abbreviations for Error Descriptions., C-2
C3 Non-Trappable Errors in Recoverable Classcovvrn... C-3

vii

PREFACE

This manual describes the BASIC-PLUS programming language as implemented for the RSTS/E operating system.
Information is organized for the benefit of the beginning programmer, allowing the reader to gradually acquire
increased programming capabilities.

The BASIC-PLUS language is an extension of BASIC! as originally developed at Dartmouth College. However, BASIC-
PLUS offers many features not found in standard Dartmouth BASIC-PLUS or many other versions of BASIC-PLUS.

Part I (Chapters 1, 2, 3) describes the RSTS/E system, its hardware and user features, and the simplest level of the
BASIC-PLUS language. BASIC-PLUS as described here is essentially (but not exclusively) Dartmouth BASIC as
originally developed.

Part II (Chapters 4 through 8) describes some of the advanced features of BASIC-PLUS. The reader will find references
to some of these additional capabilities in Part I.

Part IIf (Chapters 9 through 12) describes the complete range of BASIC-PLUS data handling, including data storage, file
I/0, the virtual storage concept and information on particular 1/O devices. The appendices review the BASIC-PLUS
language in summary form, and provide a list of RSTS/E error messages that BASIC-PLUS users are apt to encounter.

As a language, BASIC-PLUS is easy to learn. Although BASIC-PLUS provides many advanced features for the more
experienced programmer, it does not penalize the beginning user. Most problems can be solved on at least a rudimentary
level using the statements described in Part I. The BASIC-PLUS statements and features described in Parts II and 111
allow more efficient code that uses less machine time and memory space, as well as more sophisticated data handling
and output.

The content of this manual pertains only to the writing and execution of correct programs in the BASIC-PLUS language.
A description of the various RSTS/E commands (NEW, OLD, LIST, RUN, SAVE etc.) can be found in the RSTS/E Sys-
tem User’s Guide.

There are two modes of BASIC-PLUS operation: NO EXTEND mode and EXTEND mode. In EXTEND mode, certain
features are available to the user that are not available in NO EXTEND mode; also, the syntax requirements are stricter
in EXTEND mode. In general, descriptions of features should be assumed to apply to both EXTEND and NO EXTEND
unless stated otherwise. All BASIC-PLUS coding examples are written in NO EXTEND mode, except those specifically
designed to illustrate EXTEND mode features. '

For information on all of the current manuals pertaining to RSTS/E operation, consult the RSTS/E Documentation
Directory.

1BASIC isa registered trademark of the Trustees of Dartmouth College. BASIC stands for Beginner’s All-purpose Symbolic Instruction
Code. In this manual, the term BASIC-PLUS is used to refer to the BASIC language as specifically implemented for RSTS/E; when the
term “BASIC” is used, it refers to the language in the generic sense.

ix

PART 1

This first part introduces the RSTS/E system and the BASIC-PLUS programming language. Chapter 1 orients the user to
the overall RSTS/E environment and to the notation conventions used in the manual. Chapter 2 analyzes an example
BASIC-PLUS program to show the fundamental rules of program syntax. Chapter 3 describes the simple BASIC-PLUS
program statements. After reading Part I, the user should have a sound introduction to the language, and be able to solve
most programming problems. The extent to which Parts II and III will be studied depends largely on individual need and
inclination.

CHAPTER 1
AN INTRODUCTION TO RSTS/E BASIC-PLUS

1.1 INTRODUCTION TO PROGRAMMING
For the benefit of the new programmer there are four phases in programming a computer:

L. Defining the problem

2. Designing, writing, and documenting the program
3. Entering, testing, and debugging

4. Using and maintaining the finished program

BASIC-PLUS is one language in which the user can write programs designed for the RSTS/E system. The completed
program is generally introduced from a terminal keyboard connected to the RSTS/E system. A program can be input
through various peripheral media, such as paper tape, magnetic tape, DECtape, or punched cards; however, the initial
creation of a BASIC-PLUS program is usually performed on-line to the computer from the terminal keyboard.

Ideally a program runs correctly as written. In practice this is seldom the case. A program can contain simple typing
mistakes or complex logical errors. Typing and syntactical errors are detected as the program is typed at the keyboard
and appropriate error messages are printed. Other errors cannot be detected until the user attempts to run the program.
Program errors are corrected on-line from the terminal keyboard.

The testing and debugging process is continued until the program appears to produce the correct results. This is a good
time to explain to the new user that a computer program only does what the programmer has instructed (not what he
meant to instruct). Thus the actions performed by the computer do not necessarily produce the correct results. In
order to obtain correct results from a computer, the user must write a program free of format errors that performs the
desired computations correctly.

RSTS/E provides keyboard commands which enable the user to create and execute a program, and then to save the pro-
gram within the system for later retrieval and execution or modification. This saving process is known as storing or filing
the program, and a BASIC-PLUS program saved in this fashion is called a program file.

1.2 INTRODUCTION TO TIME-SHARING
RSTS/E is a time-sharing system. This means that when a user is working with RSTS/E, he is probably sharing the system
with other users, but the other users are not visible to him so far as the operation of the terminal is concerned.

Many users can be on-line to RSTS/E at one time because RSTS/E controls the scheduling of program execution. User
programs are brought into memory from disk, allowed to execute for a short time, and returned to disk. This process is
called swapping. RSTS/E records the point in the program at which execution interruption occurs, and is able to resume
operation at that point.

Each user is allotted a block of memory between 2K' and 16K for storage of a particular program. This block is swapped
between memory and disk. If only one user job is active in the system at a given time, that job is allowed to execute
without interruption until another program is ready.

! The term “K" refers to 1024 (decimal) words of storage in a computer. Hence, 2K = 2048 words and 8K = 8192 words.

1-1

An Introduction to RSTS/E BASIC-PLUS

1.3 THE BASIC-PLUS PROGRAMMING LANGUAGE

BASIC-PLUS is one of the simplest of all programming languages because of its small number of powerful but easily
understood statements and commands and its easy application to problem solving. The wide use of BASIC in scientific,
business, and educational installations attests to its value and straightforward application. (See the bibliography at the
end of this manual for a list of BASIC texts and other elementary computing texts.)

BASIC is similar to other programming languages in some respects but is especially suited for time-sharing because of its
conversational nature. A conversational language is one that allows the user to communicate with the language processor
by typing on the terminal keyboard. BASIC responds by printing on the terminal. This provides an interactive man/
machine relationship.

BASIC-PLUS contains both elementary statements used to write simple programs and advanced programming features
and statements to produce more complex and efficient programs. The key word here is efficient. As the user progresses
and gains programming experience, he will naturally find himself becoming more efficient and able to use more sophis-
ticated data manipulations. Almost any problem can be solved with the simple BASIC-PLUS statements. Later in the
user’s programming experience, the advanced techniques can be added.

1.4 CONVENTIONS USED IN THIS MANUAL
Certain documentation conventions are used throughout this manual to clarify examples of BASIC-PLUS syntax.! Each
BASIC-PLUS statement is described at least once in general terms using the following conventions:

1. Items in lower case type (formula, variable, etc.) are supplied by the user according to rules explained in the
text. Items in capital letters (LET, IF, THEN, etc.) must appear exactly as shown because they form the
vocabulary of the BASIC-PLUS language; i.e., they are BASIC-PLUS keywords.

2. Angle brackets < > indicate essential elements of the statement of command being described. For
example:

{LET} <variable> = <expression>

3. Square brackets [] indicate a required choice of one element among two or more possibilities. For
example:

r:l“HEN <statement>
IF <expression> |THEN <line number>
GOTO <line number>

4. Braces { } indicate an optional statement element or a choice of one element among two or more optional
elements:

THEN <statement>
IF <expression> |THEN <line number> {

ELSE <statement> }
GOTO <line number>

ELSE <line number>

The use of some terms in this document may be unfamiliar to the new user. The following definitions and explanations
are valid throughout this manual:

1. BASIC-PLUS prints on the terminal whereas the user types on the keyboard.
2. A statement is a single BASIC-PLUS language instruction identified by one or more BASIC-PLUS language
keywords characteristic of the syntax for that instruction.

! The syntax of a language is the set of rules governing the combination and ordering of language elements.

1-2

3.

AN

An Introduction to RSTS/E BASIC-PLUS

A BASIC-PLUS program line consists of a line number, followed by one or more BASIC-PLUS language
statements entered over one or more terminal lines. A program line is terminated by a RETURN key. A
program line may contain one or several statements separated by backslashes (see Section 2.4.1). For
compatibility with past versions, a colon is allowed in place of the backslash.

A BASIC-PLUS terminal line consists of a set of BASIC-PLUS statements, or portions thereof, entered on
one physical line, that either by itself or in combination with other terminal lines constitutes a BASIC-
PLUS program line.

The first terminal line of a program line must begin with a line number. Each continued terminal line must
be terminated by a LINE FEED key or, if EXTEND mode is current, by an ampersand character followed
by a RETURN key. The last terminal line of a program line must be terminated by a RETURN key with no
preceding ampersand character.

. Commands cause BASIC-PLUS or a system program to perform some operation immediately and are not

preceded by a line number. A command is terminated by typing the RETURN key.

- A user program consists of a series of statements written in the BASIC-PLUS language.
. There is no standard RSTS/E terminal. RSTS/E can accommodate a wide variety of terminals such as a

DECwriter II (LA36), VTOS display, VT50 or VT52 DECscope. All terminals have a keyboard and

either a printer or cathode ray tube (CRT) screen. The RSTS/E user terminal is referred to as terminal,
display, teleprinter, or keyboard, depending upon whether a part or the whole device is indicated. The use
of terminals and other peripheral devices is described in the RSTS/E System User’s Guide.

- The term BASIC-PLUS indicates the BASIC-PLUS language, the BASIC-PLUS Interpreter (the system pro-

gram which accepts and executes BASIC-PLUS programs) or both, depending on the context of usage.

1-3

CHAPTER 2
FUNDAMENTALS OF PROGRAMMING IN BASIC-PLUS

2.1 MODE SELECTION (EXTEND VS. NO EXTEND)

There are two program modes: EXTEND and NO EXTEND. All programs written for versions of BASIC-PLUS prior to
RSTS/E VO6B operate under NO EXTEND. The user can switch modes at any time on either the command or the pro-
gram level. Immediately following log-in, the system is in NO EXTEND mode, so that programs written in NO EXTEND
mode can be executed without any special action by the operator.

When operating in EXTEND mode, the user has access to several features that are not available in NO EXTEND. How-
ever, format requirements are somewhat more stringent; in NO EXTEND, spaces and tabs are ignored by the compiler
except in string constants. In EXTEND mode, blanks and tabs are syntactically significant. EXTEND mode features will
be described throughout the manual.
All examples are shown in NO EXTEND mode except those specifically designed to show EXTEND mode features.
To enter EXTEND mode at the command level, the user types:

EXTEND
To switch from EXTEND to NO EXTEND mode, the user types:

NO EXTEND

or
NOEXTEND

There is no effect if the command entered names the current mode.

Mode switching is possible at the program statement level. To do this, precede the EXTEND or NO EXTEND command
with a line number. For example:

10 EXTEND
or

10 NOEXTEND

In general, it is not good programming practice to switch modes repeatedly within a program. Recommended usage is to
include an EXTEND or NO EXTEND statement at the beginning of a program to ensure that it is compiled under the
proper mode.

2.2 EXAMPLE BASIC-PLUS PROGRAM _

The program in Figure 2-1 is an example of a user program written in the BASIC-PLUS language. [t illustrates syntax
and elements of the language as well as standard formatting of statements and the appearance of terminal output. Even
one who has never studied BASIC can probably gather what the program does and understand at least vaguely how it
works.

2-1

Fundamentals of Programming in BASIC-PLUS

I.ISTNH
100 RANDOMIZE -_—
I THIS IS A RANDOM DICE ROLL ROUTINE o
! THE USER CAN SFECIFY HOW MANY DICE TO RE IN
I EACH ROLL AND HOW MANY ROLLS ARE TO RE MADE.
| WHETHER TO FRINT THE TOTAL OF EACH ROLL IS ALSO
I UNDER USER CONTROL.
110 FRINT ‘THIS PROGRAM GIVES RANDOM DICE ROLLSY
\ FRINT ‘HOW MANY DIES IN EACH RKOLL ‘3 -
\ INFUT N
N PRINT ‘HOW MANY ROLLS’
N\ OINFUT T
N FRINT 7IF YOU WANT THE TOTAL OF EACH ROLLs TYFE Y'3
N\ INFUT R%
N FRINT
120 FOR J=1 TO D :
N\ PRINT ‘THE’$N3 ‘DIES OF ROLL‘3J3‘ARES S
130 FOR I=1 TO N
N A%=CINTCORKRNDD + 1)
\ BZ=AY + R%
\ FRINT A%j -,
N NEXT I
140 IF R$ = ‘Y’ THEN PRINT ‘—---TOTAL OF ROLL =‘;R¥%
150 FRINT
N\ EB%=0
\ NEXT .
32767 ENII
Readwy
RUNNH -,
THIS FROGRAM GIVES RANDOM DLICE ROLLS
HOW MANY DIES IN EACH ROLL? 5
HOW MANY ROLLS? 3
IF YOU WANT THE TOTAL OF EACH ROLLs TYFE Y? Y
THE % DIES OF ROLL 1 ARE: 4 2 4 4 3 -—-TOTAL OF ROLL = 17
THE & DIES OF ROLL 2 ARE! & % 1 4 % ———TOTAL OF ROLL = 21
THE 5 DIES OF ROLL 3 ARE! % & 4 & 5 ——--TOTAL OF ROLL = 25 -
Readw
RUNNH
THIS FROGRAM GIVES RANDOM DICE ROLLS
HOW MANY DIES IN EACH ROLL? 2
HOW MANY ROLLS? S
IF YOU WANT THE TOTAL OF EACH ROLLs TYFE Y? N .
THE 2 DIES OF ROLL 1 ARE! 2 3
THE 2 DIES OF ROLL 2 ARE: 4 4 -
THE 2 DIES OF ROLL 3 ARE: 4 3
THE 2 DIES OF ROLL 4 ARE! 3 6
THE 2 DIES OF ROLL % ARE: 3 5
Readw

Figure 2-1 Sample BASIC-PLUS Program

2-2

Fundamentals of Programming in BASIC-PLUS

A user program is composed of lines of statements containing instructions to BASIC-PLUS. Each line of the program
begins with a line number, followed by one or more BASIC statements. Line numbers indicate the sequence of state-
ment execution, although this sequence can be interrupted by certaih's_tatements. Each statement begins with a word
specifying the type of operation to be performed, such as printing, data input, a determination of a condition, or a
change of the contents of a variable. If a program line contains multiple statements, those statements must be separated
by backslash characters. -

2.3 LINE NUMBERS
Each BASIC-PLUS program line is preceded by a line number. Line numbers perform the following:

1. Indicate the order in which statements are normally evaluated.

2. Enable the normal order of evaluation to be changed; that is, the execution of the program can branch or
loop through designated statements (this is explained further in the sections on the GOTO, GOSUB, and
IF-THEN statements in Chapter 3). ’

3. Enhance program debugging by permitting modification of any specified program line without affecting any
other portion of the program.

Line numbers are in the range of 1 to 32767. BASIC-PLUS maintains programs in line number sequence, rather than the
order in which lines are entered to the system. It is good programming practice to number lines in increments of 5 or 10
when first writing a program, to allow for insertion of lines when debugging or enhancing the program.

A program line can have more than one statement. The first statement on a program line must be preceded by a line

number, and each subsequent statement must be preceded by a backslash (\). Also, a program line can be continued

over several physical terminal lines as long as no integral BASIC elements (e.g., key words, constants, variable names)
are broken.

Using multiple statements and multiple terminal lines in a program line saves memory space. It does make debugging and
editing of a program more difficult, however.

NOTE
For compatibility with programs written for earlier versions
of BASIC, RSTS/E accepts the colon (:) as a valid statement
separator.

When a program is executed (with the use of the RUN command), the BASIC-PLUS processor evaluates the statements
in the order of their line numbers, starting with the smallest line number and going to the largest.

2.4 STATEMENTS

Each line number is followed by a BASIC-PLUS statement. The first word of a BASIC-PLUS statement identifies the
type of statement and informs BASIC-PLUS of the operation to be performed and how to treat the data (if any) that
follows the word.

2.4.1 Multiple Statements on a Single Line
More than one statement can be written on a single line as long as each statement (except the last) is terminated with a
colon or a backslash. Only the first statement on a line can (and must) have a line number. For example:
10 INPUT dsBeC
is a single statement line. However:

20 LET X=X4+1L N PRINT XsYeZ N IF Y=2 GOTO 10

is a multiple-statement line containing three statements: a LET, a PRINT, and an IF-GOTO statement.

2-3

Fundamentals of Programming in BASIC-PLUS

Any statement can be used anywhere in a multiple-statement line except as noted in individual statement descriptions.

2.4.2 Line-to-Line Statement Continuation

A statement can be continued on successive lines of the program. To continue a statement in NO EXTEND mode, press
the LINE FEED key instead of the RETURN key. The LINE FEED performs a carriage return/line feed operation on the
terminal and the continuation line does not contain a line number. For example:

10 LET WZ=(W-X4%XZ)K(Z~A/
(A~R)Y-17)

This is equivalent to:
10 LET WZ=(W-X4XZIK(Z~A/ (A~RY~17)
To continue a statement in EXTEND mode, type an ampersand at the end of the line and then press RETURN. Any

number of tabs and space characters are allowed between the ampersand and the RETURN. The line feed method used
in NO EXTEND is valid in EXTEND, but the syntax

&[tabs/spaces] (mr)

is recommended to ensure compatibility with future versions of BASIC-PLUS. For example:

10 EXTEND

200 LET TOTAL RECEIFTS
GROCERIES « IN +
DELT.IN +

FRODUCE . IN +
DATRY . IN +
MEAT.IN +
FAFERBACKS « TN

o WC W 0 e ¢

The LINE FEED and RETURN keys do not cause a printed character to appear on the page.
There is no limit to the length of a multiple-line statement in either mode.

Where line continuation is used, it must occur between the integral elements of a BASIC-PLUS statement. Examples of
BASIC-PLUS elements are a BASIC-PLUS language keyword, an alphanumeric string, a variable name, or a line number.
No integral element can be interrupted at the end of one line and continued on another. For example:

10 IF Al=Q
THEN 100

is acceptable where a continuation follows 0. However,

10 IF a
1=0 THEN 100
PIllesal conditional colause at limne 10

is not acceptable. Neither is:
10 IF &1=0 THEN 1

00
PModiTtier error at lime 10

2-4

Fundamentals of Programming in BASIC-PLUS

Each illegal form generates an error message. A number of multiword phrases are processed as one keyword and cannot
be broken by a line continuation.

-
These phrases are:
GO TO AS FILE MAT READ
. GO SUB FOR INPUT AS FILE MAT PRINT
ON ERROR FOR OUTPUT AS FILE MAT INPUT
ON ERROR GO TO NO EXTEND MAT LET
. INPUT LINE

Blanks within these phrases may be omitted. For example, GOTO is equivalent to GO TO.

2.5 SPACES AND TABS
In NO EXTEND mode spaces can be used freely throughout the program.

In EXTEND mode, however, spaces are significant, and can be used only between BASIC-PLUS language elements and
in alphanumeric strings. Moreover, spaces are required to delimit elements that are not otherwise delimited by a

W character not in the set of characters that is valid for EXTEND mode variable names (see 2.6.2). For example, consider
the following statement lines:

(A) .10 LET X = Y¥2 + 1

(B) 1OLETX=YX24+1

) 10 L ETX =Y % 22 4+ 1
- In NO EXTEND mode the above statements are identical in effect.

In EXTEND mode, however, only (A) is valid. (B) requires a space between LET and X; all other elements are properly
delimited by arithmetic symbols. In (C) the keyword LET contains imbedded spaces, which must be removed, and, as in
(B), LET and X must be separated by spaces. Note that any number of spaces can follow or precede an element.

Tabs, like spaces, can make a program easier to read. For example:

2000 FOR K=1 TO 3
- 2010 FOR I=1 T0 10
e 202 FOR J=1 TO 10
2040 ACLs) = KA+ +AT D
2050 NEXT J
2060 NEXT I

2070 NEXT K
R27H7 ENI
2.6 EXPRESSIONS

An expression is a group of symbols which can be evaluated by BASIC-PLUS. Expressions are composed of constants,
s variables, functions, or a combination of the preceding separated by arithmetic, relational, or logical operators.

2-5

Fundamentals of Programming in BASIC-PLUS

The following are examples of expressions acceptable to BASIC-PLUS: -
Arithmetic Expressions

5.135
4% + 7%
A7T*(B™2% +1.) .

Relational Expressions

X<y
Y9% > 0%
A% =B

Logical Expressions

(A<0.)AND (B=1.)
((A>B)OR (C =D)) AND A/B< > C/D .

Arithmetic expressions yield either floating-point or integer values. Relational expressions yield a truth value that
reflects the result of comparing two values. Logical expressions yield a truth value reflecting the existence or non-
existence of a specified set of relational or other conditions.

A constant or a variable name with no % or $ suffix indicates a floating-point value. Floating point values are stored in
either a 2-word or 4-word floating point format, depending on the type of math package installed.

A constant or variable name with a contiguous % suffix indicates an integer value. An integer value is stored in a single ~~,
word as a base 2 integer. Chapter 4 describes arithmetic operations, and Appendix E describes integer and floating point i
formats. Example:

Floating Point Integer

A A%

9. 9%

B3 +5. B3% + 5%

3.1416 3.1416% (stored as 3%)

The use of an explicit decimal point or percent sign is recommended in all numeric constants to avoid unnecessary data
conversions and to improve documentation. Mixing of data types in a statement should be avoided and integers should
be used whenever possible. When raising to an integer power, the power value should be indicated explicitly as an integer.
Raising a floating point number to an integer power does not constitute mode mixing. (However, some examples in this
manual do not follow these suggestions, in the interest of readability.)

Another type of expression not described in detail in this section is the string expression, a value that consists of a
sequence of characters, each character occupying a byte (i.e., one half of a memory word). A string expression can be
expressed either as a constant (a sequence of characters enclosed in quotation marks) or as a variable (a variable name
with a § suffix).

String expressions and operations are described in detail in Chapter 5.

Not all kinds of expressions can be used in all statements, as is explained in the sections describing the individual state-
ments. In the following sections the reader is introduced to the elements which compose BASIC-PLUS expressions.

2-6

Fundamentals of Programming in BASIC-PLUS

2.6.1 Numeric Constants
Numeric constants retain a constant value throughout a program, and can be positive or negative. Numeric constants can
be written using decimal notation as follows:

+2
—3.675
1234.56
—123456
—.000001

The example constants would be stored as floating point, since they have no % suffix.

Scientific notation allows further flexibility in number representation. Numeric constants can be written using the
letter E to indicate “times 10" n”’; the number following the letter E indicates the exponent n.

000123456 can be written in BASIC-PLUS as 123456E-6
1234560000. can be written in BASIC-PLUS as 123456.E4
-12345678900. can be written in BASIC-PLUS as - 1.2345679E10

The E format representation of numbers is very flexible since a number such as .001 can be written as 1E-3, 01E-1,

100E-5, or any number of ways within the allowable range of exponents. If more than six digits are generated during
“any computation, the result of that computation is automatically printed in E format. (If the exponent is negative,

a minus sign is printed after the E; if the exponent is positive, a space is printed: 1E-04; 1E 04.)

The combination E7, however, is not a constant, but a variable. The term 1E7 is used to indicate that 1 is multiplied by
10 7, i.e., the number 10000000.

The set of floating-point numbers is approximately as follows:
X=0, and the range 10738 < |x| <10"38
The range of integer numbers is ~32768 through 32767.

2.6.2 Numeric Variables
A variable is a data itemn whose value can be changed during program execution. A numeric variable is denoted by a fixed
variable name.

In NO EXTEND mode, a variable name consists of a single letter or a single letter followed by a single digit. In EXTEND
mode a variable name consists of a single letter followed contiguously by 0 to 29 characters from the set:

AB,...,Z (letters)
0,1,...,9 (digits)
(period or point)

A name can also have an FN prefix (denoting a function name), a % suffix (denoting an integer), a § suffix (denoting
a string), or a subscript suffix that consists of a set of subscripts enclosed in parentheses. These prefixes and suffixes
are not counted in the 30-character limit.

Variables are assigned values by LET, INPUT, and READ statements. The value assigned to a variable does not change

until the next time a LET, INPUT or READ statement is encountered that contains a new value for that variable or
until the variable is incremented by a FOR statement. (These conditions are explained further in later sections.) All

2-7

Fundamentals of Programming in BASIC-PLUS

variables are set equal to O before program execution. It is necessary to assign a value to a variable only when an initial
value other than 0 is required. However, it is good programming practice to set variables equal to O wherever necessary. a
This ensures that later changes or additions will not cause misinterpretation of values.

2.6.3 Mathematical Operators

BASIC-PLUS automatically performs the mathematical operations of addition, subtraction, multiplication, division and
exponentiation. Formulas to be evaluated are represented in a format similar to standard mathematical notation. There
are five arithmetic operators used to write such formulas, as follows:

Operator Example Meaning .
+ A+B Adds Bto A
- A-B Subtracts B from A
* A*B Multiplies A by B
/ A/B Divides A by B
~ A"B Calculates A to the B power, AB
BASIC-PLUS permits the operator ** in place of ” (up arrow) to denote the exponentiation operation. For example: %
A**B

indicates the quantity A raised to the B power, equivalent to A"B. The ** operator is included for compatibility with some
other BASIC processors. The symbol ™ is the standard BASIC-PLUS symbol for exponentiation and is used throughout this
manual.

Unary plus and minus are also allowed, e.g. the - in - A+B or the + in +X-Y. Unary plus is ignored. Unary minus is treated
as explained below.

When more than one operation is to be performed in a single formula, rules are observed as to the precedence of the above
operators. The arithmetic operations are performed in the following sequence, with the operation described in item |
having precedence.

1. Any formula within parentheses is evaluated before the parenthesized quantity is used in further computations.
Where parentheses are nested, as follows:

(A+(B*(D"2)))

the innermost parenthetical quantity is calculated first.
2. In the absence of parentheses in a formula, BASIC-PLUS performs operations as follows:

a. Exponentiation

b. Unary minus

¢. Multiplication and division
d. Addition and subtraction

Thus, for example, ~-A"B witha unary minus, is a legal expression and is the same as - (AAB). This implies
that —2 2 evaluates as —4. The one exception to this rule is that the term A - B is allowed and is evaluated .
as A (-B).

3. In the absence of parentheses in a formula involving more than one operation on the same level (see item 2
above), the operations are performed left to right, in the order that the formula is written. For example:

Fundamentals of Programming in BASIC-PLUS

A/B/C is evaluated as (A/B)/C
A*B/C is evaluated as (A*B)/C

The expression A+B*CD is evaluated in the following order:

1. Cis raised to the D power
2. The result of the first operation is multiplied by B.
3. The result of the previous operation is added to A.

Parentheses are used to indicate any other order of evaluation. For example, to raise the product of B and C to the D power
the user writes the expression as follows:

A+(B*C) D
To multiply the quantity A+B by C to the D power, the user writes the expression as follows:
(A+B)*C"D

The user is encouraged to use parentheses even where they are not strictly required in order to make expressions easier
to read and to reduce the possibility of writing an unintended expression.

2.6.4 Relational Symbols

Relational symbols are used in IF-THEN statements (see Section 3.5): in conditional FOR loops (see Section 8.6);in IF,
UNLESS, WHILE and UNTIL clauses (see Sections 3.5, 8.5, and 8.7) where it is necessary to compare values; and where
any integer expression can be used (see Section 6.6). The relational symbols are as follows (where A and B are numeric
variables or expressions):

Mathematical BASIC-PLUS

Symbol Symbol Example Meaning
= = A=B Ais equal to B
< < A<B. A is less than B
< <= A<=B _ A is less than or equal to B
> > A>B A is greater than B
> >= A>=B A is greater than or equal to B
7= <> A<>B Ais not equal to B
Az == == Ais approximately equal to B

The term “approximately equal to” means that the two quantities look the same when printed to six decimat places of
precision. Within the computer, floating-point numbers with a fractional part can differ by a miniscule amount in the

last decimal place but still be considered equal for all practical purposes. This last decimal place within the computer does
not always cause two numbers to have a different value when printed. Numbers are carried internally at greater than

6 digits of precision, but are rounded to 6 digits for output or a comparison. Thus, two numbers identical when rounded
to 6 digits of precision are approximately equal, whereas two numbers equal to the internally carried limits of precision
are truly equal (=).

2-9

Fundamentals of Programming in BASIC-PLUS

2.6.5 Logical Operators -_
Logical operators are used in IF-THEN and such statements (see Section 3.5) where some condition is used to determine
subsequent operations within the user program. For this discussion, A and B are relational expressions having only TRUE

(-1) and FALSE (0) values. Logical operators can also be used in certain logical operations involving integers. (See

Sections 6.5 and 6.6.) The logical operators are as follows:

Operator Example Meaning
NOT NOT A The logical negative of A. If A is true, NOT A is false. .
AND A AND B The logical product of A and B. A AND B has the value true

only if A and B are both true and has the value false if either
A or B is false.

OR AORB The logical sum of A and B. A OR B has the value true if either

A or B or both is true and has the value false only if both A and
B are false. -,

XOR A XOR B The logical exclusive OR of A and B. A XOR B is true if either A
or B (but not both) is true, and false otherwise.

IMP A IMP B The logical implication of A and B. A IMP Biis false if and only
if A is true and B is false; otherwise the value is true.

EQV AEQVB Ais logically equivalent to B. A EQV B has the value TRUE if A
and B are both true or both false, and has the value false otherwise. -,

The following tables are called truth tables and describe graphically the results of the above logical operations with both
A and B given for every possible combination of values.

AB | AANDB AB | AOR B

T T T TT T

T F F T F T -,
FT F F T T

FF F FF F

AB | AXORB AB | AEQVB

TT F T T T

T F T T F F -

FT T FT F

FF F FF T

AB | AIMP B

T T T

T F F

F T T -,
F F T

2-10

CHAPTER 3
ELEMENTARY BASIC-PLUS STATEMENTS

This chapter describes the simplest forms of the more elementary BASIC-PLUS statements. These statements are suffi-
cient, by themselves, for the solution of most problems. Once these statements are mastered, the user can investigate the
more advanced applications of these statements and the additional statements and features explained in Parts II and III.

The reader should understand that any problem which can be solved with the more advanced techniques can also be
solved with the simpler statements, although the process may not be as efficient. As long as the user understands the
details of his problem he can represent it in BASIC-PLUS on a number of levels ranging from the simple to the
sophisticated.

3.1 REMARKS AND COMMENTS

It is often desirable to insert notes and messages within a user program. Information such as the name and purpose of
the program, how to use it, how certain parts of the program work, and expected results at various points is useful in
the program for ready reference by anyone using that program.

There are two ways of inserting comments into a user program:

1. Using the REM statement
2. Using the exclamation mark (1)

REM statements can contain any printing characters on the keyboard, except that in EXTEND mode the word REM must
be followed by a space or other valid word delimiter. BASIC-PLUS completely ignores anything on a line following the
letters REM. (The line number of a REM statement can be used in a GOTO or GOSUB statement, see Sections 3.4 and
3.8.1, as the destination of a jump in program execution.) Typical REM statements are shown below:

LG REM - THIS PROGRAM COMPUTES THE
11 REM - ROOTS OF A QUADRATIC EQUATION

The exclamation mark is normally used to terminate the executable part of a line and begin the comment part of the
line. The ! character can also begin the line, in which case the entire line is treated as a comment. For example:

135 LET @3 PFIRST VALUE OF A
130 FRINT A/S2 P IOES NOT CHANGE A
140 FOENTIRE LINE IS COMMENTARY

In every statement other than the DATA statement, BASIC-PLUS ignores everything on the line following the exclama-
tion mark. An exclamation mark must not appear on the same program line as a DATA statement unless it is part of an
item in the DATA statement.

Messages in REMARK statements are generally called remarks, those after the exclamation mark, comments. Remarks

and comments are printed when the user program is listed but do not affect program execution. (They do affect
program size, however.)

3-1

Elementary BASIC-PLUS Statements

The lines below indicate three ways of putting the same remark on two lines. Lines 10 and 11 are REM statements.

Line 20 is one REM statement broken into two lines with the LINE FEED key. Line 30 is one comment (begun with PN
a !) and broken into two lines with the LINE FEED key. Line 40 is one comment broken into two lines with the H
ampersand character followed by a RETURN key; this is legal only under EXTEND mode.

1o REM - THIS PROGRAM COMFUTES THE

11 REM —~ ROOTS OF A QUADRATIC EQUATION ()

20 REM -~ THIS FROGRAM COMPUTES THE)
ROOTE OF A QUADRATIC EQUATION

30 ITHIS PROGRAM COMPUTES THE
ROOTS OF A QUADRATIC EQUATION ()

40 PTHIS PFROGRAM COMPUTES THE & Crer)

FROOTS OF A QUADRATIC EQUATION

When a comment is continued on a subsequent terminal line with an ampersand and carriage return, the continuation
line must also start with an exclamation point or it will be interpreted as an executable statement. For example:

10 EXTEND

20 ITHIS PROGRAM COMFUTES THE &
TROOTS OF A QUADRATIC EQUATION & Crr)
FRINT ‘ENTER THREE COEFFICIENTS

RUNNH

ENTER THREE COEFFICIENTS

Readu

3.2 LET STATEMENT M,
The LET statement assigns a numeric value to a variable. Each LET statement is of the form: :

{ LET} <yariable> = <expression>

This statement does not indicate algebraic equality, but performs the calculations within the expression (if any) and
assigns the numeric value to the indicated variable. For example:

10 LET X = X41
20 LET W2 = (A4-XZIX{Z~-A/RD -~

In line 10, the old value of X is increased by 1 and becomes the new value of X. In line 20, the formula on the right-hand
side is evaluated and the numeric value assigned to W2,

The LET statement can be a simple numerical assignment, such as
HO LET A=30

or require the evaluation of a formula so long that it is continued on the next line (see Section 2.3.2).

BASIC-PLUS allows the user to omit the word LET from the LET statement. The user may find it easier to type: -
10 X=12%(5+7)

than
10 LET X=12%(847) M

This is a convenience and does not alter the effect of the statement.

32

Elementary BASIC-PLUS Statements

The LET statement can be used anywhere in a multiple statement line. For example:
100 Xudd N YaX"2 +Y1 N R2=3,5%A

The LET statement allows the user to assign a value to several variables in the same statement. For example:
200 LET Xy Yo & = .7

causes each of the three variables to be set equal to 5.7.

3.3 PROGRAMMED INPUT AND OUTPUT

This section describes the techniques used in performing BASIC-PLUS program 1/O (an abbreviation for the term input/

output which includes the processes by which data is brought into and sent out of the computer). The most elementary

forms of the PRINT, INPUT, READ, and DATA statements are presented here so that the user can create simple BASIC-
PLUS programs and obtain tangible results.

More advanced I/O techniques are described in Part 1.
3.3.1 READ, DATA, and RESTORE Statements
READ and DATA statements are coordinated to furnish a fixed list of data values to the user program. A READ state-
ment contains the list of variables whose values are obtained from a DATA statement. Neither statement is operative
without the other, and the data types of the READ variables and DATA values must be compatible.
A READ statement is of the form:

READ <variable list>
A DATA statement is of the form:

DATA <value list>
A READ statement causes the variables listed to be assigned values sequentially from the set of DATA statements in the
program. Before the program is run, BASIC-PLUS takes all DATA statements in the order they appear and creates a
data block. Each time a READ statement is encountered in the program, the data block supplies the next value. If the
data block runs out of data, the program is assumed to be finished and an OUT OF DATA message is printed by
BASIC-PLUS.

READ and DATA statements appear as follows:

150 READ Xy YXy» Zy 81y Y2y Q9
330 DATA 4929l .7
350 DATA 6473E~3y ~174,321y 3.1415927

Note that only numbers are used in this particular DATA statement. (Input of string data is described in Section 5.3)
The assignments performed by line 150 are as follows:

X=4.0
Y%=2%
7=1.7
S1=6.73E-3
Y2=174.321
Q9=3.1415927

33

Elementary BASIC-PLUS Statements

Data must be read before it can be used in a program; thus READ statements normally occur near the beginning of a -
program. The location of DATA statements is arbitrary, although their order is significant. A good practice is to '
collect all DATA statements near the end of the program. A DATA statement must be the only statement or the last

statement on a line, while a READ statement can be placed anywhere in a multiple statement line.

NOTE
Comments are not permitted at the end of a DATA +
statement.

If it should become necessary to use the same data more than once in a program, the RESTORE statement makes it
possible to recycle through the complete set of DATA statements in that program, beginning with the lowest numbered
DATA statement. The RESTORE statement is of the form:

RESTORE
For example:

00 RESTORE -

causes the next READ statement following line 30 to begin reading data from the first DATA statement in the program,
regardless of where the last data value was found.

The same variable names can be used the second time through the data or not, as is most convenient, since the values

are being read as though for the first time. In order to skip unwanted values, dummy variables must be read. In the
following example, BASIC-PLUS prints:

4 1 2 3 ﬂ

on the last line because it did not skip the value for the original N when it executed the loop beginning at line 1600.

LEISTNH

100 REM THIS PROGRAM TLLUSTRATES USE OF THE RESTORE

1500 RESD N N PRINT ‘valLUES OF X aRES”

1400 FOR T o= L TO N N READ XN FRINT X

17200 NEXT I

1800 RESTORE -,
19200 PRINT N FRINT “SECOND LIST OF X VUALUES? -
2000 FRINT “FOLLOWING RESTORE STATEMENT

2104 FOR Is1 TO N N READ X N PRINT X

22G0 MNEXT I

&H000 DATAH 4sle2

&100 0HATA 344

32767 FINI
Reaciu
FUNNH
valuEs OF X ARE?R

1 2 3 4
SECOND LIST OF X VALUES

COLLOWING RESTORE STATEMENT:

4 1 2 3 -
Feadu S

Elementary BASIC-PLUS Statements

3.3.2 PRINT Statement
The PRINT statement is used to output data onto the terminal teleprinter. The general format of the PRINT
statement is:

PRINT {list}

where the list can contain expressions, text strings, or both. As the braces indicate, the list is optional. Used alone,
the PRINT statement:

2850 FRINT
causes a carriage return/line feed operation.

PRINT statements can be used to perform calculations and print results. Any expression within the list is evaluated
before a value is printed. Consider the following program:

LISTNH
2000 LET A=1 N LET EB=2 N\ LET C=344
2100 FRINT
2200 PFRINT A+R4HC
I2767 ENI
Rescu
RUNNH
7
Read
All numbers are printed in the form:
space
<number> <gpace>
The PRINT statement can be used anywhere in a multiple statement line. For example:
L&G0 A=l N FPRINT A N A=A+5 N PRINT N PRINT A

would cause the following to be printed on the terminal when executed:

FUNNH
1

&

Flesdy

3-5

Elementary BASIC-PLUS Statements

Notice that the teleprinter performs a carriage return/line feed at the end of each PRINT statement. Thus the first PN
PRINT statement causes a 1 and a carriage return/line feed, the second PRINT statement is responsible for the blank B
line, and the third PRINT statement causes a 6 and another carriage return/line feed to be output.

BASIC-PLUS considers the terminal printer to be divided into zones of 14 spaces each. On most terminals the maximum
print line contains 72 characters, in which case there are 5 print zones. Terminals with 84 or more print characters per
line have additional print zones in units of 14 spaces. *

When an item in a PRINT statement is followed by a comma, the next value to be printed appears in the next available
print zone. For example:

LISTNH

1500 LET A=3 \ LET E=2

1600 FRINT AyEyAtEs AXEs A-RyB~Ay ARy B (R/A)
32767 END

Reascu -
RUNNH
3 2 b 6 1
-1 9 1.5874
Readu
Notice that the sixth element in the PRINT list is printed as the first entry on a new line, since a 72-character line has
five print zones.
m
Two commas together in a PRINT statement cause a print zone to be skipped. For example:
LISTNH
100 REM THIS SHOWS HOW TO SKIF & FPRINT ZONE
ANII SHOWS LINE CONTINUATION.
110 LET A=l
NOLET B2
NOFRINT AvRe oAl
INOTE DOURLED COMMA AFTER R -
A2747 END
Readuy
UMM
1 2 3
Ready -
If the last item in a PRINT statement is followed by a comma, no carriage return/line feed is output, and the next
value to be printed (by a later PRINT statement) appears in the next available print zone. For example: ¢

3-6

Elementary BASIC-PLUS Statements

LISTNH
100 REM THIS SHORT FROGRAM ILLUSTRATES FRINT FORMAT»
USING COMMA AND SFACE

110 LET A=l
N\ Re=22
\ C=3

120 POIN LINE 110y NOTE USE OF BACKSLASH (\) TO0O PUT MULTIFLE
' STATEMENTS ON ONE FROGRAM LINES THAT ISy ON ONE LINE
I NUMBER., MINIMIZING THE NUMRER OF LINE NUMBERS RESULTS
POIN MORE EFFICIENT CODE. EACH STATEMENT IS FLACED
P ON ITS QWN PHYSICAL LINE RY USING LINE CONTINUATION.
P'TO CONTINUE A LINE IN EITHER EXTEND OR NOEXTEND MODE
!' FRESS THE LINE FEED KEY.

130 FRINT Ay

140 FRINT R

150 FRINT C

I THE THREE FRINT STATEMENTS ARE ON SEFARATE
! LINE NUMBERS. THIS IS LEGAL RUT LLESS EFFICIENT.
32767 END

Ready
RUNNH
1 2
3
Ready

If a tighter packing of printed values is desired, the semicolon character can be used in place of the comma. A semicolon
causes no extra spaces to be output. A comma causes the print head to move at least one space to the next print zone or
possibly perform a carriage return/line feed. The following example shows the effects of the semicolon and comma.

LESTNH

100 LET A=l
NLET R=2
N LET =3
110 FRINT AsRiCs
120 FRINT A+ls B+1s C+1
130 FRINT AsBsCy
140 FRINT Aa+B+CyCTRCT R0
150 FRINT
140 FRINT $02100515052002505 300
2767 ENI
Ready
RUNNH
I 2 3 2 3 4
1 2 3 & ?
TN
50 100 1850 200 280 300
Reacdw

3-7

Elementary BASIC-PLUS Statements

The PRINT statement can be used to print a message, either alone or together with the evaluation and printing of -_
numeric values. Characters are delimited for printing by placing single or double quotation marks at each end of the '
string. The same type of quotation mark must be used at the beginning and the end of each string.

LESTNH

100 FRINT *TIMES WP"

110 FRENT ‘QUOTH THE RAVEN: "NEVERMORE®’ .
2787 FN

Ready .
FUMNH

TIMESS UF
QUOTH THE RAVENs “NEVERMORE"

Ready

As another example, consider the following line: -
S50 X=87 .4
580 FRINT “AVERAGE GRADE I87§X

which prints the following:
AVERAGE GRADE IS 87.4
When a character string is printed, only the characters between the quotes appear; no leading or trailing spaces are added. %
Leading and trailing spaces can be added within the quotation marks using the keyboard space bar; spaces appear in
the printout exactly as they are typed within the quotation marks.
When a comma separates a text string from another PRINT list item, the item is printed at the beginning of the next

available print zone. Semicolons separating text strings from other items are optional, but should be included for com-
patibility with other versions of BASIC.

580 FRINT AVERAGE GRADE 157 X

A comma or semicolon appearing as the last item of a PRINT list suppres‘ses the carriage return/line feed operation.

The following example demonstrates the use of the comma and semicolon as formatting characters.

Elementary BASIC-PLUS Statements

LESTNH
150 INFUT “STUDENMT NUMBERCsX
140 INFUT GRADE G
170 INFUT “AVERAGE A
180 INFUT “RANK IR
! ITRRELEVANT CODE OMITTED
J00 MuBad
&HA0 FRINT “STURENT NUMRER’ Xy ‘GRADE =733
&S0 FRINT “AVERAGE =‘ A
HEHO FRINT RANK IN CLASS K “0OF° N
32747 END
Ready
FUINNH

STUDENT NUMBERT 2574

GRADET 89

AVERAGET 90.6

RANKT 14

STURENT NUMRER 2574 GRADE = 89 AVERAGE = 90.6
RANK IN CLASS 14 OF 562

Reards

3.3.3 INPUT Statement

The second way to provide data to a program is with an INPUT statement. This statement is used when writing a pro-
gram to process data to be supplied while the program is running. During execution, the programmer can type values as
the computer asks for them. (Nonterminal INPUT is described in Part II1.) Depending upon how many values are to be
accepted by the INPUT command, the programmer may include a PRINT statement that reminds the user of the kind
of input required. Such messages can also be generated from within the INPUT statement, as shown in the accompany-
ing example.

The INPUT statement is of the form:

INPUT <list>>
For example:

10 INFUT AsEC
causes the computer to pause during execution, print a question mark, and wait for the user to type three numeric values
separated by commas. The values typed are entered to the computer when the user presses the RETURN key, LINE
FEED key, or the ESCAPE key (ESC on some terminals, ALT MODE on others).
In the following example, the executing program requests data by asking four questions: INTEREST IN PERCENT?,

AMOUNT OF LOAN?, NUMBER OF YEARS?, and NO. OF PAYMENTS PER YEAR?. The programmer knows which
value is requested and proceeds to type and enter the appropriate value.

3-9

Elementary BASIC-PLUS Statements

LISTNH |
10 REMARK ~ THIS FROGRAM COMPUTES INTEREST PAYMENTS -
20 INFUT “INTEREST IN FERCENT’3.

30 LET J=J/100

40 INFUT “AMOUNT OF LOAN’#A

50 INFUT ‘NUMEER OF YEARS'SN

40 INFUT “NUMEER OF FAYMENTS FER YEAR’§M

70 LET N=NKM N\ I=J/M N\ Belt] .
80 LET R=AXI/(1-1/E"N)

90 FRINT

100 FRINT ‘AMOUNT FER FAYMENT =3 INT(RX10724.%5)/1072

110 FRINT ‘TOTAL INTEREST =75 INTCCREN=-A)KL0™24.5) /1072

120 FRINT

130 LET B=A

140 FRINT ‘INTEREST AFF TO FRIN RALANCE OF FRIN’

150 LET L=BXI \ FsR-l \ EsR-P

160 FRINT INT(LX10™2+,5)/1072y

170 FRINT INT(FKLO™24.5) /1072y

180 FRINT INT(EXL10™24.5)/1072 -
190 IF Br=R GOTO 150

200 FRINT INTCCEXIIKL0™24.05)/1072y INT((R-BXI)K10724,5) /1072

210 FRINT ‘LAST FAYMENT =‘3 INT(CEXKI+EIXKL0™24.5)/1072

32767 END

Readw

RUNNH
INTEREST IN PERCENT? 10 -,
AMOUNT OF LOAN? 6000

NUMEER OF YEARST 1

NUMEER OF FAYMENTS FER YEAR? 12

AMOUNT FPER FAYMENT
TOTAL INTEREST

G275

329.94

i

INTEREST AFF TOD FRIN RALANCE OF FRIN
50 4775 HESR2.H -
465,02 481 .47 5041 .03
42,01 485,49 4555, 54
37.96 489 .53 4066.,01
33.88 493,61 3572, 4
2977 497,73 3074.67
25,62 501 .87 2E72.8
21.44 50606 2064,75
17.22 510,27 1556.47
12.97 514,52 1041,95
8.48 518.81 G23.14
4,36 H23,14

LAST FAYMENT = S27.5

Readw

3-10

Elementary BASIC-PLUS Statements

As in the previous program, the question mark generated by BASIC-PLUS is grammatically useful if a printed question
is to prompt the typing of the input values.

The output for the program begins after the command RUNNH and includes a verbal description of the numbers. This
verbal description on the output is optional with the programmer, although it has a definite advantage in ease of use
and understanding.

When the correct number of variables has been typed in answer to the printed ? character, pressing the RETURN key
enters the values to the computer. If too few values are typed, the computer prints another ? to indicate that more
data is requested. If too many values are typed, the excess data on that line is ignored.

Messages to be printed at execution time can be inserted within the INPUT statement itself. The message is set off by
single or double quotes from the other arguments of the INPUT statement. For example:

100 INFUT “YOUR AGE IS5 ‘34
is equivalent to

100 FRINT “YOUR AGE T873%
110 INFUT A

The use of the comma or semicolon character (or no character) to separate a character string to be printed from input
variable names is analogous to the PRINT statement (see Section 3.3.2).

3.4 UNCONDITIONAL BRANCH, GOTO STATEMENT

The GOTO statement transfers program execution immediately and unconditionally to a specified program line;
usually the specified line is not the next sequential line in the program. The general format of the statement is as
follows:

GOTO <line number>

The line number to which the program jumps can be either greater than or less than the current line number. It is thus
possible to jump forward or backward within a program.

Consider the following example:

LISTNH

10 LET A=2

20 GO TO %0

X0 LET A=8QR(A+14)
twlé} FRINT AyAXA
32767 END

Reardw

REUNNH

2 4

Reasdu

When the program encounters line 20, control transfers to line 50, After line 50 is executed, the program terminates.
Line 30 is never executed. Any number of lines can be skipped in either direction.

Elementary BASIC-PLUS Statements

When written as part of a multiple statement line, GOTO should always be the last statement on the line, since any A~
statement following the GOTO on the same line is never executed. For example: ;
110 LET A=ATN(L) 110 LET A=ATN(L)
NFRINT A NGO TO 370
NGO TO 370 \PRINT A
70 FRINT ‘FINISHED’ X70 FRINT ‘FINISHEDR’ -
ZR_IGT END 22767 END
FUMMNH RUMNMH

L 7BHIVH FINTSHED v '
FINISHED
Reacdy

FReariu

3.5 CONDITIONAL BRANCH, IF-THEN AND IF-GOTO STATEMENTS
The IF-THEN and IF-GOTO statements are used to transfer conditionally from the normal consecutive order of state-
ment numbers, depending upon some mathematical relation or relations. The basic format of the IF statement is as

follows: ﬂq

THEN <statement>
IF <condition> THEN <line number>
GOTO <line number>

The specified condition is tested. If it is false, control proceeds to the statement following the IF statement (the next

sequentially numbered line). If the condition is true, the statement following THEN is executed or control is trans-

ferred to the line number given after THEN or GOTO. (An extension of this statement, the IF-THEN-ELSE statement,

is described in Section 8.5.) M

The deciding condition can be either a simple relational expression in which two mathematical expressions are separate |
by a relational operator, or a logical expression in which two relational or logical expressions are separated by a logical
operator. For example:

Relational Expression Logical Expression

A+2>B A>B AND B <= SQR(C)

Both types of condition, when evaluated, are either true or false; no numeric value is associated with the results of an
IF statement. The relational and logical operators are described in Sections 2.6.4 and 2.6.5 and are presented in
Appendix A for reference.

7% IF A%EBr=RX(E+1) THEN LET D4=04+41

In the above line the quantities A*B and B*(B+1) are compared. If the first value is greater than or equal to the seconc
value, the variable D4 is incremented by 1. If B¥(B+1) is greater than A*B, D4 is not incremented and control passes "
immediately to the next line following line 75.

When a line number follows the word THEN, the IF-THEN statement is the same as the [F-GOTO statement. The word -
THEN can also be followed by any BASIC-PLUS statement, including another IF statement. For example:

250 TF A=k THEN IF B:C THEN FRINT “AXR=C’
35H0 TF AR AND E=C THEN FRINT ‘ARG
The preceding two lines are logically equivalent and perform the following operation: ‘ﬁ

Elementary BASIC-PLUS Statements

if B is both less than A and greater than C, the message
A>B>C
is printed; otherwise the next line is executed.

In the following example, the IF-GOTO statement in line 110 is used to limit the value of the variable A in line 100.
Execution of the loop continues until the relationship A >4 is true, then immediately branches to line 32767 to end
the program. (A program loop is a series of statements which are written so that, when the statements have been
executed, control transfers to the beginning of the statements. This process continues to occur until some terminal
condition is reached.)

LISTNH

100 LET fA=fdl
N Xm=ATR
110 IF &4 GO TO 32767
120 FRINT “X=X3 ‘s AND VALUE OF & I8’ A
130G GO TO 100
XBTHT E N
Readw
Fe UMMM

X= 1 9 AND VALUE OF A IS
K=o 4w ANDD VALUE OF A I8
Xz @y AND VALUE OF A I8 3
X= 16 5 AND VALUE OF A& I8 4

P o

¢

Reacw

(The novice BASIC-PLUS programmer is advised to follow the operation of the computer through these short example
programs.)

In IF statements, the following priorities are associated with each operator, in order to provide unambiguous evaluation
of the conditions specified (where item 1 has the highest priority):

. Expressions in parentheses

. Intrinsic or user-defined functions

. Exponentiation (")

- Unary minus (), that is, a negative number or variable such as -3, - A, etc.
- Multiplication and division (* and /)

. Addition and subtraction (+ and -)

- Relational operators (=, <, <=, >, >=, ==, < >)
NOT

AND

10. OR and XOR

11. IMP

12, EQV

0N L AW

°

For each class of operators indicated above, operations proceed from left to right.

3-13

Elementary BASIC-PLUS Statements

Examples of IF-THEN statements follow:
p -,

100 IF AR THEN 340

200 IF A=k OR B=0C THEN 260

300 IF AxK THEN A=-R I CONDITIONAL ASSTGNMENT
400 IF Xe=Y IMFP Y:RZ THEN PRINT "QED®

An IF statement would normally be the last statement on a multiple statement line (to avoid confusion); however, the
following rules govern the transfer path of the IF statement in other positions:

1. The physically last THEN clause is considered to be followed by the next statement (or statements) on the
line:
LISTNH
g0 INFUT “ENTER A VALUE A
100 TF A=l THEN PRINT A§
NOPFRINT CTRUE CASES
NOGOTO BR787
110 FRINT ‘NOT = 17 4-\
32747 END :

Reaciy

RUMNH
ENTER A VALUET 2
NOT = 4

Readiy ‘-5

RUNMH
ENTER A VALUET 1
1 TRUE CASE

Revacu

2. All other THEN clauses are considered to be followed by the next line of the program:

LISTNH -~
190 TNEUT “ENTER AeBe AND C/5AsEC
200 IF AR THEN IF RB>C THEN PRINT “aAxC7
NOGD TO 327867
210 FRINT ‘OOURLE CONDITION NOT TRUE”
IB787 END
Reaciw
FelNM
ENTER AsRBy AND C7? 12+3495
COURLE CONDITION NOT TRUE
Reaciu
FUNNH
ENTER AyRy AND C7 123548598 -,
50 ’

Re ooy

3-14

Elementary BASIC-PLUS Statements

Only in the case where “A > C” is printed is the statement GOTO 32767 executed.

3.6 PROGRAM LOOPS

Loops were first mentioned in the section of the IF-THEN and IF-GOTO statements. Programs frequently are
designed to perform certain instructional sequences repetitively. Computers are particularly well suited for such tasks.
With simple tasks, such as computing a list of prime numbers between 1 and 1,000,000, a computer can perform the
operations and obtain correct results in a minimal amount of time. To write a loop, the programmer must ensure that
the series of statements is repeated until a terminal condition is met.

Programs containing loops can be illustrated by using two versions of a program to print a table of the positive integers
1 through 100 together with the square root of each. Without a loop, the first program is 101 lines long and reads:

10 FRINT 1y S8QRC1)

=20 FRINT 2 SQRC2)

30 FRINT 3y SQR(3)

990 FRINT 99y SQR(99)
1000 FRINT 100y SQRCL100)

32767 ENI

With the following program example, using a simple sort of loop, the same table is obtained with fewer lines:

10 LET X1

20 FRINT X» SQR(X)
0 LET X=X+1

40 IF X<=100 THEN 20

32747 END

Statement 10 assigns a value of 1 to X, thus setting up the initial conditions of the loop. In line 20, both the value of
X and its square root are printed. In line 30, X is incremented by 1. Line 40 asks whether X is still less than or equal
to 1005 if so, BASIC-PLUS returns to print the next value of X and its square root. This process is repeated until the
loop has been executed 100 times. After the number 100 and its square root have been printed, X becomes 101.

The condition in line 40 is now false so control does not return to line 20, but goes to line 32767 which ends the
program.

All program loops have four characteristic parts:

1. Initialization, the conditions which must exist for the first execution of the loop (line 10 above).

2. The body of the loop in which the operation which is to be repeated is performed (line 20 above).

3. Modification, which alters some value and makes each execution of the loop different from the one before
and the one after (line 30 above).

4. Termination condition, an exit test which, when satisfied, completes the loop (line 40 above). Execution
continues to the program statements following the loop.

3.6.1 FOR and NEXT Statements
The FOR statement is of the form:

FOR <variable> = <expression> TO <expression>> {STEP <exprcssion>}

3-15

Elementary BASIC-PLUS Statements

For example: -~

116 FOR K=2 TO 20 STER 2

which causes program execution to cycle through the designated loop usingK as 2,4, 6, 8, ..., 20 in calculations
involving K. When K=20, the loop is left behind and the program control passes to the line following the associated
NEXT statement. The variable in the FOR statement, K in the preceding example, is known as the control variable. >

The control variable must be unsubscripted, although a common use of such loops is to deal with subscripted variables
using the control variable as the subscript of a previously defined variable (this is explained in further detail in Section -
3.6.2). The expressions in the FOR statement can be any acceptable BASIC-PLUS expression as defined in Section 2.6.

The NEXT statement signals the end of the loop which began with the FOR statement. The NEXT statement is of
the form:

NEXT <variable>

where the variable is the same variable specified in the FOR statement. Together the FOR and NEXT statements a
describe the boundaries of the program loop. When execution encounters the NEXT statement, the computer adds the ‘
STEP expression value to the variable and checks to see if the variable is still less than or equal to the terminal expression

value. When the variable exceeds the terminal expression value, control falls through the loop to the statement follow-

ing the NEXT statement.

If the STEP expression is omitted from the FOR statement, +1 is the assumed value. Since +1 is a common STEP
value, that portion of the statement is frequently omitted.

The expressions within the FOR statement are evaluated once upon initial entry to the loop. The test for completion ﬂ
of the loop is made prior to each execution of the loop. (If the test fails initially, the loop is never executed.)

The control variable can be modified within the loop. When control falls through the loop, the control variable retains
the last value used within the loop.

The following is a demonstration of a simple FOR-NEXT loop. The loop is executed 10 times; the value of I is 10 when
control leaves the loop and +1 is the assumed STEP value:

LISTNH _ -~

14 FOR I=1 TQ 16
20 FRINT L9

Z0 NEXT T

240 FRINT I

Readu

RUNNH
T2 3 4 B 6 7 8 9 10 10

ey

The loop itself is lines 10 through 30. The numbers 1 through 10 are printed when the loop is executed. After 1=10,
control passes to line 40 which causes 10 to be printed again. If line 10 had been:

10 FOR I=10 TO 1 STEF -1 A

3-16

Elementary BASIC-PLUS Statements

the value printed by line 40 would be 1.

100 FOR I=2 T0Q 44 STEP 2
NOLET IT=44
NONEXT X

The above loop is only executed once since the value of =44 has been reached and the termination condition is
satisfied.

If, however, the initial value of the variable is greater than the terminal value, the loop is not executed at all. A
statement of the format:

100 FOR I=20 TO 2 STEF 2
cannot be used to begin a loop, although a statement like the following will initialize execution of a loop properly:
200 FOR I=20 TO 2 STEF -2

For positive STEP values, the loop is executed until incrementing the control variable would cause it to be greater than
its final value. For negative STEP values, the loop continues until incrementing the control variable would cause it to
be less than its final value.

FOR loops can be nested but not overlapped. The depth of nesting depends upon the amount of user storage space
available (in other words, upon the size of the user program and the amount of memory each user has available).
Nesting is a programming technique in which one or more loops are completely within another loop. The field of
one loop (the numbered lines from the FOR statement to the corresponding NEXT statement, inclusive) must not
cross the field of another loop. Figure 3-1 illustrates correct and incorrect nesting of loops.

Acceptable Nesting Unacceptable Nesting
Techniques Techniques
Two Level Nesting

FORI1=1TO 10
FORI2=1TO 10

FORI1=1TO 10
FORI2=1TO 10

NEXT 12

[FOR I3=1TO 10
NEXT I3
NEXT I1

Three Level Nesting

—FOR 11 =1TO 10
FORI2=1TO 10
FORI3=1TO 10
NEXT I3
FORI4=1TO 10
NEXT [4
NEXT I2

——NEXT I1

NEXT 11
NEXT I2

—FOR 11 =1TO 10
—FOR 12=1TO 10
FORI3=1TO 10
NEXT 13
FORI4=1TO 10
NEXT 14

L_NEXT I1
NEXT I2

Figure 3-1 Correct and Incorrect Nesting

Elementary BASIC-PLUS Statements

An example of nested FOR-NEXT loops is shown below:

Readw

LISTNH

100 FOR AX=14Z TO HZ

110 FOR RZ=2Z TO 10% STEF 274
120 FRINT A%sRXy

130 NEXT R%

140 FRINT

150 NEXT A%

327467 END

Reacy

RUNNH
2 1 4 1 6
2 2 2 4 2 6
3 2 X 4 3 4
4 2 4 4 4 6
5 2 9 4 06

1

&

g

&

8

10

10

10

10

10

It is possible to exit from a FOR-NEXT loop without the control variable reaching the termination value. A conditional
or unconditional transfer can be used to leave a loop. Control can only transfer into a loop which had been left earlier

without being completed, ensuring that termination and STEP values are assigned.

Both FOR and NEXT statements can appear anywhere in a multiple statement line. For example:

LIGTNH

100 FOR =1 TO 10 STEF 5\ NEXT I \FRINT
Ready
FUNNH
= &
Reauiu

SEIEN

Neither the FOR nor NEXT statement can be executed conditionally in an IF statement. The following statements

are incorrect:

790 IF T < 0 THEN NEXT I
800 IF T=J THEN FOR I=1 TQ .J
3-18

Elementary BASIC-PLUS Statements

3.6.2 Subscripted Variables and the DIM Statement

In addition to the simple variables which were described in Chapter 2, BASIC-PLUS allows the use of subscripted
variables. Subscripted variables provide the programmer with additional computing capabilities for dealing with lists,
tables, matrices, or any set of related variables. In BASIC-PLUS, variables are allowed one or two subscripts.

The name of a subscripted variable is any acceptable BASIC-PLUS variable name followed by one or two integer
expressions in parentheses. For example, a list might be described as A(I) where 1 goes from O to 5 as shown below
(all matrices are created with a zero element, even if that element is never specified):

A0), A(D), A(2), A(3), A(4), A(5)

This allows the programmer to reference each of six elements in the list, which can be considered a 1-dimensional
algebraic matrix as follows:

A(0)

A
AQ)
AQG3)
A4)
AQ)

A 2-dimensional matrix B(I, J) can be defined in a similar manner and graphically illustrated in Figure 3-2.

B(0,0) B(0,1) B(0,2) B(0,3) 7 / B(0,J)
Ay

B(1,0) B(1,1) B(1,2) B(1,3) B(1,J)
B(2,0) B(2,1) B(2,2) B(2,3) / B(2,J)
B(3,0) B(3,1) B(3,2) B(3,3) 7 B(3,J)
\/ \\//

B(1,0) B(1,1) B(1,2) B3 [T —T\0 B(1,J)

Figure 3-2 Matrix Structure

Subscripts used with subscripted variables can be constants or any legal numeric expression.

It is possible to use the same variable name as both a subscripted and an unsubscripted variable. Both A and A1) are
valid variables and can be used in the same program without affecting one another. However, BASIC-PLUS does not
accept the same variable name as both a singly and a doubly subscripted variable name in the same program.

NOTE
There are cases in BASIC-PLUS where a variable name
without subscripts refers to an entire matrix, and not
to a simple numeric variable. See the CHANGE state-
ment, described in Section 5.2, and the MAT statements
described in Chapter 7.

3-19

Elementary BASIC-PLUS Statements

A dimension (DIM) statement is used to define the maximum number of elements in a matrix. (“Matrix” is the general
term used in this manual to describe all the elements of a subscripted variable.) The DIM statement is of the form:

DIM <variable (n)>, <variable (n, m)>, ...
Where the variables specified are indicated with their maximum subscript value(s).

For example:

110 NIM X(5)y Y(492)s ACLO¥10)
120 DIM 14¢100)

Only non-negative integer constants can be used in DIM statements to define the size of a matrix. Any number of
matrices can be defined in a single DIM statement as long as their representations are separated by commias.

If a subscripted variable is used without appearing in a DIM statement, it is assumed to be dimensioned to length 10 in
each dimension (that is, having 11 elements in each dimension, O through 10). However, all matrices should be
correctly dimensioned in a program. DIM statements are usually grouped together among the first lines of a program.

The first element of every matrix is automatically assumed to have a subscript of 0. Dimensioning A(6, 10) sets up
room for a matrix with 7 rows and 11 columns. This zero element is illustrated in the following program:

LISTNH
10 REM -~ MATRIX CHECK FROGRAM
20 niM A(é&»10)
X0 FOR I=0 T0O &
40 LET A (Is0)=]
G0 FOR J=0 TO 10
&0 LET A(0rJy=d
70 FRINT A(Iv)5
NONEXT W
N FPRINT
N ONEXT I
32747 ENI
Resdw
RUNNH
0 1 2 X 4 5 & 7 8 9 10
1 0 0 0 0 0 0 0 0 0 0
2 0 0 O 0 0O 0 0O O 0 0
T 0 0 0 0 0 0 0 0 O 0
4 0 0 0 0 O 0 0o 0 0 0
s 0 0 0 0 0 0 0o o0 0 O
& 0 0O 0 0 0 0 0o 0o 0 0
Reardw

Notice that a matrix element, like a simple variable, has a value of O until it is assigned a value.

3-20

Elementary BASIC-PLUS Statements

To conserve memory, the user may use the zero-subscripted elements set up within the matrix. For example, DIM
A(5,9) generates a 6 X 10 matrix that can be referenced beginning with the A(0, 0) element.

The size and number of matrices which can be defined depend upon the amount of user storage space available.
Additional information on matrices can be found in Chapter 7.

A DIM statement can be placed anywhere in a multiple statement line and anywhere in the program. It need not appear
prior to the first reference to an array that it defines. DIM statements are usually placed at or near the beginning of a
program, however, to make them easy to locate should changes be indicated.

3.7 MATHEMATICAL FUNCTIONS

Within the course of a user’s programming experience, he encounters many cases where relatively common mathematical
operations are performed. The results of these common operations can often be found in volumes of mathematical
tables; i.e., sine, cosine, square root, log, etc. Since it is this sort of operation that computers perform with speed and
accuracy, such operations are built into BASIC-PLUS. The user need never consult tables to obtain the value of the

sine of 23 degrees or the natural log of 144. When such values are to be used in an expression, intrinsic functions, such
as:

SIN (23.*P1/180.)
LOG (144.)

are substituted.
The various mathematical functions available in BASIC-PLUS are detailed in Table 3-1.

Table 3-1
Mathematical Functions

Function
Code Meaning
ABS(X) Returns the absolute value of X
SGN(X) Returns the sign function of X, a value of 1 preceded by the sign of X, SGN(0)=0
INT(X) Returns the greatest integer which is less than or equal to X, (INT(-.5)=-1)
FIX(X) Returns the truncated value of X, SGN(X)*INT(ABS(X)), (FIX(-.5)=0)
COS(X) Returns the cosine of X (X in radians)
SIN(X) Returns the sine of X (X in radians)
TAN(X) Returns the tangent of X (X in radians)
ATN(X) Returns the arctangent (in radians) of X
SQR(X) Returns the square root of X
EXP(X) Returns the value of e X, where =2.71828 . . .
LOG(X) Returns the natural logarithm of X, logeX
LOG10(X) Returns the common logarithm of X, log; oX
P1 Has a constant value of 3.1415927
RND(X) Returns a random number between 0 and 1. Unless the RANDOMIZE statement
or is encountered in the RND program prior to encountering the RND function, the
RND same sequence of random numbers is generated each time a program is run. The
value of X is ignored, and can be omitted.

3-21

Elementary BASIC-PLUS Statements

Most of these functions are self-explanatory. Those which are not are explained in the following sections.

3.7.1 Sign Function, SGN(X)
The sign function returns a value of +1 if X is a positive value, O if X is 0, and -1 if X is negative. For example:
SGN(3.42) = 1, SGN(-42) = -1, and SGN(23-23) = 0.

LISTNH
10 REM ~ SGN FUNCTION DEMO
100 READ ArR
\ PRINT ‘A=‘3Ay ‘B='3R
110 FRINT ‘SGNAY="386GN(AYy ‘SEN(RI=‘ GGENR)
120 FRINT ‘SGNCINT(AY)="38GBNCINT(AY)
1000 nAaTA ~7+32y 0.44
327467 END
Resdw
RUNNH
A7« 32 R= .44
BEN(AY =1 SEN(RY= 1

SONCINT(A) Y=

Readw
3.7.2 Integer Function, INT(X)
The integer function returns the value of the greatest integer not greater than X. For example, INT(34.67) = 34. INT
can be used to round numbers to the nearest integer by asking for INT(X+.5). For example, INT(34.67+.5) = 35.
INT can also be used to round to any given decimal place, by asking for

INT(X*10.” D%+.5)/10."D%

Where D is the number of decimal places desired, as in the following program:

LISTNH
10 I DEMONSTRATION OF INTEGER (INT) FUNCTION
A\ INT DOES NOT ROUND TO NEAREST
N INTEGERy RUT DROFPS THE FRACTION FART
100 INFUT “NUMRER TO BE FROCESSED RY INT FUNCTION':#A
110 INFUT “NUMBER OF DECIMAL PLACES FOR ROUNDING §I
120 FRINT ‘TRUNCATED INTEGER=’3INT(A)
130 FRINT ROUNDED INTEGER=’3§INT(A+.3)
140 FRINT ‘ROUNDED TQ “sD$ ‘FLACES="j
INT(AX107D4 .52 /71070
150 FRINT
1460 FRINT “ENTER ANOTHER NUMERERy TYFE A ZERO TO STOF -7
170 INFUT A
180 IF A< O GO TO 110

32767 END

Readw

3-22

Elementary BASIC-PLUS Statements

RUNNH

NUMBER TO RE FROCESSED RY INT FUNCTIONT 23.467
NUMRER OF DECIMAL FLACES FOR ROUNDING? 1
TRUNCATED INTEGER= 23

ROUNDED INTEGER= 24

ROUNDED TO 1 PLACES= 23,7

ENTER ANOTHER NUMBERs TYFE A ZERO TO STOF --
T 4046 G050Y

NUMEER OF DECIMAL FLACES FOR ROUNDINGT 2
TRUNCATED INTEGER= 4364

ROUNDED INTEGER= 4357

ROUNDED TO 2 PLACES= 454,51

ENTER ANOTHER NUMERER: TYPE & ZERO TO STOF --
T 0

Readw
For negative numbers, the largest integer contained in the number is a negative number with the same or a larger

absolute value. For example: INT(-23)=-23, but INT(-14.39)=-15.

3.7.3 Random Number Function, RND(X)

The random number function produces a random number between 0 and 1. The numbers are reproducible in the same
order for later checking of a program. The argument X in the RND(X) function call can be any number, or simply
omitted as that value is ignored.

LISTNH

10 REM — RANDOM NUMRBER DEMONSTRATION

2 INFUT "HOW MANY RANDOM NUMBERS" N

30 FOR I=1 TO N

40 FRINT KRNIy

30 NEXT I

I2767 ENID

Readw

RUNNH

HOW MANY RANDOM NUMRERST 13
1204935 « 229581 + 533074 132211 P P9THH02
+ 783713 + 741854 + 397713 + 709588 L67811
+ 682372 P P91239 806084

Ready

3-23

Elementary BASIC-PLUS Statements

In order to obtain random digits from O to 9, change line 40 to read:
40 FRINT INTCLOXRNI) »

and tell BASIC-PLUS to run the program again. This time the results are:

FRUNNH
HOW MANY RANDOM NUMBERST 13
2 2 S 1 @
7 7 3 7 é
& @ 8
Ready

It is possible to generate random numbers over any range. In general, if the range (A, B) is desired, use:
(B-A)*RND(X)+A or the equivalent (B-A)*RND+A
to produce a random number in the range A<n<B.

3.7.4 RANDOMIZE Statement
The RANDOMIZE statement is written as follows:

RANDOMIZE
or, alternatively:
RANDOM

If the random number generator is to calculate different random numbers every time a program is run, the RANDOMIZE
statement is used. RANDOMIZE is placed before the first use of random numbers (the RND function) in the program.
When executed, RANDOMIZE causes the RND function to choose a random starting value, so that the same program
run twice gives different results. For this reason, it is a good practice to debug a program completely before inserting
the RANDOMIZE statement.

To demonstrate the effect of the RANDOMIZE statement on two runs of the same program, the RANDOMIZE state-
ment is included as statement 15 in the following program:

LISTNH

10 REM - RANDOM NUMEBER DEMONSTRATION
15 RANDOMIZE

20 INFUT “HOW MANY RANDOM NUMBERS"SN
30 FOR I=1 TO N

40 FRINT RNIs

50 NEXT I

32767 END

Readw

3-24

Elementary BASIC-PLUS Statements

RUNNH
HOW MANY RANDOM NUMRERS? 35
+ 541559 + 249281 6521653 «486387 e 32345
s 563214 + 468236 + 740494 $ 228836 + 708573
+1919213 e 774316 718683 e 543249 s 99135
+ 058857 + 430996 e S62636E -1 + 458616 « 245325
+ 344403 + 858497 +S13523E~1 S581639 s 276619E~1
$ 231222 v 338373 + 649245 850108 + 257448
+893713 +AT2437E -1 + 228047 v + 261087 ¢+ 714104
Ready
RUNNH
HOW MANY RANDOM NUMRERST? 12
+ 448782 cSHP2627 116732 +A4646741 » 749863
+ 29851 +422888E~1 + 567144 L022262 s DP2799E~1
2975321 + 588409
Readw

The output from each run is different.

3.7.5 User-Defined Functions

In some programs it may be necessary to execute the same sequence of statements or mathematical formulas in several
different places. BASIC-PLUS allows the programmer to define his own functions and call these functions in the same
way he would call the standard system functions, such as RND, SQR, or COS.

These user-defined functions consist of a function name, the first two letters of which are FN followed by any valid
variable name. For example:

FNA
FNA1

The function can be defined anywhere in the program, even before its first use. The defining or DEF statement is
formed as follows:

DEF FN a (arguments) = <expression (arguments)>
where a is any legal variable name. The arguments may consist of zero to five dummy variables. The expression,
however, need not contain all the arguments and may contain other program variables not among the arguments. For
example:

100 DEF FNA(E) = 8§72
causes a later statement:

110 LET R =FNAC(4) 41
to be evaluated as R=17. As another example:

250 DEF FNE(AsR) = A+X"2
260 Y=FNE(14.49oR3)

3-25

Elementary BASIC-PLUS Statements

causes the function to be evaluated with the current value of the variable X within the program. In this case the dummy
argument B (which becomes the actual argument R3 in the function call) is unused. A\

The following two programs each produce the same output.

Program 1:
LISTNH)
10 I DEMO OF FUNCTION DEFINITION
100 HEF FNS(AY=A"A .
110 FOR I=1 TOQO 3 "
N FRINT Is FNSC(ID)
NONEXT I
327467 END
Readw
Program 2: A,
LISTNH
10 I DEMO OF FUNCTION DEFINITION
100 LEF FNS(X)=X"X
110 FOR I=1 TO 3
N FRINT Iy FNSC(I)
\NONEXT I
327467 END
Readu
The output is the following:
RUNNH
1 1
2 4
3 27
4 256 -
] J125 oo
Readw
DEF statement arguments are formal variables. When the defined function is later invoked, the variables are keyed by
position in the argument list, not by the characters used to form the arguments. The function itself can be defined in
the DEF statement in terms of numbers, variables, other functions, or mathematical expressions. For example:
LISTNH
100 NEF FNACX) = X"24+3%X+4
200 DEF FNER(X) = FNAX)I/2 + FNAX) -
300 DEF FNCOX) = SAR(X+4) + 1

326

Elementary BASIC-PLUS Statements

The statement in which the user-defined function appears can have that function combined with numbers, variables,
- other functions, or mathematical expressions. For example:

40 LET R = FNACXEYFZIRN/(YT241I0)

A user-defined function can be a function of zero to five variables, as shown below:
25 DEF FNL(XeYsZ) = $GF«: (X728 + Y72 4+ 272)

A later statement in a program containing the above user-defined function might look like the following:
pact] LET B = FNL(DyLeR)

where D, L, and R have some values in the program. |

The number of arguments with which a user-defined function is called must agree with the number of arguments with
which it is defined. For example:

-’ 100 LEF FNA(X) = XK3
110 FRINT FNA(3y2)

will cause an error message:
TArdguments don’t match at lime 110

In a DEF statement or function reference, where a function has zero arguments, the function name can be written with
or without parentheses. For example:

Readw.
OLIY C3Fr332
Readfu
LISTNH
10 DEF FNA=X™2
| — 20 INFUT “TYFE A NUMBER$X
30 FRINT FNA§ FNAQ)
327467 ENID
Ready
RUNNH
. TYFE A NUMBERT 3.45
13,3225 13.3225
) Reacdy
When calling a user-defined function, the parenthesized arguments can be any legal expressions. The value of each
expression is substituted for the corresponding function variable. For example:
o

3-27

Elementary BASIC-PLUS Statements

LEISTNH o~
10 DEF FNZ(X)=X"2
20 LET A=2
SPRINT FNZO24A)
32767 ENTI

Readdw

RUNNH

1 \‘{) »
Readu
If the same function name is defined more than once, an error message is printed.
\ 10O REF FNX (X)) =X72

110 DEF FNX(X)=X"4 -~
FIilledal FN redefinition at lime 110

Ready

The function variable need not appear in the function expression as shown below:

LISTNH

100 I FUNCTION VARIABLE NOT IN FUNCTION EXFRESSION
110 DEF FNACX) = 4XA 42 -,
120 FOR A = 0 TO 3
L3I0 LET K o= FNaCL0) + 1
N OFPRINT R
NONEXT A
327467 END
Reaniv
RLINNH A!M
3
7
11
15
Readu
The program in Figure 3-3 contains examples of a multi-variable DEF statement in lines 30, 50, and 70. -

3.8 SUBROUTINES

When a particular mathematical expression is evaluated several times throughout a program, the DEF statement
enables the user to write that expression only once. The technique of looping allows the program to do a sequence of
instructions a specified number of times. If the program should require that a sequence of instructions be executed
several times in the course of the program, this is also possible.

3-28

Elementary BASIC-PLUS Statements

LISTNH

10 REM == MODULUS ARITHMETIC FROGRAM
THIS PROGRAM CREATES ADIITION AND
MULTIPLICATION TARLES FOR A SPECIFIED
MODULUS M.

20 REM == FUNCTION TO FIND X MOD M

30 DEF FNMOXyM)=X-MXINT(X/M)

]

40 REM FUNCTION TO FIND A+R MOD M
uo DEF FNACAsBsM)=FNM(A+RyM)
!
40 REM -~ FUNCTION TO FIND AXE MOD M
70 DEF FNECAyBReM)=FNM(AXE M)
100 FRINT N FRINT ‘ARDITION AND MULTIPLICATION TARLES MOD M/
NOINFUT “WHAT MODULUS Y M
NOPRINT N PRINT CARDDITION TARLES MODY$M
\NOGOSUR 800
110 FOR I=0 TO HM-1
120 FRINT Is7 73
FOR J=0 TO M~1
FRINT FNAC(LyJeM)s
NEXT .J
FRINT
NEXT I
FRINT N FPRINT
200 FRINT “MULTIPLICATION TARLES MOD‘ M
NOGOSUR 800
210 FOR I=0 TO M-1
NFRINT Ii7 ‘5
\NFOR J=0 TO M~
NPRINT FNE(IJeM) 6
MNEXT J
\NFRINT
\NEXT I
220 GOTO 32267
800 REM == THIS SUBROUTINE FRINTS THE HEADINGS FOR EACH TARLE
810 PRINT
NOFRINT TAR(4)
820 FOR I=0 TO M-1
\FRINT Is
NNEXT T
NFRINT
830 FOR I=1 TO 3%Mt+4
NOFRINT 273
NONEXT T
NOFRINT
NORETURN
X2767 END

-

Freracy

Figure 3-3 Modulus Arithmetic

Elementary BASIC-PLUS Statements

REUNNH

ADDITION AND MULTIPLICATION TARLES MOD M
WHAT MODULUS? 7

ARDITION TARLES MOD 7

O 1 2 3F 4 5

Woss sute saes case isr sass EE 08 GANs Sers eben €INO SUBR 430 €E4S Bers SOFL GPRS BOR 4003 Geds G0AD G0ED

o

SN B NERER
NUDGIN=C
C OIS LIt

OO D LR
(3 N
<
= O

A BLIN= O

2
o
-3

MULTIFLICATION TARLES MOD 7 -,

O 1 2 3 4 5 6
O 0 0 0
2 4 5

4 1z

24
4

PP O
Od

%
'~

0
&
b
4
3

1) b
1 2

3
5

é
3

LWL ~0
oSS T O

o UDd

S o= L

P O
g3

Ready

Figure 3-3 (Cont.) Modulus Arithmetic

3-30

FElementary BASIC-PLUS Statements

A subroutine is a section of code performing some operation required at more than one point in the program. Some-
times a complicated 1/O operation for a volume of data, a mathematical evaluation which is too complex for a user-
defined function, or any number of other processes may be best performed in a subroutine.

More than one subroutine can be used in a single program, in which case they can be placed one after another at the end
of the program (in line number sequence). A useful practice is to assign distinctive line numbers to subroutines; for
example, if the main program uses line numbers up to 199, use 200 and 300 as the first numbers of two subroutines.
Consider the following example:

LISTNH
10 REM ~- THIS FROGRAM ILLUSTRATES GOSUR AND RETURN
20 DEF FNACX)=ARS(INT (X))
30 FRINT “THIS SUBROUTINE FINDS QUADRATIC SOLUTIONS-
40 INFUT ‘ENTER THREE COEFFICIENTS’S AvEsC
\ FRINT
N\ FRINT “SOLUTIONS FOR COEFFICIENTS ENTERED ARE -
N OPRINT ‘SHOWN FIRSTy THEN SOLUTIONS FORY
N OPRINT ‘ARSOLUTE VALUE COEFFICIENTS.’
50 GOSUE 500
&0 LET A=FNA(A)
N E=FNACR)
N C=FNACS)
70 FRINT
\FRINT ‘WITH ALL COEFFICIENTS CONVERTEDR TO ABSOLUTES’
80 GOSUR %00
90 FRINT ‘TYFE "MORE* IF YOU WANT TO CONTINUE‘
100 INFUT A%
N IF A% = “MORE® THEN 40
110 GO TO 32767
500 REM -~ THIS SUBROUTINE FRINTS OUT SOLUTIONS OF THE
EQUATION AXX"24+BKX+C=0
510 FRINT
\FRINT “THE EQUATION IS ‘5435 %XX"2 + ‘3R’ XX + ‘3G’ =
520 LET D=RKE-4KAKC
\NCOIF DEE0 THEN 600
530 FRINT ‘ONE SOLUTIONG X=73-R/(2%A)
\ RETURN
&00 IF <0 THEN 700
505 FRINT ‘TWO SOLUTIONSS X=(73
4610 FRINT (~RB+SQRDIZC2KAYS) AND (735 (~B-SQR (D))/ (2%AY 57) 7
\ RETURN
700 FRINT “IMAGINARY SOLUTIONS X=(’3
710 FRINT ~B/C2%A)5 7475 SOR(-ID/(2%AYS 1)’
720 FRINT * ANIU 73
730 FRINT ~E/(2KA)5 7~/ $SGOR(~D)/(2KA) 57 1) 7

N RETURN
327467 ENI

Readw

3-31

Elementary BASIC-PLUS Statements

RUNNH
THIS SURROUTINE FINDGS QUADRATIC SOLUTIONS -
ENTER THREE COEFFICIENTS? 1y~Sy~-6 B

SOLUTIONS FOR COEFFICIENTS ENTERED ARE
BHOWN FIRSTs THEN SOLUTIONS FOR
ARSOLUTE VALUE COEFFICIENTS.

THE EQUATION IS 1 %X72 + -5 %X + -6 = 0
TWO SOLUTIONS? X=(&) AND (-1)

WITH ALL COEFFICIENTS CONVERTEDR TO ARSOLUTE:

THE EQUATION IS 1 ¥X"2 + &5 %X + & = 0
TWO SOLUTIONS: X=(-2) AND (-3)

TYFE *MORE® IF YOU WANT TO CONTINUE

MO

ENTER THREE COEFFICIENTS? 2y3s-2

SOLUTTONS FOR COEFFICIENTS ENTERED ARE

SHOWN FIRSTs THEN SOLUTIONS FOR

ARSOLUTE VALUE COEFFIDIENTS.

THE EQUATION ¥§ 2 X722 + 3 %X + -2 = 0

TWO SOLUTIONS: X=(.5) AND (-2 5

WITH ALL COEFFICIENTS CONVERTED TO ABRSOLUTE?

THE EQUATION I8 2 %X™2 + 3 %X + 22 = 0

IMAGINARY SOLUTIONT X=(-,70 4+ .661438 1)

ANDL (- 708 ~ 661438 1)
TYFE "MORE®™ IF YOU WANT T0O CONTINUE
TPONO

Reacu
Lines 500 through 730 constitute the subroutine. The subroutine is executed from line 50 and again from line 80. ‘@\
3.8.1 GOSUB Statement
Subroutines usually are placed physically at the end of a program before DATA statements, if any, and always before
the END statement. The program begins execution and continues until it encounters a GOSUB statement of the form:

GOSUB <line number>
where the line number following the word GOSUB is the first line number of the subroutine. Control then transfers to 7
that line in the subroutine. For example:

50 GOSUR 200 |
Control is transferred to line 200 in the user program. The first line in the subroutine can be a remark or any executable
statement.

3-32

Elementary BASIC-PLUS Statements

3.8.2 RETURN Statement
Having reached the line containing a GOSUB statement, control transfers to the line indicated after GOSUB; the sub-
routine is processed until the computer encounters a RETURN statement of the form:

RETURN

which causes control to return to the statement following the original GOSUB statement. Subroutine exit is always
through a RETURN statement.

Before transferring to the subroutine, BASIC-PLUS internally records the next sequential statement to be processed
after the GOSUB statement; the RETURN statement is a signal to transfer control to this statement. In this way, no
matter how many subroutines or how many times they are called, BASIC-PLUS always knows where to go next.

3.8.3 Nesting Subroutines

Subroutines can be nested; that is, one subroutine can call another subroutine. If the execution of a subroutine
encounters a RETURN statement, it returns control to the line following the GOSUB which called that subroutine.
Therefore, a subroutine can call a subroutine, including itself. Subroutines can be entered at any point and can have
more than one RETURN statement. It is possible to transfer to the beginning or to any part of a subroutine; multiple
entry points and returns make a subroutine more versatile.

The maximum level of GOSUB nesting is dependent on the size of the user program and the amount of memory avail-
able at the installation. Exceeding this limit causes the message:

MAXIMUM MEMORY EXCEEDED AT LINE line number
3.9 STOP AND END STATEMENTS
The STOP and END statements are used to terminate program execution. The END statement is the last statement
in a BASIC-PLUS program. The STOP statement can occur several times throughout a single program with condi-
tional jumps determining the actual end of the program. The END statement is of the form:

END
The line number of the END statement should be the largest line number in the program, since any lines with line
numbers greater than that of the END statement are not retrieved by a subsequent OLD command after the program

is saved. The user can habitually number each END statement 32767 to avoid this problem.

A program will execute without an END statement. However if a program retrieved by an OLD command includes no
END statement, RSTS/E prints the following informative message:

TEnd of file on device
The STOP statement is of the form:

line number STOP
and causes:

STOP AT LINE line number
READY

to be printed when executed. A CONTINUE command entered at this point resumes execution at the statement
following STOP.

3-33

Elementary BASIC-PLUS Statements

Execution of a STOP or END statement causes the message: ﬂ
Ready

to be printed by the teleprinter. This signals that the execution of a program has been terminated or complete‘d, and
BASIC-PLUS is able to accept further input. The execution of an END statement also closes all files in a BASIC-

PLUS program.

3-34

PART I

BASIC-PLUS ADVANCED FEATURES

Part II describes certain features of BASIC-PLUS that give the language flexibility for a greater variety of applica-
tions. Additional capabilities of the statements previously described are included, along with new statements,
character string manipulation, string arithmetic (an optional feature), integer mode variables and arithmetic, and
intrinsic matrix functions (an optional feature). Also described in the immediate mode of operation which causes
BASIC-PLUS to treat single statements as commands.

In general, the techniques presented here allow the user to write programs which conserve memory space and reduce
execution time. With the ability to manipulate character strings, the user can write sophisticated programs to handle
a wide range of data. Also, the ability to perform arithmetic with numeric string data enables the user to obtain
greater precision than is possible with floating point and integer operands.

The matrix functions allow the user to perform matrix 1/O and the matrix operations of addition, subtraction,
multiplication, inversion and transposition.

CHAPTER 4
IMMEDIATE MODE OPERATIONS

4.1 USE OF IMMEDIATE MODE FOR STATEMENT EXECUTION

It is not necessary to write a complete program to use BASIC-PLUS. Many BASIC-PLUS statements are executable
as on-line commands, i.e., executed immediately by the BASIC-PLUS processor. This facility provides a powerful
on-line desk calculator. It allows the user to check and change variables of the current program, or perform calcula-
tions independent of the current program. Thus it is a helpful tool for program design and debugging.

BASIC-PLUS distinguishes between lines entered for later execution and those entered for immediate execution
solely on the presence (or absence) of a line number. Statements which begin with line numbers are stored; state-
ments without line numbers are compiled and executed immediately upon being entered to the system. Thus the
line:

10 FRINT “THIS IS AN EXECUTAELE RASIC-FLUS FROGRAM’
produces no action at the terminal upon entry, while the statement:
FRINT ‘THIS IS AN IMMEDIATE MODE STATEMENT/
when entered causes the following immediate output:
THIS I8 AN IMMEDIATE MOUE STATEMENT
Readwy
The READY message is then printed to indicate the system readiness for further input.
Although only one statement at a time can be executed in immediate mode, statements typed in immediate mode

can reference variable values established either by the running of the current program or by other immediate mode
statements. For example:

A3
Ready
Yz 4
Reacu

FRINT ATNC(A/ZE)
+ 643501

Reay

FRINT SQR(A™2 4+ E™2)
]

Readu

4.1

Immediate Mode Operations

4.2 PROGRAM DEBUGGING

Immediate mode operation is especially useful in two areas: program debugging and the performance of simple
calculations in situations which do not occur with sufficient frequency or with sufficient complications to justify
writing a program.

In order to facilitate debugging a program, the user can place STOP statements liberally throughout the program,
Each STOP statement causes the program to halt, printing the line number at which the STOP occurred. The user
then can examine various data values, perhaps change them in immediate mode, and then give the CONT command
to continue program execution. However, a syntax error in immediate mode or one of several other conditions
could prevent continuation of program execution with the CONT command.

When using immediate mode, nearly all the standard statements can be used to generate or print results.

The user can also halt program execution at any time by typing CTRL/C. Immediate mode can then be used to
examine and/or change data values. Typing the CONT command resumes program execution.

However, if the CONT command is entered and execution cannot be resumed, the following message is printed.
PCan’t CONTinue
Readw

When a program is interrupted by typing the CTRL/C combination, the integer variable LINE contains the line

number of the statement being executed when the interrupt occurred. The PRINT command is used to display the
contents of LINE.

~
Ready

FRINT LINE
300

Reaiiw

4.3 MULTIPLE STATEMENTS PER LINE
Multiple statements cannot be used on a single line in immediate mode. For example:

A=l N FRINT A
PIllesal in immediate mode

The use of the FOR modifier (and all other modifiers described in Section 8.7) is allowed. Thus a table of square
roots can be produced as follows: ‘

4.2

Immediate Mode Operations

FRINT I¢SQR(I) FOR I = 1 TO 10
1
141421
1+7320%
2
223607
2444949
2.64573
2.82843
3

0 316228

=G ONWU D LR

Readdw

4.4 RESTRICTIONS ON IMMEDIATE MODE
Certain commands make no logical sense when used in immediate mode. Commands in this category include:

DEF
FNEND
DIM
DATA
FOR
NEXT

When any of these is given, the message ILLEGAL IN IMMEDIATE MODE is printed.

4.3

CHAPTER 5
CHARACTER STRINGS

5.1 CHARACTER STRINGS

The previous chapters describe the manipulation of numerical information; however, BASIC-PLUS also processes
information in the form of character strings. A string, in this context, is a sequence of characters treated as a unit.
A string can be composed of any combination of ASCII characters.

In Chapter 3 the INPUT and PRINT statements were shown printing messages along with the input and output of
numeric values (see lines 10 and 15 above). These messages consist of character string constants (just as 4 is a numeric
constant). In a similar way, there are character string variables and functions.

5.1.1 String Constants
Just as numbers can be used as constants or referenced by variable names, BASIC-PLUS allows for character string
constants. Character string constants are delimited by either single or double quotes. For example:

100 LET Y4 = "FILE4"
200 Bi$ = ‘AN’
300 IF A% = "YES* GO TO 2650

where “FILE4”, ‘CAN’ and “YES” are character string constants.

5.1.2 Character String Variables

Variable names can be introduced for simple strings and for both lists and matrices composed of strings (which is to say
1- and 2-dimensional string matrices). Any legal name followed by a dollar sign ($) character is a legal name for a string
variable. (The rules for forming legal variable names are described in Section 2.5.2.) For example:

A%
C7%
NAME.OF.CUSTOMERS$ (EXTEND mode only)

are simple string variables. Any list or matrix variable name followed by the § character denotes the string form of that
variable. For example:

V$(N%) M2$(N%)
CS(M%N%) G1$(M%,N%)

(where M and N indicate the position of that element of the matrix within the whole) are list and matrix string variables.

The same name in combination with various prefixes and suffixes can appear in the same program, and generate mutually
independent variables. For example, the name A refers to a floating-point variable A. The name A can be used as follows:

5-1

Character Strings

A floating point variable A

A% integer variable A%

A$ string variable A$

A(d) floating point array A with dimension specification d
A%(d) integer array A% with dimension specification d
AS$(d) string array A$ with dimension specification d

FNA floating point function FNA

FNA% integer function FNA%
FNAY string function FNAS

Thus any name can be used to reference up to nine distinct data entities. In the case of an array, there can be only one

dimension specification in the program for each A(d), A%(d), or A$(d). For example, the following combination is legal.

10 DIM AZCLOQ) y ACZ00)
20 AX=E0%

30 AZLCRGI=100%

40 AZCAZI=200X

It will place a value of 50 in the integer variable A%, 100 in element 25 of array A%, and 200 in element 50 of array A%.

Array A is not affected. On the other hand, the following DIM statement is illegal.

250 ODIM ABC20y A$CL0r4)
PRedinensioned arraw alt line 280

because it attempts to use the same string array name to identify two arrays. There would be no logical conflict if one
instance of A$ were A or A%.

Just as numeric variables are automatically initialized to O when a program is run, string variables are initialized to a null
string containing no characters (the character string constant ““*”).

5.1.3 Subscripted String Variables
String lists and matrices are defined with the DIM statement, as are numerical lists and matrices. For example:

100 OIM S14605)

indicates the S1$ is a string matrix with six elements, S1$(0) through S18(5), which can be separately accessed. If a
DIM statement is not used, a subscripted string variable is assumed to have a dimension of 10 (11 elements including
the zero element) in each direction. Note that the dimension of a string matrix specifies the number of strings and not
the number of characters in any one string. For example, if the first statements in a program are:

1OGH0 FOR T=1 TO 7
NOLET BECDy="POP-~LL"
NONEXT T

alist B§(n) is created having 11 accessible elements, B$(0) through B$(10). The elements B$(1) through B$(7) are set
equal to “PDP-11”" and the others would be null strings (have no characters), as shown below.

5-2

Character Strings

LISTNH
1050 FOR I=1 TO 7
NOLET BS(lI s ppeg
NONEXT I
1060 FOR H=0 T0 10
NOFRINT MeBECH)
NONEXT H
X276V END
Ready
eLUNNH
(4]
1 PRl
2 P-4
3 [(SN
4 FLoF-11
] Fp-11
& FrE-1
7 P11
]
G
10
Foesaaeiu

As a general rule, all lists should be dimensioned to the maximum size referenced in the program.

5.1.4 String Size
A character string can contain any number of characters limited only by the amount of memory available. However, the
LINE FEED key cannot be used to type a string on two or more terminal lines. To create a string longer than a terminal

line, it is necessary to use string operations (concatenation, for instance) described later. Since memory is limited,
strings can also be saved in files on the system disk.

5.1.5 Relational Operations
When applied to string operands, the relational operators indicate alphabetic sequence. For example:

5% T AsCly < AsCI+Ly GOTO 100

When line 55 is executed the following occurs: A$(I) and A$(I+1) are compared;if A$(I) occurs earlier in alphabetical
order than A§I+1), execution continues at line 100. Table 5-1 contains a list of the relational operators and their string
interpretations.

In any string comparison (except ==), trailing spaces are ignored. The string “YES” is equivalent to “YES *.

When two strings of unequal length are compared, the shorter string (of length n) is compared with the first n characters
of the longer string. If this comparison is not equal, that inequality is the result of the original comparison. If the first

n characters of the strings are the same, the strings are equal if the excess characters in the longer string are all blanks.
Otherwise, the longer string is greater than the shorter string.

A null string (of length zero) is less than any string of length greater than zero unless that string consists of all blanks in
which case the two strings are equivalent.

Character Strings

Table 5-1
Relational Operators Used with String Variables
Operator Example Meaning
= A$ =B} The strings A$ and B$ are equivalent, except for possible trailing spaces.
< AS$ <B$ The string A$ occurs before B$ in collating sequence.
<= A$ <= B§ The string A$ is equivalent to or occurs before B§ in collating sequence.
> A$ > BS§ The string A$ occurs after BS in collating sequence.
>= A$ >=B$§ The string A$ is equivalent to or occurs after BS in collating sequence.
<> A$ <> BS$ The strings A$ and B$ are not equivalent.
== A% ==B} The strings A$ and B$ are identical (i.e., same length, composed of the same
characters in the same order).

5.2 ASCII STRING CONVERSIONS, CHANGE STATEMENT

Individual characters in a string can be referenced through use of the CHANGE statement. The CHANGE statement per-

mits the user program to transform a character string into a list of numeric values or a list of numeric values into a
character string. Each character in a string can be converted to its ASCII equivalent or vice versa.

Appendix D, Section D.2 describes the relationship between the ASCII characters and their corresponding decimal val-
ues. Note that several ASCII characters have no graphic equivalent; that is, they cause no character to be printed.

As an illustration, consider the following:

LISTNH

1000 REM -~ STRING/ASCIT CHANGE DEMO

1010 ODIM X<{3)

1020 LET A% = "CAT"

1030 CHANGE A% TO X

1040 X=X Q34X (3)
N FPRINT “X=73Xy “THE ARRAY X 18 7%

KOOI X (LX) 8 X3

1050 FIN A CHANGE STATEMENT THE NUMERIC MATRIX
IS REFERENCED WITHOUT SURSCRIFPTS. A5 THIS
TEXAMPLE SHOWSy HAVING A& SINGLE-VALUE VARIARLE
TWITH THE SAME NAME IN THE FROGRAM CAUSES
INO AMEBIGUITY.

32767 END

Ready

RUNNH
X= 87 THE ARRAY X IS 3 &7 65 84

Readw

5-4

Character Strings

X(1) through X(3) take on the ASCII values of the characters in the string variable A$. The first element of X, X(0),
becomes the number of characters present in A$.

If more characters are present in the string variable than can be accommodated in the numeric list, the message
SUBSCRIPT OUT OF RANGE is printed. The first element of the list becomes the number of characters in the entire
string and is greater than the dimension of the list.

Notice that line 1010, above, created a 4-element array, X. A DIM statement must be used in this instance; otherwise
the system creates a default 121-element array, possibly causing unexpected results.

3

Another program which transforms a character string into a list of numeric values is shown below:

LISTNH
100 DIM A5
110 REALI A%
120 CHANGE A% TO A
130 FOR I=0 TO acO
N TACO)Y GIVES LENGTH OF STRING
140 FRINT ACI)s
N NEXT I
200 DATA ABCLEFGHIJKLMNOFQRSTUVWXYZ
32767 END
Ready
FUNNMH

26 6T 66 67 68 69 70 71 72 73 74 7B 74 7778 79 80O 81
82 83 g4 85 86 87 88 89 90
Ready

Notice that A(0) =26

To change numbers into string characters, the CHANGE statement is used as follows:

LISTNH
100 REM ~- ASCII NUMBER TO STRING CONVERSION DEMO
110 FOR =0 TO %
N READ ACD)
N ONEXT I
120 CHANGE A TU A%
\ FRINT A%

200 NATA 6965966967 06BvE9 70
32767 ENIY

Ready

RUNNH
ARCDE

Reau

This program prints ABCDE because the numbers 65 through 69 are the code numbers for A through E.

5-5

Character Strings

Before CHANGE is used in the matrix-to-string direction, the programmer must indicate the number of characters in
the string as the zero element of the matrix. If element O has a value of zero, the CHANGE statement generates a
zero-length string.

5.3 STRING INPUT
The READ, DATA and INPUT statements can be used to input string variables to a program. For example:

10 READ A%sBCoD
150 DATA L7145 13.4yCAT

causes the following assignments to be made:

AS$ = the character string “17”

B=14

c=134

reading D as CAT causes the message ILLEGAL NUMBER AT LINE 10 to be printed.

Quotation marks are necessary around a string item in a DAT A statement only when the string contains a comma, or
when leading, trailing or embedded spaces within the string are significant, or when lower-case letters are to be pre-
served. Quotes (single or double) are always acceptable around string items, even though not always necessary. For
example, the items in line 500 in the following program are all acceptable character strings.

LITSETNH

1OG READ Ay BEsCEo Iy %

110 FRINT nss LBEs O D4 Ed

120 FRINT ﬁ$yﬁ$y?$vﬂ$yﬁ$

HOO DATH “MR. JONES y MISS SMITHy "MREEROWN®, "MISG y "MR"
IR7ET ENI

Reaow

FUNNK

MR JONESMISSOHEMITHMRS BROWNMISSG"MR®

MR JONES MISSEMITH MRS BROWN MIGS MR
Ready

Although the string MISS SMITH is acceptable without quotes, embedded spaces in the string are discarded. A READ
statement can appear anywhere in a multiple statement line, but a DATA statement must be the last statement on a
line. See also the MAT READ statement which reads matrices (either numeric or string), Section 7.2.

NOTE
The data pool composed of values from the programmed
DATA statements is stored internally as an ASCII string
list. Where a numeric variable is read, the appropriate ASCII
to numeric conversions are performed. Where a string variable
is read, the string is used as it appears in the DATA state-
ment. If the item did not appear in quotes, leading, trailing
and embedded spaces are ignored. If the item did appear in
quotes, the string variable is equated to the entire string
within the quotes.

5-6

-~

Character Strings

The input statement is used to input character strings exactly as though accepting numeric values. For example:

100 INFUT “YOUR NAME iN$$ YOUR AGE’$6
is functionally equivalent to:

100 FRINT “YOUR NAME’$

110 INFUT N

120 FRINT “YOUR AGE" s

130 INFUT A

5.3.1 Line Input
Another feature of the INPUT statement when used with character string input is the INPUT LINE statement of the
form:

INPUT LINE <string variable>
For example:
INFUT LLIME At

which causes the program to accept a line of input from the terminal with embedded spaces, punctuation characters,
or quotes. Any characters are acceptable in a line being input to the program in this manner. The program can then
treat the line as a whole or in smaller segments as explained in Section 5.5 which describes string functions.

No text string can be output with the INPUT LINE statement; this facility is only available in the INPUT statement.
For example:

10 INFUT LINE “TEXT s At
PHurntax ervor at line 10

Reacy

An INPUT LINE statement reads the entire line as typed by the user, including the line terminating character. The line
terminator is one of the following:

L. Carriage return/line feed, generated by typing the RETURN key (appends the ASCII values 13 and 10 to the
character string);

2. Line feed, generated by typing the LINE FEED key (appends the ASCII values 10, 13, and O to the
character string); or

3. ESCAPE, generated by typing the ESCAPE, ALT MODE or PREFIX key, depending upon the terminal
(appends an ASCII 27 to the character string).

4. Form feed, generated by typing CTRL/L (appends an ASCII 12 to the character string).

Upon receipt of an INPUT or INPUT LINE statement, BASIC-PLUS issues a prompt symbol in the form of question
mark and a space to signal that the next line typed will be treated as input. Depending on the present loading of the

system, additional prompts may appear while entering long string input. These prompts are not included in the input.

After 256 characters are entered, the error message, LINE TOO LONG, is printed. When excessive input is entered to
cause this message, the string variable will have unpredictable contents. For example:

5-7

Character Strings

LISTNH

100 FRINT ‘ENTER LONG STRING-
N OINFUT LINE A% -~
\ FRINT

N\ FRINT A%
32767 ENT

Rearu

RUNNH)
ENTER LONG STRING

Py /L FF 21 P INPOONQLURMNHFFFFFFFFFFFFFFFFFSSSS5555646667777888901111122
2EAZZA4RRFFCOSSWWEERGNNMy s KKIL $ 833 DN 8H kKKK b H o+ FUUU IR OLBERE h
BEEFFFFFFFFFFFFFRRRRERRRRRA44444445555554% 4H6667777778888889990TT1TITIUUU
UYYYYFFFFFFUUUUUREBRENNNNMMMUV? UVCCCSS5SAAAARRASSSHWWKEENTITNA4444444444444
AQBALRNARLALT T R AR ARG S S SSS B BELOREA ! V)V VI HHHHMO 666667 7777278888%.ine L

oo long at line 100

* MM

AA442448Q844484 4400 AAALAAT T G R ARG SSE S SR EFEFERREE@) 1) UV HHHHEM
Readw

The GET statement can also be used to input string information from a terminal in the form of 1/O records. See
Section 12.3 for further information.

5.4 STRING OUTPUT

When string values are included in a PRINT statement (either alone or in combination with other string and numeric

values), no leading or trailing spaces are added to the string. Only the actual content of the string is printed, and leading

or trailing spaces must be included in the string when it is defined. For example: _~,

LISTNH

100 REM == STRING QUTFUT DEMO
200 LET X=1,0
N Ym2,01
N A==
210 FRINT A$sX" R="Y
220 FRINT “DONE’
327867 END 4‘%
Readw
RUNNH
A= 1 RB= 2.01
DONE
Reaciy
Semicolons separating character string constants from other list items are optional. For example, in line 210 (above) .

note that the variable Y is not separated from the character string * B=" by a semicolon.

Character string output can also contain the string functions described in Section 5.5.

5-8

Character Strings

5.5 STRING FUNCTIONS

Besides intrinsic mathematical functions (e.g., SIN, LOG), BASIC-PLUS contains various functions for use with
character strings. These functions allow the program to perform arithmetic operations with numeric strings, concatenate
two strings, access part of a string, determine the number of characters in a string, generate a character string cor-
responding to a given number or vice versa, search for a substring within a larger string, and perform other useful
operations. (These functions are particularly useful when dealing with whole lines of alphanumeric information input
by a INPUT LINE statement.) The various functions available are summarized in Table 5-2.

Table 5-2
String Functions
Function Code Meaning
LEFT(A$,N%) Indicates a substring of the string A$ from the first character through the Nth charac-
ter (the leftmost N characters of the string A$). For example:
10 Ads T ARCDEFGHTJKLMNOFQRETUVWXYZ
RLNNH
Reacdu

FRINT LEFT(AS 720

Reacu

RIGHT(A$,N%) Indicates a substring of the string A$ from the Nth character through the last charac-
ter in A$ (the rightmost characters of the string A$ starting with the Nth character).
For example:

FRINT RIGHT (A% 20%)
TUVHXYZ

Reacds

MID(A$,N1%,N2%) Indicates a substring of the string A$ starting with character N1, and N2 characters
long (the characters between and including the N1 through N1+N2-1 characters of
the string A$). For example:

FRINT MIDCASy LSX 520
OFQRS

Reascds

LEN(AS) Retums an integer that indicates the number of characters in the string A$ (including
trailing blanks). For example:

FRINT LENCA%)
26

Ready

59

Character Strings

Table 5-2
String Functions (Cont.)

Function Code

Meaning

CHRS$(N%)

ASCII(AS)

DATES$(N%)

INSTR(N1%,A$,B$)

SPACES$(N%)

NUMS(N)

Indicates a concatenation operation on two strings. For example “ABC”’+“DEF” is
equivalent to “ABCDEF”. “12”+“34”+“56” is equivalent to “123456”.

Generates a 1-character string having the ASCII value of N (see Table 5-2). For
example, CHR$(65) is equivalent to “A”. Only one character can be generated.

Generates an integer that is the ASCII decimal value of the first character in AS. For
example, ASCII(““X”) is equivalent to 88, the ASCII equivalent of X. If B§ = “XAB”,
then ASCII(BY) = 88.

Where N%=0, this function returns the current date in the form:
<day>-<month>-<year>

For example:
12-AUG-72

This quantity can be printed on output by simple reference to the function. It should
be noted that dates are output using both upper and lower case letters. When the
output device is not capable of generating lower case letters, the ASCII values still
imply lower case. Where N%<>0 the function translates N% into a date string. (See
Section 8.8.) If the run-time system was generated with the numeric data option,
12-Aug-72 is returned as 72.08.12.

Indicates a search for the substring BS within the string A$ beginning at character
position N1. Returns a value of 0 if BS is not in A$. Returns the character position of
B$ if BS is found to be in A$ (character position is measured from the start of the
string with the first character counted as character 1). For example:

FRINT INSTRCGZsA%y 70F7)

15
Reacdy

If BS is a null string (B$ = ““"), the INSTR function returns the value 1. The null

string is a proper substring of any string and is treated conventionally as the first element
of AS in null string search operations. In addition, if both A$ and B$ are null strings,

the INSTR function returns the value 1.

Indicates a string of N spaces, used to insert spaces within a character string.

Indicates a string of numeric characters representing the value of N as it would be out-
put by a PRINT statement. (NUM$(n)=(space)n(space) if =0 and NUM$(n)=-n(space)
if n<0. For example:

FRINT NUM$(7465098702134)
+7A46GLE 13

Re gl

5-10

Character Strings

Table 5-2
String Functions (Cont.)

Function Code

Meaning

NUMI $(N)

VAL(A$)

TIMES$(N%)

STRINGS(N1%,N2%)

Yields a string of numeric characters numerically equal (or approximately equal) to the
integer or floating point value N. This is similar to the NUM$ function, except that no
spaces nor E-format results are returned. It may be used to convert an integer or
floating point value for use as a string function operand. For example:

FRINT NUML$CFL)
3. 14159265358979

Reacy

FREINT NUM1I$ (27, 5%304546, 234+3. 0375 1)

BREPTE7 THLGAREY

Reacds
Computes the numeric value of the string of numeric characters A$ (may include
digits, +, -, . and E) and returns it as a floating point number. If A$ contains any
characters not acceptable as numeric input with the INPUT statement, an error results.

For example:

FRINT VAL (714, 3E~57)
000143

Reasoiu
Where N%=0, this function returns the current time of day as a string. For example:
01:30 PM
Where N7%<>0, the function translates N% into a time string (See Section 8.8). If the
run-time system was generated using the 24-hour time option, 01:30 PM is returned as
13:30 followed by 3 spaces. TIMES$ always returns an 8-character string.
Creates a string of length N1% and characters whose ASCII decimal value is N2%. For

example, to create a string Y$ composed of 10 space (blank) characters CHR$(32%),
execute the following statement:

Y = STRINGECLIO»32
Readu

See Section D.2 for the decimal values of ASCII characters.

5-11

Character Strings

Table 5-2
String Functions (Cont.) e
Function Code Meaning
CVTS$$(S$,M%) Converts the source character string 3 according to the decimal value of the integer
M%. The bits of M% are interpreted as follows. .

1% Trim the parity bit.
2% Discard all spaces and tabs.

4% Discard all carriage return (CR) line feed (LF), form feed (FF), escape (ESC),
rubout (DEL), and fill or null (NUL) characters.

8% Discard leading spaces and tabs.
16% Reduce spaces and tabs to one space.
32% Convert lower case to upper case.
64% Convert square brackets to parentheses;i.e., [to (and] to). -
128% Discard trailing spaces and tabs.
256% Disallow alteration of the string except parity bit trimming.

These bits can be used in combination. If M% is given as 21%, for example, the result is
the same as if the user had used three CVT$$ functions with M% values of 1%, 4%, and
16%.

This function is described in detail in Section 12.5

XLATE(SS,T$) Translates source string S$ from its existing storage code to a code indicated by the
table string T$, and returns the translated form of string S$ as the target string.

For a complete description of this function, see Section 12.7.

NOTE
The following functions are for use in connection
with the string arithmetic feature. The arguments
A$ and B$ can be either string variable names, string -
expressions, or string constants and should consist B
entirely of numeric characters with an optional decimal
point. See Section 5.6 for further details on string
arithmetic.

SUMS$(AS$,BS) Yields the arithmetic sum A$ + B$ of the numeric strings A$ and B$. For example:

FRINT &51% ,
12349,1789
Readw

FRINT SUMS(S1$y 7894545454545 7)
12438.633445405405

Readw
m

5-12

Character Strings

Table 5-2
String Functions (Cont.)

Function Code

Meaning

DIF$(A$,BS)

PRODS$(A$,B$,P%)

QUOS$(AS,BS P%)

Yields the arithmetic difference, A$-B$, of numeric strings A$ and B$. For example:

FRINT B$
PETGLEA432L

Readw

FRINT DIF$(FEG 78,897
Y797 HGZ2N,

Feariu
Yields the product, A$ times B$, with rounding to P% places. For example:

FRINT A%y B¢
12345, 46789 FB76 54321

Ready

FRINT FRODECOE Bbs 6X)
121932631 . 112635

Reacdy
Yields the quotient, A$ divided by B$, with rounding to P% places. For example:

FRINT C4

.5

Readu
VPe=QUOECCEy 7L 72777 9 3%
Resdwy

FRINT V94
L.969

Ready

5-13

Character Strings

Table 5-2
String Functions (Cont.) -~
Function Code Meaning
PLACES$(AS,P%) Rounds A$ to P% places. For example:

AL E=FLACES (Aks INT(Z.7 00
e s

FRINT Al%
12345679

Feaciu
COMPZ(AS$,B%) Yields a truth value based on the result of a numeric comparison, as follows:
-1if A$ <B$
0if AS =B$
1if AS > B$
For example:
TH=COMPE Aty ALED
Ready
FRINT TX '
Reacdy

FRINT COMPZ(ALSyA%)
1

Reaciu -,

5.5.1 User-defined String Functions
Character string functions can be written in the same way as numeric functions. (See Sections 3.7.3 and 8.1.) The func-
tion is indicated as being a string function by the $ character after the function name.

User-defined string functions return character string values, although both numeric and string values can be used as
arguments to the function. For example, the following multiple-line function (see Section 8.1) returns the string which
comes first in alphabetical order:

100 DEF FNFS(AByES)

NOFNF =0

NOTFE ARERS THEN FNF&=RE%
110 FNENID

5-14

Character Strings

The following function combines two strings into one string:
16 DEF FNCSE XSy YE)=X$4YS
Numbers cannot be used as arguments in a function where strings are expected or vice versa. Line 80 is unacceptable:-

LG UEF FNA$(A$) = CHRECLEN(ASY+1)

80 LET Z=FNA$A)

The message:

Torsguments don’t matoh st line 80
is printed.

The following code is a string function which returns the leftmost five characters from the sum of three arguments:

LISTNH

75 DEF FNASCXyYeZ) = LEFTONUMSCXEY L) »35)
g0 FRINT FNARCLOGy 209 3)

R27467 ENID

Rescy

RLINNH
123

Revaciy

NUMS$(123) is a S-character string, as follows:
“(space)123(space)”

5.6 STRING ARITHMETIC FEATURE

The optional string arithmetic feature comprises seven functions that treat numeric strings (i.e., strings consisting
entirely of an optional leading sign, numeric characters, and an optional decimal point) as arithmetic operands. This
feature offers greater arithmetic precision than floating point with large numbers or with fractions and eliminates the
need for scaling. As with any string value, numeric string variable names must be suffixed with a dollar sign ($)
character, and numeric string constants must be bounded by quotation marks (*”) or apostrophes (*). The seven string
arithmetic functions are described in Table 5-2.

5.6.1 String Arithmetic Precision
The maximum size of a string arithmetic operand is 60 characters, including the sign and the decimal point.

P% is an integer expression. The value of P% determines the level of arithmetic precision in the result of a PRODS,

QUOS, or PLACES function. P% can be positive or negative. A positive P% value less than 5000 rounds the result
to P significant digits to the right of the decimal point. For example:

5-15

Character Strings

LISTNH
100 EXTEND
FALL.OWS LONG VARIARLE NAMES
110 INFUT YENTER TWO NUMERIC STRINGS TO RE MULTIFLIED?S

STRING.A$s STRING « R4
N INFUT “TO HOW MANY DRECIMAL FLACES'sFNOX
120 FR&E=PROD$ (STRING.ASyBTRING + BS s FNOX)
N\ PRINT “ANSWER I& 3FR$
32767 ENI

Ready

RUNNH

ENTER TWO NUMERIC STRINGS T0O RE MULTIFLIED? $6453.3446y 7877.00040327
TO HOW MANY DECIMAL FLACES? 132

ANSWER I8 496228516.,71846564072

Reacdw

RUNNH

ENTER TWO NUMERIC STRINGS TO RE MULTIFLIED? .00009067543,0134,2340345
TO HOW MANY DECIMAL FLACES? L0

ANSWER T8 .0121717288

Readwu

Negative P% causes the result to be effectively divided by lOA(P%) and rounded (P%) places to the left of the decimal
point. For example: .

100 FRINT YENTER A LARGE NUMERER’
NINFUT A%
NEF A% = 707 THEN 1350

110 LET B$ = SUMEC(ASyRS)
I ACCUMULATE TOTAL OF INFUT STRINGS
120 GO TO 100
150 B = PLACES$ (Bey &%)
140 FRINT TOTAL IS AFFROXIMATELY 7§ Eéi 7 MILLION

32767 ENID
Resdy
The following can be used in place of lines 150 and 160.
150 FRINT ‘TOTAL IS APFROXIMATELY ‘sFLACE$(RB$,-640F ¢ MILLION’
The result is always rounded if P% is less than 5000.
To truncate a result instead of rounding, specify P% in the form:
P% + 10000

and the result will be truncated at positive P%.

5-16

Character Strings

5.6.2 Combining String Functions
String arithmetic functions can be nested (i.e., used as operands in other string arithmetic functions) to specify complex
arithmetic or algebraic operations. For example, the following LET statement
X=A*B+C/D
might be written
X$ = SUMS(PROD$(AS,BS,10), QUOS(CS,DS,10))
in string arithmetic. The following statement

X$ = PROD$(A$,BS$,10) + QUOS(C$,DS,10)

is legal, but concatenates the product and quotient strings instead of summing them.

5-17

CHAPTER 6
INTEGER AND FLOATING POINT OPERATIONS

Numbers on the system can be represented and manipulated in either integer, floating point, or string format. The
implications of representing numbers in a certain format and the resultant benefits are described in this chapter.
Certain operations involving integer numbers are more efficient if performed using a forced one-word integer
format. The specification of a forced integer format and the possible integer operations are described in Section
6.1 through 6.6. The results of performing operations by mixing the formats are described in Section 6.7, Opera-
tions using standard floating-point arithmetic and floating-point scaled arithmetic are performed as described in
Section 6.8.

6.1 INTEGER CONSTANTS AND VARIABLES

Normally, all numeric values (variables and constants) specified in a BASIC program are stored internally as floating-
point numbers. If operations to be performed deal with integer numbers, significant economics in storage space can be
achieved by use of the integer data type (which uses only one computer word per value). Integer arithmetic is also

significantly faster than floating-point arithmetic. Integer variables (and constants) can assume values in the range
~32768 to +32767.

A constant, variable or function can be specified as an integer by terminating its name with the % character. For
example: ’

100% A% FNX%Y)
4% A1% FNLIAN%,L%)

The user is expected to indicate where an integer constant is to be generated by using the % character. Otherwise
a floating-point value is normally produced.

When a floating-point value is assigned to an integer variable, the fractional portion of that number is lost. The number
is not rounded to the nearest integer value. (A FIX function is performed rather than an INT function see Section 3.7)
For example:

A% = 1.1
or
h:’lﬁ B .lo‘.?

causes A% to be assigned the value - 1.

6.2 INTEGER ARITHMETIC .
Arithmetic performed with integer variables is performed modulo 2 16. The number range - 32,768 to +32,767 is
treated as continuous, with the number after +32,767 equal to-32,768. Thus, 32767% + 2% = -32767% and so on.

Integer division forces truncation of any remainder: for example 5%/7%=0 and 199%/100%=1. Operations can be

performed in which both integer and floating-point data are freely mixed. The result is stored in the format indicated
as the resulting variable, for example:

6-1

Integer and Floating Point Operations

125 LET X% = Ni + FNA(R)X2

The result of the expression on the right is truncated to provide an integer value for X%. The result of mixing integer
and floating-point data is explained in Section 6.7.

Where program size is critical, the use of the % character to gencrate integer values is encouraged, as it uses significantly
less storage space. For example:

120 FOR IX=17% TO 10%
takes less storage space and executes faster than:
12 FOR I=1 TO 10

6.3 INTEGER I/O

Input and output of integer variables is performed in exactly the same manner as operations on floating-point

variables. (Remember that in cases where a floating-point variable has an integer value it is automatically printed as an

integer but is still stored internally as a floating-point number and hence takes more storage space.) 1t is illegal to -
provide a floating-point value for an integer variable through either a READ or INPUT statement. For example: '

LISTNH

110 READ AeyBAy DDAy E
N OPRINT AsBAsCoDNAvE
&HOO0 DATH 2.7v3995,.796.8
Readw
RUNNH A”ﬂ

YOats format ervor at linme 110

Readw

when line 600 is changed to

&00 NDATa 2.793s4v556.8
the following is printed: ﬂ
RUNNH
2.7 3 4 b 6. 8
Reacu

6.4 USER-DEFINED INTEGER FUNCTIONS
Functions can be written to handle integer variables as well as floating-point variables (see Section 3.7.3 and 8.1).
A function is defined to be of integer type by following the function name with the % character.

A function to return the remainder when one integer is divided by another is shown below:

110 UEF FNRXECIZe %) = TX-J% % (Lx/J4)

6-2

Integer and Floating Point Operations

and could be called later in a program as follows:
200 FRINT FNRZ(AX LLZ)

Integer arguments can be used where floating-point arguments are expected and vice versa as the system performs the
necessary conversions. However, strings cannot be used where numbers are required (or vice versa).

7% DEF FNAZ(XX) = X% - 1%
80 LET ZX = FNAX(12.34)

is acceptable. Z equals 11 after line 80 has been executed.

6.5 USE OF INTEGERS AS LOGICAL VARIABLES

Integer variables or integer-valued expressions can be used within IF statements in any place that a logical expression
can appear. An integer value of 0% corresponds to the logical value FALSE, and any non-zero value is defined to be
TRUE. The logical operators (AND, OR, NOT, XOR, IMP, EQV) operate on logical (or integer) data in a bitwise
manner. The integer - 1% (which is represented internally as 16 binary 1’s) is normally used by the system when a
TRUE value is required.

Logical values generated by BASIC always have the values - 1% (TRUE) and 0% (FALSE).

The following immediate mode sequence illustrates the use of integers in logical applications in an IF statement:

IF =314 THEN PRINT “TRUE‘ ELSE FRINT ‘FALSE-’
TRUE

Reacu
IF A% AND 2% THEN PRINT ‘TRUE’ ELSE PRINT ‘FalLSE’
Fal.SE
Reads

IF =13 AND OX THEN PRINT 1 ELSE FRINT 2

el
A
Readw

TFo=-1% TMF 1% THEN FRINT 7T ELSE FRINT 7F-
T

Ready

IF 10 XOR 13 THEN FRINT “TRUE‘ ELSE FRINT ‘FALSE-
TRUE

Readw

6-3

A relational expression or a logical operation on relational expressions (see Section 2.6.5) can be used in place of an

Integer and Floating Point Operations

integer expression. Consider the following expression, which assigns the value of a logical product of relational expres-

sions to an integer variable.

LISTNH
100 X=3
N Y
110 I%= XxY AND X

N OFRINT IX

32767 END
Ready

RUNNH
0

Reacw

= 1¥%Y

6.6 LOGICAL OPERATIONS ON INTEGER DATA
BASIC-PLUS permits a user program to combine integer variables or integer valued expressions using a logical operator

to give a bit-wise integer result.

An integer value is represented internally in 2’s complement notation as a sign bit and 15 data bits. Refer to Appendix E
for the description of the internal format of an integer. In a logical operation, the corresponding bits of two integer
values are combined on a bit-by-bit basis determined by the logical operator used. The logical operators are defined in

Section 2.5.5.

For the purpose of logical operations, A and B as defined in the truth tables shown in Section 2.5.5 are modified. A
becomes the condition of one bit in one integer value, and B becomes the condition of the bit in the corresponding bit
position of another integer value. The truth tables are as follows.

A B A ANDB
1 1 1
1 0 0
0 1 0
0 0 0
A B AXORB
1 1 0
1 0 1
0 1 1
0 0 0
A B A IMP B
1 1 1
1 0 0
0 1 1
0 0 1

A B | AORB
1 1 1

1 0 1

0 1 1

0 0 0 -~
A B | AEQVB
1 1 1

1 0 0

0 1 0

0 0 1

A | NOTA

o
a

6-4

Integer and Floating Point Operations

The result of a logical operation is an integer value generated by combining the corresponding bits of two integer values
according to the rules shown in the truth tables above. For example, the following command prints the logical product
of the integers 85% and 28%.

FRINT 85% anND 28%
20

Ready

Each bit in the internal representation of 85% is combined with each corresponding bit in the internal representation
of 28% according to the rules in the AND truth tables. By consulting the AND (logical product) truth table, it can be
seen that a bit is generated in the bit position of the result only if both bits are 1 in the corresponding bit position of
the integer values 85% and 28%. The resultant value of 20 printed by BASIC is the integer value of the bits set in the
internal representation of the logical product.

Note that two values that would yield “true” (<> 0) values if considered independently can yield a “false” (=0) result
if combined in a logical product expression. For example:

2% AND 4%

yields a logical product of 0, because they have no set bits in common. This potential problem can be avoided by using
-1% as one of the logical operands.

The following command prints the logical sum of 85% and 28%.

FRINT &5% QR 28%
93

Reaeiu
From the OR (logical sum) truth table, it can be seen that a bit is generated in the bit position of the result if either the
corresponding bit of the internal representation of 85% or 28% is a 1. The resultant value of 93 printed by BASIC is
the integer value of the bits set in the internal representation of the logical sum.

The following command prints the logical difference of 85% and 28%.

FRINT 8%5% XOR 28%
73

REALY

The result of any logical operation can be assigned to an integer variable. For example, the following statement assigns
a logical product to an integer variable which, in turn, can be printed.

LITSTNH

100 GCx o= 88% AND 28%
N FRINT C#%

Ready

RUNNH
20

Readw

6-5

Integer and Floating Point Operations

The logical operation can be used to mask a particular bit pattern. For example, the following BASIC-PLUS statement
is used to generate the value of the low order eight bits, L%, of an integer word, W%.

100 Lo = WA AND 2557

The internal representation of 255% is such that the low order eight bits (bits O through 7) are all 1, and the high

order eight bits (bits 8 through 15) are all 0. The AND operation (logical product) generates a bit in L.% only if a bit
appears in the corresponding bit position of both W% and 255%. Since 255% is known to contain all O’s in the high
order bits and all 1’s in the low order bits, the result L% reflects the presence of bits set and cleared in the low order
eight bits of W%. Such a use of a bit pattern is called masking, where the internal representation of 255% is such that it
provides a mask to hide one portion of a bit pattern (the high order bits of W%) and reveals another portion of a bit
pattern (the low order bits of W%).

In summary, integer values can be combined as described in Section 6.2 using arithmetic (mathematical) operators to
give arithmetic results. Integer values can be compared using relational operators (see Section 2.5.4) and can be com-
bined using logical operators (see Section 2.5.5) to give either a TRUE or FALSE result as described in Section 3.5 or
to give 0% for false or ~1% for true as described in Section 6.5. In any case, the results of all relational and logical
operations are integer values. When a logical operation is performed in conjunction with arithmetic and relational
operations, the priority scheme as described in Section 3.5 is used to determine the hierarchy of operations.

Thus, with the feature described in this section, integer variables and integer-valued expressions can be operated on by
AND, OR, XOR, EQV, IMP and NOT to give a bit-wise integer result.

6.7 MIXED MODE ARITHMETIC

The user can perform arithmetic operations using a mix of integer and floating-point numbers. To force a floating-point
representation of an integer constant, terminate it with a decimal point. Use the % character as described in Section 6.1
to force an integer representation of a constant. Constants without a decimal point or % character are termed ambiguous.
The remainder of this section describes the results of arithmetic operations using a mix of numbers.

If both operands of an arithmetic operation are either explicitly integer or floating point, the system generates,
respectively, integer or floating-point results. If one operand of an arithmetic operation is an integer and another is
floating-point, the system converts the integer to a floating-point representation and generates a floating-point result.
For example:

FRINT La72%8 1o/2¢8% LA/ 2080724
O 5 .5 .4
Rearfw

In the first two operations, the system generates the explicit results; in the second two, the system converts the explicit
integer and generates floating-point results.

When an ambiguous constant appears in an arithmetic expression (for example, 10 as opposed to 10% and 10.), the
system represents it in integer format if an integer variable (for example, 1%) or an integer constant (for example, 3%)
occurs anywhere to the left of the constant in the expression. Otherwise, the system treats the ambiguous constant as
a floating-point number. The system performs the operation according to the rules described above. For example,

FRINT Lxs25 17208 172

0 O W8

Reacw

6-6

Integer and Floating Point Operations

In the first operation, the system treats the 2 as an integer because an explicit integer representation appears to the left
in the expression. In the next two operations, the system treats the ambiguous constants as floating-point numbers
since no explicit integer variable or constant appears to the left of the ambiguous constant in the expression.

Since the format of the results determines the results of many operations, the user must explicitly impose the correct
format by use of the percent sign or the decimal point. For example, compare the following calculations, assuming
A (2%) = 0 in each expression.

FRINT AC2%Y + (F2267+2)5 O2%)Y + (32767 + 2
~327467 32769

Ready

The result of the first expression is guided by the appearance of the percent sign and forces an integer result. The deci-
mal point in the second expression forces results in floating-point format. The same principle applies in the following
example.

FRINT 12 + 1/2% Lo + 1728 1 + 1/2

1 1.8 1.5
Reaciy

The choice of an explicit percent sign or the decimal point determines the format of the result, thus enabling the user to
control the result.

6.8 FLOATING-POINT AND SCALED ARITHMETIC

Floating-point numbers occupy either two 16-bit words or four 16-bit words of storage in memory. With the single
precision package, two words are used; with the double-precision package, four words are used. Appendix E describes
the internal format of the two packages.

With the 2-word format, the user can accurately represent numbers up to six decimal digits, and, with the 4-word for-
mat, numbers up to 15 decimal digits. Both formats allow numbers in the range 10™-38 to 10" 38 approximately. An
attempt to assign or compute a number outside the allowed range causes the FLOATING POINT ERROR condition
(ERR = 48),

The system performs output of numeric results of floating-point calculations as described in Section 2.6.1. To perform
output of numbers larger than six digits, the user can tailor the format as described in Section 10.3.3 for the PRINT
USING statement.

Usually fractional nurnbers cannot be represented exactly in binary notation, and certain calculations in floating point
result in an accumulative error. For example, the following calculation, run in standard 4-word floating point, results
in an accumulative error because the floating point-fraction .01 is not represented internally as that precise value.

LLISTNH

100 Xy o

110 X o= X 4 201 FOR IX = 1% TO 10000%
120 FRINT X ~ 100,

32767 FND

Ready

RUNNM

= 1 776IEE-1 1

Reacdy
6-7

Integer and Floating Point Operations

If no accumulated error exists, the result is 0. Running the example code on a system using the 2-word format gener-
ates a much greater accumulated error (approximately .00295).

To perform decimal calculation on a system having the double-precision floating-point (4-word) math package, the user
can employ the scaled-arithmetic feature to avoid or reduce accumulated error in the fractional part of a number. The
user can specify the number of decimal places in fractional numbers by use of the SCALE command. Systems with
2-word precision do not have scaled arithmetic.

NOTE
Scale arithmetic is included with the double-precision pack-
age primarily for compatibility with existing programs. The
string arithmetic feature provides a more flexible and
generally easier-to-use method for improving arithmetic
precision.

With the scaled-arithmetic feature, the user can select a scale factor of 0 to 6. The system uses the scale factor to
preserve the accuracy of fractional numbers to that number of decimal places. The value O is a special scale factor
which disables the scaled-arithmetic feature and allows the system to perform calculations using standard double-
precision floating-point arithmetic. The scale factor is O at log-in time.

With a scale factor of n between 1 and 6 in effect, the system, upon input of a floating-point number, internally moves
the decimal point n places to the right and truncates it to an integer. The system performs all subsequent calculations
with the floating-point integers and, in turn, translates the result of each arithmetic operation into a floating-point inte-
ger with the scale factor n. On output, the system moves the decimal point to the left n places (descales) and passes
the result to the PRINT or PRINT USING routines to format.

A scale factor between 1 and 6 determines the accuracy of fractional numbers. For example, with a scale factor of 2 in
effect, the following statement, upon input, causes the system to move the decimal point two places to the right.

X = .01

If any rounding is necessary, the system does it at this point. The system then converts the result, 1, to a floating-point
representation. Similarly, .1 becomes 10 internally and all numbers less than .005 become 0.

The scaled-arithmetic conversion thus avoids the loss of precision inherent in representing fractional numbers in binary
notation since the system can represent the integer accurately in floating-point format. This feature, therefore, allows
more predictable arithmetic results. For example, running the following calculation with a scale factor of 2 yields a 0
result.

LISTNH

100 Xz () o

110 X = X + .01 FOGR IX = 1% TO 10000%
120 FRINT X -~ 100.

32767 END

Reariw

RUNNH
0

Rearw

Integer and Floating Point Operations

The scaling factor of 2 eliminates the inaccuracy in representing a fraction two places to the right of the decimal point.

The range of integer numbers which can be represented accurately decreases according to the scale factor in effect.
For example, with a scale factor of 2 in effect, two of the 15 digits must be used to represent the two digits of fraction.
There remain 13 places to accurately represent the integer portion of the number.

With a scale factor in effect, the system handles output by PRINT and PRINT USING statements in the standard
manner. The PRINT statement still handles six digits or less and uses the E format for numbers larger than six digits.
The PRINT USING statement formats numbers according to the specified string.

The mathematical functions described in Section 3.7 can be used in conjunction with the scaled-arithmetic feature.
With a non-zero scale factor in effect, the system automatically descales the number passed, computes the value of
the function, and converts the value returned to an appropriately scaled floating-point integer. No rounding occurs;
places outside the scale factor range are truncated.

6.8.1 The SCALE Command

The following description of the SCALE command is intended only to show briefly how to use it and how it works. For
a more detailed description, refer to the RSTS/E System User’s Guide.

To specify a scale factor, enter the following command:

SCALE <scale factor>

The scale factor must be a decimal integer from O to 6. That scale factor remains in effect until another SCALE com-
mand is given, or until log-off. When a program is compiled, the current job scale factor is established as the scale
factor associated with the stored program.

SCALE is a RSTS/E command, not a BASIC-PLUS statement; a program cannot refer to or modify a scale factor.

Typing SCALE without a scale factor value causes the current job scale factor to be printed. If the current program has
an associated scale factor that differs from the job scale factor, the program scale factor is also printed. For example:

SOALE

LEX)
t——Program scale factor
— Current job scale factor
READY
If the current job scale factor differs from the scale factor of the current program, the job scale factor takes precedence.
A user might load a compiled program using the RUN command and then discover that the scale factors are different.

To run under the program scale factor, the user must:

1. Change the current job scale factor to that of the program.
2. Use the OLD command to load the source version of the program, this time under the desired scale factor.

6-9

CHAPTER 7
MATRIX MANIPULATION

This chapter deals with BASIC-PLUS matrix manipulation commands. Matrices can be composed of variables of any
type. A single matrix, however, is composed of a single type of data; floating point, integer, or character string, The
MAT operations do not set the zero elements [A(0), or B(0, n) and B(n, 0)] of the specified matrix to conform with
the requested operation.

7.1 BASIC-PLUS ARRAY STORAGE

A BASIC-PLUS program can define the size of a matrix in one of two ways: explicitly, by including the matrix in a
dimension statement, or implicitly, where the matrix does not appear in any dimension statement. Implicitly
dimensioned matrices are assumed to have ten elements in each dimension referenced (size 10 for a 1-dimensional

matrix and size 10-by-10 for a 2-dimensional matrix, with each dimension also having a zero row and column). Implicitly
dimensioning the matrix A(I, J), for example, has the same effect as explicitly including the following statement:

Readw
100 NDIM AC1O0s10)

Dimensioning a matrix (explicitly or implicitly) establishes two quantities for the system: the default number of ele-
ments in each row and column and the maximum number of elements in the matrix. Through use of the MAT com-
mands, described in this chapter, the program can alter the number of elements in each row and the number of columns
in the matrix as long as the total number of elements does not exceed the number defined when the matrix was
dimensioned. Changing the number of elements in either or both dimensions is termed redimensioning the matrix.

When a matrix is redimensioned, the user program should take care not to reference elements outside the currently
dimensioned range of the matrix. For example, if the range of matrix A is 5 by 7, referencing A(3,8) is improper and,
although no error is generated, generally results in some element elsewhere in the matrix being destroyed.

7.2 MAT READ STATEMENT
The MAT READ statement is used to read the value of each element of a matrix from DATA statements. The format
of the statement is as follows:

MAT READ <list of matrices>

Each element in the list of matrices indicates the maximum amount of the matrix to be read (which cannot be greater
than the dimensioned size of the matrix). The individual elements are separated by commas. If the matrix name is
used without a subscript, the entire matrix is read. For example:

100 DIM AX (20,200
110 MAT READ A%

The above lines read a 20-by-20 matrix of floating-point data. Data is read row by row; that is, the second subscript
varies most rapidly. If line 110 had read:

110 MAT READ AX {5y 1%)

a 5-by-15 matrix would be read and the matrix A would be redimensioned.

Matrix Manipulation

7.3 MAT PRINT STATEMENT %
The MAT PRINT statement prints each element of a 1- or 2-dimensional matrix. The statement is of the form: -

MAT PRINT <matrix name> { : }

B

If the matrix name consists of an unsubscripted matrix name, the entire matrix is printed. If the matrix name is sub-
scripted, then the subscript indicates the maximum size of the matrix to be printed (but does not redimension the
matrix). Only one matrix can be output by a single MAT PRINT statement.

If the matrix name is followed by a semicolon (;), the data values are printed in a packed fashion. If the matrix name is
followed by a comma (,), the data values are printed across the line with one value per print zone. If neither character
follows the matrix name (the null case), each element is printed on a separate line.

100 HIM ACLOy 10 yBI2020)
110 MAT FRINT Ay
IFRINT 10%10 MATRIXy FACKER FORMAT
120 MAT FRINT B(4s6)» "N

IEFRINT 4-RY-& MATRIXy % ELEMENTS PER LLINE
One-dimensional arrays can be printed in either row or column format.
220 MAT FRINT V
where V is a singly-dimensioned array, prints the array V as a column matrix, and
220 MAT PRINT Uy ﬂ
prints the array V as a row matrix, five values per line.
220 MAT FRINT Vs#

prints the array V as a row matrix, closely packed. For example:

LISTNH
100 DIM A7)y XD
110 MAT READ AfX ﬂ
120 MAT FRINT As
\FRINT
AMAT FRINT X
200 NATA 21,2223y 24935369 37v51y02,03y54 50

32767 END

Readw ,

Matrix Manipulation

RUNNH
21 22 23 24 3% 36 37

1
e o
'\J ::?.

G3
34
S8

Reacy

Two-dimensional arrays are printed in ascending format. For example:

LISTNH

100 DIM A(2s3)

110 FOR T4 = LZ TO 2%
N FOR JZ4 = 1% TO 3%
NOLET ACIZyJX)Y = IXX100% 4+ U%
N ONEXT J%
N ONEXT I%
NOPRINT

120 MAT FRINT As

32767 ENI

Reardu

RUNNH

101 102 103

201 202 203

Readu

7.4 MAT INPUT STATEMENT
The MAT INPUT statement is used to input the value of each element of a predimensioned matrix. The statement is of

the form:
line number MAT INPUT <list of matrices>

Input is read from the keyboard, as with a normal INPUT statement, and a ? character is printed when the program is
ready to accept the input. The LINE FEED key can be used to continue typing data on succeeding lines. The RETURN
or ESCAPE key is used to enter the data to the system. MAT INPUT does not affect row O or column O of the

matrix.

The MAT INPUT statement allows input of integer, floating-point or character string values depending upon the variable
names. Where more than one matrix is to be input by the same MAT INPUT statements, the names are separated by

commas. For example:

100 DIM AZ(20) s BOLED
LLo MAT INFUT AXZsR

7-3

Matrix Manipulation

causes the program to input 20 integer elements for the array A% and 15 floating-point values for the array B.

Where an array or matrix element is specified, for example:
200 MAT INPUT NXZ(25)
only 25 elements of the array are input, regardless of the number of elements originally specified when the array was
dimensioned. The array is then redimensioned. For example:
LISTNH .
100 DiM AC2020)
110 MAT INFUT Al453)
120 FRINT
N MAT PRINT A
32767 END
READY
RUNNH
T Sy BrA.Sy2v091¢P.39056,8v2.793.0156,345
5 8 4.5
2 0 1
?.2 0 68
2 + .? 3 + O 1 (.{) + 345
READY
The matrix A is redimensioned in line 100. The INPUT statement proceeds to accept input until the entire matrix has
been read or the RETURN or ESCAPE delimiter is encountered. Several lines can be input by terminating the physical
keyboard line with a line feed to indicate continuation on the following line. -
Following the input of a matrix, the two variables NUM and NUM2 contain the number of elements input. NUM
contains the number of rows input or, for a 1-dimensional matrix, the number of elements entered. NUM2 contains
the number of elements in the last row. For example, the following example program inputs a variable size matrix (up
to 10-by-10):
LISTNH
100 DIM ACLO»10) .
110 INFUT “TYPE MATRIX DIMENSIONS UF TO 10107 3NsM
N OMAT INFUT ANyM)
120 FRINT “NUM =/$NUMy NUMZ =7iNUM2
130 TF NUMXNUM2=NXM THEN FRINT ‘MATRIX FILLED‘
NGO TO 32767
140 FRINT “MATRIX NOT FILLED’
I2L767 END

Reagdw

74

Matrix Manipulation

RUNNH _

TYPE MATRIX DIMENSIONS UP TO 10107 498

T OLRTrAN6»BAT ROV VEG e ANE v 12301920 B A v b e T v BrPr 0 0Py Be 745
NUM = 3 NUMZ2 = &

MATRIX NOT FILLED

Reaou
Checking the contents of the matrix

MAT FRINT A
123 4%46 345 909 765 454 123 1

2 3 4 5 & 7 o8 9
O O % 8 7 45 0 0

0O 0 O 0 0 0o 0 0

Ready
Unlike the INPUT statement, no text string can be output with the MAT INPUT statement. For example:

100 MaT INFUT “CONTENTS OF MATRIX S $6%
Thurtax errvor at line 100

Reachs

7.5 MATRIX INITIALIZATION STATEMENTS

A matrix initialization statement allows the user to create initial values for the elements of a matrix. The statement is
of the form:

MAT <name>> = <value> (DIM1, DIM2)

(DIM1)

The name specified is the name of a predimensioned matrix, and the optional DIM1 and DIM2 specifications indicate
the size of the matrix to be initialized. When specified, DIM1 and DIM2 cause the matrix to be redimensioned. The
value can be one of the following:

Value Meaning
ZER Sets all elements of the matrix to O (this is true of all matrices when they are
first created). (Function does not set row 0 or column 0.)
CON Sets all elements of the matrix to 1. (Function does not set row 0 or column 0).
IDN Sets up an identity matrix (all elements are 0 except for those on the diagonal,

A(LT), which are 1). (Function does not set row 0 or column 0.)

If no dimensions are indicated (DIM1 and DIM2 are not specified) in a matrix initialization statement, the existing
dimensions of the matrix are assumed to be unchanged. For example:

7-5

Matrix Manipulation

LISTNH
100 DNIM ACLO0«10)y BO1E)y C(20+20) _—~—,
110 MAT A=ZLER
ISETS ALl ELEMENTS OF & EQUAL TO O
120 MAT RB=CONC10)
ISETS FIRST 10 ELEMENTS OF B EQUAL TO 1
130 MAT C=IONC10s10)

ISETS UF AN ITDENTITY MATRIX

32767 ENI
Readw
RUNNH

Ready PN

MAT FRINT 3
1 06 0 0 0 0 0 0 0 0

o 1 0 0 0 0 0 0 0 0

o ¢ 1 0 0 O 0 0 O 0
O ¢ 0 1 0 0 0 0 0O 0 -
O ¢ o0 0 1 0 6 O O 0
O 0 0 0 0 1 0 0 0 0
o 0 0 0 O 0 1 0 O ¢
O 0 0 0 0 0 0 1 0 0O
O 0 0 0 ¢ 0 0 0 1 o 595
o 0 ¢ o0 O 0 0 0 0 1
Reacfu
Again, note that these instructions do not set row 0 or column 0. *
7.6 MATRIX CALCULATIONS
Mathematical operators and two intrinsic functions are available for use with matrices.
7.6.1 Matrix Operations
The operations of addition, subtraction, and multiplication can be performed on matrices using the common BASIC
mathematical symbols. -

7-6

Matrix Manipulation

Each of the matrix operation statements is begun with the word MAT and is followed by the expression to be
evaluated. Bach of the matrices involved must be predefined in a DIM statement. The subscripts of the matrices need
not be indicated on the statement. The matrices indicated for any operation must be conformable to that operation.
A subset of one matrix cannot be indicated as part of an operation.

110 DIM ACEOYy B(R2E)y CHO)
120 MAT C=atR
RUNNH

PMatrix dimension ervvor at line 130
Ready
In order for line 120 to execute properly, line 110 should read:
110 DIM ACS0Yy RB(S50)y CCE0)
Multiplication of conformable matrices is indicated as follows:

100 DIM DCL0eS)y CCOy10)y RCOLOY 10D
110 MAT R o= DkEC

By conformable matrices is meant that the number of columns in matrix D is equal to the number of rows in matrix C.
The dimensions of the matrix R must be large enough to contain the number of columns in D and the number of

rows in C. The operation MAT A=A*B or MAT A=B*A is illegal.

Scalar multiplication of a matrix is performed as follows:

150 MAT = (K)XA

Each element of matrix A is multiplied by the scalar value (constant, variable, or formula) K, indicated in
parentheses.

The form MAT A=(K)*A is legal. Matrix A can be copied into matrix C (providing sufficient space is available in
matrix C) as shown below:

160 MAT G = A

7.6.2 Matrix Functions
Functions exist for the performance of transposition and inversion of matrices.

150 MAT € = TRN(A)

causes matrix C to be set equal to the transpose of matrix A. That is, C(I,J)=A(J,I) for all L,J; matrix C is redimensioned
if necessary. For example:

10 DIM XCL%e 28y NCGe10)y M(Ted)
80 MAT X=TRN(N)
90 MAT N=INVIM)

7-7

Matrix Manipulation

causes N to be computed as the inverse of matrix M (M must be a square matrix). After the inversion is complete, the
function DET is set to the value of the determinant of matrix M. (If the matrix being inverted is sufficiently singular to
make it impossible to complete the inversion, the message CAN’T INVERT MATRIX is printed.) The value of DET,
then, can be used in subsequent computations as a formula value, as with any other function. For example:

LISTNH
200 MAT A = INUV(X)
N =NET
210 MAT B = INV(A)
N2=DET
220 TF Dd=1/702 GO TO 340 ELSE FRINT ‘RELATIONSHIF TRUE’
Reaois

Matrix inversion, like the other BASIC-PLUS matrix operations, does not operate on the elements of the row 0 and

column 0 of the matrix; however, inversion destroys the previous contents of these elements. The operation MAT A =
INV(A) is legal.

7-8

CHAPTER 8
ADVANCED STATEMENT FEATURES

8.1 DEF STATEMENT, MULTIPLE LINE FUNCTION DEFINITIONS

In Chapter 3 the DEF statement is described as being able to create a 1-line function, which the user can call as an
element in a BASIC statement. In BASIC-PLUS multiple-line user-defined functions are also possible. The format for a
multiple-line function definition is as follows:

DEF FN<ldentifier> <(dummy arguments)>>
<body of definition>
FNEND

The multiple-line DEF function differs from the 1-line user functions by the absence of an equal sign following the
function name on the first line. (From zero to five arguments of any type or mixture of types can be used.) The value
returned by the function is the value of FN<lidentifier>>at the time the FNEND statement is encountered, somewhere
within the multiple-line definition there should be a statement of the form:

{LET} FN<identifier> = <expression>

It is the value of this expression which is returned as the value of the function. (There may be more than one such
statement, as in the example below.)

The function example below determines the larger of the two numbers and returns that number. The IF-THEN state-
ment is frequently used in multiple line functions as follows:

LESTNH

100 UEF FNM{XrY)

110 LET FNM=X

L2320 IF y<=X THEN GOTQ S0
130 LET FNM=Y

140 FNEND

R@aciy

Advanced Statement Features

As another example, the following is a recursive! function that computes N-factorial: P
LISTNH
100 DEF FNF (M%)
105 IF MZ = 0% THEN FNF = 1
NGO TO 120
110 IF MZ = 14 THEN FNF = 1
CLSE FNF = MZ X FNF (MX-~L%)
120 FNEND
130 INFUT ‘VaLUE FOR FACTORIAL S MZ
140 FRINT MXZ5 ‘FACTORIAL EQUALS F FNF(MZ)
327467 END
READY
RUNNH
Val.UE FOR FACTORIALT &
4 FACTORIAL EQUALS 720 P i N
READY
RUNNH

VALUE FOR FACTORIALT O
0 FACTORIAL EQUALS 1

READIY

Any variable referenced in the body of a function definition which is not an argument of that multiple-line DEF function
has its current value in the user program. Multiple-line DEF functions can be nested (one multiple-line definition can
reference another multiple-line definition of itself.) A multiple-line user-defined function may contain transfers of con-
trol outside its boundaries (via GOSUB, ON ERROR . . . RESUME, nested function references, or GOTO, for example).
However, once a function is entered, it must be exited via its FNEND statement. Line numbers within the function
cannot be referenced from outside the function boundaries except to return to a function that is currently invoked.

If the program encounters an FNEND statement whose companion DEF FN . . . statement has not been executed, an
€ITor OCcurs.

Generally, transfers out of function boundaries should be avoided, because they may not execute as expected on other
BASIC systems.

1The term “‘recursive’” refers to an inherently repetitive process in which the result of each cycle is dependent upon the result of the
previous cycle.

8-2

Advanced Statement Features

The parameters with which a user-defined function is called are strictly formal; attempts by the program to modify

L — them are cancelled when the function exits to its calling program:
LISTNH
100 DEF FNR{OX)
L0 X=()
NFNR=10
il 120 FNENI!
200 A,
\NRB=FNE(A)

NFRINT AR
F2747 ENID

Ready

RUNNH
1 10

— Ready

A is not set to 0 by the function FNB(A). However, any variable referenced in the body of the function definition
which is not one of the function arguments will retain, after exit from the function, any value assigned to that variable
during the execution of the function.

Functions can be written in any type and can contain any variety of argument types. For example:

LISTNH

\ ; 100 DEF FNASCAsRyCHD
110 IF axk GOTQ 130
120 FNag=CHRS (a+l1)
N GOTO 140
130 FNA$=CHR$ (ALCH)
140 FNEND
200 INFUT “VALUES FOR AR08 AR CX
210 FRINT ‘FNASCAsRyCXZY = ‘S5FNASCAsRLCY)
A27467 END
A Ready
RUNNH
VALUES FOR AryBsCE? Z46v7.5924
FNOS(As By CH)
\ Reacw
RUNNH
- VALUES FDOR AsReCHT A%, 295.867+8

FNAECArRyCXY = 3§

Reaciy

8-3

Advanced Statement Features

8.2 ON-GOTO STATEMENT -
The simple GOTO statement allows the user to unconditionally transfer control of the program to another line number. oo
The ON-GOTO statement allows control to be transferred to one of several lines depending on the value of an expression

at the time the statement is executed. The statement is of the form:

ON <expression> GOTO <list of line numbers>

The expression is evaluated and the integer part of the expression is used as an index to one of the line numbers in the
list. For example:

1¢] ON X GOTO 10092005300
transfers control to:

1. line number 100 if 1. <=x <2.
2. line number 200 if 2. <=x <3.
3. line number 300 if 3. <=x < 4.

Values of x out of this range cause the error message:

PON statement out of range at line 350
is printed (or the user can transfer to an ON ERROR GOTO routine with ERR = 58).

8.3 ON-GOSUB STATEMENT

The GOSUB and RETURN statements are used to allow the user to transfer control of his program to a subroutine

and return from that subroutine to the normal course of program execution (see Section 3.8 for details). The ON- -,
GOSUB statement is used to conditionally transfer control to one of several subroutines or to one of several entry

points to one (or more) subroutine(s). The statement is of the form:

ON <expression> GOSUB <list of line numbers>
Depending on the integer value (truncated if necessary) of the expression, control is transferred to the subroutine which
begins at one of the line numbers listed. Encountering the RETURN statement after control is transferred in this way
allows the program to resume execution at the line following the ON-GOSUB line.
An example of the statement follows:

80 ON Xu-Y4 GOSUR 200,933,1014

When line 80 is executed, the value of X%—Y% being either 1, 2, or 3 causes control to transfer to line 900, 933 or
1014, respectively. If the quantity X—Y is not equal to 1, 2 or 3, the error message:

TON statement oul of rarnge st line 80
is printed (or the user can transfer to an ON ERROR-GOTO routine with ERR = 58).

Since it is possible to transfer into a subroutine at different points, the ON-GOSUB statement could be used to deter-
mine which portion of the subroutine should be executed.

8-4

Advanced Statement Features

8.4 ON ERROR GOTO STATEMENT

Certain errors can be detected by BASIC during program execution. These errors fall into two broad areas: computa-
tional errors (such as division by 0) and input/output errors (reading an end-of-file code as input to an INPUT statement).
Normally the occurrence of any of these errors causes termination of the user program execution and the printing of a
diagnostic message.

Some applications may require the continued execution of a user program after an error occurs. In these situations, the
user can execute an ON ERROR GOTO statement within his program. This statement tells BASIC that a user subroutine
exists, beginning at the specified line number, which will analyze any I/O or computational error encountered in the
program and possibly attempt to recover from that error.

The format of the ON ERROR GOTO statement is as follows:
ON ERROR GOTO {<line number>}

This statement is placed in the program prior to any executable statements with which the error handling routine deals.
If an error does occur, user program execution is interrupted and the user-written error subroutine is started at the line
number indicated. The variable ERR, available to the program, assumes one of the values listed in Appendix C, the
complete RSTS/E Error Message Summary.

When an error is encountered in a user program, BASIC checks to see if the program has executed the ON ERROR GOTO
statement. If this is not the case, then a message is printed at the user’s terminal and the program proceeds (if the error
does not cause execution to terminate). If the ON ERROR-GOTO statement was executed previously, then execution
continues at the specified line number. Then the program can test the variable ERR to discover precisely what error
occurred and decide what action is to be taken.

NOTE
An ON ERROR GOTO statement with an incorrect
target statement number can cause error messages that
are confusing or seemingly inappropriate.

8.4.1 RESUME Statement

After the problem is corrected (if this is both possible and desired by the programmer), execution of the user program can
be resumed through use of the RESUME statement (which is placed at the end of the error handling routine, much like

a RETURN statement in a normal subroutine). The RESUME statement causes the program line that originally caused
the error to be reexecuted. If execution is to be restarted at some other point within the program (as might be the case
for a non-correctable problem), the new line number can be specified in the RESUME statement at the end of the error
handling routine.

The format of the RESUME statement is as follows:
RESUME {<line number>}
For example:

2000 RESUME
2001 RESUME 100

The line 2000 restarts the user program at the line in which the error was detected, and is equivalent to the statement:

2000 RESUME O

8-5

Advanced Statement Features

A RESUME or RESUME 0 statement in an error handling routine passes control to the line containing the statement
which caused the error. If the statement which caused the error is on a multiple statement line, control is passed to
the DIM, DEF, FNEND, FOR, NEXT or DATA statement immediately preceding it on the line. If none of these six
statements is present on the line, control passes to the first statement on the line. For example, consider the line:

90 A=A 4+ L N FRINT A N FOR MZ = 14 TO 3%
NOINFUT X(M%Z)
N ONEXT M#%

If an error occurs in the INPUT statement, above, control is passed to the preceding FOR statement on the same line —
not to the first statement of the line. The loop is not reinitialized, however, and the INPUT statement is retried without
changing M%.

For this reason, a DIM, DEF, FNEND, FOR, NEXT or DATA statement on a multiple statement line with error handling
should be the first statement on a line. Also, the first statement on a line should be the statement which may generate
the trappable error. Such placement of the statement prevents logic errors and allows any further error to be handled.
Any other placement of the statement causes logic errors because statements preceding the statement causing the error
are executed as many times as control is passed back to the line. If the error handling routine must also handle errors,

the program can pass control to a RESUME statement which, in turn, can pass control to the error handling routine.

Line 2001 above restarts the user program at line 100 (which can be used to print some terminal message for that
particular operation).

A RESUME statement should always be included in the error handling routine.

8.4.2 Disabling the User Error Handling Routine
If there are portions of the user program in which any errors detected are to be processed by the system and not by the
user program, the error subroutine can be disabled by executing the following statement:

ON ERROR GOTO 0
which returns control of error handling to the system. An equivalent form is:
ON ERROR GOTO

in which case line 0 is assumed. Executing this statement causes the system to treat errors as it would if no ON ERROR
GOTO had ever been executed.

Generally, the error handling subroutine detects and properly handles only a few different errors; it is useful to have the
RSTS system handle other errors, if they occur. For this reason, RSTS allows the ON ERROR GOTO 0 statement to be
executed within the error subroutine itself. Special treatment is accorded this case, in that the disabling occurs retro-
actively; the error which caused entry to the error subroutine is then reported and a message printed as though no ON
ERROR GOTO statement had been in effect. '

As an example of this feature, consider an application in which inexperienced users interact with a BASIC program.
These users may not know what to type at the terminal, and the program may want to prompt them. The program tells
the system to allow up to 60 seconds for the user to respond (via the WAIT function, described in Section 8.8) and then
to alert it that the user has not replied. The program then prints additional information for the user.

The program below requests the user’s name with the INPUT statement on line 120. The ON ERROR GOTO statement
is previously executed on line 100.

Advanced Statement Features

L. TETNH

100 ON ERROR GOTO 1000
_ PBET UF ERROR ROUTINE
-’ 110 WATT(&H0)

FWATT 60 SECONDS FOR RERLY

120 INFUT “YOUR NAME - §N$
IGET STURENT NAME

s 150 STOR
1000 FTHIS 18 THE ERROR HANDLING ROUTINE
1010 IF ERR<:1S THEN ON ERROR GO TO ©

TWATT ERRORS ONLY
1020 FRINT

ISKIF TO NEW LINE
1030 PRINT ‘FLEASE TYFE YOUR NAME’

\ FRINT ‘AND THEN HIT "RETURN® KEY’

-~ 1050 RESUME

LTRY AGAIN

32767 END

Ready
In this example, if the call to the error subroutine was caused by some error other than the KEYBOARD WAIT
EXHAUSTED error, the program would exit via the ON ERROR GOTO 0 in line 1010. This permits the appropriate
error message to be printed on the user’s terminal. Note that exiting via the RESUME at line 1050 causes the INPUT
statement to be restarted.

8.4.3 The ERL Variable
It is sometimes useful to be able to recognize the line number at which an error occurred. Following an error detection,
the integer variable ERL contains the line number of the error.!

ERL would be used, for example, to indicate which of several INPUT statements caused an END OF FILE error.
Care must be taken in use of the ERL variable since changing or resequencing the line number field of all or some

statements within the program can alter the value of the ERL variable as it appears within an expression context. For
example:

1 The one exception to this rule is the ?PROGRAMMABLE CTRL/C TRAP error (ERR = 28) as described in the RSTS/E Programming
Manual. In this case ERL is not set, but the LINE Variable is set to the line number executing when CTRL/C was typed.

~/

Advanced Statement Features

LITSTNH

100 ON ERROR GOTO 1000
110 INFUT “TYFE TWO NON-~ZERO NUMEERS’ S AR -~
120 LET X=A/R T
130 LET X=X+E/A :
140 FRINT X
150 STOF
1LO00 IF ERR<>61 THEN ON ERROR GOTO ©
1010 FRINT ‘FIRST NUMEBRER WAS 0/ IF ERL=130
1020 FRINT ‘SECOND NUMEER WAS 0/ IF ERL=120
A2 TET END
Ready
FUNNH
TYFE TWD NON-ZERD NUMBERST 510
2.5 N
Stor alt line 150
Feariy
CONT
Readw
FRUNNH -~

TYFE TWO NON-ZERO NUMBERS?T 690
SECOND NUMBER WAS O

Readw

FUNNH
TYFE TWO NON-ZERO NUMEBERS?T 097
FIRST NUMBER WAS ©

Readw

If the LET statements in line 120 and 130 were moved to some other line numbers, lines 1010 and 1020 would also
require a change.

8.5 IF-THEN-ELSE STATEMENT
The IF-THEN statement allows the program to transfer control to another line or execute a specified statement depend-
ing upon a stated condition.

The IF-THEN-ELSE statement is the same as the IF-THEN statement, except that rather than executing the line follow-
ing the IF statement, another line number or statement can be specified for execution where the condition is not met.
The statement is of the form:

IF <condition> THEN <statement>

GOTO <line number>

THEN <line number>
{ ELSE <statement>

ELSE <line number> } -,

8-8

Advanced Statement Features

where the condition is defined as one of the following:

- <relational expression>
<logical expression>

A relational expression is defined as:
<expression> <relational operator> <expression>
. as described in Section 3.5.
A logical expression is one of the following:
1. An integer expression (FALSE if 0, TRUE if <>> 0)
2. A set of relational expressions, corrected by logical operators
3. A set of integer expressions, or logical expressions, or both, connected by logical operators.
The condition is tested; if it is true the THEN/GOTO part of the statement is executed. If the condition is false, the ELSE
waw» part of the statement is executed, Following the word ELSE is either a statement to be executed or a line number to
which control is transferred.
As an example of an IF-THEN-ELSE statement:
172% IF XeY THEN FRINT ‘GREATER’ ELSE FRINT ‘NOT GREATER’

An IF statement can follow either the THEN or ELSE clause in the above statement, making it possible to nest IF state-
ment to any desired level. For example:

- LISTNH
100 INFUT “ENTER THREE NUMBERS’3AsByC
110 IF AR THEN

IF BxC THEN FRINT ‘AMR-C’

ELSE IF C»A
THEN PRINT ‘CHA%ER’
ELSE PRINT ‘A»CHR’

ELSE IF AXC THEN FRINT ‘B30C

ELSE IF B0
-’ THEN FRINT ‘EB>CHA‘
ELSE FRINT ‘CHE=A’

32767 END

Reaody
RUNNH
. ENTER THREE NUMBERS? 4.6y~,01ly~3,%5
ARG
Readu
RUNNH

ENTER THREE NUMEBERST 200%5:2.853006
CrARR

\ ; Reacy

8-9

Advanced Statement Features

RUNNHM -,
ENTER THREE NUMBERST 3y2r4
CrAER
Readw
The use of line continuation and TAB characters greatly improves the legibility of complex program statements such N

as line 110 above.

The IF-THEN-ELSE statement can appear anywhere in a multiple-statement line. However, if this statement is .
followed by any other statements, the following rules apply:

1. The physically last THEN or ELSE clause is considered to be followed by the next statement on the line:
210 IF A=1.0 THEN GOTO 100 ELSE FRINT A N\ FRINT TARNORMAL “

where A#1, the value of A and the text string ABNORMAL are printed.

9. All other THEN or ELSE clauses are considered to be followed by the next line of the program: -,
2 IF AxR THEN IF EB:C THEN FRINT ‘R<C’

N GOTO 30
25 FRINT ‘A<R’

Only in the case where “B<C” is printed is the statement GOTO 30 seen and executed. If either A<B or
B>C, the line “A<B” is printed.

8.6 CONDITIONAL TERMINATION OF FOR LOOPS ,4%
In the simple FOR-NEXT loop described in Section 3.6.1, the format of the FOR statement is given as: .

FOR <variable> = <expression> TO <expression> STEP <expression>

There are many situations in which the final value of the loop variable is not known in advance and what is really

desired is to execute the loop as many times as necessary to satisfy some condition. In evaluating a function, for example,

this condition might be the point at which further iterations contribute no further accuracy to the result. BASIC-PLUS

provides a convenient way of specifying that a loop is to be executed until a certain condition is detected or while some

condition is true. These statements take the forms: N

FOR <variable> = <expression> STEP <expression> WHILE <condition>
and
FOR <variable> = <expression> STEP <expression> UNTIL <condition>
The condition has the same structure as specified in an IF statement (see Section 3.5) and can be just as elaborate, if .
necessary. Before the loop is executed and at each loop iteration the condition is tested. The iteration proceeds if the
result is true (FOR-WHILE) or false (FOR-UNTIL).
The difference between a FOR loop specified with a WHILE or UNTIL and one specified with a terminal value for the

loop variable is worth noting, in order to avoid potential pitfalls in the usage of each. Consider the two loops in the
program below:

8-10

Advanced Statement Features

LISTNH

10 FOR Is=1 T 10
NOFRINT I
NONEXT X

20 FRINT “I=351

E50 FOR I=1 UNTIL 1:10

NOFPRINT T#
NONEXT I
40 FRINT “I=731
32747 ENIY

Reaow
RUNNH
1 2 3 4 8 & 7 8 9 10 I= 10
L2 3 4 5 & 7 88 9 10 I= 11
Readw

Each of these loops prints the numbers from 1 to 10. When the loop at line 10 is done, however, the loop variable
is set to the last value used (that is, 10). In the second loop beginning at line 50, the loop variable is set to the value
which caused the loop to be terminated (that is, 11).

Next consider the two loops following:

L ESTNH

19 X=10

20 FOR I=1 T0O X
NOX=X/R
N OFRINT IeX
NONEXT I

30 FRINT
N X=10

40 FOR I=1 UNTIL IxX

N XuX/2

N FRINT IsX

NONEXT I
327467 END

Reraofu
RUNNH
1 o]
2 2.9
3 125
4 cH25
5 + 3125
6 135625
7 078125
8 + 3P0625E~1
9 s 1PEIL3E~1
10 e P7EEHIE -2
1 &
2 25
Ready

8-11

Advanced Statement Features

In the case of the loop beginning with line 20, the iteration stops when I exceeds the initial value of X (that is, 10). -~
Even though the value of X changes within the loop, the initial value of X determines the performance of the loop. In S
the second loop, the current value of X determines when the iteration ceases. Thus, after three iterations, I is greater

than X in the second loop and the loop is terminated. (The STEP value when omitted, is still assumed to be 1.)

These forms of loop control are particularly useful in iterative applications where data generated during the loop execu-
tion determines loop completion. N

Consider the problem of scanning a table of values until two successive elements are both 0 or the end of the table is
reached: .

LG FOR T=1 UNTIL I=N OR X(I)=0 AND X(I+1)=0
NONEXT T

The following two programs also illustrate the FOR-UNTIL and FOR-WHILE constructions:
LISTNH

100 INFUT ‘LETTER 1873 Y4
110 X’ -~
120 FOR T%=0% UNTIL X$=Y$ OR X$ = 72227

NOREAD X4
NONEXT TA

130 TF X% = “ZZZ7 THEN FRINT “IMPROFER INFUT’
NGO TO 33767
140 FRINT ‘LETTER 15 NUMBER‘ 31X “IN ALFHARET”
500 DATA ArBReCoDeyEsFoGoHy Lo JoRKol.yMyNyQsFyQeReSy TollsVelWo XYy Z e ZZ2

327467 END
o,

Reacu

RUNNH
LETTER I8% J
LETTER I8 NUMRER 10 IN ALFHARET

Feaciu

FUNNH -_—
LETTER 187 9
IMFROFER TNPUT

Reaoiw

RLINNH

LETTER IS% X

LETTER 18 NUMBER 24 IN ALFHARET >
Readw

8-12

Advanced Statement Features

FLINNH
-’ LETTER I8? GG
IMPROPER INFUT

e aaiu

LISTNH

. 100 INFUT “WORDS5Y®
110 Kot 7
120 FOWR T2 =04 WHILE X$<s=Y4$
NOREAD X%
NONEXT 1%
130 IF T% = 14 THEN FRINT “IMPROPER INFUT/
NOGD TO 32767
140 FRINT “WORD BEGING WITH LETTER $IX-1%
SO0 DATH AsBe e DvE s FoGoHy Lo JoRoLoMeNeOsFoQsRy By ToUsVeWeXe Yo Zy 227
L— I2747 FEND
Reacls
RUINNMH
WORD? SECOND
WORD BEGING WITH LETTER 19
Feaciv
. RUNNH
WORD? /MESSAGE

IMFROFER INFUT
Ready

8.7 STATEMENT MODIFIERS

To increase the flexibility and ease of expression within BASIC-PLUS, five statement modifiers are available (IF,

UNLESS, FOR, WHILE, and UNTIL). These modifiers are appended to program statements to indicate conditional
' cxecution of the statements or the creation of implied FOR loops.

8.7.1 The IF Statement Modifier
The form

<statement> IF <condition>

is analogous to the form:

IF <condition> THEN <statement>
) For example:
100 FRINT X IF X <X O,
-’

8-13

Advanced Statement Features

is the same as:
100 TF X 0. THEN FRINT X A
The statement is executed only if the condition is true.

When a statement modifier appears to the right of an IF-THEN statement, then the modifier operates only on the
THEN clause or the ELSE clause, depending on its placement to the left or right of ELSE. For example:

100 IF 1=1 THEN PRINT ‘HELLO‘ ELSE FRINT ‘RYE’ IF 2=2
will print:

HELL.Q
since the test 1=1 is true. The modifier IF 2=2 is also true, but as it applies only to the ELSE clause, it is never tested.
It is not possible to include an ELSE clause when using the modifier form of IF.
Several modifiers may be used within the same statement. For example:

100 FRINT X(IyJ) TIF I=J IF X(Iyd 3 0
prints the value of X(I1,J) only if the value of X(I,J) is non-zero and if I equals J. When there is more than one modifier
on a line, the modifiers are executed in a right-to-left order. That is, the rightmost one is executed first and the leftmost
is executed last. This situation is described by the term “nested modifiers.”

An additional operational advantage of IF modifiers is illustrated in the discussion of FOR modifiers in Section 8.7.3. M

8.7.2. The UNLESS Statement Modifier
The form:

<statement> UNLESS <condition>

causes the statement to be executed only if the condition is false. This particular form simplifies the negation of a
logical condition. For example, the following statements are all equivalent:

100 FRINT A UNLESS A=0.

116 FRINT & IF NOT A=0.

120 IF NOT A=0. THEN FRINT A
130 IF A <> O THEN FRINT A

8.7.3 The FOR Statement Modifier
The forms:

<statement> FOR <variable> = <expression> TO <expression> { STEP <expression> }

and

<statement> FOR <variable> = <expression> {STEP <expression>} { WHILE <condition-> }

UNTIL <condition>

8-14

Advanced Statement Features

can be used to imply a FOR loop on a single line. For example (using none of the optional elements):
100 FRINT Ty SQRCI)Y FOR I=1, TO 10.

This statement is equivalent to the following FOR-NEXT loop:

Loo FOR T=1, TO 10.
NOFRINT Iy SQRCOID
NONEXT I

In cases where the FOR-NEXT loop is extremely simple, the necessity for both a FOR and a NEXT statement is
eliminated. Notice that this implied FOR loop will only modify (and hence execute iteratively) one statement in
the program. Any number of implied FOR loops can be used in a single program.

As in the case with all modifiers, a FOR modifier in an IF statement operates only on the THEN or ELSE clause with
which it is associated, and never on the conditional expression to the left of the THEN. Thus, if it was desired to print
all non-zero values in a matrix X(100), the following program would not operate properly:

10 DIM X100%)
13 READ X<{IZ) FOR IX%=1% TO 100%

20 IF XCIZ)Y 0 THEN PRINT IZ§XC(IX)y FOR IX=1X%X TO 100X

since the implied FOR loop at line 20 applies only to the THEN PRINT . .. part of the statement, and not to the IF . . .
part. The first value of X tested is X(100), since I remained at 100 from statement 15. To achieve the desired effect,
it is only necessary to state line 20, not as an IF statement, but rather as a PRINT statement with nested modifiers;
for example:

20 FRINT IZsX(IZ)y IF XC(IZ)<H0 FOR IX = 1% TO 100%

When expressed in the latter form, the nested modifier rule takes effect, and all the values of X(I) are tested and
printed as appropriate.

The WHILE and UNTIL clauses are explained in Section 8.6.

8.7.4 The WHILE Statement Modifier
The form:

<statement> WHILE <condition>

is used to repeatedly execute the statement while the specified condition is true. For example:
10 LET X=X"2 WHILE X™2 < 1Eé

is equivalent to:

LISTNH 10
10 LET XsX™2
N IF X < 1E6 THEN 10

Advanced Statement Features

The WHILE modifier (and the UNTIL modifier in Section 8.7.5) operates usefully only in iterative loops where the
logical loop structure modifies the values which determine loop termination. This is a significant departure from FOR
loops, in which the control variable is automatically iterated; a WHILE statement need not have a formal control vari-
able. The following infinite loops never terminate:

10 X=X 4 L WHILE I<1000
20 FRINT Iy ACL) WHILE ACL) <3 0

In both cases, the program fails to alter the values which are used to determine when the loop is done.

A successful application of the WHILE modifier is shown below:

LISTNH

100 FTEST OF SQUARE ROOT ROUTINE

110 X o= 1 +OXKk2%) WHILE X = SGQR(X™2%)
120 FRINT X

32767 ENT

Reacdw

FRUNNH

ZFloating rodrt error at lime 110
< 184447E 20

e st

8.7.5 The UNTIL Statement Modifier
The form:

<statement> UNTIL <condition>

is used to repeatedly execute the statement until the condition becomes true; which is to say, while the condition is
false. For example:

100 Xo= oL b XX2% UNTIL X <k SAROX™2X)
NOPFRINT X

is the same as:

100 TF X = SQROXT2Z) THEN GO TO 110 ELSE GO TO 130
110 X o= Xk27Z + 1

120 60 TO 100

130 FRINT X

8.7.6 Multiple Statement Modifiers
More than one modifier can be used in a single statement. Multiple modifiers are processed from right to left. For

example:

100 LET A=R IF aAx0 IF B0

is equivalent to any of the following:

8-16

Advanced Statement Features

100 IF B0 THEN IF AX0 THEN A=R
or

100 IF Ex0 AND AXO THEN LET A=R
or

100 IF Bd=0 THEN 150

110 IF A=0 THEN 150

120 LET A=R

150 P TEST OF A AND B COMPLETE

A 2-dimensional matrix (m by n) can be read one row at a time as follows:
150 READ ATy) FOR J=1 TO M FOR I=1 TO N

which is equivalent to:

150 MAT READ A(NeM)
and to:

150 FOR I==3 TO N

1460 FOR J=1 TO M

170 REAST ALy 0

180 NEXT .J

190 NEXT I

Also see Section 8.7.3 which described the interaction of FOR and IF modifiers.

8.8 SYSTEM FUNCTIONS AND STATEMENTS

RSTS/E has several system functions which allow the user to obtain certain information about or perform operations
with the system. The functions are described in Table 8-1. (Several system functions used frequently in user programs
are also described in earlier sections.)

Table 8-1
System Functions

Function Meaning Sample Usage

DATES$ (0%) Returns the current day, month FRINT DATES(Q)
and year, in the form: Q7-Nov-76

22-Mar-76 Resaciu

Note that the date contains both
upper and lower case characters

If the run time system is gener-
ated with the numeric data
option, DATES returns the date
as year.month.day; for example:

76.03.22

Advanced Statement Features

Table 8-1 (Cont.)
System Functions

Function

Meaning

Sample Usage

DATE$ (N%)

TIMES (0%)

TIMES (N%)

Returns a character string cor-
responding to a calendar date.
The formula used to translate
between N and the date is as
follows:

(day of year) + [(number of
years since 1970)*1000]

DATES(1%)=01-Jan-70"
DATES(2060%)="29-Feb-72"

If the run time system is gen-
erated with the numeric data
option, DATES return the
data as year.month.day; for
example:

76.02.29

Returns the current time of
day as a character string as
follows:

TIME(0)=“05:30 PM”
or“17:30 ”

Returns a string correspond-
ing to the time at N minutes
before midnight. For
example:

TIMES$(1%)=*11:59 PM”
or “23:59 ”

TIME$(1440%)=“12:00 AM”
or “00:00 ”

TIMES$(721%)=“11:59 AM”
or “11:59 ”

N% must be less than 1441 to
return a valid string. The
format of the string (i.e.,
02:40 PM or 14:40) is deter-
mined at system generation
time.

FRINT DATES(&6278)
04-0ct~76

Reacdy

178 IF TIME$CO) F= ‘046300
THEN FRINT “DINNERTIME’

FRINT TIME®$(1)
11¢59 FM

Reaciy

FRINT TIME$(1400)
12840 AM

Reacy

e

8-18

Advanced Statement Features

Table 8-1 (Cont.)
System Functions

Function Meaning Sample Usage
TIME (0%) eturns the clock time in 23 IF TIMECO)=43200
seconds since midnight. | THEN FRINT “AFTERNOON’
TIME (1%) Returns the central processor 10 IF TIMEC(L)>=30
(CPU) time used for the job in THEN STOF
0.1 second quanta. PR SECONDS ALLOWED
TIME (2%) Returns the connect time 340 TF TIMEC(2):1000 THEN STOF

(time during which the user
has been logged into the sys-
tem) for the job in minutes.

TIME (3%) Returns the number of kilo- 180 FRINT TIME(3)
core ticks (KCT’s) used by the
job. (See the RSTS/E System
User’s Guide for an explana-
tion of KCT’s.)

TIME (4%) Returns the device time for 220 IF TIME(4)/760:2.5
the job in minutes. THEN GOTO 90
SWAP% (1%) Causes a byte swap operation 300 FRINT CHR&(SWAFZ(IAY)

to occur on the integer vari-
able 1%; returns the value of
1% with the bytes swapped.

RADS$(1%) Converts an integer to a 3- 280 FRINT RADSCIZ)
character string. This function
is used to convert a value
(expression in Radix-50 for-
mat) back into ASCII. Radix-
50 is explained in Appendix
D of the RSTS/E Program-
rning Manual.

There are also two special system statements that can be used within a BASIC-PLUS program: SLEEP and WAIT. Both
statements allow the user to suspend his program for a stated interval.

The SLEEP statement is of the form:
SLEEP <expression>
SLEEP is used to dismiss the currently running program for the number of seconds indicated by the expression. At the

end of this period the program is again runnable. Thus, the user is guaranteed at least this number of seconds idle time,
possibly slightly more depending upon the number of jobs currently active on the system.

8-19

Advanced Statement Features

To awaken a job from a sleep before the specified number of seconds has expired, type a delimiter (RETURN, LINE -—
FEED, FORM FEED or ESCAPE) at any of the job’s terminals. The program segment shown below, however, can be B
used to override line terminating delimiters and provide a continuous SLEEP for a specified time.

100 Ta=TIMECO)
110 SLEEF TH30-TIME(Q)
NOTIF TIMECQY-T30 GOTO 110 ¥
120 INFUT X
In the above program, the INPUT statement is executed only if the time elapsed is equal to or greater than 30 seconds. .

Otherwise, if a delimiter is typed, the SLEEP is executed again for the length of time remaining in the original 30
seconds or until another line terminating character is typed.

A job is also awakened when it has declared itself a receiver and a message is queued for it through the SEND/RECEIVE
system function calls. (The SEND/RECEIVE system function calls are documented in the RSTS/E Programming Manual.

The WAIT statement is of the form:

WAIT <expression>
WAIT is used to set a maximum period for the system to wait for input from the user keyboard. If no delimiter is typed
at the keyboard (RETURN, LINE FEED, ESCAPE) within the number of seconds specified by the expression, the
program is restarted and a KEYBOARD WAIT EXHAUSTED error (ERR=15) occurs, which can be detected using ON
ERROR-GOTO. The WAIT statement is used in conjunction with the INPUT statement. As an example:
LISTNH
10 ON ERROR GOTO 100 _~—~,
20 WATT 15 E
30 INFUT ‘16 + 16 ='%hA
40 WaIT O
S50 IF A=32 THEN FRINT ‘RIGHT!”
ELSE FRINT “NOs TRY AGAINS
\NOGOTO 1O
&0 STOF
100 IF ERR<>1ES THEN ON ERROR GOTO ©
110 FRINT ‘WAKE URF1”
120 RESUME 30 o
32767 END
Ready
RUNNH

1é& + L& =% WARKE U1

16 + 16 =% 30

NOy TRY AGAIN

16 + 16 =% 32

RIGHT! .
Stor alt line 60

Readu

8-20

Advanced Statement Features

In this example line 100 is executed only if the user fails to respond within 15 seconds. The use of WAIT O restores the
terminal to its normal state in which no timeout occurs, but rather the system waits until a line is entered, however
long that may take.

821

PART I

BASIC-PLUS DATA HANDLING

Part III contains a complete description of all BASIC-PLUS data handling operations. A brief review is made of the
simple forms of READ, DATA, PRINT, RESTORE and INPUT along with the more advanced forms of these state-
ments. Formatted ASCII files, virtual core matrices, and record [/O operations are described.

Advanced users are advised to consult the RSTS/E Programming Manual for a description of advanced data handling
techniques and device dependent operations.

CHAPTER 9
DATA STORAGE CAPABILITIES

9.1 FILE STORAGE

Previous chapters have described techniques for entering data into a program as the program is written (via READ and
DATA statements) or from the user terminal while the program is executing (via the INPUT statement). Either tech-
nique is inefficient when more than a few items are to be read or written. Thus BASIC-PLUS also provides facilities
to define and manipulate permanent data files.

A BASIC-PLUS data file consists of a sequence of data items transmitted between a BASIC program and an external
input/output device. The external device can be the user terminal, some other terminal, disk, line printer, card reader,
magnetic tape device, DECtape, or high-speed paper tape equipment.

Each data file and device has both an external name by which it is identified within the RSTS/E system (the name of the
file on a disk storage device, for example) and a channel number used to reference the file. An OPEN statement asso-
ciates and external file specification with an internal file channel.

This chapter describes briefly the key concepts and terminology of data storage as it concerns a BASIC-PLUS user. More
detailed information is available in the RSTS/E Programming Manual and the RSTS/E System User’s Guide.

9.2 OPEN STATEMENT

The OPEN statement associates a file on a file-structured device or some non-file structured device with an I/O channel
number internal to the BASIC program. (The I/O channel is a logical entity, having no relationship to a hardware
channel.) BASIC-PLUS permits up to 12 files to be open at a given time. Channel numbers 1% to 12% specify device
channels, and channel number 0% specifies the user’s terminal.

The general form of the OPEN statement is as follows:

- : FOR INPUT .
OPEN <Gstring> |:F OR OUTPUTJ AS FILE <expression>

The string field is a character string constant, variable or expression that contains a filename. It can also contain a device
designation (logical or physical), a project-programmer code, a file extension specifying the file type, and a protection
code; these optional fields are described in the RSTS/E System User’s Guide. After opening a file or device, the program
performs input and ouiput by referring to the channel number, as indicated by the expression following the key word
FILE. The expression must be an integer in the range 1 to 12.

Protection codes are normally specified only in the NAME-AS statement, which changes the name and protection code
of an existing file (see Section 9.4). However, protection codes can be specified as an optional part of any filename.
For example.

330 OFEN ‘FILE.EXT<40:7 FOR INFUT AS FILE 1%

The file FILE.EXT is created under the current account with a protection code of <40>. The AS FILE expression cor-
responds to the internal channel number on which the file is being opened; channel 1 in this case.

9-1

Data Storage Capabilities

One or more of the following specifications can be appended to the end of the statement. They are described in
Sections 9.2.1 through 9.2.4.

{,RECO RDSIZE <expressi0n>} {,CLUSTERSIZE <expression>}
{,FILESIZE <expression>} { ,MODE <expression>}

Options must be in the exact order shown. If options are out of order, the message
MODIFIER ERROR

appears. Omitting an option is equivalent to specifying that option with a parameter of 0% except for the MODE
option on non-file-structured magtape.

There are three distinct forms for the OPEN command:

OPEN <string> FOR INPUT
OPEN <string> FOR OUTPUT
OPEN <string>

The form of the OPEN statement used determines whether an existing file is to be opened or a new file created.

1. An OPEN FOR INPUT statement causes a search for an existing file (since the statement indicates the
file is an input file). If no file is found, the CAN’T FIND FILE OR ACCOUNT error (ERR=5) occurs.

150 OFEN “FILE.DAT FOR INFUT AS FILE 2%

2. An OPEN FOR OUTPUT statement causes a search for an existing file which, if found, is deleted. A new
file is then created.

270 QFEN “DATA.0LC40%7 FOR OUTFUT AS FILE 3%
3. An OPEN statement without an INPUT or OUTPUT designation attempts to perform an OPEN FOR
INPUT operation as described above. If this fails, a new file is created.
180 OFEN "MATR.TER’ AS FILE 7%
The OPEN statement does not control whether the program attempts to perform input or output on the disk file or

whether read and/or write access to the file is granted’; these privileges are controlled by the file protection code and
MODE value.

If, for some reason, the program cannot gain access to the file or device, an error is returned. Table 9-1 summarizes
some of the more common errors that occur on attempted file access.

! Magtape and DECtape are exceptions to this rule. See the RSTS/E System Programming Manual.

9-2

Data Storage Capabilities

Table 9-1
Open Statement Errors

Value of
ERR

Message

Explanation

10

14

17

32

39

46

7Bad directory for device

MNllegal file name

9No room for user on device

?7Can’t find file or account

MNot a valid device

?Device not available

7Protection violation

?Device hung or write locked

?Too many open files on unit

?No buffer space available

Magtape select error

Mlegal 1/O channel

The directory of the referenced device is in an unread-
able or illegal format.

The filename specified is not acceptable. It contains
unacceptable characters or the filename specification
format has been violated.

Directory space for the current user of the specified
device has been exceeded, or the device as a whole is
too full to accept further data.

The file or account number was not found on the
specified device.

The device specification supplied is not valid for one
of the following reasons:

1. Either the unit number or its type is not in
the system configuration.

2. The logical name has no associated physical
device and is thus untranslatable.

The specified device exists on the system but a user’s
attempt to ASSIGN or OPEN it is prohibited for one
of the following reasons:

1. The device is currently reserved by another job.
2. The user lacks necessary access privileges for
the device.
. The device is disabled.
4. The device is a keyboard line for pseudo-
keyboard use only.

w

The user does not have the necessary access privileges
for the file.

User should check hardware condition of device
requested. Possible causes of this error include a line
printer out of paper or a high-speed reader being
off-line.

Only one open DECtape output file is permitted per
DECtape drive. Only one open file per magtape drive
is permitted.

The user accessed a file and the monitor requires one
small buffer to complete the request. No small buffer
is currently available.

When access to a magtape drive was attempted, the
selected unit was found to be off-line.

An 1/O channel number was specified outside the range
of integers 1 through 12.

9-3

Data Storage Capabilities

When used with disk files, an OPEN FOR INPUT or OPEN FOR OUTPUT allows either read or write operations on the PN
opened file. The system allows write access to a file if the protection code permits and if no other user has write access
to the file. For example, if user 1 opens a file, he has read and write access. When user 2 opens the same file, he has

read access only; a PROTECTION VIOLATION error occurs when he attempts to write on that file. When user 1 sub-

sequently closes the file, no user has write access until the next open operation. User 3 can.now open the file and obtain

both read and write access, because no other user currently has write access to that file. On DECtape and magnetic tape

devices, the FOR INPUT and FOR OUTPUT clauses restrict operations on that file to the type of operation specified. .
NOTE
Only one user can have write access to a file at a time -
unless MODE 1% (that is, update mode) is used for
disk files.

The next four sections in this manual describe generally the RECORDSIZE, CLUSTERSIZE, FILESIZE and MODE
options of the OPEN statement. See the RSTS/E Programming Manual for device-dependent details. As these are
sophisticated file-handling tools, it is suggested that the novice user initially skip these sections and continue with
Section 9.2.5.

9.2.1 RECORDSIZE Option
When any file is opened, the system creates a buffer area in the user’s memory space to buffer all I/O to and from the
file. Normally the amount of space reserved is determined by the device, because each device has a default device
buffer size as described in Table 9-2.
Table 9-2
Default Device Buffer Size
Default Device Buffer Size '
Device (in characters or bytes)
All disks ‘ 5121
Floppy disk 512
DECtape 510!
Magtape (DOS or ANSI) 5122
High-speed reader 128
High-speed punch 128 ’
Line printer 128 -~
Card reader 160
User terminal 128

“The default buffer size may differ when the device is used as a non-file structured device.

2For ANSI magtape, the system reads a value from the header label to establish the buffer size.

With the RECORDSIZE option, the user program can allocate more buffer space than is provided by the default case.
However, in some cases the particular device driver may not permit additional space to be used.

The buffer size must be an even number. If odd, BASIC uses the next lower integer. To learn the size of the buffer on
any channel n, the user can invoke the BUFSIZ function. Table 9-3 shows the buffer size alterations for specific devices.

9-4

Data Storage Capabilities

Table 9-3
Use of RECORDSIZE
Device Possible Buffer Alterations
Disk The disk drivers permit use of any buffer size that is an integral multiple of
512 bytes.
DECtape The DECtape driver uses only the first 510 bytes of the available buffer space

(512 bytes for non-file structured DECtape).

Magtape (DOS or ANSI) The magtape driver uses only enough bytes for one physical magtape record. Each
physical record must be at least 14 bytes, and be no larger than the buffer size.

High-speed reader These non-file structured devices can use any selected buffer size greater than the
High-speed punch default size.

Line printer
User Terminal

Card reader The card reader driver uses only enough bytes for one card’s data.
Floppy disk The floppy disk driver permits use of any buffer size that is an integral multiple of
128 bytes.

The RECORDSIZE option has significant advantages when used with magtape and disk files. On a disk file, total
throughput can be improved by using a larger buffer size, as this permits a single disk transfer to read a large quantity
of data. Specify only an even number of bytes in the RECORDSIZE expression. For example:

100 OFEN "MASTER.DAT’ FOR INFUT AS FILE 1%y RECORDSIZE 2048%

If the file MASTER.DAT were on an RF11 disk and occupied a contiguous area on that disk, a 2048-byte transfer would
take about 33ms while four 512-byte transfers would take about 83ms (on the average). If the file did not reside in a
contiguous disk area, the RSTS Monitor would break the 2048-byte transfer into four 512-byte transfers. Even in this
last case, the system overhead to perform the transfer would be less.

This example raises the question of how to ensure that a file occupies a contiguous disk area. This can be done by means
of the MODE option (see the RSTS/E Programming M.anual) or the CLUSTERSIZE option described in the following
section.

BASIC-PLUS establishes the default buffer size when a value less than the default is given. To obtain a buffer size that
is less than the default, specify the desired buffer size, plus 32767%, plus 1%. Smaller buffer sizes are often useful when
performing I/O operations on alternate channels.

Thus, to open the paper-tape reader with a buffer size of two bytes for use with alternate channel I/O, write

OPEN “PP:” FOR INPUT AS FILE 1%,
RECORDSIZE 32767% + 1% + 2%

9.2.2 CLUSTERSIZE Option
The CLUSTERSIZE option applies only to disk and ANSI magtape files created with an OPEN or OPEN FOR OUTPUT
statement. The CLUSTERSIZE specification is ignored in all other cases.

The following description applies to disk files. CLUSTERSIZE is also legal for ANSI magtape. See the RSTS/E
Programming Manual for further information.

9-5

Data Storage Capabilities

The RSTS system divides each disk into a number of 256-word blocks. Each block is assigned a unique logical block N
number starting at 1.* Logical block numbers are assigned such that block n is physically contiguous with blocks
n+landn- 1.

A number of contiguous blocks taken together as a unit are called a cluster. RSTS permits clusters to be 1, 2, 4, 8, 16,

32, 64, 128 or 256 blocks long. When the disk is initialized (the process by which the disk is cleared for use on RSTS),

a minimum cluster size can be established. This minimum cluster size (called the pack cluster size) for the disk can be «
1,2,4, 8, or 16 blocks.

For each file on the system, an entry is made in the owner’s file directory (User File Directory or UFD) containing the
retrieval information for the file: filename, cluster size for the file, and a sequential list of clusters belonging to that
file.

A UFD has a fixed maximum size which is determined when the UFD is created.> A UFD on any one disk cannot

exceed 112 (decimal) blocks (28,672 words). If all files were a minimum size (7 or fewer clusters long) a UFD

clustered as 16 would have room for a maximum of 1157 files. To keep the list of blocks belonging to the file as short

as possible, the UFD contains a 1-word entry for the first block of each cluster. Knowing the first block number of the

cluster and the cluster size is sufficient to determine all of the blocks in the cluster. A

Because of the size limit on the UFD, large files benefit from the specification of large cluster sizes. In an extreme exam-
ple, the UFD would be completely filled by a single file of 24,283 blocks where the file cluster size is one block. How-
ever, with a cluster size of 256 blocks, only 128 words of the UFD are required to describe this file.

Since most user files are not extremely large, omitting the CLUSTERSIZE option when creating the file makes little

practical difference. Omitting the CLUSTERSIZE option is equivalent to specifying CLUSTERSIZE 0% and has the

effect of assigning a cluster size equal to the pack cluster size for the disk on which the file resides. An attempt to

create a file with a cluster size less than the pack cluster size or not a power of 2 causes the [LLEGAL CLUSTER SIZE o~
error message (ERR=23).

A negative cluster size may be used; this suppresses the ILLEGAL CLUSTER SIZE error when the program uses a
scratch disk whose maximum cluster size is not known. If the cluster size is negative, the system attempts to create the
file at the absolute value of the specified cluster size or at the pack cluster size, whichever is larger.

Once a file is opened on an internal I/O channel, all [/O requests by the BASIC program are handled by means of a read

or write call from BASIC-PLUS to the Monitor, directed to the nth virtual block of the file. The RSTS system trans-

lates the virtual block number into a logical block number. This is done by reading the file’s retrieval information and ﬂ
finding the entry corresponding to the nth virtual block. To minimize the overhead involved in reading the UFD, which '
is stored on the disk, part of this list of clusters belonging to a file is kept in memory. This part of the list is called

the file window. The file window is composed of seven entries from the list of file clusters. Since each entry corres-

ponds to one cluster of the file, with a file cluster size of one.block, seven blocks (or 3584 bytes) of the file are

described by the in-memory file window. These seven blocks can then be read or written without accessing the complete

list from the UFD stored on the disk. Similarly, with a file cluster size of 256 blocks, the filz window describes the

location of 1792 blocks of the file, or over 900,000 bytes. When performing random access I/O to virtual memory

arrays and RECORD [/O files, any of the 1792 blocks would be read or written without refzrencing the UFD. .

I Biock 0 of each disk is reserved for a bootstrap record and is not used by any file.
2 The maximum size of a UFD is seven times the cluster size for that UFD, which is established when the account is created, and may be
1, 2, 4, 8 or 16 blocks. The figures given in the text assume a UFD cluster size of 16.

9-6

Data Storage Capabilities

As an example of the use of the CLUSTERSIZE option:
100 OFEN “MAT.DATY FOR OUTFUT AS FILE 1%y CLUSTERSIZE 128%

In this case the file MAT.DAT is created with a cluster size of 128 blocks. Note that the file is initially O blocks long
and is extended as needed in 128-block increments.

Since files with large cluster sizes must be extended by a whole cluster at a time and since clusters are always contiguous
blocks, it may not always be possible to find sufficient contiguous free blocks to extend the file. If not, the NO ROOM
FOR USER ON DEVICE error message is printed (ERR=4). The user should be aware of this possibility whenever he
creates a file with a cluster size larger than the pack cluster size (the minimum cluster size for that disk).

As another example (using line continuation as described previously):

100 OFEN “DATAY FOR OUTFUT AS FILE 1%y
RECORDSGIZE 2048%y
CLUSTERSIZE 44X

The RECORDSIZE option improves disk throughput when multiple blocks can be read or written in a single transfer
(see Section 9.2.1). By creating the file with a cluster size of 4 (2048 bytes per cluster) the user guarantees that virtual
blocks 1—-4, 58, etc., of his file are physically contiguous on the disk.

9.2.3 FILESIZE Option
A disk file (and only a disk file) can be pre-extended by using the FILESIZE option in an OPEN statement, eliminating
the need for a PUT statement. The format for the FILESIZE option is:

OPEN <string> [FOR OUTPUT] AS FILE <expr> , FILESIZE <expr>
For example:

100 OFEN “VALUES® FOR OUTFUT AS FILE 3%, FILESIZE %0%
The data file, VALUES is opened and automatically pre-extended to 50 256-word blocks.

FILESIZE is also used on ANSI magtape, but for a different purpose than described above. See the RSTS/E Program-
ming Manual for further information.

9.2.4 MODE Option
The OPEN statement allows another option: the MODE field. The format of the OPEN statement, including the MODE
field, is as follows:

OPEN <string> [11::8?(g\g,l[:gUT]AS FILE <expr>

,RECORDSIZE <expr>}
,CLUSTERSIZE <expr>}
,MODE <expr>}

The MODE option is used to establish device-dependent properties of the file. See the RSTS/E Programming Manual
for device-dependent features.

9-7

Data Storage Capabilities

9.2.5 File-Structured Vs. Non-File-Structured Devices

RSTS/E distinguishes between file-structured (disk, DECtape and magtape) devices and non-file-structured devices.
When a file is to be found or created on a file-structured device, the file specification string in the OPEN statement
must include both a device designation (or default public structure) and a filename. On non-file-structured devices,
the device name alone identifies a file (filename and extension, if specified, are ignored). For example:

DTO: Insufficient information to specify a file.
DTO:FRED Specifies the file FRED on DECtape unit O.
PP: Uniquely specifies the high-speed punch.
PP:FILE Same effect as PP:; the filename is ignored.
DX1: Uniquely specifies floppy disk unit 1.

File specification syntax is such that the default device (the public disk storage area) need not be specified.
It is also possible to open a file-structured device in non-file-structured mode. For example:
140 OFEN "DK2: A% FILE 5%

is sufficient to open a disk cartridge in non-file-structured mode. Device-dependent features are described in the
RSTS/E Programming Manual.,

9.3 CLOSE STATEMENT

The CLOSE statement is used to terminate I/O between the BASIC program and a peripheral device. Once a file has
been closed, it can be reopened for reading or writing on any internal file designator. On a CLOSE the system reclaims
buffer space assigned to the file.

All files must be closed before the end of program execution. Execution of a CHAIN statement automatically closes
any open files, but does not cause the output of the last blocks to output files. (The CHAIN statement is described in
Section 9.6.) The format of the CLOSE statement is as follows.

CLOSE <expression>{ , <expression> . . . }

The expression indicated has the same value as the expression in an OPEN statement and indicates the internal channel
number of the file to close. Any number of files can be closed with a single CLOSE statement; if more than one file is
to be closed, the expressions are separated by commas. For example:

240 CLOSE 10x
250 CLOBE 2Zy4%

Line 250 above closes the files opened on internal I/O channels 2 and 4. Line 240 closes the file open on internal I/O
channel 10.

9.4 NAME-AS STATEMENT, FILE PROTECTION AND RENAMING

The NAME-AS statement is used to rename and/or assign protection codes to a disk or DECtape file, and can only be
used on a given file by someone logged into the system under an account number that has write privilege for that
file. The format of the statement is as follows:

NAME <string> AS <string>

9-8

Data Storage Capabilities

The specified file (the first string indicated) is renamed (as the second string indicated). When the file resides on a
device other than the default device (system disk), the device must be specified in the first string and may optionally
be specified in the second string. No filename extension assumptions are made by NAME-AS; the filename extension
must be specified in both strings if any extension is present in the old filename or desired in the new filename. For
example:

110 NAME ‘DTOOLD.RAS’ AS ‘NEW.HAS’
This is equivalent to:

110 NAME ‘DTO:OLD.RASS AS ‘DTOINEW.RAS A
However, the statement:

190 NAME ‘FILEL.EAS’ A8 ‘FILE2/
is not advised because FILE2 has no extension for automatic recognition by the system.
A file protection code can be specified within typed angle brackets as part of the second <string> although it is not
required. If a new file protection code is specified, it is reflected in the protection assigned to the renamed file. If no
new protection code is specified, the old protection code is retained. See the RSTS/E System User’s Guide for a com-
plete description of protection codes.
The statement:

200 NAME ‘FILE.EXT AS ‘FILE.EXT=405:¢
changes only the protection code of the file FILE.EXT stored on the system disk.
The statement:

200 NAME ‘DTOIARC.BAS AS 'XYZ.EBAB’
changes the name of the file ABC.BAS on DECtape unit 0. Since no transfer of the file from one device to another can
be performed with the NAME-AS statement, it is not necessary to mention DTO: twice; that is, the device of the new
filename need not be specified. However, an error is generated if a device other than the old device is specified.

120 NAME ‘NEW’ A8 ‘NEWL’
changes only the name of the disk fite NEW,

9.5 KILL STATEMENT
The KILL statement is of the form:

KILL <string>
and causes the file-named string to be deleted from the user’s file area. (The file can no longer be opened, but if it is
already open the file remains available until it is closed.) For example, when the user has completed all work with the

file XYZ (note that the filename has no extension) on the system disk, he could remove the file from storage by
executing the following statement:

440 KILL ’“XYZ’

9-9

Data Storage Capabilities

A user is not allowed to KILL a file is write-protected against him.

9.6 CHAIN STATEMENT

If a user program is too large to be loaded into memory and run in one operation, the user can segment the program
into two or more separate programs. Such programs are called into core for execution by means of a CHAIN state-
ment. Each program section is assigned a name and control can be transferred between any two programs. A CHAIN
statement is of the form:

CHAIN <string> {<line number>}

and causes the program named by the string to be called, compiled (if necessary), and executed. The line number, if
specified, designates the line at which the program is to be started. If the line number is omitted, the program is started
at the lowest numbered line (as though a RUN command has been used). The CHAIN statement is the last statement
executed in each program segment (except the last segment). For example:

160G CHAIN ‘"MAIN.RACS 2000
causes the program MAIN.BAC to be loaded, beginning execution at line 2000.

Notice that a filename extension is not required. The compiled form of the program is searched for and, if found, run.
If the compiled form is not found, the non-compiled form is searched for and, if found, compiled and run. If neither
form of the program is found, an error occurs.

On the other hand, if a filename extension is specified, and not found, an error occurs; in this case, no other form of
the program is searched for.

NOTE
If a CHAIN statement in a nonprivileged program names a
privileged program, the CHAIN statement should not include
a line number. The entire chained program must be execu-
ted, or the system will not retain the chained program’s
privileges.

Chaining to precompiled program files (.BAC files) is considerably more efficient than chaining to BASIC source
program files since .BAS files require compilation upon each call.

Communication between chained programs is performed by means of user’s files or memory common.

When the CHAIN statement is executed, all open files for the current program are closed, the new program segment
is loaded, and execution continues. Any files to be used in common by several programs should be opened in each
program.

The CHAIN statement implicitly closes all open I/O channels, which is slightly different from the actions performed as
a result of a CLOSE statement. For example, the line printer drivers perform two page ejects when the line printer is
closed with a CLOSE statement. To continue printing on the same piece of paper after chaining, do not direct a
CLOSE statement to the line printer channel. The CHAIN statement is sufficient to close the printer without unwanted
page ejects.

9-10

Data Storage Capabilities

CHAIN does a fast close on all open files in the chaining program. This saves the data in the file, but any partially filled
output buffer or modified virtual array elements may be lost. Thus it is generally good programming practice to include
an explicit CLOSE statement in the program for all open files before chaining or exiting.

Similarly, an explicit close of the paper tape punch causes a trailer to be punched; the implicit close does not.

When a program is entered via a CHAIN statement, the STATUS variable is set. For more information sec the RSTS/E
Programming Manual.

CHAPTER 10
BASIC-PLUS INPUT AND OUTPUT OPERATIONS

10.1 READ AND DATA STATEMENTS
A READ statement is used to assign to a list of variables values obtained from a data pool composed of one or more
DATA statements. The two statements are of the form:

READ <ist of variables>
DATA <list of values>

The list of variables can include floating-point, integer, subscripted, or character string variables. Data values must cor-
respond in type with their respective variables, but the % character should not be included in integer values. Integer and
floating-point values are interchangeable, although they are stored according to the type of the variable. The use of
quote marks is discussed below.

The data pool consists of all DATA statements in a program. Values are read starting with the DATA statement having
the lowest line number and continuing to the next higher, etc. The location of DATA statements in a program is
irrelevant, although for simplicity they are usually kept together toward the end of the program. (The DATA statements
must occur in the proper numeric sequence, however.) A DATA statement must be the last or only statement on a line,
although a READ statement can occur anywhere on a line. Comments are not permitted at the end of a DATA state-
ment. If a READ statement is unable to obtain further data from the data pool, an error message is printed and program
execution is terminated. (This error can be treated through the ON ERROR GOTO statement, Section 8.4.)

Quotes are necessary in DATA statements only around string items that contain a comma, significant spaces or tabs, or
lower-case letters that are to be preserved. The data pool, composed of values from the program’s DATA statements, is
stored internally as an ASCII string list. When a numeric variable is read, the appropriate ASCII to numeric conversions
are performed. When a string variable is read, the string is used as it appears in the DATA statement. If the item does
not appear in quotes, then spaces and tabs in the string are ignored. If the item appears in quotes, the string variable is
equated to the entire string within the quotes.

Matrices are read from DATA statements via the MAT READ statement of the form:
MAT READ <matrix>
This reads the value of each element of a predimensioned matrix from the data pool. Each element in the list of

matrices indicates the maximum dimension of the matrix to be read (which cannot be greater than the dimensioned size
of the matrix). Individual elements are separated by commas. For example:

100 DIM AC20:20)y B(HO)
110 MAT READ A
120 MAT READ B(3%5)

The above lines read values for the 20-by-20 matrix A and 35 out of the possible 50 values for the B matrix (remaining
elements are 0). Data is read row by row; that is, the second subscript varies most rapidly.

10.2 RESTORE STATEMENT

The RESTORE statement reinitializes the data pool of the program’s DATA statements. This makes it possible to
recycle through the DATA statements beginning with the lowest numbered DATA statement. The RESTORE statement
is of the form:

RESTORE

10-1

BASIC-PLUS Input and Output Operations

For example: -
8% RESTORE

causes the next READ statement encountered after executing line 85 to begin reading data from the first DATA state-
ment in the program, regardless of where the last data value was found. See Section 3.3.1 for an example program using
the RESTORE statement. -

The RESTORE statement can be placed in any position on a multiple-statement line.

10.3 PRINT STATEMENT
In its simplest form, the PRINT statement:

PRINT
causes a carriage return/line feed to be performed on the user terminal. The format:
PRINT <Jist> -,

causes the printing of the elements in the list on the user terminal. An element in the list can be any legal expression.
When an element is not a simple variable or constant, the expression is evaluated before a value is printed. The list can
also contain character strings between quotes which are printed exactly as typed between quotes.

NOTE
If a character string is enclosed in a PRINT statement with
an initial quote and no terminating quote, a terminating
quote is considered to follow the last character of that PRINT -
statement’s terminal line (up to the carriage return, line feed,
form feed, or escape character). For example:

10 FRINT ‘NAME IS A%
10 FRINT “NAME IS As$°®
20 FRINT ‘NAME IS8 7 A%

Line 10 is shown in two equivalent forms. Line 20 is the correct
form to generate the printed line: -

NAME 18 JOHN DOE
where A$ = “JOHN DOE”.

Elements in the list are separated by commas or semicolons. For example:

100 A% = 1Y% .
N OBY om 2% '
\ C% o= 3%

110 FRINT A% A% + BY% + C¥%» C% — A%s ‘ENDY .

when executed causes the following line to be printed:

1 4 2 END

10-2

BASIC-PLUS Input and Output Operations

A terminal line is considered to be divided into print zones' of 14 spaces each. Use of these zones involves the comma
character which causes the print head to move to the next available print zone (from 1 to 14 spaces away). If the right-
most print zone on a line is filled, the print head moves to the first print zone on the next line.

The semicolon character functions as follows:

L. If an integer or floating-point variable, function, or expression is followed by a semicolon, the value is
printed with a preceding minus sign if the number is negative, or a preceding space if it is positive. The num-
ber is then followed by a single space.

2. Character strings and string variables followed by a semicolon are printed with no preceding or trailing
spaces.

Any PRINT statement which does not end with a semicolon or comma character causes a skip to the next line after
printing the elements in the list. The presence of the punctuation character at the end of the PRINT list causes the
next PRINT statement to continue on the same line under the conditions already defined.

In general, the output rules for the PRINT statement are:

1. Leading 0’s and trailing 0’s to the right of a decimal point are suppressed. Where a number can be repre-
sented as an integer, printing of the decimal point is also suppressed.

2. At most six significant digits are printed, unless the PRINT-USING statement is used.

3. Most numbers are printed in decimal format. Numbers too large or too small to be printed in decimal format
are printed in exponential format.

4. Character string constants are printed without leading or trailing spaces.

. Extra commas cause print zones to be skipped.

6. Semicolons separating character string constants from other list items are optional;-omitting punctuation
has no effect on the output format in this case.

W

10.3.1 Formatted ASCH I/O
BASIC-PLUS permits access to data files by three methods:

1. Formatted ASCII
2. Virtual memory arrays, described in Chapter 11
3. Record 1/0, described in Chapter 12

Formatted ASCII data files are the simplest method of data storage, involving a logical extension of the PRINT and
INPUT statements to be used in conjunction with the OPEN statement.

The formats for INPUT and PRINT statements to be used with the OPEN statement are:

line number INPUT #<expression>,<list>
line number PRINT #<expression>>,<list>

where the expression has the same value as the expression in the OPEN statement (the internal file designator) and the
list is a list of variable names, expressions, or constants as explained in the sections describing the PRINT and INPUT
statements.

I'The actual number of print zones is INT (n/14), where n is the size of the print line.

10-3

BASIC-PLUS Input and Output Operations

10.3.2 Output to Non-Terminal Devices
In order to direct output to a device other than the user terminal, the PRINT command is formatted as follows:

PRINT #<expression>,<list>
where the expression is the internal channel number (the internal file designator) of a previously opened output file
(see Section 9.2). The list of information to be output can include any of the output information described as applicable

to the PRINT statement. For example:

100 OFEN ‘DATALY FOR OUTFUT AS FILE 7%
110 FRINT #7%» ‘START OF DATA FILE"

The above lines open a file called DATAL on the disk with internal channel number 7 (of 12 possible open files avail-
able to the user). The first line in that file reads: START OF DATA FILE.

To output a table of square roots on the line printer, the following program could be used:

LISTNH

100 LET I$= P3¢’
NOOPEN T$ FOR QUTFUT AS FILE 14
110 FRINT #1%s T SQRCTIY FOR I= 1. TO 5.
327467 END
Ready
RUNNH
Ready

FRINT Ly SOQRCI) FOR I=1. TO 0.

1 1

2 1.41421

3 173208

4 2

] 2 RI607
Reacdu

The user terminal can be addressed by referring to channel 0, or by associating a filename with the keyboard, as shown
in the following two examples.

LISTNH
100 FRINT #0X» ‘TEXT’

Readw

RUNNKH
TEXT

Readw

10-4

BASIC-PLUS Input and Output Operations

LISTNH

10O OFEN “KR:‘ A8 FILE 1%
NOFRINT #1%y TEXT?

Readw

FRUNNH
TEXT
Reacy

10.3.3 PRINT-USING Statement
In order to perform formatted output, the following statement is used:

PRIN T{#<expression>,}USING<string>,<list>

where the expression (which is optional) indicates the internal channel number of the file or device which is the desti-
nation of the output; the string is either a string constant, string variable, or string expression which is an exact image
of the line to be printed. This string is called a format field. The list is a list of items to be printed in the format
specified by the format field. All characters in the string are printed as they appear except for the special formatting
characters and character combinations described on the following pages. The string, or portions of the string, are
repeated until the list is exhausted. The string is constructed according to the following rules.

10.3.3.1 Exclamation Point — An exclamation point in the format field identifies a 1-character string field. The
variable string is specified in the <list> within the PRINT statement. For example:

LISTNH

100 FPRINT USING 71117y AR’y ‘Cli'y “EF7
32767 NI

Readwy

RUNNH
ACE

Reaciy

The first character from each of the three string constants or variables is printed. Any other characters beyond the first
are ignored.

10.3.3.2 String Field — A variable string field of two or more characters is indicated in the format field by spaces
enclosed between backslashes. The backslash character (\) is produced by typing SHIFT/L on some keyboards.
Enclosing no spaces indicates a field two columns wide, one space is equivalent to a field three columns wide, etc.
For example:

100 FRINT USING NN\ Ny “ARCHO/y EFGHIC

causes

AREFGH

10-5

BASIC-PLUS Input and Output Operations

to be printed at the user’s terminal. The first two backslashes have no spaces enclosed, hence permit the printing of two -
characters (AB). The second two backslashes enclose two spaces and permit the printing of four characters (EFGH). No ’
spaces are printed unless specifically planned.

10.3.3.3 Numeric Field — Numeric fields are indicated with the # character in the format field. Any decimal point
arrangement can be specified and rounding is performed as necessary (not truncation). For example:

100G FRINT USING “HddE.dE » 12,345

causes *
12,38

to be printed on the user’s terminal. Also consider the following:

100 FRINT USING ‘#46% s 12,345
110 FRINT USING ‘#88%. 7y 12,345
120 FRINT USING ‘#%’» 100 -~
FUNNH
12
12

% 100
Reariy

Numeric fields are right justified; that is, if a number does not fill the allotted space, leading blanks precede the number.

When the field specified is too small for a constant or variable to be printed, the % character is printed to indicate the -~
error. The number is then printed without reference to the format field. On the other hand, when the format field '
specified is more than 20 character spaces larger than required for a constant or variable to be printed, a PRINT-USING

BUFFER OVERFLOW non-recoverable error may occur.

If the format field specifies a digit as preceding the decimal point, at least one digit is always output before the decimal
point. If necessary, that digit is O.

10.3.3.4 Asterisks — If a numeric field designation in the format field begins with **, any unused spaces in the format
field are filled with asterisks. For example:

100 AmR7 95
N Bl Q7 .50
N C=l007.5
N OPRINT USING “kkbEd.HE y ArE2C
RUNNH
XK27 9%
K107 50 ;
L1007 .50
Readw

Notice that the ** characters act as two additional # characters as well as allowing asterisk fill.

Exponential format (see below) cannot be used in a field with leading asterisks. Negative numbers cannot be output
using asterisk fill unless the sign is output following the number (see below).

10-6

BASIC-PLUS Input and Qutput Operations

10.3.3.5 Exponential Format — When the exponential form of a number is desired, the numeric format field is followed
by the string (four characters) which allocates space for E-xx. Any arrangement of decimal points is permitted. For
example:

LISTNH

100 Fopas 2 g™ el ool e 7
110 A=10000.

120 FRINT USING Fé$ehrA
Readu

RUNNH

LOE 03 10000
Reacdy

All format positions are used to output a number with an exponent. The significant digits are left justified and the
exponent is adjusted.

10.3.3.6 Trailing Minus Sign — If a numeric format field designation is terminated with a minus sign, the sign of the
output number is printed following the number, rather than preceding it. A blank is printed to indicate a positive
number. For example:

LIGTNH

100 ST ¢ I

110 FRINT USING “dd. b~ $Bddk.dEy ArhH
e ady

FRUNMH

1050~ ~10.50

Reaciu

Note that if the trailing minus is not used, space must be reserved in the numeric format field for the sign to precede
the number.

10.3.3.7 Dollar Signs — If a numeric format field begins with $$, a dollar sign is printed immediately preceding the first
digit of the number. For example:

LIGTNH
100 A=7TF A4
N B=304,050
NOC=2211 .40
110 FRINT USING ‘$$48%.8%» A»EyC

Readw
FRLINNH
77 .44

HBEOL GG
n ey

A R P
Reaciu

10-7

BASIC-PLUS Input and QOutput Operations

Note that the $$ characters provide for the printing of two additional characters in the number. Since one character
is a §, the effect is to allow for one additional # designation beyond those typed by the user.

Exponential format (see above) cannot be used in a field with leading dollar signs. Negative numbers cannot be output
using the floating dollar character unless the sign is output following the number (see above).

10.3.3.8 Commas — If one or more commas appear to the left of the decimal point (if any) in a numeric format field,
then commas are inserted every three digits to the left of the decimal point. A comma to the right of the decimal point
is considered a printing character. For example:

LISTNH
100 FRINT USING “#sdddd8d. 4 $¥Ed.Ev47y 12345.5 123.456y
Readw
RUNNH

29345.50 123.8901
Ready
10.3.3.9 Insufficient Format — If insufficient format characters are present in a field when a number is output, a

% character is printed in the first position of the field followed by the number in standard format, usually causing
the field to be widened to the right. The user is guaranteed his entire number. For example:

LISTNH
100 FRINT USING ‘H##.%8F $&.8%y 12,345y 12,8
Ready
RUNNH

12.3% %125
Readw

Rounding occurs when digits are dropped at the right of numbers. If rounding causes the number to exceed the
format allowed, the % character is used. For example:

100 FRINT USING 7% cHBlETy 125y L9999
RUNNH

+13 NL999

Readw

10.3.3.10 Format Too Large — If a numeric format field results in an attempt to output more significant digits then
are available for the number, 0’s are substituted for all digits following the last significant digit. Six significant digits
are available with the 2-word, single precision math package and 15 digits with the 4-word, double-precision math
package. Up to 29 formatting characters for single precision and 19 formatting characters for double precision are
permitted with the PRINT USING statement. An attempt to print fields larger than 29 or 19 results in the following
error message:

?PRINT USING BUFFER OVERFLOW

10-8

BASIC-PLUS Input and Output Operations

In certain cases, a number larger than the format field is truncated without an error message. Good programming practice
is to check for overflow before attempting to output numbers near the maximum size.

10.3.3.11 PRINT Statement Punctuation — When the PRINT-USING statement is used, the usual PRINT statement
punctuation characters (commas and semicolons) have no effect on the output format, except that a comma or semi-
colon at the end of the PRINT list inhibits termination of the printed line. For example:

LISTNH
100 FRINT USING &% ¥ BE 915243

Ready

RUNNH
1 2 3

Rearu
As another example:

LISTNH

100 FRINT USING “H#.8%"y 2.5%
110 FRINT X’

Ready

RUNNH
2,50

- Readu
As another example:
100 Pl 32HLY

\ B, 45457
NOLET F4 &= 7 Adede , ol T TN T R

110 OFEN "LF¢7 FOR OUTFUT A8 FILE 4%
120 FRINT #4%y USING Fé$y Ay R

would cause:
A=] .33 Bz 2,45
Readw
to be printed on the line printer.

10.3.4 MAT PRINT Statement
The MAT PRINT statement allows for easy printing of a predimensioned matrix. The statement is of the form:

MAT PRINT {#<expression>,} <matrix name>>

10-9

BASIC-PLUS Input and Output Operations

For example: -~

100 nIM ACLS)
11O MAT FRINT ACLE)

If the specified matrix name is unsubscripted, the entire matrix is printed. If the matrix specification is subscripted, the
subscript(s) indicates the maximum size of the matrix to be printed. .

The matrix name can be followed by a semicolon to indicate that the values are to be printed in a packed fashion, or by

a comma to indicate that each element is printed in its own zone. For example: .
LIBTHH
100 OIM ACLOy10) s BOLO$20)
11¢ MAT FRINT A
TFRINT MATRIX A IN FACKED FORMAT
120 MAT FRINT BCLO»10)

F1O%10 MATRIX FRINTED %5 VALUES FER LINE
sz

Row and column matrices can also be printed. For example:

LISTNH
10 DIM ACE) yBCLOD
20 MAT FRINT A3
I RFRINT MAT A ON ONE LINE
20 MAT FRINT E -~
I PRINT IN COLUMN FORMAT :
Reaniy

Line 30 causes A to be printed as a row matrix, closely packed; line 40 causes B to be printed as a column matrix.
The form:

MAT PRINT A,

would cause the matrix A to be printed as a row matrix, five values per line (at the user terminal). '
10.3.5 PRINT Functions
In order to aid in formatting simple and complex PRINT statements the following functions are provided:
Function Meaning
POS(X) Retums the current position on the output line; where X is the 1/0 channel ,
number. POS(0%) returns the value for the user’s terminal.
TAB(X) Tab to position X in the print record. For example, a standard terminal has .
72 printable columns numbered O through 71. TAB (4%) causes sufficient
spaces to be output to move the print head to column 4. If the print head
is currently past position 4, no spaces are output.

10-10

BASIC-PLUS Input and Output Operations

For example:
100 FRINT X7 N N3 TARCLOY 5FOS(0)
causes the following to be printed:

X 10

9 spaces

position O Y WI positions 10 and 11

10.4 INPUT STATEMENT
The INPUT statement allows data to be entered to a running program from an external device, the user’s keyboard, disk,
DECtape, paper tape reader, etc. The full form for this statement is:

INPUT [#<expression>,] <variable list>
In many cases the simpler form:
INPUT <variable list>

is used. This last form causes a ? to be printed at the terminal and the system then waits for the user to respond with the
appropriate values of string or numeric variables. If a sufficient number of values are not typed, the system prints
another 7; if too many values are typed, separated by commas, excess values are ignored. The user can also insert
printed messages between the variables to be input. For example:

1GO INFUT “YOUR NAME IS75N$y “ACCOUNT NUMEBER’ Ay ‘THANK YOU-
when executed would allow the following interaction at the terminal (the underlined characters are typed by the user):

RUINNH

YOUR NaME 187 JOE
ACCOUNT NUMRBER? 347654
THANK YOu

Reaodu

ON ERROR GOTO statements can be used in a program to trap recoverable errors which occur during input statement
execution. The errors shown below occur most frequently when an INPUT statement is executed.

Error Meaning Examples
%DATA FORMAT ERROR Data input in an illegal form 3.4.50r $2 or #16 or 2;3 or LORA
(ERR = 50) input for a numeric variable; X’ or

“HELLO” “THERE” input for a
string variable

NLLEGAL NUMBER Overflow or underflow 3E+66 or --23
(ERR = 52)
7END OF FILE ON DEVICE Input CTRL/Z ~z
(ERR = 11)

10-11

BASIC-PLUS Input and Output Operations

The system assigns values to variables as they are input. Multiple variables can be assigned by separating them in the
INPUT variable list by commas. Similarly, use commas or the RETURN key to separate values as they are input from
the keyboard. For example:

100 INFUT XyYsl

110 FRINT Xy¥YyZ

RUNNH .
T X.14

T oL4y92

2.l4 14 Q2) »

Reaciw

Do not use commas wiihin a single number; the system ignores all characters input beyond a comma unless another
variable is to be assigned. For example:

Right Wrong
LITSTNH LIETNH
100 INFUT R 160 INFUT R
NOPRINT R NOPRINT R
Ready Ready
RUNNH RUINNH
TOR2TBP0L FOAGLFOR
25902 25 -~
Re sy Reacu
Quotation marks (*’) should be used with string variables when embedded commas and spaces are to be preserved.
For example:
Right Wrong
LISTNH LIBTNH
- . -~
100 INFUT M$ 10O INFUT M$ E
NOFRINT M4 N OPRINT M%
Re et Ready
RUNNH RUNNHM
P OMOUSE s MICKEY' ToMOUSEy MICKEY
MOUSE » MICKEY MOUSE ,
Readw Reacdw
The format:
INPUT #<expression>,<string variable>

10-12

BASIC-PLUS Input and Output Operations

causes input to be read from the file or device indicated in the expression, by the internal file designation number
given when the file was opened. (See Section 9.2 for a description of the OPEN statement.) If the value of the expres-
sion is non-zero and the specified file is the user terminal, open as an input device, then no ? character is printed at
the terminal when input is requested.

For example:

LISTNH

100 OFEN “RKE$S FOR INFUT AS FILE 2%
110 INFUT #2%shA

120 FRINT A

Reaoiu

The system then pauses while the user types a numeric value for the variable A, although no prompting ? or character
string message is printed on the terminal.

RUNNH
Ha7Z.8
H47 .8
Readw

Another format of the INPUT statement allows the user to enter an entire line of data as a single character string entity,
regardless of embedded spaces or punctuation. This is different from the normal mode of string input, where the
comma, apostrophe, single quote and double quote characters have special significance. The format is:

INPUT LINE {#<expression>,} <string variable>
For example:
L&E0 INFUT LINE A%

pauses to allow the user to enter a line followed by the RETURN, FORM FEED, LINE FEED or ESCAPE key (see
also Section 5.3). Every character input, including quotation marks and commas, is present in A$, above. The end
of the line being input is the carriage return/line feed sequence (or line feed/carriage return/null or ESCAPE, (see
Section 5.3) which is appended to the data typed by the user. To remove the end-of-line sequence, use the CVT$$
function, described in Section 12.5.

END OF FILE ON DEVICE (ERR=11) occurs when CTRL/Z is input.

As another example:

LOO OFEN ‘F2.0AT7 FOR INPUT A8 FILE 7%
110 INFUT LLINE #77%y R

These lines cause the system to open a file F2 on the system disk on channel 7 (of 12 possible channels) and to read
a string of characters up to the next LINE FEED character.

10-13

BASIC-PLUS Input and Output Operations

10.4.1 MAT INPUT Statement PN
The MAT INPUT statement is used to input the values of a pre-dimensioned matrix from a specified input device. Where o
no device is specified, the input is accepted from the user terminal. For example:

200 MaT INFUT AC20)
causes 20 floating-point values to be accepted as elements of the matrix A. A statement of the form: .

MAT INPUT {#<expression>,}<variable list>

causes the input to be read from a file or device previously opened on the internal channel indicated by the expression.

140 DIM BCLO»25)
200 OFEN “DT1inATALY FOR INFUT A8 FILE 1%
210 MAT INFUT #1%y RC10:25)

The above lines cause the file DATAL on DECtape | to be opened for input on channel 1 (of 12 possible channels) and

a matrix of values for the elements of B to be read to fill B(10,25). The zero elements are not assigned a value. When %
input is from channel O (i.e., the user terminal), ? is printed; however, reference to another channel does not cause the '
printing of the prompting character. Depending upon the name of the matrix, the MAT INPUT statement allows input

of floating-point, integer, or character-string values.

10.4.2 Opening the User Terminal as an 1/0 Channel

The internal file designator (following the # character in the INPUT or PRINT statements) is always in the range 1 to 12.
File designator 0 is, by definition, always open as the user’s terminal. Internal file designator O cannot be closed or
opened. Use of file #0 is indicated below (no OPEN #0 statement is necessary or allowed).

100 INFUT #0yA%
is equivalent to:
100 INFUT A%
It is sometimes useful to be able to request keyboard input without having the “?” prompting character printed first.
This can be accomplished by opening the user’s terminal (“KB:"’) on some internal file designator other than 0. The
9 character is only generated for input requests on channel #0, shown in the following example: £,
LEISTNH
100 OFEN ‘KE:’ A8 FILE 1%
110 FRINT ‘WITH USE OF INTERNAL FILE DESIGNATOR’
\ FRINT ‘TYFE YOUR NAME, FOLLOWED EY RETURN KEY’
120 INFUT #1%Zy a%$s ‘THANK YOU'
\ FRINT
\ PRINT
N PRINT ‘FOR COMPARISON, WITHOUT FILE DESIGNATORS
\ ERINT ‘TYFE YOUR NAME» FOLLOWED BY RETURN KEY’
\ INFUT A%3 ‘THANK YOU’ \
32767 ENID
Ready
FUNNH T

WITH USE OF INTERNAL FILE DESIGNATOR
TYFE YOUR NAMEs FOLLOWED RY RETURN KEY
Je B JONES

THANK YOU

FOR COMEARISONy WITHOUT FILE DESIGNATOR

TYFE YOUR NAMEs FOLLOWED BY RETURN KEY

P . B, JONES M
THANK YOU

Ready

10-14

CHAPTER 11
VIRTUAL ARRAY STORAGE

Many applications require a capability to individually address and update records on a disk file in a random (non-
sequential) manner. Other applications may require more memory for data storage than is economically feasible. BASIC-
PLUS fills both these requirements with a simple random-access file system called virtual memory.

The BASIC-PLUS virtual array facility provides a mechanism for the programmer to specify that a particular data
matrix is not to be stored in the computer memory, but within the RSTS-11 disk file system instead. Data stored in
disk files external to the user program remain, even after the user leaves his terminal, and can be retrieved by name at a
later session. Items within the file are individually addressable. In fact, it is the similar treatment of arrays both in
memory and on random-access files that leads to the term, “virtual array.”

With the virtual array facility, BASIC-PLUS programs can operate on data structures that are too large to be accommo-
dated in memory at one time. The disk file system is used for storage of data arrays, and only portions of these files are
maintained in core at any given time.

With virtual data storage, the user can reference any element of one or more matrices within the file, no matter where
in the file that element resides. This random access of data allows the user non-sequential referencing of the data for
use in any BASIC statement. The virtual memory matrices are read into memory automatically by the system.

The order in which array elements are referenced can have a significant effect on the program execution time. This
section therefore describes the algorithms used in the virtual array processor, in order that users concerned with effi-
ciency can optimize their use of this facility.

Each disk file appears to the user program as a contiguous sequence of 512-byte records. Any position in a file can be
specified internally with a 2-component address; the first part being the relative record within the file, and the second
being the position of the item within the block. One of the functions of the virtual array processor is to transform, or
map, each virtual array reference into its corresponding file address.

Virtual arrays are stored as unformatted binary data. This means that no I/O conversions (internal form-to-ASCII) need
to be performed in storing or retrieving elements in virtual storage. Thus, there is no loss of precision in these arrays
and no time wasted performing conversions.

11.1 VIRTUAL MEMORY DIM STATEMENT
In order for a matrix of data to exist in virtual memory, it must be declared in a special form of the DIM statement.
This special DIM statement is as follows:

DIM# <integer constant>,<list>
where the integer constant is between 1 and 12 and corresponds to the internal file designator on which the program
has opened a disk file. The variable list appears as it would in a DIM statement for a matrix in main memory. Thus, a

100-by-100 matrix could be defined as:

100 DIM #12%y ACL00»100)

Virtual Array Storage

Floating-point constants, integer constants and strings can be stored in virtual memory matrices. More than one matrix
can be specified in one virtual memory file. For example: 4

250 DIM F1%y ACLOO0)y EXZ(2000)y CH(2UHOO)
allocates space for 1000 floating-point numbers, 2000 integer numbers and 2500 character strings (16 characters long).
However, if a virtual array is defined in this fashion, future references should always dimension the arrays to the same .
size.
11.2 VIRTUAL ARRAY STRING STORAGE .

One of the few differences in data handling between memory and disk matrices occurs in the storage of strings within
string matrices in virtual memory. Strings in the computer memory are of variable length from zero characters to any
arbitrary length. Strings in virtual memory matrices are allocated with a maximum length and may vary from zero
characters to the specified maximum length (all elements of a single string array have the same maximum length). This
maximum length can be defined by the program and varies from two characters to 512 characters. The system requires
the maximum length to be one of the following powers of 2:

2,4,8,16,32, 64, 128, 256, 512 ~,
Each element in the virtual memory string need not use the maximum length available, even though space is reserved

for each element to be the maximum size. If the user indicates other than one of the values above, he receives the next
higher size. Thus:

100 DIM #17%y X$C10) = &0
is equivalent to:
100 NIM %1%y X$(LO) = 128

If no length is specified, a default length of 16 characters is assumed. The maximum length of virtual memory strings
is specified as an expression in the DIM statement, using the form:

DIM# <integer constant>,<string>(<dimension>{ , <dimensioﬁ>}) { = <integer constant>}
For example:

L350 OIM 1%y A$CLO0I=32%y RECLOOQI=4%y CHC100) AA’
where:

AS$ consists of 101 strings of 32 characters each, maximum.

B$ consists of 101 strings of 4 characters each, maximum.
C$ consists of 101 strings of 16 characters each, maximum.

If a length attribute is given in a DIM statement for a memory string matrix, it is ignored, since memory is allocated
dynamically to hold a string of any length.

Virtual Array Storage

11.3 OPENING AND CLOSING A VIRTUAL MEMORY FILE

In order for the user to reference his virtual core file, he must first associate a disk file (by name) with an internal
channel designator from 1 to 12 (which is also used in the virtual DIM declaration). This is done with an OPEN,
OPEN FOR INPUT, or OPEN FOR OUTPUT statement:

FOR INPUT
OPEN <string> AS FILE <expression>
FOR OUTPUT

where the string is the name of a disk file and the expression specifies an internal file designator (this is the same
format described in Section 9.2); thus:

350 OFEN “ACCT A8 FILE 1%

associates the file named ACCT with internal channel 1. If ACCT already exists, then the existing file is used. If
there is no file named ACCT, one would be created. If the user wishes to destroy an old file named ACCT and create
a new file of the same name, he can use the statement:

JE0 OFEN “ACCT FOR OUTFUT AS FILE 124

which causes the file to be deleted if it already exists and a new file created. If the user wants to be alerted that the
file ACCT is not present, he could write:

50 OFEN “ACCTY FOR INPUT A8 FILE 1%
which would cause an error message to be printed if ACCT is not found.

NOTE
Virtual memory arrays do not permit internal
buffers larger than 512 characters; therefore, the
RECORDSIZE option is not used when opening a
virtual core array file.

11.3.1 Pre-Extending a Virtual Array

The system overhead for extending a file by a single data element and by many elements is nearly the same. Thus

it is much more efficient to extend a newly created file immediately to its final length than to extend it many times
in increments of a single data element. Whenever the eventual size of a file is known, the file should be extended to
its full size in a single operation.

For example:

100 OFEN “DATAS FOR QUTRUT A8 FILE 1%
110 DIMELZ, AL0000%)
120 ACLO000X =0,

This extends the virtual array A to its final length. Virtual memory arrays, however, are not initially zeroed by the
system. In the example given above, A(0) through A(9999) contain indeterminate values. Unless the user is careful
these values could cause a program failure. The user is advised to first zero the virtual memory array. This could be
done as follows:

300 ACTIZY = 0.0 FOR Iz = 0Z TO 10000%

11-3

Virtual Array Storage

which both zeros and extends the file to its maximum size. However, this uses the more time-consuming method of
extending the file. A more optimal approach would be:

BQ0 ACINY = 0.0 FOR I% = 10000% TO 0% STEF ~1%

which immediately extends the file to its maximum and then zeros it sequentially. These techniques have frequent
practical application.

11.3.2 Closing a Virtual Array File
The CLOSE statement must be used to terminate I/O between the BASIC program and the virtual array. Once a
virtual array has been closed, it can be reopened for reading or writing on any internal file designator.

All virtual arrays must be closed before the end of program execution. The CLOSE statement causes the output of the
last data element to a virtual memory file. Execution of a CHAIN statement automatically closes any open arrays, but
does not cause the output of the last data elements to the array. The format of the CLOSE statement is as follows.

CLOSE <expression>{,<expression> .. }

The expression indicated has the same value as the expression in the OPEN statement and indicates the internal channel
number of the array to close. Any number of arrays can be closed with a single CLOSE statement; if more than one
array is to be closed, the expressions are separated by commas. The CLOSE statement writes the current contents of the
1/0 buffer to virtual memory before closing it. This frees memory space for the program to open other arrays or files

(a maximum of 12 depending upon available space). For example:

205 CLOSE 2%y4%
345 CLOBE 1074

Line 255 above closes the virtual arrays opened on internal /O channels 2 and 4. Line 345 closes the array open on
internal I/O channel 10.

11.4 VIRTUAL ARRAY PROGRAMMING CONVENTIONS
Recoverable errors occur when using virtual memory arrays if the user program does any of the following:

1. References a virtual array without first opening the file.

2. References a non-disk file (for example, DECtape or the line printer) as a virtual array.

3. Exceeds virtual memory, that is, defines a matrix that is bigger than the amount of available disk storage
on the system.

Remember that a virtual memory file must be closed before stopping the program or chaining to another program.

11.4.1 Array Storage

Any data element in a virtual array is completely contained within a single block (512 bytes) of disk storage. This
restriction has no effect on integers and floating-point items, where the size of data items is fixed, but does limit the
maximum length of a virtual string to 512 characters. The number of data elements stored in each disk block is a func-
tion of the size of each element. For virtual strings, the number of elements is also related to the maximum string
length specified in the DIM# statement. The size of a virtual string defaults to 16 characters and can be specified as:
2,4,8,16,32, 64, 128, 256, or 512. Table 11-1 indicates the number of array elements stored in each block of a
virtual file.

114

Virtual Array Storage

Table 11-1
Virtual Array Storage Capabilities
Number of Elements

Data Type per Block
Integer (%) 256
2-Word Floating Point 128
4-Word Floating Point 64
String ($) 512/N

(where the maximum length = N)

Strings in virtual memory occupy pre-allocated space in the virtual file, and thus differ from strings in memory, where
space is allocated dynamically. A disk block containing virtual strings can be considered to be a succession of fields,
each of the maximum string length. When a virtual string is assigned a new value, it is stored left-justified in the appro-
priate field. If the new string value is shorter than the maximum length, the remainder of the field is filled with O’s.
When the string is retrieved, its length is computed as the maximum string length minus the number of zero-filled bytes.

11.4.2 Translation of Array Subscripts into File Addresses

In order to translate an array subscript into a file address, RSTS/E computes (1) the relative distance from the specified
item to the first item in the array, and then adds (2) the relative distance from the first element of the array to the first
item in the file. The first quantity (1) is computed from the array subscript and the number of elements per block, as
shown in Table 11-1. The second number (2) is a constant for each array in a file, and is computed from the parameters
specified in the DIM# statement.

Since the DIM# statement contains the only information used to define the structure of a file, it is possible for the user
to specify different accessing arrangements for the same file in one or more programs. For example, the user can refer-
ence the same data as either a series of 32-byte strings (A28$) or 16-byte strings (A18$), with the following statements:

10 DIM #1,A14$C10000 = 16 P1é6~-CHARACTER STRINGS
20 OIM #1yA2ECE00) = 32 F32~CHARACTER STRINGS
30 OFEN “FIL1S A8 FILE 1% IWWIRTUAL ARRAY FILE

The user should keep in mind that in BASIC-PLUS array subscripts begin with 0, not 1. An array with dimension n, or
(n, m) actually contains n+1, or [(n+1)*(m+1)] elements.

User programs may define 2-dimensional virtual arrays as well as singly dimensioned ones. Two-dimensional arrays are
stored on disk (and in memory) linearly, row-by-row. Thus, in the case of an array X(1, 2), the array appears logically as:

X(0,0) | X, 1) | X(0,2)
X(1,0) | X(1,1) | X(1,2)

while physically it is stored as:

X(0,0) lowest address
X(0, 1)
X(0, 2)
X(1, 0)
X(1, 1)
X(1,2) highest address

Virtual Array Storage

HawﬂwﬂmmyﬁmbemkmmwdwmthMnRBpmkmmemrdamwememw&mmmﬂmnmeWMmmJn -~
smmmm&CmmMﬂﬂwaem“mthanwmwtoammMememm1Memhmwamhmanma2dmwmmmﬂ o
array. Program 1 does this far more efficiently than program 2.

Program 1

LISTNH

100 REM ~ FROGRAM ‘ONE’ TO COMPUTE SUMS EFFICIENTLY
‘ARRAY . CONTAINS VIRTUAL ARRAY
ROIZ) I8 SUM OF ROW I R
COI%y I8 UM OF COLUMN J
110 DIM #1ZyACLOXyS0X)
I 10 ROWSy 50 COLUMNS
120 DIM RCO10%)» C(H0X)
130 OFEN “ARRAY A8 FILE 1%
I OFEN VIRTUAL FILE AND INITIALIZE SUMS WITH MAT
140 MAT R = ZER
N OMAT C o= ZER -
150 FOR I% = 14 TQ 10% '
I OFERATE ROW-BY-ROW
160 FOR J% = 14 TO 50X
Do EACH COLUMN IN ROW
170 ROI%) = RCIXY + ACLZ 2
I TOTAL ACROSS ROW
180 CCJI%y = COJX) + ACTXHyJ0)
L TOTAL TOWN COLUMN
190 NEXT JZ _—

N NEXT I4
I COLUMN SUM I8 INSIDE LOOF

200 MAT FRINT Rs
NOMAT FRINT Cs
I PRINT ROW TOTALSy THEN COLUMN TOTALS
210 CLOSE 1% :
32767 EENTI
Readw -

11-6

Virtual Array Storage

Program 2
LISTNH
100 REM -~ FROGRAM ‘TWO’ USES VIRTUAL MEMORY INEFFICIENTLY
110 DIM #1ZyACLOZy50%)
P10 ROWS» S0 COLUMNS
120 DIM RCLOX)Y v C(HOX)
130 OFEN “ARRAY A8 FILE 1%
POFEN VIRTUAL FILE AND INITIALIZE SUMS WITH MAT
140 MAaT R = ZER
N MAT C o= ZER
150 FOR J% = 14 TO %50%
' GFPERATE ONE COLUMN AT A TIME
140 FOR IZ% = 14 T0O 10%
I AND ACROSS ROW
170 RCIAY = ROIZY 4+ ACIZ»J%)
PTOTAL ACROSS ROW
180 COIZY = COJAY + ACTXy %
P TOTAL DOWN COLUMN
190 NEXT IX%
NONEXT JX%
200 MAT FRINT R3$

N MAT PRINT G

POFRINT ROW TOTALSs THEN COLUMN TOTALS
210 CLOSE 1%
32747 BN

Ready

In virtual arrays two (or more) arrays can share the same file. That is, the following DIM# statement is legal.
100 BIM #le ACLOOGYy RBA(SPY)y CCLOOO)

The matrix B% begins immediately after the 1000th element of A and the matrix C begins immediately after B%(999).
Therefore, the disk layout is as shown in Figure 11-1.

There is, however, an exception to this rule. Elements in string arrays are allocated a fixed number of bytes in the disk
file. This is either 2, 4, 8, 16, 32, 64, 128, 256 or 512 bytes of storage. A single string element must not cross a disk
block boundary (where each disk block contains 512 bytes or 256 words). Consider the following case:

100 DIM AZ(2)Ys RBECL000)=4

The first three words of the disk block are allocated to A%. If the arrays B$ were to begin immediately after A%, one
of the elements of B$ would cross a block boundary. Hence, B$ begins at the start of the second block in the file
rather than immediately after A%.

The rule can be stated as follows: When more than one array is assigned to a single virtual array file, each array begins
immediately following the last element of the preceding array unless such an allocation would cause an element of the
array to be split across two disk blocks, in which case the array begins at the start of the next block of the file, and the
remaining words of the current block are unused.

Virtual Array Storage

A(0)
A1) a

A(999) -
A(1000)
B%(0) .
B%(1)

BI(998)
B%(999) -,
()
()

C(999)
C(1000)

Figure 11-1 Virtual Array File Layout

11.4.3 Access to Data in Virtual Arrays

Only a portion of a virtual array is in memory at any given time. This data is transferred directly between the disk and

an 1/O buffer in the user’s area, created when the OPEN statement is executed. This buffer must be 512 bytes (one

block) long, and may not be specified as several blocks with the RECORDSIZE option in the OPEN statement. For

each virtual array file, RSTS/E notes (1) the block of the file in the buffer, and (2) whether the data in the buffer has

been modified since it was read into memory. A\,

After RSTS/E translates a virtual array address into a file address, it checks whether the block containing the referenced
item is currently in the buffer. If the necessary block is present the reference proceeds; but if not, another portion of
the file is read into the buffer. If the current data in the buffer has been altered, it is necessary to rewrite this data on
the disk prior to reading new data into the buffer.

The referencing algorithm, which minimizes the number of disk memory accesses generated when handling virtual
arrays, is flow-charted in Figure 11-2.

All references to virtual arrays are ultimately located via file addresses relative to the start of the file. No symbolic
information concerning array names, dimensions, or data types is stored within the file. Thus, different programs may
use different array names to refer to the data contained within a single virtual array file. The user must be cautious in
such operations, since it is his responsibility to ensure that all programs referencing a given set of virtual arrays are
referencing the same data. Consider the following example:

Virtual Array Storage

Virtual Array
Reference

\

Translate Sub-
script into File
Address

Is
This

Yes

Segment in
Buffer
?

Has
Current
Segment Been

Altered
?

Rewrite Segment
in File

Y

Clear "Modified"”
Indicator

Y
Read New
File Segment

.

Y

Replacing
Element in

Buffer
?

Set ""Modified”’
Indicator

-}

| J

Proceed with
Operation

Figure 11-2 Virtual Array Addressing Algorithm

11-9

Virtual Array Storage

Program 1 contains: -~
100 IFPROGRAM ONE
110 nDIM #1ly X(10)s Y(10)
120 OFEN ‘FILE’ AS FILE 1%

Program 2 contains: .
100 TFROGRAM TWO
110 DIM #1» Z2{100y XC10) :
120 OFEN “FILE’ A8 FILE 1%

whenever program 2 references the array Z, it is using the data known to program 1 as array X. Both X and Z are the
first arrays in their declaration, both contain floating-point data, and both are 11 elements (X(0), . . ., X(10)) long,
These two arrays, then, correspond in position, type, and dimension.

References to the array X (in 1) and to the array X (in 2) do not refer to the same data, even though both are using
the same virtual file (FILE). (The concept of using relative position, rather than name, to identify data items is familiar -
to users of the Fortran COMMON facility.)

Within a single BASIC-PLUS program it is possible to open a single virtual core array file twice on the same channel for
the purpose of reallocating the data within the file. For example:

100 OFEN “"IATAY FOR INFUT A8 FILE 1%

110 DIM #1y ASCLOX)=4%

120 NIM #1ly BECAXI=16X
The program now has access to the file DATA through both the array A$ and the array BS. Each element of B$ con-
tains four elements of A$ (B$(0) is equivalent to the elements A$(0) through A$(3), etc.). Note that the two DIM#
statements reference that file on a single channel number (#1 in this case).
Note also that the two statements:

100 nIM #1y ACLOZ)

110 DIM $ly RBROLIOXD

are not equivalent to the statement;
100 DIM #iy ACIOX)y RCLOZD

In the first case the arrays A and B are equivalent to each other and constitute the first array in the file open on
channel 1. In the second case the arrays A and B are defined as both existing in the file open on channel 1.

11-10

Virtual Array Storage

NOTE
The user is advised not to open a single file under two
different channel numbers. For example:
150 OFEN ‘VALUESY A% FILE 1%
NOOPEN VALUESS A% FILE 2%

200 DM #1174y X202

210 NIM #2Xe YH(R20X)

causes two buffers to be created for the storage of
input to/from channel 1 and to/from channel 2. If
changes are made to the same block of the file in both
buffers, only the changes made in one of the buffers
is added to the file. The buffer written first is over-
written by the other buffer; consequently any data
changed in the first buffer is lost.

11.4.4 Allocating Disk Storage to Virtual Files

The dimensions indicated in a DIM# statement set maximum allowable values for subscripts, and are not used to com-
pute the initial size of the virtual file to be allocated on disk. Instead, the file is created with an initial length of zero
blocks, and blocks are appended to the file to accommodate the highest referenced file address in the array. This per-
mits a user to specify array dimensions larger than required at the time the program is written; such programs may
eventually operate on larger arrays without modification, and without tying up disk storage unnecessarily.

Areas of unallocated disk storage are found only at the end of a file.

As blocks are appended to a file, their contents are not initialized to zero. The data previously recorded in a block
(when it was part of another file) is available to the new owner of the block, Users whose files contain confidential
information should explicitly overwrite all data in such files, prior to file deletion. In order to protect data contained
therein.

To override the dynamic virtual array allocation, the user can reference the last element in the virtual array file. This
causes all blocks in the file, up to and including the last, to be allocated. As noted above, the contents of these blocks
as appended to the file are unknown. Using the MAT ZER command is advisable if the program depends on array
values being initialized to a known (zero) quantity.

11.4.5 Simultaneous Access of a Virtual Memory Array by Several Programs

As mentioned in Section 9.2, only the first program to open a file (array) is given write privileges. When a second pro-
gram attempts to modify an array which is already open, the appropriate block is read from the disk but changed only in
the second user’s buffer — not on the disk. When the second program references this array and attempts to read another
block from the disk, a PROTECTION VIOLATION error occurs. This is because the system attempts to update the

disk with the new information in the current block before the required block is read into memory. Since the second pro-
gram has no write privileges, the disk cannot be updated. A CLOSE operation at this point also results in a PROTEC-
TION VIOLATION error for the same reason. Once the job returns to BASIC-PLUS command level and a NEW, OLD

or RUN command is executed, a CLOSE is performed on all channels. In this case, no write is attempted so the

CLOSE is successful.

11-11

Virtual Array Storage

The best way to avoid simultaneous write accessing of a virtual core array is to determine whether the user program has
write privileges. Do this with the STATUS variable (see Section 12.3.5) as shown below.

LOG OFEN “ARRAY S AS FILE 1%
110 IF (STATUS AND 1024%)

THEN FRINT “NO WRITE ALLOWED ON aARRAY

\ STOF)
Reaciy

MODE 1% should not be used for updating an array by several programs simultaneously. This is because a user’s buffer
is modified when an array is opened with the MODE 1% option — the disk is not updated at this time. (Even when the
first program unlocks the file, allowing other programs to access the array, the first program’s modifications exist only
in the first user’s buffer.) The array is updated only when the first user accesses data from another block, as explained

above.

11.5 PROGRAMMING EXAMPLE

As an example of virtual core usage, consider the problem of generating a large array of random numbers. Since a

physical disk block is 256 words, the most efficient array would contain a multiple of 256 elements. The virtual core
file, ARRAY1.DAT, in this example, contains 5120 data elements in a 2-by-2560 array. The zero row and zero column
are used, so this array is dimensioned V%(1%,2559%). Twenty physical blocks are used to store this array. The program
shown below creates the virtual array V% by assigning a random value between 0 and 1000 to each element in the array.

LISTNH
1600
1G19
1G20
1030
1040
10350
32767

Feaci

OFEN “ARRAYL.DAT A8 FILE 3%

nIM 3%y VACLZ2559%)

FOR T 0% TO 1%

VACTH e JKD RNDNCL) % 1000.7% FOR JZ
NEXT I%

CLOSE 3%

NI

Now that the file ARRAY1.DAT has been created, the virtual array can be accessed simply by specifying the elements

by their subscripts. The program shown below prints every 256th value. Notice that the format of the array in the DIM
statement, below, must be identical to the original format for predictable results. The file’s internal channel number

0Z TO 285597

and the array’s name can change, but the array must be formatted the same way every time it is accessed.

LISTNH

1000 OFEN “ARRAY1.IAT’ AS FILE 3%

1010 DIM #3%Zy VIC(1Ze2559%)

1020 FOR I%Z = 0% TO 1%

1030 FRINT VZ(IX%sJ%)s FOR J%Z=0% TO 2559% STEF 25&6%

1040 NEXT 1%

1050 CLOSE 3%

1060 FRINT

32767 ENI

Ready

RUNNH
204 909 994 839 65 131 H3I7 784 F71 798 HEH
8 318 468 938 289

Feady

11-12

173 122 910 3%

Virtual Array Storage

Values of array elements can be changed simply by redefining them in assignment statements (e.g., LET, INPUT,

-’ READ). For example, the program below changes the value of specified data elements, once they are defined by
subscripts.
L.ISTNH
1000 OFEN “ARRAYL.DATY A8 FILE 3%
. 1010 DIM #3%y VALZ26559%)
1015 ON ERROR GOTO 1050
1020 INFUT YENTER THE I AND J LOCATION OF THE ELEMENT’§ IZ»JZ
. L1O30 NZ = VXCTH e J30)
1040 INFUT “ENTER THE NEW VALUE’s VZ(IXyJZ%)
104% FRINT

N OFRINT Z0LD VALUE WASY ¢ NX3 7 NEW VALUE I8t /3VI(IXyJ%)
N FRINT
NGO TO 1020

10860 CLOSE 3%

32767 END

A 4 Reaiy

RLINNH
ENTER THE I AND J LOCATION OF THE ELEMENT? 0s9
ENTER THE NEW VALUE?T 600

OLD VALUE WASB: 678 NEW VALUE 183 600

ENTER THE I AND J LOCATION OF THE ELEMENTT 12050
(- ENTER THE NEW VALUE? 333

QLI VALUE Wa&: 937 NEW VALUE I8: 333

ENTER THE I AND J LOCATION OF THE ELEMENT? 02220
ENTER THE NEW ValUET 9999

OLD vallUE Was: 424 NEW VALUE I8¢ 9999
_/ ENTER THE I AND J LOCATION OF THE ELEMENT? 949
e el

Some thought should be given to access methods of virtual arrays. In the above examples, ARRAY 1.DAT was allo-
cated as follows:

) Block 1 V(0, 0) — V(0, 255)
Block 2 B(0, 256) — V(0, 511)
Block 3 V(0, 512) — V(0, 767)
Block 10 V(0, 2304) — V(0, 2559)
[¢

11-13

Virtual Array Storage
Block 11 V(1, 0) — V(1, 255)

Block 20 V(1, 2304) — V(1, 2559)

Notice that the second subscript varies from 0 to 2559 for each of the two values (0 and 1) of the first subscript. Since
the system transfers an entire physical record (that is, a block) from the disk to memory at one time, only one disk
access is performed for each 256 consecutive data elements (e.g., V(0, 256) — V(0, 511)). It is far more efficient to
access data elements within a given block than to access data elements in different blocks.

The two programs shown below access, but do not print, each element in the virtual array. The first access method trans-
fers a new block to memory for each data element accessed, resulting in 5, 120 disk accesses. The second method, how-
every, transfers a new block to memory only once per 256 data elements, resulting in only 20 disk accesses. The differ-
ence in execution time between both methods is quite significant, as shown below.

Program 1 (Inefficient)

LISTNH

1000 OFEN “ARRAYL.DATS AS FILE 3%
1010 OIM 3%y VACLXy2559%)

1015 T = TIMECO)

10620 FOR J% = Q% TO 2BEIA

1030 DA = VZ(IZeJZ) FOR 1% = 00X TD 1%

1040 NEXT J%

1045 FRINT ‘THIS ACCESS TOOK * TIME(O) - T ‘SECONDS.”
1050 CLOSE 3%

32767 ENI

Readw

KUNNH
THIS ACCESS TOOK 422 SECONDS,

Ready
Program 2 (Efficient)
LISTNH

1000 OFEN “ARRAYL.DATY A8 FILE 3%
1010 LDIM 3%y VZCLXy2559%4)

1015 T = TIME(Q)

1020 FOR Tz = Q04 TO 1%

1030 DZ = VZA(IZyJZ) FOR J%X = 0% TO 25U0%

1040 NEXT I

1045 FRINT ‘THE SECOND ACCESS TOOK TIME(O) - T ¢ GECONDS. -

1050 CLOSE 3%
32767 END

Reariy

RUNNH
THE SECOND ACCESS TOOK 2 SECONDS.

Readw
11-14

CHAPTER 12
RECORD 1/0

There are three methods of performing I/O operations in BASIC/PLUS. Formatted ASCII 1/O is simple and flexible,
but requires conversion of numbers by the system from an internal form to an externally usable ASCII representation
and does not permit random access to files. I/O to virtual memory arrays permits high-speed random access to files
but can be used only on disk files and does not allow true intermixing of string and numeric elements or use of the
RECORD-SIZE specification.

The third type of 1/0, Record 1/O, permits the user program to have complete control of I/O operations. Properly
used, Record I/0 is the most flexible and efficient technique of data transfer available under BASIC-PLUS. It does,
however, sacrifice the simplicity of formatted ASCII and virtual array I/O. Less experienced users should first experi-
ment with the simpler I/O techniques before attempting Record I/O.

12.1 OPENING A RECORD 1/0O FILE
Opening a file for Record 1/O requires an OPEN statement, described in Section 9.2. The format of the OPEN statement
is as follows:

FOR INPUT

OPEN<(string> { } AS FILE<expr>

FOR OUTPUT
{ RECORDSIZE<expr>} {,CLUSTERSIZE<expr>}
{ FILESIZE<expr>} { MODE<expr>}

The RECORDSIZE and CLUSTERSIZE options can be specified for Record I/O files as described in Sections 9.2.1
and 9.2.2.

The use of all optional clauses depends on the particular device being accessed. The optional clauses are described
extensively in the RSTS/E Programming Manual.

12.2 CLOSING A RECORD I/O FILE
Each Record 1/0 file must be closed once I/O operations on that file are completed. Files are closed with the CLOSE
statement, as described in Section 9.3. The CLOSE statement is of the form:

CLOSE<expr>{,<expr>;
where the value of each expression specifies one of the 12 I/O channels.
Remember, the CLOSE statement for formatted ASCII and virtual array files causes the final record of the file to be
written before closing the file. However, all I/O operations to Record I/O files are explicitly performed (with GET and

PUT statements). For this reason, be sure the user program explicitly writes the last record onto a Record 1/O file
before executing a CLOSE.

12-1

Record 1/O

12.3 THE GET AND PUT STATEMENTS

Input and output operations to Record I/O files are performed directly between the device channel and the I/O buffer
created by the OPEN statement. All I/O is specified in terms of single records, using the GET and PUT statements.
GET and PUT are of the form:

GET#<expr1>{,RECORD<expr2>
PUT #<expr1> g,RECORD<expr2> {,COUNT<expr3> }

If the RECORD option (see Section 12.3.3) is not used, the GET statement reads the next sequential record from the
file open on the channel designated by <expr1>. The record is placed in the I/O buffer that was associated with the
channel by the OPEN statement. The size of the record depends upon the characteristics of the device on which the
file resides, as described in Table 12-1. In Record 1/0O, the RECORD option refers to a sector whose length is device-
specific, not to a logical data record.

When the RECORD option is used in a GET or PUT statement, a specific record, or sector, is accessed. For example:
1G0O GET #4%y RECORD 6%

reads the eighth sector of the file opened on channel 4 into the user I/O buffer. Notice that the preceding seven sectors
of the file need not be read.

Table 12-1
Device Record Characteristics

Device Input Record Characteristics

disk Records (sometimes called blocks or segments) are normally 512 bytes long.
When the RECORDSIZE option is specified in the OPEN statement, and a
buffer longer than 512 bytes is created, the system reads as many full
records as possible. If several disk blocks are read with a single GET state-
ment, the next sequential record is that record immediately following the
last block read.

RECORDSIZE must be an even number. If RECORDSIZE is not a multiple
of 512 bytes, the last block in the transfer is only partially transferred. The
remainder of the block is discarded. In non-file-structured operation, the
default record size is dependent on the device cluster size.

DECtape For file-structured DECtape, records are always 510 bytes long. For non-file-
structured DECtape, records are always 512 characters.

magtape When performing file-structured 1/0, magtape records are normally 512 char-
acters. With non-file-structured I/O, magtape records can be of any length; only
one record can be read per GET statement; and the record length can not exceed
the buffer size as determined by the RECORDSIZE option.

keyboard The GET #0 statement (or a GET on any channel associated with the keyboard)
obtains one line from the keyboard, up to the first line delimiter (CTRL/Z,
RETURN, LINE FEED, ESCAPE, FORM FEED or CTRL/D).

card reader A record consists of a single card. The RECORDSIZE option has no effect on
card reader input.

paper tape RSTS/E reads a full buffer of input from the paper tape reader unless an
end-of-tape is detected.

12-2

Record IO

Similarly, if the COUNT and RECORD (see Sections 12.3.2 and 12.3.3) options are not used, the PUT statement
writes the contents of the 1/O buffer for the specified 1/O channel onto the next sequential record of the file. The
expression <expr1> specifies the internal channel number on which the file was opened. The PUT statement writes

a single record on the device, with the exception of disk files which permit several records to be written with one PUT
statement (when the RECORDSIZE option in the OPEN statement is used to increase I/O buffer size).

To avoid having to move the contents of an input buffer to an output buffer (as when copying from one file to
another, for example) the alternate buffer I/O technique is recommended. In this technique, <expr1> of the GET and
PUT statements is as follows:

SWAP%(B%) + 1%

where B% is the channel number of the buffer to be used, and 1% is the channel number on which the 1/O activity
occurs.

The following example shows a fast copy, using the alternate buffer technique.

100 ON ERROR GOTO 9000
110 INFUT “ENTER INFUT CHANNEL NUMRER‘$ IX%
N INFUT “ENTER QUTFUT CHANNEL NUMRER’$ 0%
120 OFEN “INFUT’ FOR INFUT A8 FILE IX
130 OFEN ‘OUTFUT’ FOR QUTFUT AS FILE 0%
140 GET #*IX
\ PUT #SUWAFZ(IZ) + 0%
N GOTO 140
160 CLOSE #IXZy *0X%

N FRINT ‘FILE COFIED’
\ GOTO 32747
9000 IF ERR=11% OND ERL=30%
THEN RESUME 160
ELSE ON ERROR GOTO ©
P ACCEFT END-OF-FILE ON INFUT
32767 END
12.3.1 The RECOUNT Variable
Non-file-structured devices, as can be seen in the description of the GET statement, can read less than a full buffer of
data. To permit the program to determine how much data was actually read, a system variable, RECOUNT, con-
tains the number of characters read following every input operation. RECOUNT is used primarily for non-file-
structured input; however, it may also be used with file-structured devices.

RECOUNT is set by every input operation on any channel (including channel 0). It is, therefore, essential that the
RECOUNT value be tested or copied immediately following the GET statement. RECOUNT is not properly set if
any error occurs in the operation.

12.3.2 The COUNT Option
The COUNT option used in a PUT statement with a non-file-structured device specifies the number of characters to
write in the current record. However, the COUNT expression cannot be greater than the size of the I/O buffer.

For example, where internal channel 1 is opened as magtape unit 0 (non-file-structured magtape), the following
statement could be used to write an 80-character record:

Lo FUT #1%y COUNT 80X

12-3

Record I/O

When COUNT is not used, the PUT statement writes an entire buffer, regardless of whether the buffer contains -_—
data. 2

COUNT must be used when writing a disk file that was opened with RECORDSIZE not a multiple of 512.

12.3.3 The RECORD Option

With disk files, the user has the capability of performing random access I/O to any record of the file. Recordsin a .
disk file are always 512 characters long and are logically numbered within the file from 1 to n, where n is the size of

the file.

The RECORD expression provides the logical record number of the file to the GET or PUT statement. For example,
assuming a disk file opened on internal channel 1, the following statement writes the contents of the 1/O buffer
associated with channel 1 on records 10 through 99 of that disk file:

200 FUT #1%y RECORD 1% FOR IZ=10% TO 994
More than one physical record or block can be read or written by assigning a large I/O buffer to the file with the

RECORDSIZE option in the OPEN statement. (The size of the buffer does not affect the numbering of the records —__~
within the file.)

If the disk file on channel 1 were opened with a RECORDSIZE of 1024 characters (which would cause two 512-
character records to be written with each PUT) the PUT statement would be written as follows:

200 FUT $#1%y RECORD I¥% FOR I% = 10% TO 98% STERF 24
After performing a random access GET or PUT on a disk file, the next GET or PUT statement on that channel accesses
the next sequential record if no RECORD number is specified. For example: o~
290 OFEN ‘DATAY A8 FILE 1%» RECORDSIZE S12%
300 GET #1%» RECORD 99%
310 FUT #17%

The PUT statement at line 310 writes record 100 of the disk file.

12.3.4 BUFSIZ Function

In certain applications, it is important for a program to determine the buffer size of an open channel, especially if the -~
OPEN statement specifies a logical device name. The user program can execute the integer function BUFSIZ to b
extract this information.

The BUFSIZ function returns an integer value telling the size of the buffer for a specified open channel. For example:
Y% = BUFSIZ(N%)

The statement returns to Y% the size of the buffer in number of bytes for channel N%. If the channel is closed, the
function returns O to Y%.

12.3.5 STATUS Variable .
The variable STATUS contains information concerning the last channel on which a user program executed an OPEN

statement. The variable is a 16-bit word, each bit of which the user program can test to determine status. Table 12-2

shows the information, the tests, and the meaning of each bit.

12-4

Record 1/ O

Table 12-2
RSTS Variable STATUS
Bit Test Meaning
0-7 (STATUS AND 255%) The first eight bits of the word contain the handler index.
The following values apply for various devices.
0 Disk 12 Card Reader
2 Keyboard 14 Magtape
4 DECtape 16 PK: device
(pseudo-keyboard)
6 Line Printer 18 DX: device

(floppy disk)

8 Paper Tape Reader 20 RI: device
(2780 remote job entry)

10 Paper Tape Punch 22 Null device NL:

24 DMCl11
8 (STATUS AND 256%)<>0% The device is open in non-file structured mode or is character-
istically non-file structured.
9 (STATUS AND 512%)<>0% The job does not have read access to the device.
10 (STATUS AND 1024%)<>0% The job does not have write access to the device.
11 (STATUS AND 2048%)<>0% The device maintains its own horizontal position. Such
devices are keyboard and line printer type.
12 (STATUS AND 4096%)<>0% The device accepts modifiers. Such devices use the record

number as a modifier word rather than a physical position of
the device. Keyboard, line printer, and card reader are
such devices.

13 (STATUS AND 8192%)<>0% Device is a character device.
14 (STATUS AND 16384%)<>0% Device is an interactive type (keyboard).
15 (STATUS <0%) Device is a random access blocked device, such as disk and

non-file-structured DECtape.

12.4 WORKING WITH RECORD 1/0O FILES

Techniques for opening, closing, reading and writing Record I/O files have been described. But these techniques apply
only to indivisible I/O buffers associated with internal channels; no mention has been made of manipulating data within
these buffers. Techniques for moving data into or out of a buffer are provided by extensions to the BASIC language.
The FIELD, LSET and RSET statements permit the program to access and modify the contents of an 1/O buffer,
character by character. These statements are discussed in the following sections.

12.4.1 Extending Disk Files

A disk file that is created by an OPEN FOR OUTPUT (or OPEN) statement has a length of 0. As records are written,
the file progressively grows in length; this growth is called extending the file.

12-5

Record 1/0O

A more exact description of file extending is as follows:

1. Is there room in the last cluster® of the file for the new record?

2. If so, then the file length is increased and previously unused space in that cluster is used.

3. If not, then a new cluster is appended to the file. There is then room in the newest last cluster for the
new record so condition 2 applies.

The amount of space actually allocated by the system to a file may be greater than the file length. For example, if the
file clustersize is 4 and the first 6 records of that file have been written, the file is of length 6 but is actually allocated
8 blocks (2 clusters) of space.

A file is extended by attempting to write beyond the current end-of-file. Hence, a program must have write privileges

in order to be able to extend a file. There is an exception to the rule that having write access to a file permits a

program to extend the file. When a file is opened for update (see Section 12.4.5) several programs can have simultaneous
write privileges on a single file. Nonetheless, if a program opens a file in update mode, that file can not be extended.

A file can be extended only when open in normal (non-update) mode.

It is possible to extend a file by a number of records at one time. For example:

100 OFEN ‘DATAS FOR QUTFUT A8 FILE 1%
110 FUT #1Xy RECORD 100X

creates a file DATA and (when line 200 is executed) extends it immediately to 100 records. Since the system over-
head for extending a file by a single record and by many records is nearly the same, it is much more efficient to
immediately extend a newly created file to its final length than to extend it many times in increments of a single
record. Whenever the final size of a file is known, the file should be extended to its full size in a single operation.

12.4.2 The FIELD Statement
The FIELD statement is used to dynamically associate string names with all or part of an I/O buffer. The FIELD
statement has the form:

FIELD #<expr>, <exprl> AS <stringvar1>
[,<<expr2> AS <stringvar2>. . .]

where <expr> is an internal channel number associated with some file by an OPEN statement; <exprl> is the length,
in characters, of the associated string variable; and <stringvar1> is a unique string variable name. The names are
associated from left to right with successive characters in the I/O buffer assigned to the designated internal channel
number. For example:

7% FIELD #2%y 104 AS A%y 20X AS RB$r 3% AS F$

A$ B$ F$

j——10—-|<—20—>| 3 |

512-byte buffer -

*The CLUSTERSIZE defines the minimum increment by which a file can be extended on the disk. A file need not occupy all blocks
within the cluster.

12-6

Record I/O

As shown in the previous diagram, statement 75 associates three strings, A$, B$, and F$ in the I/O buffer, with lengths
of 10, 20, and 3 characters, respectively. The total number of characters represented in this statement is 33. The total
number of characters must be less than or equal to the actual I/O buffer size (which is dependent on the device and
the RECORDSIZE option, as described in Section 9.2.1).

FIELD statements do not move data but rather permit direct access to sections of the I/O buffer via string variables.
The effect upon a string variable is temporary and is nullified by any attempt to assign a value to the variable (other
than the LSET and RSET, described in Section 12.4.3). For example:

100 OFEN 'FILES A8 FILE 2%
110 FIELD 3NENER2Xs 5% A A
120 LET A% = <ARCHE"

Line 120 causes the string variable A$ to be removed from the I/O buffer. The string ABCDE is not stored in the I/O
buffer by line 120.

A FIELD statement is an executable statement, rather than a compiler directive (such as a DIM statement). To illus-
trate: suppose that each block of a disk file contains sixteen 32-character subrecords and that each record consists of
one 5-character field and one 27-character field. In order to extract the eighth subrecord from the I/O buffer, the
following statement could be executed:

200 FTELD #1%s 224% A% D%y S% A8 Réby 277 A8 A%
AN N RSP N N § S P
! P L - ! i : !
———132 f*—— *
bytes B$

Line 200 causes the string variables B$ and A$ to point to the desired subrecord. The string D§ is created to permit
the first seven subrecords (7%32=224) to be skipped. An even more general statement could be used to obtain any of
the subrecords in the I/O buffer, as follows:

190 FOR Ix = 04X TO L35X
200 FYELD #1%s (IA-1X)%X32% A8 Dby 5% AS BEy 27X AL A%
210 NEXT IT%

B$ B$ B$ BS B$ B$ BS$ B$ B$

| | | I 1 1 1
| } T T T T T T T

AS AS$ AS A$ AS$ AS$ A$ A$ AS

)) J \
1%=1 1%=2 1%=3 1%=4 1%=5 1%=6 1%=7 1%=8 1%=9

.

I t |
oo | -t !
-1 - 1

[' 1

| |
+ 08—t

\

When the statement above is executed, 1% should contain the number of the subrecord that B$ and A$ are to contain,
as an integer from 1 to 16. When 1%=1, for example, the expression (1%~ 1%)*32% equals 0, so B$ points to the first
subrecord in the buffer. When 1%=2, however, the expression (1%-1%)*32% equals 32, so B$ now points to the first
subrecord beyond the 32nd character of the buffer. Each single increment of 1% moves B$ 32 characters further into

the buffer.

12-7

Record I/O

Subscripted string variables can also be used in FIELD statements. For example, the following statements could be
used to allocate the subrecords, described in the previous example, to two string arrays:

300 DIM A$CLEX) s RECLSZ)

310 FOR IZ = O0X TO 135¥%

320 FIELLD %1%y IXX32Z A8 Dy G7% A8 BECIX)y 274 A5 ASCIXN)
330 NEXT IZ

B$(0) BI:$(1) Bi$(2) BI$(3) Ei$(4) BI$(5) Bl$(6) Bl$(7)
' T T T ¥ T

A$(0) AS(1) A$(2) AS(3) AS(4) A$(5) A$(6) AS(7)

)
3
.
r
A
.
[
X
L

With each iteration of the FIELD statement at line 320 the dummy string D$ increases by 32 characters, making the
displacement from the start of the I/O buffer to the string B$(1%) equal to 32 times 1% characters. Once this loop is
executed, the position of each string in the arrays A$ and B$ is fixed, A$(0) and B$(0) pointing to the first subrecord
and A$(15) and B$(15) to the last.

However, virtual array strings must not be defined as string variables in a FIELD statement. When strings are defined
as virtual arrays they are required to be in a fixed place in both a disk file and the I/O buffer for that file. Attempting
to specify a virtual array string variable in a FIELD statement has no effect on the virtual array string.

12.4.3 LSET and RSET Statements

Once the strings have been defined as part of the I/O buffer by a FIELD statement, values in these strings can be
stored without moving them from the I/O buffer. The LSET and RSET statements store values in a string without
redefining the string position. These statements are of the form:

LSET <stringvar> {,<stringvar> .. } = <string>
RSET <stringvar> { ,<stringvar> . . } = <string>

where <stringvar> represents any legal existing string variable name (multiple string variable names can be separated
by commas) and <string>> represents any legal string expression.

The LSET and RSET statements store the value of the string expression into the designated string or strings. The
string previously stored in the variable is overwritten. The length of the string is not changed; if the new string is
longer than the existing string, the new value is truncated. If the new string is shorter than the existing string, it is
either padded with spaces on the right by LSET or padded with spaces on the left with RSET. LSET, then, causes
the string to be left-justified in the field and RSET causes the string to be right-justified.

The normal use of LSET and RSET, as described in this section, is to store data in strings allocated within an I/O
buffer by a FIELD statement. LSET and RSET can be used to assign a value to any string variable within a BASIC-
PLUS program.

12.4.4 Differences Between the LET Statement and the LSET/RSET Statement
The LET statement cannot be used to place string values into an I/O buffer because it causes the string to be redefined
elsewhere. Another restriction on LET occurs when that statement is used to equate two strings, as follows:

100 LET A% = R%$

12-8

Record I/0

To avoid unnecessary character manipulation, this operation causes A$ and B$ to reference the same string in memory.
Normally, any operation which alters B$ causes that string to be moved, so no conflict arises. However, LSET and RSET
do not move strings; they alter existing strings in a fixed position.

Therefore, if the value of B$ in line 50 above were altered by an LSET or RSET statement, the value of A$ also
changes. For example:

400 B$ = ‘ARC’
410 AS = R$
42 LEET E$ = /XYZ’

Both A$ and B$ contain “XYZ” following the execution of line 420.

This phenomenon has another ramification; if the string B$ in this example had been defined by a field statement as
being in some 1/O buffer, the string A$ would also be in the /O buffer (being identical to BS). Executing a GET
statement to read another record into the I/O buffer would then change the value of A$ as well as BS. For this reason,
LSET and RSET should be used only for Record I/O operations; using these statements for other purposes may cause
peculiar results.

When the strings A$ and B$ should not be physically identical, the string B$ can be moved into the string A$ as follows:
300 LET A% = Ré 4+ 7/

Line number 300 appends a null string to B$, which has no effect on the string A$ but causes the two strings to occupy
different storage areas.

12,5 CVT CONVERSION FUNCTIONS

The FIELD, LSET, and RSET statements allow a program to store or retrieve string data directly from an 1/O buffer.
To permit floating-point and integer values in Record 1/O files, four conversion functions are provided as described
in Table 12-3. A fifth conversion function facilitates character string manipulation.

Four of the functions do not affect the value of the data, but rather its storage format. Each character in a string
requires one byte of storage (8 bits); hence, characters may assume (decimal) values from 0 through 255 and no others.
A 16-bit quantity can be defined as either an integer or a 2-character string; 2-word floating-point numbers can equally
be defined as 4-character strings.

The CVT functions that change storage format perform two important functions: first, they permit dense packing of
data in records. For example, any integer value between -32768 and 32767 can be packed in a record in two characters
using CVT%S$; this would only be true for integers between -9 and 99 if the data were stored as ASCII characters.
Second, converting the internal numeric representation to an ASCII string (as with the NUM$ function) is a more time-
consuming process than that performed by the CVT functions. Thus, the CVT functions speed the processing of a

large amount of data within a file.

The CVT$$ function manipulates a character string and generates a new character string. This action is unlike other
CVT functions because it does not change the internal format of the data, but rather alters the contents of the string.
The output string is converted according to an integer value given by the user program and can be any value or sum of
any values listed in Table 12-3.

The value 1% in the CVT$$ function removes the parity bit (most significant bit) from each character in the string.
Under RSTS/E, characters are usually represented with no parity. All comparison of characters assume no parity.

The value 2% removes all space characters (CHR$(32)) and horizontal tab characters (CHR$(91)) from the string
while values 8%, 16%, and 128% remove only selective occurrences of space and horizontal tab characters. The termi-
nating and excess characters removed by the value 4% in the CVT$$ function usually have no informational value in a
string.

129

Record I/O

Table 12-3
CVT Conversion Functions
Function Form Operation
A$ =CVT%$ (1%) Maps an integer into a 2-character string.
1% = CVT$% (AS) Maps the first two characters of a string into an integer. If the

string has fewer than two characters, null characters are
appended as required.

A$ = CVTF$ (X) Maps a floating-point number into a 4- or 8-character string
(depending upon whether the 2-word or 4-word math pack-
age, respectively, is being used on the system). The current
math package can be determined by examining LEN(CVTF$
).

X = CVTSF (A$) Maps the first four or eight characters (depending upon
whether the 2-word or 4-word math package, respectively, is
being used on the system) of a string into a floating-point
number. If the string has fewer than the required number of
characters, null characters are appended.

T$ =CVTS$$ (S$.M%) Converts the source character string S$ to the string referenced
by the variable T$. The conversion is performed according to
the decimal value of the integer represented by M% as follows:

1% Trim the parity bit.

2% Discard all spaces and tabs.
4% Discard excess characters: CR, LF, FF, ESC,
RUBOUT, and NULL.

8% Discard leading spaces and tabs.
16% Reduce spaces and tabs to one space.
32% Convert lower case to upper case.
64% Convert [to (and] to).
128% Discard trailing spaces and tabs.
256% Do not alter characters inside quotes.

The value 32% converts all lower-case characters in a string to upper-case. This feature is valuable since some terminals
transmit both forms of alphabetic characters. The lower-case characters are between CHR$(97) and CHR$(122) and
upper-case characters are between CHR$(65) and CHR$(90).

The value 64% in the CVT$$ function enables BASIC-PLUS programs to accept the parenthesis and square bracket
characters ad delimiters of a project-programmer number. This action is desirable when handling account numbers
from terminals not having the square bracket characters since most terminal devices have the parenthesis characters.

The value 256% in the CVT$$ function forbids any alteration of characters inside quotes, except parity bit trimming --

set by M%=1%. Regardless of other values in the parameter M%, when 256% is included no operations are performed
in the source string on characters within quotes.

12-10

Record 1/0

Generally, the precedence of operations performed on the string is in increasing order of the individual values in the
parameter M%. (The 256% value, however, is the exception; its precedence ranks between 1% and 2%.) This order
implicitly determines which subsequent operations are performed on the string. For example, if the characters in the
source string have their parity bit set and the parity trimming option is not selected, subsequent comparisons
required by other options might not be successful because comparisons are made against ASCII characters with no
parity. For example, a space (SP) character, which is CHR$(32) in no parity or odd parity form, does not compare
with a space (SP) character which is CHR$ (160), its even parity form.

Keeping the parity bit in the input character of the string is important in text processing applications where the parity
bit of each character is possibly a flag rather than a parity bit. As a result, such flagged characters are not changed or
discarded if the parity trimming option is not selected.

The precedence of operations affects the result of values given in the CVT$$ function. If the values 2%, 8%, 16%, and
128% (154% or greater) are given in the CVT$$ function, the values.8%, 16%, and 128% have no effect on the output
string since the first option performed (2%) removes all space and tab characters from the string and the remaining
values dealing with space and tab characters have no effect. In like manner, the value 16% applies to all space and tab
characters not discarded by the 2% and 8% options. Accordingly, to maintain at least a single space interval in a
string, the user program must give the 16% value and omit the 2% and 8% values.

The use of the CVT$$ function in general eliminates the need for special code in BASIC-PLUS programs handling
string input. For example, the following code at lines numbered 110 through 150 manipulates an input string.

LISTNH

1 LDIM asx 1284

40 N1# = 1%

100 FRINT “TYFE THE INFUT STRINGS
NOINFUT LINE Aé%

LG Td = FNCEE(AGE)

120 DEF FNCAR(AAS)

130 CHANGE A6% TO A&
NoJdbE o= QX

140 FOR Xéz = NLX TO A&%C0%)

NOIF ASK(XEH)Y <= Z2U OR ALK CXEZ) = 934
THEN GOTO 150
ELSE D674 = Jé&X + NLZ
N ASZCIEH)Y = AGKIX6K)
150 NEXT X&x
N AGKE(OX) = &%
N CHANGE As% TO née
N FNCA&% = As%
N FNEND
160 FRINT ‘T4 = ‘7§ T4
NGO TO 100
F27E7 ENID

Revaodu

12-11

Record I/O

RUNNH

TYFE THE INFUT STRING? nEV: FILEEXT [100 » 100 J
T = DEVIFILE.EXTIL10051001

TYFE THE INFUT STRINGT ‘THE LIFE OFANAN A FEBRRLE I8 QUICK?
LIKE UNTO THE ESSENCE OF A GREEN ARROW.’

T$ = ‘THELIFEOFAFERBLEISQUICK?LIKEUNTOTHEESSENCEOFAGREENARROW, 7
TYFE THE INFUT S8TRINGE ~C

Reay

Lines 110 through 150 can be replaced by a single CVT$$ function statement at line 110 as shown in the sample code
below.

LISTNH

100 FRINT ‘TYFE THE INFUT STRING‘#
N OINFUT LLINE Ab4

116 Th = CUT$$ (A% 77)

1460 FRINT “T¢ = ‘5 T%

N GO TO 100
327867 ENI

Readcdwy

The value 7% in the CVT$$ function is the sum of 1%, 2%, and 4%. The CVT$$ function with a value 7% causes the
same results as the code of the user-defined function FNCG$. The following sample dialog shows the effect of the value
7% at line 110,

TYFE THE INFUT STRING? DEVE FILE (EXT L1001 O O 1
T = DEVIFILE.EXTL100»1001
TYFE THE INFUT STRING? ~C

The value 255% in the CVT$$ function at line 110 produces the results shown by the following sample dialog.

TYFE THE INFUT STRINGT DEV ¢ FILE JEXT L1000y 1001
T = DEVIFILE.EXT(100:100)
TYFE THE INFUT STRING? ~C

The following sample dialog shows the effect of the value 189% (1%+4%+8%+16%+32%+128%).

FRUNNH
TYFE THE INFUT STRING? HE SAIDly "I AM SURE
I « + + DON'T KNOW. ®
T$ = HE SAIDy "I AM SURE T + .« o DON'T KNOW.*®
TYFE THE INFUT STRING? ~C
12.6 EXAMPLES OF RECORD I/0 USAGE

In Figure 12-1, the device KB: is opened with the default size (128 characters) buffer length by the OPEN statement
at line 10.

12-12

Record I/0

LISTNH

10 OFEN “KE:" FOR OQUTPUT AS FILE 1%

el FIELD 4#1%Zy 10% AS A%y 10% AS Eey 10% AS C4
30 LBET A% = /12345

N ORBET B$ = ‘47890

N RSET C$ = “VWXYZ’
40 FUT #1%Zy COUNT 30%
32767 ENI1

Readw
Figure 12-1 Record I/O Example #1

The FIELD statement at line 20 defines three 10-character segments of the buffer as A$, B$, and C$. LSET at line 3G
positions “12345” in the leftmost 5 of the first 10 characters of the buffer via the pointer AS$. Similarly the second
and third 10-character pieces of the buffer are set by RSET statements. When rumn, this program generates:

RUNNH

12345 67890 VWXYZ
Ready

Note that no carriage return/line feed was output by the PUT statement. (The Monitor outputs a CR/LF sequence as
the first part of the READY message.)

Figure 12-2 is a program to move data from a file named “SNOOPY.BAS” in the system library (note the $ in the
filename) onto the line printer. Both the line printer and the disk file buffers are initialized to 512 characters. The
FIELD statements at lines 140 and 150 set A$ and B$ to refer to these buffers. Data read at line 160 is transferred to
the line printer buffer by the LSET statement (RSET would also be acceptable in this one case, since both A$ and B$
are the same length) at line 170. Then, at line 180, this data is output to the line printer. The loop terminates on end- -
file on attempting to read past the last block of the SNOOPY.BAS file via the ON ERROR GOTO mechanism. Note
that the example at the end of Section 12.3 shows a more efficient technique to do this.

LISTNH

110 OFEN “$SNOOFY.BAS‘ AS FILE 1%
120 ON ERROR GOTO 200

130 OFEN “LF:7 FOR OUTFUT AS FILE 2%y RECORDSIZE S512%
140 FIELD #1%Zy 5127 AS A%

150 FIELD #2%» S12% AS R$

160 GET #1%

170 LSET Ré = A%

180 FUT #2%

190 GOTO 160

200 CLOSE 1%y 2%

32747 ENI
Readuy
Figure 12-2 Record I/O Example #2

FIELD statements can be used to perform blocking and deblocking of records where appropriate, as in Figure 12-3.

12-13

Record I/O

100 GET #2% -
110 FOR XZ=0XZ TO 4204 STEF 80% -
120 FIELD #2%y XX AS A%y 80X AS E$
180 NEXT X% .
190 FUT #2%

Figure 12-3 FIELD Statement Example .

Figure 12-4 illustrates the use of the CVT functions to store numerical data in compact form as strings of binary types.
The tape punched by this program has each integer represented on two frames of tape. A similar program could be
written to read this binary tape.

LISTNH

100 niM AsC99%)

110 OFEN “FF:7 FOR OUTFUT AS FILE 1%y RECORDSIZE 200% -
120 FIELD #1%y 2.XI A8 Z4y 2, AB AK(I) FOR T = 0., THM 99. '
130 LBET A$(IX) = CVUTXA$CIX) FOR IX%=0Z TO 99X%

140 FUT #1Z%

ARale CLOSE 1%

327867 EEND
Reau
Figure 12-4 CVT Function Example -~

12.7 THE XLATE FUNCTION

The XLATE function is provided to translate a string from one storage code into another. For example, while reading
a magtape file, it might be necessary to translate from EBCDIC code to ASCII code so that data could be processed
by the PDP-11. The XLATE function is of the form:

XLATE (<string1>,<string2>)

For example: ﬂ\

X$ = XLATE(AS,BS$)

The first argument, <string1>>, is the source string, the second argument <lstring2>, is the table string; the string value
returned by XLATE is called the target string. Characters are taken sequentially from the source string, and the value
of each character (0 to 255) is used as an index into the table string (that is, O means the first character of the table
string, 1 means the second, etc.). The character value from the table string is appended to the target string unless the
selected character in the table string has a vaiue of O or the table string is shorter than the index value. This means that
the target string is equal to or shorter than the source string.

For example, the following program removes all characters except “0” to ““9” and changes the characters “8” and N
“9” into 6GA’7 and 6‘B’9:

12-14

Record I/O

LIGTNH
1LoO Td = QLIA3ALE7AR’
L1 T = CHR$COX) + T¢ FOR 1% = 04 TO 47

PLINE 110 PUT 08 CORRESFONDING TO CODRES O TO 47
120 INFUT &% P GET STRING TO TRANSLATE
130 FRINT XLATE(S%sT$)
327867 END

Reaciy

FUNMNH
TOLRAZASL7890 DIGITS e ABCDEFGHIJKLMNOFQRSTUVWXYZ

12345467080
Reacis

RUNNH
T OL2XXXZAARCDEQY7 JJIRKLMNGSZ789L2BNEFGHIL3L7986
LRZ4ORVEL7ARLIILIG7 A6

Readu

12-15

APPENDICES

The following pages contain a summary of the BASIC-PLUS language, the commands described in the RSTS/E System
User’s Guide, and error messages.

APPENDIX A
BASIC-PLUS LANGUAGE SUMMARY

A.1 SUMMARY OF VARIABLE TYPES

Type Variable Name Examples
Floating Point Single letter optionally followed by A
a single digit I
X3
Integer Any floating point variable name B%
followed by a % character D7%
Character String Any floating point variable name M$
followed by a $ character R1§
Floating Point Any floating point variable name S(4) E(5,1)
Matrix followed by one or two dimension N2(8) V8(3,3)
elements in parentheses
Integer Matrix Any integer variable name followed A%(2) 1%(3.5)
by one or two dimension elements E3%(4) R2%(2,1)
in parentheses
Character String Any character string variable name C$(1) S$(8,5)
Matrix followed by one or two dimension A28(8) V1$(4,2)

elements in parentheses

NOTE
When operating in EXTEND mode, the variable name
may consist of a letter, followed by O to 29 additional
characters, each a letter, digit or a dot (i.e., a period,
or point). The rules for specifying integers, strings, and
dimension elements remain the same for EXTEND

mode.

Examples

PER.DIEM.FACTOR (floating point variable)
Z% (integer valid also in NO

EXTEND)
BRANCH.CONTROL% (integer variable)
HEADING.A31.FORMS$ (string variable)
DECK.OF.CARDS$(3,12) (string array)

A-1

BASIC-PLUS Language Summary

A.2 SUMMARY OF OPERATORS
Type Operator Operates Upon

Arithmetic

Unary minus Numeric variables and constants
Exponentiation

Multiplication, division

Addition, subtraction

+ % !
D~

Relational Equals String or numeric variables and constants
Less than

Less than or equal to

Greater than

Greater than or equal to

Not equal to

Approximately equal to

(numbers)

Identically equal to (strings)

LAVVAALN
I

”v“

Logical NOT Logical negation Relational expressions composed of
AND Logical product string or numeric elements, integer vari-
OR Logical sum ables or integer valued expressions
XOR Logical exclusive or
IMP Logical implication
EQV Logical equivalence

String + Concatenation String constants and variables

Matrix +,- Addition and subtraction of Dimensioned variables. See Section 7.6.1

matrices of equal dimen- for further details.
sions, one operator per
statement

* Multiplication of con -
formable matrices

* Scalar multiplication of a
matrix, see Section 7.6.1

A.3 SUMMARY OF FUNCTIONS
Under the Function column, the functions is shown as:

Y=function
where the characters % and $ are appended to Y if the value returned is an integer or character string.
A floating value (X), where specified, can always be replaced by an integer value. An integer value (N%) can always

be replaced by a floating value (an implied FIX is done) except in the CVT%$ and MAGTAPE functions (the symbol
1% is used to indicate the necessity for an integer value).

A-2

Type

Mathematical

Print

String

BASIC PL.US Language Summary

Function

Y=ABS(X)
Y=ATN(X)
Y=COS(X)

Y=EXP(X)

Y=FIX(X)

Y=INT(X)

Y=LOG(X)

Y=LOG10(X)

Y=PI
Y=RND

Y=RND(X)

Y=SGN(X)

Y=SIN(X)
Y=SQR(X)
Y=TAN(X)

Y%=POS(X%)

Y$=TAB(X%)

Y%=ASCII(A$)

Y$=CHRS$(X%)

Y$=CVT%S$(1%)

Y$=CVTF$(X)

Explanation

Returns the absolute value of X.
Returns the arctangent (in radians) of X.

Returns the cosine of X where X is in
radians.

Returns the value of ¢™X, where
e=2.71828. ..

Returns the truncated value of X,
SGN(X)*INT(ABS(X)).

Returns the greatest integer in X which is
less than or equal to X.

Returns the natural logarithm of X,
log(e)X.

Returns the common logarithm of X,
log(10)X.

Returns the constant 3.14159. ..

Returns a random number between 0
and 1.

Returns a random number between O

and 1.

Returns the sign function of X;+ 1 if
possible, O if zero, - 1 if negative.

Returns the sine of X where X is in radians.
Returns the square root of X.

Returns the tangent of X where X is in
radians.

Returns the current position of the print
head for I/O channel X%, O is the user’s
Teletype.

Moves print head to position X% in the

current print record, or is disregarded if
the current position is beyond X%. (The
first position is counted as 0.)

Returns the ASCII value of the first
character in the string AS.

Returns a character string having the
ASCII value of X. Only one character is
generated.

Maps integer into 2-character string, see
Section 12.5.

Maps floating-point number into 4- or 8-
character string, see Section 12.5,

Type

String
cont’d.

BASIC-PLUS Language Summary

Function

Y%=CVT$%(A$)

Y=CVTS$F(AS)

Y$=CVTS$$(AS$,1%)

Y$=RADS$(N%)

Y %=SWAP%(N%)

Y$=STRING$(N1%,N2%)

Y$=LEFT(A$,N%)

Y$=RIGHT(A$,N%)

Y$=MID(A$,N1%,N2%)

Y%=LEN(AS)

Y%=INSTR(N1%,A$,B$)

Y$=SPACE$(N%)

Y$=NUM$(N%)

Y$=NUM1$(N)

A4

Explanation

Maps first two characters of string A$ into
an integer, see Section 12.5.

Maps first four or eight characters of
string AS$ into a floating-point number.
See Section 12.5.

Converts string A$ to string Y$ according
to value of 1%. See Section 12.5.

Converts an integer value to a 3-
character string and is used to convert
from Radix-50 format back to ASCII.
See the RSTS/E Programming Manual.)

Causes a byte swap operation on the two
bytes in the integer variable N%.

Creates string Y$ of length N1, composed
of characters whose ASCII decimal value
is N2. See Section 5.5.

Returns a substring of the string A$ from
the first character to the Nth character
(the leftmost N characters).

Returns a substring of the string A$ from
the Nth to the last character; the rightmost
characters of the string starting with the
Nth character.

Returns a substring of the string A$ start-
ing with the N1 and being N2 characters
long (the characters between and including
the N1 to NI+N2-1 characters).

Returns the number of characters in the
string AS, including trailing blanks.

Indicates a search for the substring B$
within the string A$ beginning at character
position N1. Returns a value 0 if B$ is not
in A$, and the character position of B$ if
B§ is found to be in A$ (character position
is measured from the start of the string).

Indicates a string of N spaces, used to
insert spaces within a character string.

Indicates a string of numeric characters
representing the value of N as it would be
output by a PRINT statement. For
example: NUM$(1.0000) = (space)1(space)
and NUMS$(- 1.0000) = - 1(space).

Returns a string of characters representing
the value of N. This is similar to the func-
tion NUMS$, except that it does not return
spaces or E-format results.

Type

String

cont’d.

System

BASIC-PLUS Language Summary

Function

Y=VAL(A$)

X$=XLATE(A$,B$)

Y$=SUMS(A$,B$)

Y$=DIFF$(AS,BS)

Y$=PRODS$(A$,BS$,P%)

Y$=QUOS(AS,BS.P%)

Y$=PLACE$(A$.,P%)

T%=COMP%(A$,B$)

Y$=DATE$(0%)

Y$=DATE$(N%)

Y$=TIMES$(0%)

A-5

Explanation

Computes the numeric value of the string
of numeric characters AS$. If A$ contains
any character not acceptable as numeric
input with the INPUT statement, an error
results. For example:

VAL(“15”)=15

Translate A$ to the new string Y$ by
means of the table string B$.

Returns a numeric string equal to the
arithmetic sum of numeric strings A$ and
BS.

Returns a numeric string equal to the
arithmetic difference A$~B$ of numeric
strings A$ and BS.

Returns a numeric string equal to the
product of numeric strings A$ and BS,
rounded or truncated to P% places.

Returns a numeric string equal to the
arithmetic quotient A$/B$ of numeric
strings A$ and B$, rounded or truncated
to P% places.

Returns a numeric string equal to the
numeric string A, ronnded or truncated

to P% places.

Returns a value reflecting the result of an
arithmetic comparison between numeric
strings A§ and B$; T% = -1 for A<B, O for
A=B and 1 for A>B.

Returns the current date in the following
format:

02-Mar-71
Returns a character string corresponding
to a calendar date as follows:
N=(day of year)+[(number of
years since 1970)*1000]
DATE$(1) =*01-Jan-70”
DATES$(125) = “05-May-70"
Returns the current time of day as a
character string as follows:

TIMES$(0)=05:30 PM”
or“i17:30 »

BASIC-PLUS Language Summary

Type Function
System Y$=TIMES$(N%)
cont’d.

Y=TIME(0%)

Y=TIME(1%)

Y=TIME(2%)

Y=TIME(3%)

Y=TIME(4%)

Y7%=STATUS

Y%=BUFSIZ(N)

Y%=LINE

Y%=ERR

Y%=ERL

Matrix MAT Y=TRN(X)

MAT Y=INV(X)

Explanation

Returns a string corresponding to the
time at N minutes before midnight. For
example:

TIME$(1)=11:59 PM”
or “23:59
TIMES(1440)=*12:00 AM”
or “00:00 ”

TIME$(721)=“11:59 AM”
or“11:59 ~

Returns the clock time in seconds since
midnight, as a floating-point number.

Returns the central processor time used
by the current job in tenths of seconds.

Returns the connect time (during which
the user is.Jogged into the system) for
the current job in minutes.

Returns to Y the decimal number of kilo-
core ticks (KCT’s) used by this job.
See Section 8.8.

Returns to Y the decimal number of
minutes of device time used by this job.
See Section 8.8.

Returns to Y% the status of the OPEN
statement executed most recently. See
Section 12.3.5.

Returns to Y% the buffer size of the
device or file open on channel N. See
Section 12.3.4.

Returns to Y% the line number of the
statement being executed at the time of
an interrupt. See Section 4.5.

Returns value associated with the last
encountered error if an ON ERROR
GOTO statement appears in the pro-
gram. See Section 8.4.

Returns the line number at which the last
error occurred if an ON ERROR GOTO
statement appears in the program. See
Section 8.4.3.

Returns the transpose of the matrix X.
See Section 7.6.2.

Returns the inverse of the matrix X.
See Section 7.6.2.

BASIC-PLUS Language Summary

Type Function Explanation
Matrix
cont’d. Y=DET Following an INV(X) function evaluation,

the variable DET is equivalent to the
determinant of X.

Y%=NUM : Following input of a matrix, NUM con-
tains the number of rows input, or in the
case of a 1-dimensional matrix, the
number of elements entered.

Y%=NUM2 Following input of a matrix, NUM2
contains the number of elements entered
in that row.

Returns the number of characters read
following every input operation. Used
primarily with non-file-structured
devices. See Section 12.3.1.

Input/Output Y%=RECOUNT

A.4 SUMMARY OF BASIC-PLUS STATEMENTS

The following summary of statements available in the BASIC-PLUS language defines the general format for the state-
ment as a line in a BASIC program. If more detailed information is needed, the reader is referred to the section(s) in
the manual dealing with that particular statement.

In these definitions, elements in angle brackets are necessary elements of the statement. Elements in square brackets
are necessary elements of which the statement may contain one. Elements in braces are optional elements of the
statement.

The various elements and their abbreviations are described below:

variable or var Any legal BASIC variable as described in A.l or Section 2.5.2.

line number Any legal BASIC line number described in Section 2.2.

expression or expr
message
condition or cond

constant

argument(s) or arg
statement
string

protection

value(s)
list

dimension(s)

Any legal BASIC expression as described in Section 2.5.
Any combination of characters.
Any logical condition as described in Section 3.5.

Any acceptable integer constant (need not contain a %
character).

Dummy variable names.
Any legal BASIC-PLUS statement.
Any legal string constant or variable as described in Section 5.1.

Any legal protection code, as described in the RSTS/E System
User’s Guide.

Any floating point, integer, or character string constant.
The legal list for that particular statement.

One or two dimensions of a matrix, the maximum dimension(s)
for that particular statement.

A7

BASIC-PLUS Language Summary

Manual
Statement Formats and Examples Section
REM
line number REM <message> 3.1
line number <statement> !<message>
100 REM THIS TS A COMMENT
110 PTHIS T8 ANOTHER FORM OF COMMENT
120 FRINT V' FERFORM A& CRALF
LET
line number {LET}<var> ,<var><var>... = <exp> 3.2
110 LET AZ = 40% \ B=22
126 CrF1sVC0) = O IMULTIFLE ASSTGNMENT
DIM
line number DIM <var(dimension(s))> 3.6.2
7.1
30 DIM AC20)y BE(EsE) s CH9P)
line number DIM #<constant>,<var(dimension(s))>=<constant> 11.1
70 DIM #4y ABCL00) = 32 RIHOLH0)
RANDOMIZE
line number RANDOMIZE 3.74
40 RANIIOM
100 RANDOMIZE
IF-THEN, IF-GOTO
THEN<Sstatement>
line number IF <cond>{ THEN<line number> 3.5
GOTO<line number>
wa IF axB OR B:C THEN FRINT ‘N0
b IF FNAR)Y = R THEN 250
20 IF Lo« X™2% AND L= 0. GOTO 345
IF-THEN-ELSE
THEN<Statement> 5
line number IF <cond>| THEN<line number> Eizgzlﬂ atementt)>> 8.5
GOTO<line number> ([ne number.
1060 IF B = & THEN FRINT ‘EQUAL‘ ELSE FRINT “NOT EQUAL 7
110 IF A == N THEN 200 ELSE FRINT A \ STORF

120 IF FNA(R)Y = R
THEN GO TO 260
ELSE LET B = B+FNACRL)
NGO TO 370

A-8

BASIC-PLUS Language Summary

Statement Formats and Examples

FOR
line number FOR <var>=<exp>TO<exp> | STEP<exp>}
200 FOR T=2 T0O 40 STEF 2
320 FOR T#Z=0% TO Té&x STERP IX
410 FOR N=& T0O (G 4+ 8174
NEXT
line number NEXT <var>
4460 NEXT T
AH5 NEXT N#
FOR-WHILE, FOR-UNTIL _
line number FOR <var> = <exp> STEP< WHILE <cond>
] r var> = <exp exp> UNTIL | <¢
450 FOR I=1., STEF 3. WHILE I<X
470 FOR NZ = 24 STEF 47 UNTIL NX=AX OR NA=RX
SO0 FOR B = 0, STEF B+L. UNTIL BRI
EXTEND
line number EXTEND
10 EXTEND TPROGRAM IN EXTEND MODE
NO EXTEND
line number NO EXTEND
110 NOEXTEND
110 NO EXTEND
DEF, single line
line number DEF FN<var> (arg) = <exp(arg)>
1320 DEF FNA(X:YeZ) = BARX™2% + Y72RE + 2724
DEF, multiple line
line number DEF FN<var>(arg)
<statements>
line number FN<var> = <exp>
line number FNEND
300 LEF FNF (M%) FFACTORIAL FUNCTION

310 IF Mx=0% OR MA=1X%

THEN FNF=1%

ELSE FNF=MAKFNF (MA-1%4)
320 FNEND

A-9

Manual
Section

3.6.1

3.6.1

8.6

2.1

2.1

3.7.3
5.5.1

6.4

3.7.5
5.5.1
6.4
8.1

BASIC-PLUS Language Summary

Manual -
Statement Formats and Examples Section
GOTO
line number GOTO <line number> 34
100 GOTO 150
ON-GOTO
line number ON <exp> GOTO <list of line numbers> 8.2
150 ON XZ GOTO 1705704302300
GOSUB
line number GOSUB <line number> 3.8.1
1920 GOSUR 2000 -~
ON-GOSUB
line number ON <exp> GOSUB <list of line numbers>> 8.3
230 ON FNCOM)Y GOSUR 2000524003000
RETURN
line number RETURN 3.8.2
370 RETURN -~
CHANGE 5.2
. <array name>> <string var>
line number CHANGE [<string var> J T0 [<array name>]
300 CHANGE A% TO X
450 CHANGE F1 TO Fi$
OPEN -~
line number OPEN<string> FOR {gg'l['}li}T} AS FILE <exp> 9.2
{ RECORDSIZE<exp>} { CLUSTERSIZE <exp> } { MODE<exp>} 12.1
100 OFEN ‘PP FOR QUTFUT AS FILE B1X%
120 OFEN ‘FOO‘ AS FILE 3
140 OFEN ‘DT4:0ATA. TR FOR INFUT AS FILE 10
CLOSE 9.3
line number CLOSE <list of exp> 122
780 CLOSE 2%
P20 CLOSE 11y 3y NI
!

A-10

BASIC-PLUS Language Summary

Manual
Statement Formats and Examples Section
READ 3.3.1
line number READ <list of variables> 5.3
6.3
110 READ Ay Bes FlAy BOIY) $R2 10.1
DATA 3.3.1
line number DATA <list of values> 5.3
6.3
1300 DATA 4.3y "STRING*y 1021000y 1.405EY
RESTORE 3.3.1
line number RESTORE 10.2
130 RESTORE
PRINT 3.3.2
line number PRINT {#<exp>,}<list> 5.4
6.3
130 FRINT LGENERATES CR/LF i] 10.3
170 FRINT “REGINNING OF OUTPUT:ZilyAXI 10.3.1
240 FIRINT #4y “QUTFUT TO DEVICE’ $NZ 10.3.2
260 FRINT “TITLE: “3Tky ‘REF. #75R%
PRINT USING
line number PRINT {#<exp>,}USING <string>, <list> 10.3.3
540 FRINT USING “##.H%%F AN
680 FRINT %7y USING BérAyReC
INPUT 3.3.3
line number INPUT {#<exp>,}<list> 5.3
6.3
146G INFUT “TYFE YOUR NAME “yA%$ 10.4
180 INFUT #8y ArNy I 10.4.1
INPUT LINE 53.1
line number INPUT LINE {#<exp>,}<string>
120 INPUT LLINE R%
190 INFUT LINE #1sE%
NAME-AS
line number NAME <string> AS <string> 94
45% NAME NONAME A% FILEL<48x ’* N
PEO NAME "HT4IMATRIX" A8 ‘MATAL=48:7

A-11

BASIC-PLUS Language Summary

Manual
Statement Formats and Examples Section
KILL 9.5
line number KILL <string>
1920 KILL “NONAME
ON ERROR GOTO 8.4
line number ON ERROR GOTO <line number>
100 ON ERRGOR GOTO 2000
110 ON ERROKR GO 70 IDEISARLES ERROR ROUTINE
111 ON ERROR GOTO 0O INISARLES ERROR ROUTINE
RESUME 8.4.1
line number RESUME <line number>
1000 RESUME TEQUIVALENT TO RESUME O
660 RESUME 200 FGFECIFY RESUMFTION FOINT
CHAIN
line number CHAIN <string> {<exp>:> 9.6
440 CHAIN ‘PROG2
$EH0 CHAIN PROGZ 78
&670 CHAIN "FROG3" &
STOP
line number STOP 3.9
450 STORP
END
line number END 3.9
I_7E7 ENI
Matrix Statements
MAT READ 7.2
line number MAT READ <list of matrices>
150 DIM AC20)y BHI32)y CACLS10)
220 MAT READ Ay B$2EH)» CX
MAT PRINT 7.3
line number MAT PRINT {#<exp>,} <matrix name> 1034
1350 DIM ACR0)y BACLGS30)
190 MAT FRINT Ay TRPRINT 20 ELEMENTS FIVE TO A LINE
220 MAT FRINT BH(1O»25)% FRPRINT 10-BY~25 SURSET
OF BZ%Z» PACKED
270 MAT FRINT $#2y A TRFRINT ON QUTFUT CHANNEL 2
A-12

MAT INPUT

BASIC-PLUS Language Summary

Statement Formats and Examples

line number MAT INPUT {#<exp>,} <list of matrices>

100
110
120

MAT Initialization

NIM REC40)y FLACID)

OFEN

0T

BIF0O07 FOR INFUT A8

MAT INFUT #3y R4y FILZ

ZER

line number MAT <matrix name>= |CON %(dimension(s))}

100
110
120
130

IDN

DIM BC1Sy100y ACLO)y CH(H)

MAT
MAT R
MAT R

CON
INNCLO»10)
ZER(NyM)

Statement Modifiers (can be used in immediate mode)

<statement> IF <condition>

FRINT T4 IF TX:=T1X

<statement> UNLESS <condition>

FRINT A% UNLESHE YX<I0X

<statement> FOR <var>=<exp> TO <lexp> STEP <exp>

LET RB$(I%) = CH(EZ) FOR 1% =

READ

)

<statement> WHILE <condition>

IF

G10
UNLESS

340
FOR

173

190
WHILE

230
UNTIL

Manual
Section

7.4
104.1

FILE 3%

7.5

8.7.1

8.7.2

8.7.3

12 T0 Jix

2y FOR Y% = 04 TO 204 STEF I357

8.7.4

LET ACIX) = FNX(IZ) WHILE A<40.3

<statement> UNTIL <condition>

1060

System Statements

IF B <

8.7.5

O THEN ACLZ) = B UNTIL IX » K

line number SLEEP <expression>

260

SLEEF

20

HNIsSMIss JOR

A-13

8.8

FOR 20 SECONDS

BASIC-PLUS Language Summary

Statement Formats and Examples
line number WAIT <expression>
G20 WATT AX + 5%

Record I/O Statements
line number LSET <string var> ,<string var> = <string>>

200 LSET B4 = “XYZ’
line number RSET <string var> , <string var> = <string>
250 ROEET G = "47890"
line number FIELD# <expr>,<expr> AS <string var> ,<expr> AS <string var>
710 FIELD $2%y 10X AS A%y 204 A5 RBY
line number GET# <expr> ,RECORD<expr>
140 GET #1%Zy RECORD 99%
line number PUT# <expr> ,RECORD <expr> ,COUNT<expr>

I90 FUT 417y COUNT 80%

A-14

Manual
Section

8.8

12.4.3

12.4.2

12.3

12.3

APPENDIX B
BASIC-PLUS COMMAND SUMMARY

This appendix describes briefly those RSTS/E commands used most frequently by BASIC-PLUS users. It is intended as
an introductory summary; its purpose is to help BASIC-PLUS learners begin programming at the terminal before having
studied the RSTS/E System User’s Guide in detail.

Section in
RSTS/E System
Command Explanation User’s Guide
APPEND Used to include contents of a previously saved source program in 9.14
current program.
ASSIGN Used to reserve an I/O device for the use of the individual issuing the 5.1
command. The specified device can then be given commands only 5.4
from the job which issued the ASSIGN. Also establishes a logical name 6.1
for a device, establishes an account for the @ character, and establishes
a default protection code.
ATTACH Attaches a detached job to the current terminal. 14.1
BYE Indicates to RSTS/E that a user wishes to leave the terminal. Closes 2.3
and saves any files remaining open for that user.
After the user types BYE, the system responds:
Confirm:
At this point the user has five options:
? Requests information on valid responses to the
“Confirm” prompt.
Y Requests normal logout.
N Requests no logout; effectively negates the BYE
command.
I Requests an opportunity to delete files
individually prior to logout.
F Fast logout.
If BYE is followed immediately with one of the valid responses, the
“Confirm” prompt is not printed.
CAT Returns the user’s file directory. Unless another device is specified 8.9
CATALOG following the term CAT or CATALOG, the disk is the assumed device.
CCONT For privileged users. Same as CONT command, but detaches job from 10.2.3
terminal.
COMPILE Allows the user to store a compiled version of his BASIC program. The 8.4.3

file is stored on disk with the current name and the extension .BAC. Or,
a new file name can be indicated and the extension .BAC will still be
appended.

B-1

Command

CONT

DEASSIGN

DELETE

EXTEND

HELLO

KEY

LENGTH

LIST

LISTNH

LOGIN

BASIC-PLUS Command Summary

Explanation

Allows the user to continue execution of the program
currently in memory following the execution of a STOP
statement.

Used to release the specified device for use by others. If no
particular device is specified, all devices assigned to that terminal
are released. An automatic DEASSIGN is performed when the BYE
command is given. Also releases any logical name for a device.

Allows the user to remove one or more lines from the program
currently in memory. Following the word DELETE the user
types the line number of the single line to be deleted or two line
numbers separated by a dash (—) indicating the first and last line
of the section of code to be removed. Several single lines or line
sections can be indicated by separating the line numbers, or

line number pairs, with a comma.

Allows the user to include Extend Mode features in programs
and to execute programs that include Extend Mode features.
The system default is No Extend Mode following log-in, and
remains so until an EXTEND command changes mode. Either
mode condition can be overridden at the program level.

Indicates to RSTS/E that a user wishes to log onto the system.
Allows the user to input project-programmer number and pass-
word. Also attaches a detached job to the current terminal or
changes accounts without having to log off the system

Used to re-enable the echo feature on the user terminal
following the issue of a TAPE command. Enter with LINE
FEED or ESCAPE key.

Returns the length of the user’s current program in core, in 1K
increments, along with the maximum size. If the current program
is between 6K and 7K, for instance, and the maximum size is
16K, the following message appears:

7(16)K of memory used

Allows the user to obtain a printed listing at the user terminal of
the program currently in memory, or one or more lines of that
program. The word LIST by itself will cause the listing of the
entire user program. LIST followed by one line number will list
that line; and LIST followed by two line numbers separated by

a dash (—) will list the lines between and including the lines
indicated. Several single lines or line sections can be indicated by
separating the line numbers, or line number pairs, with a comma.

Same as LIST, but does not print header containing the program
name and current data.

Same as HELLO.

B-2

Section in
RSTS/E System
User’s Guide

10.2.2

5.2
543
544

5.7

9.1.2

9.2.1

2.2
14.1.1

58.2

8.8

9.1.1

14.1.1

Command

MOUNT

NEW

NO EXTEND

OLD

REASSIGN
RENAME

REPLACE

RUN

RUNNH

BASIC-PLUS Command Summary

Explanation

Allows user to logically mount a disk pack during timesharing.
This command specifies the physical device name and pack
identification label.

Clears the user’s area in memory and allowsthe user to input a
new program from the terminal. A program name can be indicated
following word NEW or when the system requests it.

Negates any previous EXTEND command, placing the system
default in No Extend Mode. Extend Mode features are no longer
available unless the program includes an EXTEND statement to
override system default.

Clears the user’s area in memory and allows the user to recall a
saved program from a storage device. The user can indicate a
program name following the word OLD or when the system
requests it. If no device name is given, the file is assumed to be on
the public structure. A device specification without a filename
will cause a program to be read from an input-only device (such
as high-speed reader, card reader). The default filename extension
is .BAS.

Transfers control of a device to another job.

Causes the name of the program currently in memory to be changed
to the name specified after the word RENAME.

Same as SAVE, but allows the user to substitute a new program
for an old program with the same name, erasing the old program.

Allows the user to begin execution of the program currently in
memory. The word RUN can be followed by a filename in which
case the file is loaded from the public structure, compiled (if
necessary), and run; alternatively, the device and filename can be
indicated if the file is not on the public structure. A device
specification without a filename will cause a program to be read
from an input only device (such as high-speed reader, card
reader). The default filename extension is .BAS.

Causes execution of the program currently in memory but header
information containing in program name and current data is not
printed. If a filename is used, the command is executed as if no
filename were given. The default filename extension is .BAS.

B-3

Section in
RSTS/E System
User’s Guide

5.6.11

8.1.1

9.2.1

8.3

53
8.5

8.6

8.4

8.4

Command

SAVE

SCALE

TAPE

UNSAVE

BASIC-PLUS Command Summary

Explanation

Causes the program currently in memory to be saved on the public
structure under its current filename with the extension .BAS.
Where the word SAVE is followed by a filename or a device

and a filename, the program in memory is saved under the name
given and on the device specified. A device specification without

a filename will cause the program to be output to any output

only device (line printer, high-speed punch). The default filename
extension is .BAS.

Sets the scale factor to a designated value or prints the value(s)
currently in effect if no value is designated.

Used to disable the echo feature on the user terminal while reading
paper tape via the low-speed reader.

The word UNSAVE is followed by the filename, and optionally,
the extension of the file to be removed. The UNSAVE command
cannot remove files without an extension. If no extension is
specified, the source (.BAS) file is deleted. If no device is
specified, the public structure is assumed.

Special Control Character Summary

CTRL/C

CTRL/O
CTRL/Q

CTRL/S

CTRL/U

CTRL/Z

ESCape or
ALT MODE
Key

LINE FEED
Key
RETURN
Key
RUBOUT
Key

TAB or
CTRL/I

FORM FEED
or CTRL/L

Causes the system to return to BASIC command mode to allow
for issuing of further commands or editing. Echoes on terminal as

~

C.

Used as a switch to suppress/enable output of a program on the
user terminal. Echoes as "O.

When generated by a device on which a CTRL/S has interrupted
output, causes computer to resume output at the next character.

When generated by a device for which STALL characteristics
are set, interrupts computer output on the device until either
CTRL/Q or another character is generated.

Deletes the current typed line, echoes as “U and performs a
carriage return/line feed.
Used as an end-of-file character.

Enters a typed line to the system, echoes on the user terminal as
a $ character and does not cause a carriage return/line feed.

Used to continue the current logical line on an additional
physical line. Performs a line feed/carriage return operation.

Enters a typed line to the system, results in a carriage return/line
feed operation at the user terminal.

Deletes the last character typed on that physical line. Erased
characters are shown on the teleprinter between backslashes.

Performs a tabulation to the next tab stop (eight spaces apart) of
the terminal printing line.

Enters a typed line to the system, results in a form feed operation
at the terminal.

Section in A,
RSTS/E System -
User’s Guide

8.2

8.10

5.8.1

59.1
103 -~

592
10.3
593

59.3

9.1.3.2

594
596
9.22.2
595
9.1.3.1

9223

APPENDIX C
ERROR MESSAGES

Messages in RSTS/E are generated for BASIC-PLUS errors! and RSTS/E errors. To avoid confusion, both types of
messages are called RSTS/E error messages and are described as one set. The BASIC-PLUS errors cover compiler and
run time conditions such as a violation of the syntax rules (SYNTAX ERROR) and referencing an element of an
array beyond the defined limits (SUBSCRIPT OUT OF RANGE). The RSTS/E errors involve operating system con-
ditions such as failing to locate the file or account specified (CAN’T FIND FILE OR ACCOUNT) and requesting the
hardware to perform a function for which it is not ready (DEVICE HUNG OR WRITE LOCKED).

In most cases, if no error trapping is being done (that is,an ON ERROR GOTO statement is not in effect), BASIC-
PLUS stops running the program. It prints the error message and the line number of the BASIC-PLUS statement that
was being executed when the error occurred. The following sample printout shows the procedure.

10 OFEN “Z‘ FOR INFUT A8 FILE 1%
RUNNH
TCAN'T FIND FILE OR ACCOUNT AT LLINE 10

READY
As the READY message indicates, control returns to the system.

An exception to this procedure occurs when an INPUT statement is being executed at the job’s console terminal
and error trapping is not in effect. The system generates the error message and executes the statement again as shown
in the sample printout below.

10 ON ERROR GOTO O N\ INFUT “INTEGER VALUE’{AX
RUNNH

INTEGER VALUE? C

Z0ATA FORMAT ERROR AT LINE 10

INTEGER VALUE®?

With error trapping disabled at line 10, an invalid response to the INPUT statement causes the system to print the
error message, clear the error condition, and execute the statement again.

Associated with each message is an error variable called ERR. Whenever an error occurs with trapping in effect, the
system checks the error variable which is a decimal number in the range 0 to 127. An error with a number between

1 and 70 causes the system to transfer control to the line number indicated in the ON ERROR GOTO statement.
The system does not print the error message. The user program is able to check the ERR variable and perform a
recovery procedure. If the error number is between 71 and 127, the system does not transfer control to the recovery
routine but prints the message and returns control to the system. (Error number 0 is reserved to identify the system
installation name.)

Because a BASIC-PLUS program can recover from certain errors, this appendix lists errors in two categories — re-
coverable and non-recoverable. The recoverable error messages are listed in ascending order of their related error
numbers. A program can use these error numbers to differentiate errors. Non-recoverable errors are in alphabetical
order without error numbers because a program can not use these numbers in an error handling routine.

1Different messages are generated while a job is operating under run-time systems other than BASIC-PLUS. Such run-time systems
are those for COBOL and FORTRAN-IV. For these error messages, consult the appropriate User’s Guides.

C-1

Error Messages

The first character position of each.message indicates the severity of the error. Table C-1 describes this standard.

Table C-1 Severity Standard in Error Messages

Character Severity Meaning

% Warning Execution of the program can continue but
may not generate the expected results.

? Fatal Execution cannot continue unless the user
removes the cause of the error.

Information A message beginning with neither a question
mark nor a percent is for information only.

The severity indication is useful for utility programs such as BATCH which examines system output.

In the descriptions of error messages, certain abbreviations, as shown in Table C-2, denote special characteristics of
the error.

Table C-2 Special Abbreviations for Error Descriptions

Abbreviation Meaning

© Continue. If an ON ERROR GOTO statement is not in effect,
execution continues but with the conditions described.

(SPR) Software Performance Report. This error should occur only under
the conditions described. If it occurs under any other conditions,
the user should file an SPR with DIGITAL and document the con-
ditions under which the error occurred.

An error whose description is accompanied by the abbreviation (C) indicates an exception to the error trapping pro-
cedure. If suchan error occurs in a program with no error trapping in effect, BASIC-PLUS prints the error message
and line number but continues running the program. The following sample printout shows the procedure.

100 ON ERROR GOTO O \ AZ = 32768,
200 FRINT AXZ

RUNNH
ZINTEGER ERROR AT LINE 100

0

READY

The INTEGER ERROR is generated at line 100 by the attempt to compute a value outside the range for integers.
After the error message is printed, processing continues but with the conditions described in the error meaning. 0 is

substituted for the erroneously computed value.

The number of RSTS/E error messages is restricted to 127. Because of this restriction, certain error messages have
multiple meanings. The specific meaning of an error message depends on the operation being performed when the
error condition occurs. For example, if the system attempts a file access and the designated file can not be located,
RSTS/E generates the CAN’T FIND FILE OR ACCOUNT error (ERR=5). That same error condition, however,

C-2

Error Messages

applies to other, generically similar access operations. Thus, if a program attempts to send a message to another
program and the proper entry is not found in the system table of eligible receivers, RSTS/E returns error number
5. Though the second failure does not involve a file access error, it too is classified as an access failure.

Certain RSTS/E errors, although classified as user recoverable, are not capable of being trapped by a program.
Table C-3 lists such errors.

Table C-3 Non-Trappable Errors in Recoverable Class

ERR Message Printed
34 RESERVED INSTRUCTION TRAP
36 SP (R6) STACK OVERFLOW
37 DISK ERROR DURING SWAP
38 MEMORY PARITY FAILURE

These errors involve special conditions which a user program cannot control and which ought not to occur on a
normal system. For example, the DISK ERROR DURING SWAP error indicates a hardware problem. The system
does not return control to the program. The error condition itself, however, can be either transient or recurring.
Such errors should be brought to the attention of the system manager for further investigation. These errors are
recoverable in the strict sense that the monitor can take corrective action but the BASIC-PLUS run-time system
does not return control to the user program.

C.1 USER RECOVERABLE
ERR Message Printed Meaning

0 (system installation name) The error code 0 is associated with the system installation name and
is used by system programs to print identification lines.

1 ?Bad directory for device The directory of the device referenced is in an unreadable format. The
magtape label format on tape differs from the system-wide default
format, the current job default format, or the format specified in the
OPEN statement. Use the ASSIGN command to set the correct format
default or change the format specification in the MODE option of the
OPEN statement.

2 Mllegal file name The filename specified is not acceptable. It contains unacceptable char-
acters or the filename specification format has been violated. The CCL
command to be added begins with a number or contains a character
other than A through Z, 0 through 9 and commercial at (@).

3 ?Account or device in use Reassigning or dismounting of the device cannot be done because the
device is open or has one or more open files. The account to be de-
leted has one or more files and must be zeroed before being deleted.
The run time system to be deleted is currently loaded in memory and
in use. Output to a pseudo keyboard cannot be done unless the device
is in KB wait state. An echo control field cannot be declared while
another field is currently active. The CCL command to be added al-
ready exists.

ERR

10

11

12

13

14

15

16

Message Printed

?No room for user on device

?Can’t find file or account

?Not a valid device

?1/0 channel already open

?Device not available

?1/0 channel not open

?Protection violation

?7End of file on device

?Fatal system 1/0 failure

?User data error on device

?Device hung or write locked

?Keyboard WAIT exhausted

?Name or account now exists

Error Messages

Meaning P

Storage space allowed for the current user on the device specified has
been used or the device as a whole is too full to accept further data.

The file or account number specified was not found on the device
specified. The CCL command to be deleted does not exist. N

The device specification supplied is not valid for one of the following
reasons. The unit number or its type is not configured on the system.
The specification is logical and untranslatable because a physical device
is not associated with it.

An attempt was made to open one of the twelve I/O channels which
had already been opened by the program. (SPR)

The specified device exists on the system but a user’s attempt to

ASSIGN or OPEN it is prohibited for one of the following reasons. -
The device is currently reserved by another job. The device requires

privileges for ownership and the user does not have privilege. The device

or its controller has been disabled by the system manager. The device

is a keyboard line for pseudo keyboard use only.

Attempt to perform I/O on one of the twelve channels which has not
been previously opened in the program.

The user was prohibited from performing the requested operation be- e N
cause the kind of operation was illegal (such as input from a line print-

er) or because the user did not have the privileges necessary (such as

deleting a protected file).

Attempt to perform input beyond the end of a data file; or a BASIC
source file is called into memory and is found to contain no END
statement.

An I/O error has occurred on the system level. The user has no guaran- -,
tee that the last operation has been performed. This error is caused by :
hardware condition. Report such occurrences to the system manager.

(See the discussion at beginning of appendix.)

One or more characters may have been transmitted incorrectly due to
a parity error, bad punch combination on a card, or similar error.

User should check hardware condition of device requested. Possible
causes of this error include a line printer out of paper or high-speed
reader being off-line.

Time requested by WAIT statement has been exhausted with no input
received from the specified keyboard.

An attempt was made to rename a file with the name of a file which

already exists, or an attempt was made by the system manager to in- -
sert an account number which is already within the system. R

c4

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Message Printed

?Too many open files on unit

Mllegal SYS() usage

9Disk block is interlocked

9Pack IDs don’t match

9Disk pack is not mounted
?Disk pack is locked out

Mllegal cluster size

?Disk pack is private
?Disk pack needs ‘CLEANing’
?Fatal disk pack mount error

/0 to detached keyboard

7Programmable 4C trap

?Corrupted file structure

?Device not file structured

Mllegal byte count for I/O

?No buffer space available

Error Messages

Meaning

Only one open DECtape output file is permitted per DECtape drive.
Only one open file per magtape drive is permitted.

Illegal use of the SYS system function.

The requested disk block segment is already in use (locked) by some
other user.

The identification code for the specified disk pack does not match the
identification code already on the pack.

No disk pack is mounted on the specified disk drive.

The disk pack specified is mounted but temporarily disabled.

The specified cluster size is unacceptable. The cluster size must be a
power of 2. For a file cluster, the size must be equal to or greater than
the pack cluster size and must not be greater than 256. For a pack
cluster, the size must be equal to or greater than the device cluster size
and must not be greater than 16. The device cluster size is fixed by type.

The current user does not have access to the specified private disk pack.
Non-fatal disk mounting error; use the CLEAN operation in UTILTY.
Fatal disk mounting error. Disk cannot be successfully mounted.

I/0 was attempted to a hung up dataset or to the previous, but now
detached, console keyboard for the job.

A CTRL/C combination was typed while an ON ERROR GOTO state-
ment was in effect and programmable CTRL/C trapping was enabled.

Fatal error in CLEAN operation.

An attempt is made to access a device, other than a disk, DECtape, or
magtape device, as a file-structured device. This error occurs, for ex-
ample, when the user attempts to gain a directory listing of a non-
directory device.

The buffer size specified in the RECORDSIZE option of the OPEN
statement or in the COUNT option of the PUT statement is not a multi-
ple of the block size of the device being used for 1/0, or is illegal for the
device. An attempt is made to run a compiled file which has improper
size due to incorrect transfer procedure.

The user accesses a file and the monitor requires one small buffer to
complete the request but one is not currently available. If the program
is sending messages, two conditions are possible. The first occurs when
a program sends a message and the receiving program has exceeded the
pending message limit. The second occurs when a sending program
attempts to send a message and a small buffer is not available for the
operation.

C-5

ERR

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

Message Printed

?PUNIBUS timeout fatal trap

?Reserved instruction trap

?Memory management violation

7SP (R6) stack overflow

Disk error during swap

MMemory parity failure

?Magtape select error

?Magtape record length error

?Non-res run-time system

?Virtual buffer too large

?Virtual array not on disk

?Matrix or array too big

?Virtual array not yet open

Mllegal 1/O channel

?Line too long

%Floating point error

Error Messages

Meaning

This hardware error occurs when an attempt is made to address non-
existent memory or an odd address using the PEEK function. An
occurrence of this error message in any other case is cause for an SPR.

An attempt is made to execute an illegal or reserved instruction or an
FPP instruction when floating point hardware is not available. (See
discussion at beginning of appendix.)

This hardware error occurs when an illegal Monitor address is specified
using the PEEK function. Generation of the error message in situations
other than using PEEK is cause for an SPR.

An attempt to extend the hardware stack beyond its legal size is en-
countered. (See discussion at beginning of appendix.) (SPR)

A hardware error occurs when a user’s job is swapped into or out of
memory. The contents of the user’s job area are lost but the job re-
mains logged into the system and is reinitialized to run the NONAME
program. Report such occurrences to the system manager. (See dis-
cussion at beginning of appendix.)

A parity error was detected in the memory occupied by this job. (See
discussion at beginning of appendix.)

When access to a magtape drive was attempted, the selected unit was
found to be off line.

When performing input from magtape, the record on magtape was
found to be longer than the buffer designated to handle the record.

The run time system referenced has not been loaded into memory and
is therefore non-resident.

Virtual core buffers must be 512 bytes long.

A non-disk device is open on the channel upon which the virtual array
is referenced.

In-core array size is too large.

An attempt was made to use a virtual array before opening the corre-
sponding disk file.

Attempt was made to open a file on an I/O channel outside the range
of the integer numbers 1 to 12.

Attempt to input a line longer than 255 characters (which includes
any line terminator). Buffer overflows.

Attempt to use a computed floating point number outside the range
1E-38 <n <1E38 excluding zero. If no transfer to an error handling
routine is made, zero is returned as the floating point value. (C)

C-6

ERR

49

50

51

52

53

54

55

56

57

58

59

60

61

63

64

Message Printed

%Argument too large in EXP

%Data format error

%Integer error

Mllegal number

%lllegal argument in LOG

%Ilmaginary square roots

?Subscript out of range

?Can’t invert matrix
?0ut of data

70N statement out of range

?Not enough data in record

?Integer overflow, FOR loop

%Division by 0

?No run-time system

?FIELD overflows buffer

?Not a random access device

Error Messages

Meaning

Acceptable arguments are within the approximate range - 89<arg<+88.
The value returned is zero. (C)

A READ or INPUT statement detected data in an illegal format. For
example, 1..2 is an improperly formed number, and 1.3 is an improp-
erly formed integer, and X” is an illegal string. (C)

Attempt to use a computed integer outside the range -32768<n<32767.
For example, an attempt is made to assign to an integer variable a
floating point number outside the integer range. If no transfer to an
error handling routine is made, zero is returned as the integer value. ©

Integer overflow or underflow or floating point overflow. The range
for integers is - 32768 to +32767; for floating point numbers, the upper
limit is 1E38. (For floating point underflow, the FLOATING POINT
ERROR (ERR=48) is generated.)

Negative or zero argument to LOG function. Value returned is the
argument as passed to the function. (C)

Attempt to take square root of a number less than zero, The value re-
turned is the square root of the absolute value of the argument. (C)

Attempt to reference an array element beyond the number of elements
created for the array when it was dimensioned.

Attempt to invert a singular or nearly singular matrix.
The DATA list was exhausted and a READ requested additional data.

The index value in an ON-GOTO or ON-GOSUB statement is less
than one or greater than the number of line numbers in the list.

An INPUT statement did not find enough data in one line to satisfy
all the specified variables.

The integer index in a FOR loop attempted to go beyond 32766 ot
below -32767.

Attempt by the user program to divide some quantity by zero. If no
transfer is made to an error handler routine, a 0 is returned as the re-

sult. (C)

The run-time system referenced has not been added to the system list
of run time systems.

Attempt to use FIELD to allocate more space than exists in the speci-
fied buffer.

Attempt to perform random access I/O to a non-random access device.

C-7

Error Messages

ERR Message Printed » Meaning
65 ?lllegal MAGTAPE () usage Improper use of the MAGTAPE function.
66 Missing special feature User program employs a BASIC-PLUS feature not present on the

given installation.

67 Mlegal switch usage A CCL command contains an error in an otherwise valid CCL switch.
(For example, the /SI:n switch was used without a value for n or a
colon; or more than one of the same type of CCL switch was speci-
fied.) A file specification switch is not the last element in a file speci-
fication or is missing a colon or an argument.

C.2 NON-RECOVERABLE
Message Printed Meaning

?Arguments don’t match Arguments in a function call do not match, in number or in type, the argu-
ments defined for the function.

?Bad line number pair Line numbers specified in a LIST or DELETE command were formatted
incorrectly.
?Bad number in PRINT-USING Format specified in the PRINT-USING string cannot be used to print one or

more values.

?Can’t compile statement

?Can’t CONTinue Program was stopped or ended at a spot from which execution cannot be
resumed.
7Data type error Incorrect usage of floating-point, integer, or character string format variable

or constant where some other data type was necessary.

?DEF without FNEND A second DEF statement was encountered in the processing of a user func-
tion without an FNEND statement terminating the first user function def-
inition.

?End of statement not seen Statement contains too many elements to be processed correctly.

?Execute only file Attempt was made to add, delete or list a statement in a compiled (.BAC)

format file.

?Expression too complicated This error usually occurs when parentheses have been nested too deeply. The
depth allowable is dependent on the individual expression.

?File exists-RENAME/REPLACE A file of the name specified in a SAVE command already exists. In order to
save the current program under the name specified, use REPLACE, or use
RENAME followed by SAVE.

?FNEND without DEF An FNEND statement was encountered in the user program without a pre-
vious function call having been executed.

C-8

Message Printed

?FNEND without function call

?FOR without NEXT

Mllegal conditional clause

Mllegal DEF nesting

Mllegal dummy variable

Mllegal expression

Mllegal FIELD variable
Mllegal FN redefinition

Mllegal function name

Mllegal IF statement

Mllegal in immediate mode

Mllegal line number(s)
Mllegal mode mixing

Mllegal statement

Milegal symbol

Mllegal verb

%Inconsistent function usage

%Inconsistent subscript use

x(y)K of memory used

Error Messages

Meaning

A FNEND statement was encountered in the user program without a pre-
vious DEF statement being seen.

A FOR statement was encountered in the user program without a correspond-
ing NEXT statement to terminate the loop.

Incorrectly formatted conditional expression.

The range of one function definition crosses the range of another function
definition.

One of the variables in the dummy variable list of user-defined function is
not a legal variable name.

Double operators, missing operators, mismatched parentheses, or some sim-
ilar error has been found in an expression. ‘

The FIELD variable specified is unacceptable.
Attempt was made to redefine a user function.

Attempt was made to define a function with a function name not sub-
scribing to the established format.

Incorrectly formatted IF statement.

User issued a statement for execution in immediate mode which can only be
performed as part of a program.

Line number reference outside the range 1<n<32767.
String and numeric operations cannot be mixed.

Attempt was made to execute a statement that did not compile without
errors.

An unrecognizable character was encountered. For example, a line consisting
of a #character.

The BASIC verb portion of the statement cannot be recognized.

A function is defined with a certain number of arguments but is elsewhere
referenced with a different number of arguments. Fix the reference to match
the definition and reload the program to reset the function definition.

A subscripted variable is being used with a different number of dimensions
from the number with which it was originally defined.

Message printed by the LENGTH command. The value for x is the current
size, to the nearest 1K-word increment, of the program in memory. The val-
ue for y is the size to which the program can expand, given the run time
system being used and the job’s private memory size maximum set by the
system manager.

C9

Message Printed
?Literal string needed

?Matrix dimension error

?Matrix or array without DIM

IMaximum memory exceeded

MModifier error

INEXT without FOR

INo logins

?Not enough available memory

?Number is needed

1 or 2 dimensions only

70N statement needs GOTO

Please say HELLO

?Please use the RUN command

IPRINT-USING buffer overflow

?7PRINT-USING format error

?Program lost-Sorry

Error Messages

Meaning
A variable name was used where a numeric or character string was necessary.

Attempt was made to dimension a matrix to more than two dimensions, or
an error was made in the syntax of a DIM statement.

A matrix or array element was referenced beyond the range of an implicitly
dimensioned matrix.

During an OLD operation, the job’s private memory size maximum was
reached. While running a program, the system required more memory for
string or I/O buffer space and the job’s private memory size maximum or
the system maximum (16K words for BASIC-PLUS) was reached.

Attempt to use one of the statement modifiers (FOR, WHILE, UNTIL, IF,
or UNLESS) incorrectly. An OPEN statement modifier, such as a RECORD-
SIZE, CLUSTERSIZE, FILESIZE, or MODE option, is not in the correct
order.

A NEXT statement was encountered in the user program without a previous
FOR statement having been seen.

Message printed if the system is full and cannot accept additional users or if
further logins are disabled by the system manager.

An attempt is made to load a non-privileged compiled program which is too
large to run, given the job’s private memory size maximum. The program
must be made privileged to allow it to expand above a private memory size
maximum; or the system manager must increase the job’s private memory
size maximum to accommodate the program.

A character string or variable name was used where a number was necessary.
Attempt was made to dimension a matrix to more than two dimensions.

A statement beginning with ON does not contain a GOTO or GOSUB clause.
Message printed by the LOGIN system program. User not logged into the

system has typed something other than a legal, logged-out command to the
system.

A transfer of control (as in a GOTO, GOSUB or IF-GOTO statement) cannot

be performed from immediate mode.

Format specified contains a field too large to be manipulated by the PRINT-
USING statement.

An error was made in the construction of the string used to supply the out-
put format in a PRINT-USING statement.

A fatal system error has occurred which caused the user program to be lost.
This error can indicate hardware problems or use of an improperly compiled
program. Consult the system manager or the discussion of such errors in the
RSTS/E System Manager’s Guide.

C-10

Message Printed

?Redimensioned array

7RESUME and no error

7RETURN without GOSUB

%SCALE factor interlock

?Statement not found

Stop

?String is needed
?Syntax error

7Too few arguments

7Too many arguments

?Undefined function called

?What?

?Wrong math package

Error Messages

Meaning

Usage of an array or matrix within the user program has caused BASIC-PLUS
to redimension the array implicitly.

A RESUME statement was encountered where no error had occurred to
cause a transfer into an error handling routine via the ON ERROR GOTO
statement.

RETURN statement encountered in user program without a previous
GOSUB statement having been executed.

An attempt was made to execute a program or source statement with the
current scale factor. The program runs but the system uses the scale factor
of the program in memory rather than the current scale factor. Use
REPLACE and OLD or recompile the program to run with the current
scale factor. (C)

Reference is made within the program to a line number which is not within
the program.

STOP statement was executed. The user can usually continue program exe-
cution by typing CONT and the RETURN key.

A number or variable name was used where a character string was necessary.
BASIC-PLUS statement was incorrectly formatted.

The function has been called with a number of arguments not equal to the
number defined for the function.

A user-defined function may have up to five arguments.

BASIC-PLUS interpreted some statement component as a function call for
which there is no defined function (system or user).

Command or immediate mode statement entered to BASIC-PLUS could not
be processed. Hlegal verb or improper format error most likely.

Program was compiled on a system with either the 2-word or 4-word math
package and an attempt is made to run the program on a system with the
opposite math package. Recompile the program using the math package of
the system on which it will be run.

C-11

APPENDIX D
BASIC-PLUS CHARACTER SET

User program statements are composed of individual characters. Allowable characters come from the following

character set:

1. A through Z

2. 0 through 9

3. Space
4. Tab

and the following special symbols and keys:

Key

$

@
LINE
FEED

O

L]
<>

+ -

*)=

Use and Section in BASIC-PLUS Language Manual

Used in specifying string values (Chapter 5), or as the System Library file designator (RSTS/E System
User’s Guide).

Used in specifying integer values (Chapter 6). Also denotes account [1,4] .
Used to delimit string constants, i.e., text strings (Chapter 5).
Begins comment part of a line (Section 3.1). Also denotes account [1,3].

Separates multiple statements on one line (Section 2.4.1). The colon is accepted for compatibility with
previous versions.

Denotes a device or file channel number, or is used as an output format effector (Chapter 10). Also
denotes account number using current project number with a programmer number of 0.

Output format effector and list terminator (Section 3.3.2).
Output format effector (Section 3.3.2).

If EXTEND Mode is in effect, can be used at the end of a line to indicate that the current statement is
continued on the next line. Denotes account {1,5].

Denotes the assignable account.

When used at the end of a line, indicates that the current statement is continued on the next line
(Section 2.4.2).

Valid variable-name character in Extend Mode. Also used in graphic representations of floating point
numbers and strings to denote a decimal point. Delimits filename extensions.

Used to group arguments in an arithmetic expression (Section 2.6.3), or to delimit project-programmer
number.

Used to group project-programmer number. Equivalent to ().
Used to delimit file protection codes.
Arithmetic operators (Section 2.6.3).

D-1

BASIC-PLUS Character Set

Key Use and Section in BASIC-PLUS Language Manual -

Replacement operator (Section 3.2). Relational equivalence operator (Section 2.6.4 and 5.1.5).
Logical “less than” operator (Sections 2.6.4 and 5.1.5).

VoA

Logical “greater than” operator (Sections 2.6.4 and 5.1.5).

Numeric “approximately equal to” operator (Section 2.6.4).

Relational “exactly equal to” string operator (Section 5.1.5).

The decimal values 128 through 255 can appear in character strings. For most practical purposes, the characters
represented by N (0 > N> 127) and N + 128 are the same. However, the characters returned from the function
CHR$(N) and CHR$(N + 128) do not test as equal when compared. These values may also influence device-dependent
operations. (See the RSTS/E Programming Manual.)

D-2

BASIC-PLUS Character Set

Decimal ASCII Decimal ASCII RSTS | Decimal ASCII RSTS
Value Character RSTS Usage Value Character Usage | Value Character Usage
0 NUL FILL character 43 + 86 A"
1 SOH 44 ' 87 w
2 STX 45 - 88 X
3 ETX CTRL/C 56 . 89 Y
4 EOT CTRL/D 47 / 90 Z
5 ENQ 48 0 91 [
6 ACK 49 1 92 \
7 BEL BELL (CTRL/G) 50 2 93 |
8 BS BACKSPACE 51 3 94 ~“ORt
9 HT HORIZONTAL TAB 52 4 95 —OR «
10 LF LINE FEED 53 5 96 ~ Grave accent
11 VT VERTICAL TAB 54 6 97 a
12 FF FORM FEED (CTRL/L) 55 7 98 b
13 CR CARRIAGE RETURN 56 8 99 c
14 SO 57 9 100 d
15 S1 CTRL/O 58 : 101 e
16 DLE 59 ; 102 f
17 DC1 XON (CTRL/Q) 60 < 103 g
18 DC2 61 = 104 h
19 DC3 X OFF (CTRL/S) 62 > 105 i
20 DC4 63 ? 106 j
21 NAK CTRL/U 64 @ 107 k
22 SYN 65 A 108 1
23 ETB 66 B 109 m
24 CAN 67 C 110 n
25 EM 68 D 111 o
26 SUB CTRL/Z 69 E 112 P
27 ESC ESCAPE! 70 F 113 q
28 FS 71 G 114 r
29 GS 72 H 115 8
30 RS 73 I 116 t
31 us 74 J 117 u
32 sp SPACE 75 K 118 v
33 ! 76 L 119 w
34 " 77 M 120 b'e
35 # 78 N 121 y
36 8 79 (6] 122 z
37 % 80 P 123 {
38 & 81 Q 124 | Vertical Line
39 82 R 125 }
40 (83 S 126 ~ Tilde
41) 84 T 127 DEL RUBOUT
42 * 85 U

! ALTMODE (ASCII 125) or PREFIX (ASCII 126) keys which appear on some terminals are translated internally into ESCAPE.

D-3

APPENDIX E
RSTS/E FLOATING-POINT AND INTEGER FORMATS

E.1 FLOATING-POINT FORMATS
RSTS/E systems use two standard floating-point packages: the single precision, 2-word package or the double precision,
4-word package. The determination of which package will be used is made by the system manager at the time the

BASIC-PLUS runtime system is generated.

The single precision format provides economical storage, while the double precision format is used for high accuracy.
The single precision format provides up to 24 bits of approximately seven decimal digits of accuracy. The magnitude
range lies between .29 * 10 ~(-38) and 1.7 * 10 ~(38). Double precision calculations have a precision of 56 bits of
approximately 16 decimal digits, with magnitudes in the same range as for single precision format.

15 14 76 0

word: sign exponent high-order mantissa

word+2: low-order mantissa

SINGLE PRECISION FORMAT (2 WORD)

15 14 76 0
word: sign exponent high-order mantissa
word+2: low-order mantissa
word+4: lower-order mantissa
word+6: lowest-order mantissa

DOUBLE PRECISION FORMAT (4 WORD)

The exponent is stored in excess 128 (2003) notation. Exponents from -127 to +127 are represented by the binary
equivalent of 1 through 255 (1 through 3775). Fractions are represented in sign magnitude notation with the binary
radix point to the left. Numbers are assumed to be normalized and, therefore, the most significant bit is not stored
because it is redundant (this is called “hidden bit normalization™); it is always a 1 unless the exponent is O in which case
it is assumed to be 0. The value 0 is therefore represented by two or four words of 0’s. For example: +1 would be

represented by:

E-1

RSTS Floating-Point and Integer Formats

word: 040200 S
word+2: 000000

in the 2-word format, or:

word: 040200
word+2: 000000
word+4: 000000
word+6: 000000

in the 4-word format. -5 would be:

word: 140640
word+2: 000000

in the 2-word format, or:

word: 140640

word+2: - 000000

word+4: 000000

word+6: 000000
in the 4-word format.
While it is generally possible to run programs written on one RSTS system on another RSTS system, certain restrictions
apply if the math packages are not the same. These are:

1. Programs depending on 4-word accuracy cannot be run with the 2-word package. '

2. .BAC compiled programs cannot be interchanged. The program source file must be recompiled.

3. Floating-point virtual core array file formats are not compatible between math packages.

4. Programs using the Record I/O functions CVT$F and CVTF$ are not compatible between math packages.
E.2 INTEGER FORMAT

15 14 0

word: sign ‘
Integers are stored in a 2’s complement representation. Integer values must be in the range -32768 to +32767. For
example:

+22 = 0000264

-7=177771g

As a rule, an integer value is assumed by RSTS only where a constant or variable name is followed by a % character. *
Otherwise, constants and variables are assumed to be floating-point values.

E-2

10.

11.

RSTS/E Floating-Point and Integer Formats

BIBLIOGRAPHY

101 BASIC Computer Games
Digital Equipment Corporation. 1975. Maynard, Mass.

Teach Yourself BASIC, Volume 1 and Volume 2 (self teaching wordbook)

Robert L. Albrecht
Technical Education Corporation. 1970

Programming Time-Shared Computers in BASIC Language

Eugene H. Bamett
Wiley-Interscience Books. 1972

An Introduction to Computer Programming BASIC Language
James S. Coan
Hayden Book Company, Inc. 1970

Introduction to Programming: A BASIC Approach

Van C. Hare, Jr.
Harcourt Brace Jovanovich, Inc. 1970

BASIC Programming, Second Edition
John G. Kemeny and Thomas E. Kurtz
John Wiley and Sons, Inc. 1971

Introduction to Computing Through the BASIC Language

R.L. Nolan
Holt, Rinehart Winston, Inc. 1974

Computer Programming in BASIC

Joseph P. Pavlovich and Thomas E. Tahan
Holden-Day Co. 1971

Simplified BASIC Programming
Gerald A. Silver
McGraw-Hill Co. 1974

Programming in BASIC, with Applications

Bernard M. Singer
McGraw-Hill Co. 1973

Fundamentals of Digital Computers (elementary and historical)

Donald D. Spencer
Howard W. Sams and Co., Inc. 1969

Bibliography-1

ABS function, 3-21

Access to Virtual Arrays, 11-8
Alternate buffer technique, 12-3
Ampersand, 3-2

AND operator, 2-10
Arguments, Function, 3-27
Arithmetic, Floating Point, 6-7
Arithmetic, Scaled, 6-7

Array Storage, 7-1

ASCII Conversions, 5-4

ASCII string function, 5-10
Asterisks, 10-6

ATN function, 3-21

BASIC elements, 2-3
BASIC-PLUS Commands, B-1
Branch, Conditionat, 3-12
Branch, Unconditional, 3-11
BUFSIZ function, 124

CHAIN statement, 9-8, 9-10
CHANGE statement, 54

Channel numbers, 9-1

Character, Line terminating, 5-7
Character Set, BASIC-PLUS, D-1
Character Strings, 5-1

CHRS string function, 5-10

CLOSE statement, 9-8,9-10, 114
CLOSE# statement, 12-1

Closing a Virtual Array, 11-4
CLUSTERSIZE option, 9-2,9-5
Combining String Functions, 5-17
Command, CONT, 3-35,4-2
Command, CONTINUE, 3-35,4-2
Command, SCALE, 6-9

Command Summary, BASIC-PLUS, B-1
Commas, 10-8

Comments, 3-1

COMP% string function, 5-14
Conditional Branch, 3-12
Conditional Loop Termination, 8-10
CON matrix constant, 7-5
Constants, Integer, 6-1

Constants, numeric, 2-7

Constants, String, 5-1

CONT Command, 3-35, 4-2
CONTINUE Command, 3-35, 4-2
Continuation, Statement and Line, 24

INDEX

Index-1

Control Character Summary, B4
Conversion functions, 12-9

COS function, 3-21

COUNT Option, 12-3

CVT functions, 12-9

CVTFS$ function, 12-10

CVTSF function, 12-10

CVTS$$ function, 5-12,12-10
CVT$% function, 12-10

CVT%S$ function, 12-10

DATA Statement, 3-3, 5-6, 10-1
DATES function, 5-10, 8-17, 8-18
Debugging, Immediate Mode, 4-2
Default buffer size, 9-5

DEF Statement, 3-26, 8-1
Device-dependent features, 9-7
Device Record Characteristics, 12-2
Difference, logical, 2-10, 6-5

DIF$ string function, 5-13

DIM Statement, 3-19

DIM# Statement, 11-1

Disk Allocation, Virtual File, 11-11
Disk File Extension, 12-5

Dollar sign suffix, 2-6, 5-1, 10-7

Efficient Coding, 2-6
E-format representation, 2-7, 10-7
Elements, Integral BASIC, 2-3
END Statement, 3-34
Equivalent, logical, 2-10

EQV operator, 2-10

ERL Variable, 8-7

Error handling, 8-6

Error Severity, C-2

Errors, Non-recoverable, C-8
Errors, User Recoverable, C-3
ERR Variable, 8-5
Exclamation mark, 3-1, 10-5
Exclusive OR, 2-10

EXP function, 3-21
Exponentiation, 2-8
Expressions, 2-5

Expressions, Arithmetic, 2-6
Expressions, Logical, 2-6, 8-9
Expressions, Relational, 2-6, 8-9
Expression, String, 2-6
Extending Disk Files, 12-5
EXTEND mode, 1-3,2-1, 3-2

FIELD Statement, 12-6

File Layout, Virtual Arrays, 11-8
Filename extension, 99

File protection code, 9-9
FILESIZE option, 9-2, 9-6

File Storage, 9-1

File-structured devices, 9-8

FIX function, 3-21

Floating Point Arithmetic, 6-7
Floating Point value, 2-6,2-7
FNEND Statement, 8-1

Formal variables, 3-26

Format, Internal Floating Point, E-1
Format, Internal Integer, E-2
Format overflow, 10-8
FOR-NEXT loop, 3-16

FOR Statement, 2-7, 3-15

FOR Statement Modifier, 8-14
FOR-UNTIL Statement, 8-10
FOR-WHILE Statement, 8-10
Functions, Multiple Line, 8-1
Function name, 2-7

Functions, Mathematical, 3-21
Functions, String, 5-9

Functions, System, 8-17
Functions, User-Defined, 3-25
Functions, User-defined integer, 6-2

GET# Statement, 12-2
GOSUB Statement, 3-34
GOTO Statement, 3-11

Halting program execution, 4-2

IDN matrix constant, 7-5
IF-GOTO, 3-12

IF Statement Modifier, 8-13
IF-THEN-ELSE Statement, 8-8
IF-THEN Statement, 3-12, 8-1
Immediate Mode Execution, 4-1
Implication, Logical, 2-10

IMP operator, 2-10

INPUT LINE Statement, 5-7,10-13
INPUT Statement, 2-7,3-9, 5-6, 10-11
INSTR string function, 5-10
Insufficient format, 10-8

Integer Arithmetic, 6-1

Integer Constants and Variables, 6-1
Integer Function (INT), 3:22
Integers, Logical Operations on, 6-4

INDEX (Cont.)

Integer value, 2-6
INT function, 3-21
INV function, 7-7

KILL Statement, 99

LEFT string function, 59
LEN string function, 5-9

LET Statement, 2-7,3-2, 12-8
Line continuation, 2-4

LINE FEED key, 1-3,3-2
Line Input, 5-7

Line, multiple statement, 2-3
Line number, 1-3,2-2

Line, Program, 1-3, 2-2
LINE System Variable, 4-2
Line, terminal, 1-3

Line terminating character, 5-7
LOG function, 3-21

Logical expression, 8-9
Logical Operators, 6-3
Logical Variables, Integer, 6-3
LOG10 function, 3-21
Loops, 3-15

Loop, Subroutine, 3-28
LSET Statement, 12-8

Masking, 6-6

Mathematical Functions, 3-21
MAT INPUT Statement, 7-3, 10-14
MAT PRINT Statement, 7-2, 10-9
MAT READ Statement, 7-1, 10-1
Matrix Calculations, 7-6

Matrix Functions, 7-7

Matrix Initialization, 7-5

Matrix inversion, 7-7

Matrix Manipulation, 7-1

Matrix Operations, 7-6

Matrix Structure, 3-19

Matrix Transposition, 7-7

MAT ZER command, 11-11

MID string function, 5-9

Mixed Mode Arithmetic, 6-6
MODE option, 9-2,9-7

Mode selection, 2-1

Modifier, Multiple Statement, 8-16
Multiple Line Functions, 8-1
Multiple-statement line, 2-3,4-2, 8-6
Multiple Statement Modifier, 8-16
Multiword phrases, 2-5

Index-2

INDEX (Cont.)

NAME-AS Statement, 9-1,9-8 Question mark, 3-10

Natural log function, 3-21 Quotation marks, 3-8

Negative, logical, 2-10 QUOS string function, 5-13

Nested String Functions, 5-17

Nesting, FOR-NEXT loop, 3-17 RADS function, 8-19

Nesting Subroutines, 3-34 RANDOMIZE Statement, 3-24

NEXT Statement, 3-15 Random Number Function, 3-21, 3-23

NO EXTEND mode, 2-1 Range, floating point number, 2-7

Non-file-structured devices, 9-8 Range, Integer number, 2-7

Non-recoverable errors, C-8 READ Statement, 2-7, 3-3, 5-6, 10-1

NOT operator, 2-10 Record 1/O, 12-1

Null string, 5-2 RECORD Option, 12-2,12-4

Numeric constants, 2-7 RECORDSIZE option, 9-2, 94

Numeric field, 10-6 ~ RECOUNT Variable, 12-3

Numeric variables, 2-7 Redimensioning, 7-1

NUM1S$ function, 5-11 Relational expression, 8-9

NUMS string function, 5-10 Relational expressions, string, 5-3
Relational Operations, 5-3

ON ERROR GOTO Statement, 8-5 REM Statement, 3-1

ON-GOSUB Statement, 8-4 RESTORE Statement, 3-4, 10-1

ON-GOTO Statement, 8-4 Restrictions on Immediate Mode, 4-3

OPEN Statement, 9-1, 11-3 RESUME Statement, 8-5

Opening and Closing Virtual Arrays, 11-3 RETURN key, 1-3, 3-2

OPEN# Statement, 12-1 RETURN Statement, 3-34

Operators, Logical, 2-10 RIGHT string function, 5-9

Operators, Logical, 6-3 RND function, 3-21

Operators, Mathematical, 2-8 RSET Statement, 12-8

Operators, Relational, 2-9

OR operator, 2-10
SCALE Command, 6-9

Parenthesized quantities, 2-8 Scaled Arithmetic, 6-7

Percent sign, 2-6 Scientific notation, 2-7

Phrases, multiword, 2-5 SGN function, 3-21

PI function, 3-21 Sign function (SGN), 3-22
PLACES string function, 5-14 Simultaneous Access to Virtual Arrays, 11-11
POS function, 10-10 SIN function, 3-21
Pre-extension, Virtual Array, 11-3 SLEEP Statement, 8-19

Prefix, FN, 2.7 Spaces, 2-5

PRINT formatting, 10-3 SPACES string function, 5-10
PRINT functions, 10-10 SQR function, 3-21

PRINT Statement, 3-5, 5-8, 10-2 Statement, CHAIN, 9-8,9-10
PRINT-USING Statement, 10-5 Statement, CHANGE, 54

Print zones, 3-6, 10-3 Statement, CLOSE, 9-8,9-10, 11-14
Product, logical, 2-10, 6-5 Statement, CLOSE#, 12-1
PRODS string tunction, 5-13 Statement Continuation, 2-4
Program line, 1-3 Statement, DATA, 3-3, 5-6, 10-1
Program Loops, 3-15 Statement, DEF, 3-26
Programming Conventions, Virtual Array, 11-4 Statement, DIM, 3-19

Prompt, Question Mark, 3-10 Statement, DIM#, 11-1
Protection codes, 9-1 Statement, END, 3-34

PUT# Statement, 12-2 Statement, FIELD, 12-6

Index-3

Statement, FNEND, 8-1
Statement, FOR, 2-7, 3-15
Statement, FOR-UNTIL, 8-10
Statement, FOR-WHILE, 8-10
Statement, GET#, 12-2
Statement, GOSUB, 3-34
Statement, GOTO, 3-11
Statement, IF-GOTO, 3-12
Statement, IF-THEN, 3-12
Statement, IF-THEN-ELSE, 8-8

Statement, INPUT, 2-7, 3-9, 5-6, 10-11

Statement, INPUT LINE, 5-7,10-3
Statement, KILL, 9-9

Statement, LET, 2-7,3-2,12-8
Statement, LSET, 12-8

Statement, MAT INPUT, 7-3,10-14
Statement, MAT PRINT, 7-2
Statement, MAT READ, 7-1, 10-1
Statement Modifier, FOR, 8-14
Statement Modifier, IF, 8-13
Statement Modifier, UNLESS, 8-14
Statement Modifier, UNTIL, 8-16
Statement Modifier, WHILE, 8-15
Statement, NEXT, 3-15

Statement, ON ERROR GOTO, 10-1
Statement, ON-GOSUB, 84
Statement, ON-GOTO, 8-4
Statement, OPEN, 9-1,11-3
Statement, OPEN#, 12-1
Statement, PRINT, 3-5, 10-2
Statement, PRINT-USING, 10-5
Statement, PUT#, 12-2

Statement, RANDOMIZE, 3-24
Statement, READ, 2-7, 3-3, 5-6, 10-1
Statement, REM, 3-1

Statement, RESTORE, 3-4, 10-1
Statement, RESUME, 8-5
Statement, RETURN, 3-34
Statement, RSET, 12-8

Statement separators, 2-3
Statement, SLEEP, 8-19
Statement, STOP, 3-34

Statement, WAIT, 8-20

STATUS variable, 9-11, 124

STEP expression, 3-16

STOP Statement, 3-34

Storage, Virtual Array, 114

String Arithmetic Feature, 5-15

String Arithmetic Functions, 5-12, 5-13, 5-14

String Arithmetic Precision, 5-15

INDEX (Cont.)

String Arithmetic Truncation, 5-16
String composition, 5-1

String Concatenation, 5-10
String constants, 5-1

String editing, 10-5

String expression, 2-6

String field, 10-5

String Functions, 5-9

String Input, 5-6

String Output, 5-8

String size, 5-3

Strings, Character, 5-1

String Storage, Virtual Array, 11.2
STRINGS string function, 5-11
Subroutines, 3-28

Subroutines, Nested, 3-34
Subscripted String Variables, 5-2
Subscripted Variables, 3-19
Subscript translation, 11-5
Suffix, Dollar sign, 2-6

Suffix, Percent sign, 2-6

Suffix, Subscript, 2-7

Sum, logical, 2-10, 6-5

SUMS string function, 5-12
SWAP% function, 8-19,12-3
System Functions, 8-17

Tabs, 2-5

TAB function, 10-10

TAN function, 3-21

Terminal line, 1-3, 10-3
TIME function, 8-19

TIMES string function, 5-11, 8-18
Trailing minus sign, 10-7
Translation of Subscripts, 11-5
Trig functions, 3-21

TRN function, 7-7

Truth values, 6-3

Unary minus, 2-8

Unconditional Branch, 3-11
UNLESS Statement Modifier, 8-14
UNTIL Statement Modifier, 8-16
User-Defined Functions, 3-25
User-Defined Integer Functions, 6-2
User-Defined String Functions, 5-14
User File Directory, 9-6

User Recoverable Errors, C-3

User Terminal I/O Channel, 10-14

Index-4

Value, Floating Point, 2-6
Value, Integer, 2-6

VAL string function, 5-11
Variable, Control, 3-16

" Variable, ERL, 8-7

Variable, ERR, 8-5
Variable, LINE, 4-2
Variable, Logical integer, 6-3
Variable, STATUS, 9-11
Variables, formal, 3-26
Variables, Integer, 6-1
Variables, Numeric, 2-7
Variables, String, 5-1
Variables, Subscripted, 3-19

INDEX (Cont.)

- Variables, Types of, A-1
Virtual Array Access, 11-8
Virtual Arrays, 11-1
Virtual Array Storage, 114
Virtual Memory DIM Statement, 11-1

WAIT Statement, 8-20
WHILE Statement Modifier, 8-15

XLATE string function, 5-12,12-14
XOR operator, 2-10

ZER matrix constant, 7-5

Index-5

Please cut along this line.

BASIC-PLUS
Language Manual
DEC-11-ORBPB-B-D

READER’S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company’s discretion. Problems with software should be reported on a Software Performance Report
(SPR) form. If you require a written reply and are eligible to receive one under SPR service, submit
your comments on an SPR form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Is there sufficient documentation on associated system programs required for use of the software described in this
manual? If not, what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

[0 Assembly language programmer
O Higher-level language programmer
O Occasional programmer (experienced)
[0 User with little programming experience
O Student programmer
O Non-programmer interested in computer concepts and capabilities
Name Date
Organization
Street
City State Zip Code

or
Country

Fold Here
Do Not Tear - Fold Here and Staple
FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS. t

BUSINESS REPLY MAIL] \

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES R
-]

Postage will be paid by:

Software Documentation
146 Main Street ML 5-5/E39
Maynard, Massachusetts 01754

