July 1977

This manual describes the use of the BASIC-PLUS-2 Compiler on the
RSTS/E system. It includes descriptions of the run-time systems,
libraries, Task Builder, RMS Record 1/0, and the Translator.

BASIC-PLUS-2
RSTS/E User’s Guide

Order No. AA-0154A-TC

OPERATING SYSTEM AND VERSION: RSTS/E V06B

SOFTWARE VERSION: PDP-11 BASIC-PLUS-2 V01

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754,

digital equipment corporation - maynard, massachusetts

First Printing, July 1977

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use

or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright C) 1977 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10

DECCOMM DECSYSTEM-20 TYPESET-11

CONTENTS

Page
PREFACE vii
CHAPTER 1 BASIC-PLUS-2 ON RSTS/E 1-1
1.1 ACCESSING THE RSTS/E SYSTEM 1-1
1.1.1 Filename Specifications 1-3
1.1.1.1 Devices 1-3
1.1.1.2 Extensions 1-4
1.1.1.3 Protection Codes 1-5
1.1.1.4 Option Switches 1-6
1.1.2 Concise Command Language 1-8
1.2 BASIC-PLUS-2 COMPILER 1-8
1.2.1 Commands 1-8
1.2.1.1 APPEND Command 1-11
1.2.1.2 BUILD Command 1-12
1.2.1.3 COMPILE Command 1-14
1.2.1.4 DELETE Command 1-17
1.2.1.5 EXIT Command 1-17
1.2.1.6 HISEG Command : 1-17
1.2.1.7 IDENTIFY Command 1-18
1.2.1.8 LIST Command 1-19
1.2.1.9 NEW Command 1-19
1.2.1.10 OLD Command 1-20
l1.2.1.11 RENAME Command 1-20
1.2.1.12 REPLACE Command 1-21
1.2.1.13 RUN Command 1-21
1.2.1.14 SAVE Command 1-22
1.2.1.15 SCALE Command 1-22
1.2.1.16 UNSAVE Command 1-22
1.2.2 Editing 1-23
1.2.3 Debugging 1-24
1.2.3.1 BREAK and UNBREAK Commands 1-25
1.2.3.2 STEP Command 1-27
1.2.3.3 PRINT and LET Commands 1-27
1.2.3.4 TRACE and UNTRACE Commands 1-28
1.3 BASIC-PLUS-2 PROGRAMS 1-28
1.3.1 Source Lines 1-28
1.3.2 BASIC~PLUS-2 RSTS/E Sample Program 1-29
CHAPTER 2 TASK BUILDER 2-1
2.1 INVOKING THE TASK BUILDER 2-1
2.1.1 Task Build Command Line 2=2
2.1.1.1 Task File Extensions 2-3
2.2 TASK BUILDER INPUT 2-3
2.2.1 Switches 2-4
2.2.2 Options 2-5
2.2.2.1 ABORT Option 2-6
2.2.2.2 ABSPAT Option 2-7
2.2.2.3 ASG Option 2-7
2.2.2.4 EXTTSK Option 2-7

iii

CONTENTS (Cont.)
Page

GBLDEF Option
HISEG Option
STACK Option
TASK Option
UNITS Option

TASK BUILDER OUTPUT
Listings

PROGRAM SEGMENTATION
Overlays

EXECUTING THE TASK

1
HHEHEEFEONJOUB WD [l HRPEPEEFEWOYWYO®Do®

HHOoO

. o e
« e o o o
[YCR \O I RN (Ol (S
e s o e o
oo~
I

.
[

.
-

DO

kb wwbhrodoDoND
NNNNI}JNNNNN

CHAPTER

w
w
1

RUN-TIME SYSTEMS AND LIBRARIES

BASIC-PLUS-2 RUN-TIME SYSTEMS
BASIC2 RTS
BP2COM RTS
BASIC-PLUS-2 LIBRARIES
Librarian Utility Program
Create Switch (/CR)
Insert Switch (/IN)
Extract (/EX) and Replace (/RP) Switches
List Switch (/LI, /LE, and /FU)
Delete (/DE) and Compress (/CO) Switches
MACRO SUBROUTINES
Subroutine Linkage
Subroutine Register Usage
Subroutine Calls

WWWWWwwWwwwwwwww
S
WWWWRNNNNNNN
. L] L]
L el =
L] L] L[] . .
G W
WWWWWWWWwWwWwwww
P rrrrtinl

o o o o o 8 8 o+ s o e
s o 0
wn

S
1

CHAPTER

1=N

FILES

1

FILE CREATION 4=1
Virtual Files 4-2
INTRODUCTION TO RMS 4-4
Sequential Files 4-5
4-8

4-1

4-1

=

Relative Files
Indexed Files
.1 Primary and Alternate Key Record Access
File Sharing 4-15
RMS Memory Allocation 4-17
RECORD ACCESS METHODS 4-17
Sequential Access 4-18
Random Access 4<19
RECORD FORMAT 4-21
Fixed-Length Records 4-22
Variable-Length Records 4-23
Stream-Format Records 4-23
DATA STRUCTURE 4-24
Blocks 4-~25
Buckets 4-25
.1 Bucket Size 4-26
RECORD MAPPING 4-29
RMS UTILITIES 4<=30

Ut Wwwino -

N =

. . P
.
NN w N

[S S O N O N L N I S ST~ N S~ St o S

. . P P

Nouutd R R WWWNNDNDNDNDNDD -
. . ¢« o P « e s s s e .

CHAPTER

(8]

TRANSLATOR UTILITY 5-1

ITEMS FOR TRANSLATION 5-1
USING THE TRANSLATOR 5-4
Variable Name Specification 5-5
Translator Sample Run 5-6
Translator Warning Messages 5-8

(S NG O T, RO
« s s s s

DN N
.« .

wN -

iv

APPENDIX

APPENDIX

APPENDIX

APPENDIX

A

b~
b
.
i
.

.
HIEHHEHEO®ONOU & WK -

« e s e e o .
.« . « o e .
VWO

.

I N N N N R N S O g
. .

AU WN

PRI IRIDIIND DD DD
:

B

B.1
B.2
B.2.1
B.3
B.4

C

c.1
C.2
C.3
C.4

D

D.1
D.2
D.3
D.4
D.4.1
D.4.2

D.5

D.5.1
D.5.2
D.5.3

CONTENTS (Cont.)

COMPATIBILITY

TRANSLATABLE ISSUES
PRINT USING String Format
Quoted String Literals
Multiple Assignment Statement
Ambiguous Constants
DEF Statements
POS Function
DATA Statement String Literals
Multi-Statement Lines
Comment Separator
Continuations
PRINT Synonym
Long Variable Names
CHAIN Statement
SYS Functions
INPUT and PRINT Statement Punctuation
NONTRANSLATABLE ISSUES
Transfer into FOR NEXT Loops
Debugging
CALL Statements
Compile-Time Errors
Array Subscripts
Record I/0

BASIC-PLUS-2 LANGUAGE ELEMENTS

LINE AND DATA FORMAT
COMMANDS

Control Characters
FUNCTIONS
RESERVED KEYWORDS

ERROR MESSAGES

TRACEBACK

BASIC-PLUS-2 COMPILE-TIME ERROR MESSAGES
ERROR CODES

RUN-TIME ERROR MESSAGES

ASCII CODES AND DATA REPRESENTATION

ASCII CHARACTER CODES

RADIX-50 CHARACTER SET

INTEGER FORMAT

FLOATING-POINT FORMATS
REAL Format (2-Word Floating-Point)
DOUBLE-PRECISION Format (4-Word Floating-
Point)

STRING AND ARRAY FORMAT
Dynamic String Format
Array Format
Array Descriptor Word

Page
A-1

A-1
A-1
A-3
A-3
A-4
A-4
A-5
A-5
A-6
A-6
A-6
A-6
A=7
A-7
A-8
A-8
A-8
A-9
A-9
A-9
A-9

A-10

lvlw) ? ? w}
N

v} UI?CJU
WO

FIGURE

TABLE

DOUOQOWWWIWS eSS BNNNFH
1
NHEFFUOUBRWNHOBWNHWNH & WN -

CONTENTS (Cont.)

FIGURES

Memory Allocation Map
Overlay Structure
Overlay Path

Argument List Format
CALL Statement

CALL BY REF Statement

TABLES

Device Specifications
BASIC-PLUS-2 Extensions
Protection Codes

BASIC-PLUS-2 Commands

Default File Types

Task Builder Switches

Task Builder Options

Comparison of File Organizations
Access Methods

Record Formats

Relative File Default Bucket Size
Indexed File Default Bucket Size
Arithmetic Operators

Logical Operators

Relational Operators

Reserved Keywords

System Reserved Keywords
Recoverable Error Codes
ASCII/Radix~50 Equivalents

Array Descriptor Word

vi

Page

2-11
2=12
2-14
3-11
3=12
3-13

AR RSO A
OWUITVOHEFWNONNMNNOMNNEFOO D WO Uud
N [eoBLN BN S Jo o]

PREFACE

The BASIC-PLUS-2 RSTS/E User's Guide describes how to wuse the
BASIC-PLUS-2 Language Processor on the RSTS/E operating system.

Chapter 1 summarizes the procedures for accessing the RSTS/E system.
The chapter also describes the BASIC-PLUS-2 command format and the
building of programs for execution as load modules.

Chapter 2 contains information on the Task Builder that 1is wused to
link object modules into an executable task. The chapter also
describes Task Builder switches and options and a procedure for
building overlays.

Chapter 3 contains information on the BASIC-PLUS-2 Run-Time Systems
(RTS) , the Librarian Utility Program, and subroutine <calling
conventions.

Chapter 4 explains RMS (Record Management Services) file handling and
Record I/0.

Chapter 5 describes the Translator utility that 1is wused to convert
BASIC-PLUS programs to BASIC-PLUS-2.

The manual also contains appendixes that describe compatibility
issues, the BASIC-PLUS-2 vocabulary, error messages and recovery
procedures, and data and character representations.

Intended Audience

This manual is not a tutorial. You should be familiar with the RSTS/E
operating system and the BASIC-PLUS-2 language before reading this
user's guide. Manuals that can provide this background are the RSTS/E
System User's Guide and the BASIC-PLUS-2 Language Manual. Note that
information on RSTS/E documentation can be found in the RSTS/E
Documentation Directory. In addition, specific sections of this
manual refer to other documents that provide information on the
subject under discussion.

Documentation Conventions

Throughout this manual, symbols and other notation conventions are
used to represent keyboard <characters, textual information, or
otherwise ease the exposition of material. The symbols and
conventions used are explained below.

vii

Convention

RET

RUN
"print" and "type"

BASIC

upper and lower case

{ braces}

[brackets]

Meaning

The return key symbol represents a
carriage return/line feed combination.

The circumflex represents a control
character. For example, “C indicates
a CTRL/C. 1In some cases, a circumflex
is also used to indicate
exponentiation.

Color-highlighted information in
examples is typed by the user.

As these words are used in the text,
the system prints and the user types.

The term BASIC is used as a generic
term for BASIC-PLUS-2. Where this may
cause confusion, the practice is
discontinued and the proper term is
used.

In examples of format, information
that you type as shown appears in
upper-case letters. Lower case
indicates that the information is user
dependent. Braces indicate that, of
several elements shown, one is chosen.
Brackets indicate user options,.

viii

«*

CHAPTER 1

BASIC-PLUS-2 ON RSTS/E

This chapter contains information on the RSTS/E operating system and
the use of BASIC-PLUS-2 on that system. You will find, in this
chapter, information on establishing communication with RSTS/E, the
RSTS/E file specification format, and a description of the RSTS/E
Concise Command Language. Note that the RSTS/E specific information
in this manual is a summary only; you are expected to be familiar
with the RSTS/E system and with the information found in the RSTS/E
System User's Guide.

Chapter 1 also describes the syntax and use of commands, editing of
BASIC programs, debugging aids, and creation of source files.

1.1 ACCESSING THE RSTS/E SYSTEM

RSTS/E (Resource Sharing Time Sharing/Extended) 1s a time-sharing
system. A time-sharing environment permits many users to process data
on the same system. RSTS/E schedules the execution of each user's job
and attempts to minimize the time used to process individual programs.

The resource sharing facility of RSTS/E means that each wuser has
access to system peripherals and devices. These devices can be
terminals, disks, line printers, card readers, etc. Throughout this
manual, a terminal is assumed to be the input and output device.

You gain access to the RSTS/E system by typing:

HELLO RET

on the terminal keyboard. In response, the system runs the LOGIN
program that prints an identification line and then issues a request
for your identification. LOGIN indicates a request for information by
printing a prompt on the terminal. 1In this case, the prompt is a
number sign (#). .

Because many users can share RSTS/E, you must have a system identity
to distinguish yourself from other users. The system manager assigns
this identification to you in the form of a project, programmer number
and password. When you attempt to access RSTS/E, LOGIN asks for this
identification. A typical access dialogue consists of a series of
prompts and responses, and appears as follows:

BASIC-PLUS-2 ON RSTS/E

HEL.L.0

KETS VO6E-02 TIMESHARING RJE JOR 20 KRL 07-AFR-77 12049 PM

#2611

FASSWORD:

07~-AFR~77 THE TAFE DRIVES ARE NOW AVAILARLE FOR GENERAL
USE. THESE DRIVES ARE LAREILED MT2 AND MT3.

REALDY

The LOGIN prompt, #, represents a request for you to type your project
and programmer numbers separated by a comma. In the above example, 26
is the project number and 11 is the programmer number. The system
manager assigns these numbers to you to identify and protect your
programs and files. When you create programs or files, the system
stores them in your numbered account on the public structure.

The system manager also assigns you a unique password. You type this
password in response to the PASSWORD: prompt. LOGIN checks the
password you type against a master directory of permitted project,
programmer number and password combinations. If your password matches
the one on the master directory, you are allowed access. Notice that
when vyou type the password it is not printed on the terminal. This
prevents unauthorized persons from copying it.

The system prints READY on the terminal to signify that you have
successfully gained access. This means that RSTS/E is now prepared to
accept input.

After you complete the access procedure, the LOGIN program may print
messages written by the system manager. These messages often contain
helpful information such as the message concerning tape drives that is
included in the above dialogue.

You type BYE on the terminal to end system use. When you type BYE,
the system runs the LOGOUT program, saves any programs you have stored
on the public structure, and prints a message indicating how much
storage space is left in your account.

Consider the following example:

RYE

CONFIRM? Y

SAVED aAlL DISK FILESF 328 BLOCKS IN USEy 4672 FREE

JOE 20 USER 246y 11 LOGGED OFF KRL AT O07-AFR-77 01101 FM
SYSTEM RETE VOAER~02 TIMESHARING RUE

RUN TIME WAS .6 SECONDS

ELAFSED TIME WAS 2 MINUTES, 30 SECONDS

GO0 AFTERNOON

In this example, you type BYE on the terminal and LOGOUT asks you to
confirm your intention to 1log off. If you type Y (for Yes), the
program logs you off. It also prints information on the amount of
disk space you have used, the current date and time, and the amount of
time you were on the system.

If, in response to the CONFIRM: prompt, you type N (for No), LOGOUT
ignores the exit, prints a READY, and allows you to type further
input. If you type I (for Inspect), LOGOUT prints a list of each file
or program name in your account. This list is printed, one name at a
time, and affords you the opportunity to retain or delete each
program. To retain the program, type the RETURN key following the

1-2

BASIC-PLUS-2 ON RSTS/E

name. To delete a program, type the letter K (for Kill) after the
name. If you type a question mark (?) in response to CONFIRM:, the
LOGOUT program prints a list of exit options. Finally, if you type
BYE/F instead of BYE, LOGOUT performs a fast exit without printing a
CONFIRM: or any additional information.

1.1.1 Filename Specifications

The RSTS/E system accepts a filename specification of the form:
dev: [p,pn]lfilnam.ext<prot>/sw

where:

dev: can be a 1- to 6-character logical name, or a
2-character device code followed by a unit number.
If the device code is omitted, the default 1is the
public structure. Devices and device codes are
summarized in Section 1.1.1.1.

[p,pn] is a project (p), programmer number (pn) that
identifies the owner of a program or file. These
numbers are assigned to you by the system manager
and are used as part of the access procedure.

filnam is any 1- to 6-character alphanumeric name that
identifies a program or file.

.ext is a 1- to 3-character alphanumeric extension code
(preceded by a period) denoting the type of program
or file. 1If an extension is not specified, RSTS/E
and BASIC supply a default extension. Extensions
are summarized in Section 1.1.1.2.

<prot> is a protection code that is used to restrict access
to a program or file. Protection codes are assigned
when a file 1is created or renamed. They are
summarized in Section 1.1.1.3.

/SW is a system file specification option. There are
four switch options available: /CLUSTERSIZE,
/FILESIZE, /MODE, and /RONLY. If you specify an
option switch, it must be the final RSTS/E file
designation and must precede any BASIC-PLUS-2 switch
specification. RSTS/E switch options are summarized
in Section 1.1.1.4.

1.1.1.1 Devices - You indicate devices in filename specifications to
specify the wuse of a particular medium for input or output. The
physical device names that can be used in filename specifications are
listed in Table 1-1. If you do not specify a device, the default is
the public structure, SY:. For more information on device
specifications and the assignment of logical device names, refer to
the RSTS/E System User's Guide.

BASIC-PLUS-2 ON RSTS/E

Table 1-1
Device Specifications

Device Code
Card reader CR:
CD-11, CR-11l, or CM1ll card reader CD:
RP02 or RP03 disk (n=0 to 7) DPn:
RP04, RP05, and RP06 disk (n=0 to 7) DBn:
RS03 or RS04 fixed-head disk (n=0 to 7) DSn:
RC11 fixed-head disk DCO:
RF11 fixed-head disk drive DFO:
RKO5 or RKOSF disk cartridge drive DKn:
(n=0 to 7)
RK06 disk cartridge drive (n=0 to 7) DMn:
Public disk structure (default storage) SY:
DECtape (n=0 to 7) DTn:
RX01 floppy disk (n=0 to 7) DXn:
Line printer (n=0 to 7) LPn:
TUl6, TU45 magtape (n=0 to 7) MMn:
TUlO0 or TS03 magtape (n=0 to 7) MTn:
Null device NL:
High speed paper tape punch PP:
High speed paper tape reader PR:
Unit from which system
was bootstrapped SYO:
Terminal n in the system (if KBn:) KBn:, KB:,
or current user terminal TTn:, TT:, or TI:

Note that RMS files (see Chapter 4) are not allowed on DECtape (DT),
RX01 floppy disk (DX), or null devices (NL).

1.1.1.2 Extensions - A filename extension (also called a file type)
can be wused to indicate the use or internal characteristic of the
program or file. For instance, a BASIC-PLUS-2 source program has an
extension of .B2S.

The most common BASIC-PLUS-2 extensions, with their meanings, are
listed in Table 1-2.

BASIC-PLUS-2 ON RSTS/E

‘Table 1-2
BASIC-PLUS-2 Extensions

Extension Meaning

.B2S Source program (stream ASCII format)

.CMD Command file

.DAT Data file

.DIR Directory file

LLST Listing file

.MAC Compiler macro source file

.MAP Task Builder memory map

.OBJ Object module

.ODL Overlay Description Language file

.TMP Temporary file

.TSK Executable task image (binary format)

For more information on filename extensions, refer to the RSTS/E
System User's Guide.

1.1.1.3 Protection Codes - Protection codes, <prot>, designate which
class of user can access your program or file and the types of access
allowed. There are three classes of users:

1. Owner
2. Group - all users having the same project number as the owner
3. Others - all other users not in the owner's group

Access is denied to one or more of these classes by specifying a code
as shown in Table 1-3.

Table 1-3
Protection Codes
Code Meaning
1 Read protect against owner
2 Write protect against owner
4 Read protect against other wusers with owner's project
number
8 Write protect against other wusers with owner's project
number

(Continued on next page)

BASIC-PLUS-2 ON RSTS/E

Table 1-3 (Cont.)
Protection Codes

Code Meaning

16 Read protect against all others who are not assigned
owner's project number

32 Write protect against all others who are not assigned
owner's project number

64 Compiled, run-only files

128 Temporarily privileged program (compiled, run-only file)

You can combine these codes as desired and enter them 1in the file
specification 1line to provide different degrees of protection. When
you specify a code, enclose the number within angle brackets as part
of the file specification. For example, a protection code of <48> is
the result of combining code 32 (write protect against class 3) with
code 16 (read protect against class 3). Thus, when you specify code
<48> in the file specification, read or write access to that file is
denied to anyone logged on the system with a different project number.

When you create a task image (i.e., extension .TSK), RSTS/E supplies a
protection code of <124> by default. This allows you to execute the
task and to have read/write access, and disallows execution, read, or
write access to all others. That is, 124 is the combination of 64
(compiled file), 32 and 16 (execution, write, and read protect against
all other projects), and 8 and 4 (execution, write, and read protect
against others in the owner's project).

When a program is built and saved (i.e., a source file) or compiled as
a MACRO file or object module, the default 1is <60>. This code
protects the file from others in the project (codes 8 and 4) and
others outside the project (codes 16 and 32).

Protection codes need only be specified when the protection assigned
by default is not sufficient.

For more information on protection codes, refer to the RSTS/E System
User's Guide.

1.1.1.4 Option Switches - A RSTS/E file specification can include an
optional switch as the 1last system element in the specification.
These switches are specific to the RSTS/E system and must not be
interspersed with any BASIC specification. 1If a file specification
line contains both system switches and BASIC specifiers, the system
switches must precede the BASIC specifiers. The switches and their
use are summarized below; refer to the RSTS/E System User's Guide for
more complete information.

The /FILESIZE option allows you to create a disk file of a specified
size prior to any read or write operation. The option switch is
written as follows:

/FI[LESIZE]:[#]n[.]

Y

BASIC-PLUS-2 ON RSTS/E

where:

/FILESIZE is the switch name and can be abbreviated to a
2-character minimum, i.e., /FI.

the optional number sign converts the argument, n,
to an octal value.

n is a decimal number in the range of 0 to 32767 and
indicates the number of blocks in the pre-extended
file.

. the optional trailing decimal point ensures that n
is interpreted as a decimal number.

The /CLUSTERSIZE option establishes the minimum cluster size for a
disk file. A cluster is a number of contiguous blocks that are
treated as a unit; RSTS/E permits file cluster sizes of 1, 2, 4, 8,
16, 32, 64, 128, or 256 blocks.

The /CLUSTERSIZE switch has the same general format as /FILESIZE with
the exceptions noted below:

/CL[USTERSIZE] :[-][#]n[.]
where:

- is an optional minus sign that specifies a negative
cluster size. This option is used to avoid an error
resulting from an illegal cluster size
specification.

n is the cluster size specification in blocks of 1, 2,
4, 8, 16, 32, 64, 128, or 256.

The /MODE option allows you to pass up to 15 (decimal) bits of
information to the device driver at file open time. The meaning of
these bits is device dependent and you should refer to the RSTS/E
Programming Manual for this information.

The /MODE switch has the same general format as /FILESIZE with the
exception noted below:

/MO[DE] : [#In[.]
where:
n specifies a mode setting in the range of 0 to 32767.

The /RONLY option allows you to set the read only MODE value for a

disk file. The switch accepts no arguments and has the following
format:

/RO[NLY]
These switches do not apply to RMS files. RMS does support the

function of the /FILESIZE and /CLUSTERSIZE options, but only with file
attributes specified in the OPEN statement (see Section 4.2).

BASIC-PLUS~2 ON RSTS/E

1.1.2 Concise Command Language

The Concise Command Language (CCL) provides an alternative method for
invoking RSTS/E system programs such as the Peripheral Interchange
Program (PIP) and Directory (DIRECT). CCL commands allow you to run a
system program by means of a single command specification.

The CCL is composed of a set of commands with specific functions. CCL
commands are installed as part of the system and the system manager
has the option of defining the commands and their functions. You
should contact the system manager to determine the current status of
CCL on the system.

To use CCL, type on one line the CCL command and the optional command
argument string as defined for your system. RSTS/E 1loads the
specified CCL program, inputs the argument string (if present), and
executes the program command. Note that when you exit from a
CCL-invoked system program, you return to the default run-time system.

For more information on CCL, refer to the RSTS/E System User's Guide.

1.2 BASIC-PLUS-2 COMPILER

The RSTS/E operating system uses a BASIC-PLUS-2 Language Processor
composed of a Compiler and a Run-Time System/Library. The RTS/Library
is discussed in Chapter 3.

There are two types of operations available with the BASIC Compiler.
The primary type of operation produces an executable load module in
task image format from your source program. The compiler checks each
program line for syntax errors as you enter it and returns an
appropriate error message if one is found. You can then correct the
program (if necessary), compile, and execute it. This mode of
operation is detailed in the rest of this chapter.

The second type of operation produces programs as linkable object
modules suitable for input to the Task Builder. The Task Builder must
process object modules into a task image before they can be executed.
Object modules need only be produced when the source program's
requirements exceed the in-core addressability limit of 32K words, a
CALL statement is used to access external routines, or RMS is used to
perform file I/0. The Task Builder is discussed in Chapter 2.

RSTS/E is capable of supporting multiple run-time systems. If
BASIC-PLUS-2 is not the default, type:

RUN S$BASIC2

on the terminal. This procedure clears the current contents of memory
and invokes the BASIC-PLUS-2 Compiler. If access to BASIC-PLUS-2 is
successful, an identification line (see Section 1.2.1.7) followed by
the READY prompt print on the terminal. READY indicates that the
compiler is prepared to accept input.

1.2.1 Commands

Input to the BASIC Compiler can be a command or a source program line.
BASIC source programs are described in Section 1.3. This section and
the subsections that follow describe the BASIC commands.

BASIC-PLUS~2 ON RSTS/E

Commands are used to perform various functions outside the context of
programs. That 1is, they require no line numbers and you type them
directly on the terminal, along with any required arguments. Table
1-4 1lists the BASIC commands with brief explanations of their use.
Succeeding sections describe each command in detail. The commands
listed in Table 1-4 can be wused individually or combined in a
user-created command file. The command file allows you to eXecute a
series of BASIC-PLUS-2 commands by means of a single command file
specification.

Although many of the RSTS/E system commands are listed in Table 1-4,
BASIC-PLUS-2 does not support the complete system command set.
BASIC-PLUS-2 on RSTS/E only supports the commands listed in Table 1-4
and those installed as CCL commands. If you attempt to use any other
command, such as ASSIGN, BASIC returns an error message (i.e., ?WHAT?).
and ignores the command. :

Table 1-4
BASIC-PLUS-2 Commands

Command Function

APPEND Merges the current program with a previously
saved program.

BUILD Creates an indirect command file and an
overlay description file. These files can be
used to specify input to the Task Builder

program.

COMPILE Translates a BASIC source program into an
executable file in task image format with a
default extension of .TSK. If the program

cannot be compiled as an executable file, the
command translates the program into an object
module.

COMPILE /DEBUG Translates a BASIC source program and enables
the use of the BASIC debugging aid.

COMPILE /DOUBLE Translates a BASIC source program and enables
the double-precision (4-word floating-point)
math package.

COMPILE /MACRO Translates a BASIC source program into a
MACRO source file.

COMPILE /NOCHAIN Translates a BASIC source program and
indicates that another program will only
chain to the beginning of the compiled

program.
COMPILE /NOLINE Translates a BASIC source program and
indicates that internal line headers will not
be used for error processing. This command

has the effect of saving at least two words
of memory per program line.

(Continued on next page)

BASIC-PLUS-2 ON RSTS/E

Table 1-4 (Cont.)
BASIC-PLUS-2 Commands

Command

Function

COMPILE /OBJECT

COMPILE /TSK

LOCK /sw

DELETE

EXIT

HISEG

IDENTIFY

LIST

NEW

OLD
RENAME

REPLACE

RUN

SAVE

SCALE

UNSAVE

Translates a BASIC source program into an
object module. The .0OBJ extension is
appended to the filename by default.

Translates a BASIC source program into an
executable file with the .TSK extension. If
the program cannot be compiled as an
executable file, a fatal error is generated.

Causes the switches you specify (sw) to be
used as the default for succeeding COMPILE
commands. A LOCK command with no arguments
disables the specified switches and returns
to the BASIC default switch settings.

Erases a specified line or lines from a BASIC
source program.

Clears memory and returns you to the default
run-time system.

Allows you to choose between one of two
supplied BASIC-PLUS-2 run-time systems.

Causes BASIC-PLUS-2 to print an
identification header on the terminal.

Prints a copy of the current program or its
specified lines on the terminal.

Clears memory for the creation of a new
program.

Loads a specified program into memory.
Changes the name of the current program.

Stores the current program on the public
structure or a specified device.

Executes a specified program or file.

Copies and preserves a source program on the
public structure or a specified device.

Controls the scale factor for
double-precision (4-word floating-point)
format.

Deletes a specified file.

BASIC-PLUS=-2 ON RSTS/E

These commands can be abbreviated to a minimum 3-letter specification.
When this shortened form of the command is used, you must type at
least the first three letters of the command. For example, the
COMPILE /DEBUG command can be abbreviated to COM /DEB. Note that if
the abbreviation NH is used with an abbreviated command that allows no
header specifications (LIST and RUN), NH must be appended to the
command abbreviation, 1i.e., RUNNH and LISNH. The specific
abbreviations for each command are given in the appropriate subsection
that follows.

1.2.1.1 APPEND Command - The APPEND command (APP) merges the contents
of an existing BASIC source program with a program currently in memory
(i.e., at command level). Tn use APPEND, type:

APPEND RET
on the terminal, to which the BASIC Compiler prompts:
APPEND FILE NAME --

In response, type the name of a previously created BASIC source
program that you wish to merge with the current program. The compiler
opens the specified program as secondary input and reads it into
memory. The contents of the source program are then merged with, or
appended to, the current program, depending on the order of line
numbers. I1f both programs contain identical line numbers, the current
program line is replaced by the appended program line.

To suppress the APPEND FILE NAME prompt, type:
APPEND filespec

where filespec 1is the file specification of the program to be
appended.

If both programs you wish to append are saved on a system device, one
of them must be brought into memory before the APPEND command is
given. You bring a saved program into memory with an OLD command (see

Section 1.2.1.10).

If you do not specify a filename in the APPEND command but type only a
carriage return, the compiler searches for a source program called
NONAME.B2S. If no filename is found (either specified or NONAME), the
following error message is printed:

?Can't f£ind file or account

The APPEND command does not change the name of the program currently
in memory.

As an example of APPEND, consider the following procedure. You have
built two programs named APl and AP2 and saved them on the public
structure. These programs appear as follows:

10 3% LET D=A"C
20 40 FRINT AR
30
40
HO

AP2

BASIC-PLUS-2 ON RSTS/E

If you use an OLD command to bring the program APl into memory and
then issue an APPEND command for AP2, the result appears as follows:

oLD AFi1

READY

AFF AF2

READY

LIST

AF1 01354 FPM 27-MAY~-77
10 LET E=3
20 LET C=2
30 LET A=R™C
33 LET D=A"C
40 FRINT Al
50 ENI

Note that the APPEND command does not change the name of the current
program. Also, 1line 40 of the program in memory is replaced by line
40 of the appended program while the wunigque 1line 35 is merged
sequentially.

1.2.1.2 BUILD Command - The BUILD (BUI) command accepts the names of
one or more object modules as input and creates an indirect command
file with the default extension .CMD. This file contains all of the
Task Builder command input required to create an executable task image
file with a default extension of .TSK and a memory allocation map with
a default extension of .MAP. 1In addition to the command file, the
BUILD command generates an overlay description language file
(extension .ODL). You can edit the contents of this file to produce
overlaid program segments. The procedure used to overlay the BUILD
command output is described in Section 2.4.1.

An object module is a user program that is compiled ‘by means of the
COMPILE /OBJECT command (see Section 1.2.1.3). You create object
modules and link them by means of the Task Builder for the following
reasons:

1. To produce a memory allocation map - The map is a file that
contains descriptions of program code storage allocation and
global symbol definitions.

2. To link subprograms - User subprograms must be separately
compiled as object modules and selectively linked with your
program to create a single executable file.

3. To access RMS required code - Record I/0 operations on
sequential, relative, or indexed files (see Chapter 4)
require access to RMS library modules. To 1link this code
with modules that use these operations, you must use the Task
Builder.

The BUILD command generates all of the command input required by the
Task Builder system program. This input includes a task and map file
output specification, the object module names, and the required
BASIC-PLUS-2 1library and run~time system (see Section 1.2.1.6).
Because the BUILD command automatically creates an indirect command
file that «contains all of this input, Task Builder input can consist

1-12

BASIC-PLUS-2 ON RSTS/E

entirely of the indirect command file name. That is, the Task Builder
can 1link the object modules and output an executable task image file
and a map file based on a single command file specification. Note
that if you wish to 1link your program with special Task Builder
options, the BUILD command output must be modified (see Section
2.4.1). The wuse of the Task Builder program and special options are
described in Chapter 2.

To use the BUILD command, type:
BUILD main,subl,sub2,.../sw

on the terminal. 1In this example, main represents the name of a
program compiled as an object module. This filename becomes the name
of the indirect command file with the .CMD default extension appended
to it. Subl, sub2, etc., represent the names of one or more optional
subprograms, separated by commas, that have been separately compiled

as object modules. There 1is no specific 1limit on the number of
modules contained in the command line but they must all fit on a
single 1line (i.e., the command line cannot be continued). If any of

the modules perform RMS record I/O operations, you must append the
appropriate switch(es) to the end of the command line. The switches
and their use are as follows:

/SEQ links in the RMS code required for sequential file
operations.

/REL links in the RMS code required for relative file
operations.

/IND links in the RMS code required for indexed file
operations.

You can use any combination of the RMS switches on the command line,
depending on the content of the modules. That is, if any module in
the command line creates or opens a sequential, relative, or indexed
file, the appropriate switch(es) must be appended.

The command line shown above results in an overlay description file
(MAIN.ODL) and an indirect command file named MAIN.CMD. If you input
the command file to the Task Builder program, a task and map are
generated. For example:

RUN $TRE

TRR: @MAIN
TRRB: S/

READY

Following successful task creation, the system prints the READY prompt
on the terminal. This indicates that the operation is complete and
that your user area contains an executable task image file (MAIN.TSK)
composed of the linked modules you specified as input. Your area also
contains a memory allocation map (MAIN.MAP). The filename for both
the task image and map is the name of the first module appearing as
input in the command line. The actual linking operation is handled by
the Task Builder. For more information on the Task Builder, refer to
Chapter 2 of this manual or to the RSTS/E Task Builder Reference
Manual.

BASIC-PLUS-2 ON RSTS/E

1.2.1.3 COMPILE Command - The COMPILE (COM) command translates a
program currently in memory into executable machine language code.
This command can be used in conjunction with the following optional
switches: /DEBUG, /DOUBLE, /MACRO, /NOCHAIN, /NOLINE, /OBJECT, and
/TSK. A LOCK command is also available that allows you to specify
default switch settings.

When used alone, the COMPILE command translates the program into
executable code in task image format and stores it on the public
structure. If the program is a subroutine or contains a CALL
statement that references an external subroutine or contains an RMS
OPEN statement, the COMPILE command causes the automatic generation of
an object module. The generation of an object module is indicated by
one of the following printed messages on the terminal:

$CALL/SUB forces OBJ output

or

$RMS I/0 forces OBJ output
The appropriate default extension, .TSK or .OBJ, is appended to the
program name. The program is not executed; it is only compiled and
saved. For example, if the program is currently in memory (i.e., at

command level) and you type:

COMPILE

the current program is compiled and saved on the public structure. An
alternative use of this command is to type:

COMPILE filespec

where filespec 1is a RSTS/E file specification. This procedure
compiles the current program, assigns the specified name, and appends
.TSK or .0OBJ to the name (if no other extension 1is specified). To

compile a source program that is not in memory, you must bring it into
memory by means of an OLD command (see Section 1.2.1.10) and then type
COMPILE.

The COMPILE /DEBUG (COM /DEB) command translates the program into
executable code and enables the use of the BASIC-PLUS-2 debugging aid.
The debugging aid is described in Section 1.2.3. Note that the
program must be compiled with the /DEBUG switch before the debugging
aid can be used. Also, because the debugging aid is line-oriented, it
does not allow the use of the BREAK command (see Section 1.2.3.1) in a
program compiled with the /NOLINE switch.

The COMPILE /DOUBLE (COM /DOU) command translates the program into
executable code and indicates that double-precision format (4-word) is
used for all floating-point operations. Note that an executable task
cannot contain both single- and double-precision format. That is, all
modules in the task must be the same format; mixed format causes a
run-time error. The BASIC default is single-precision format (2-word)
for floating-point operations.

The COMPILE /MACRO (COM /MAC) command translates the program and saves
it as a MACRO source file with a .MAC default extension. This file
can be listed to examine the compiler-generated code. It is generally
used for diagnostic purposes.

The COMPILE /NOCHAIN (COM /NOC) and COMPILE /NOLINE (COM /NOL)
commands translate the program and reduce the memory requirements of
the output program. The /NOCHAIN switch disables 1line number table

1-14

BASIC-PLUS-2 ON RSTS/E

storage in memory. The amount of required memory that is reduced by
this switch depends on the content of the program. An attempted chain
operation to a specified 1line in a program compiled with /NOCHAIN
generates an error; however, any chain from the compiled program is
allowed.

The /NOLINE switch disables program line headers in memory and reduces
program requirements by the following amounts:

® Two words per line

e Two words per function definition

e Two words per DIM statement

e Four words per FOR NEXT, WHILE, or UNTIL NEXT loop or clause

The /NOLINE switch cannot be used when the compiled program references
an ERL function, makes use of the debugging program, or contains a
RESUME statement without a 1line number specification. When the
/NOLINE switch is enabled, the ERL value is set to 0. Note that a
RESUME statement without a line number specification overrides the
/NOLINE switch and causes a diagnostic error message:

$RESUME overrides /NOLINE

Also, a reference to the ERL function overrides the /NOLINE switch and
causes a diagnostic error message:

3ERL overrides /NOLINE

The COMPILE /OBJECT (COM /OBJ) command translates the program and
saves it as an object module. The extension, .OBJ, is appended to the
program name. Programs compiled as object modules must be linked into
a task image before they can be executed. You can construct a task
image by means of the Task Builder (see Chapter 2).

In most cases, the switches described above can be combined in the
COMFILE command.. The /TSK, /OBJECT, and /MACRO switches, however,
cannot be combined with each other. For example:

COM /OBJ /DEB /DOU /NOL /NOC
is a legal specification, but:
COM /OBJ /MAC
is not.

You can use the LOCK command to facilitate multiple program
compilations. That is, you can specify any legal combination of
compiler switches to the LOCK command, and these become the defaults
for successive COMPILE commands. This procedure avoids your having to
respecify switches for each compilation. The specified switches are
disabled by a LOCK command with no arguments. Note that a COMPILE
command with no arguments creates a task image file by default.

BASIC-PLUS-2 ON RSTS/E

Consider the following example:

1.OCK Z0BJ/NOL/NGOC

QL. FROG1

READY

COM

READY

0L PROG2

READY

COM

REAY

OLD FROG3

READY

COM /THEKR

READY

LOCK

QL FROG4

REATIY

CoM /MAC

READY
In this example, four programs are brought into memory by means of OLD
commands (see Section 1.2.1.10). The initial LOCK command sets the
/OBJECT, /NOLINE, and /NOCHAIN compiler switches as the defaults.
When vyou compile PROGl1 and PROG2, they become object modules with
/NOLINE and /NOCHAIN enabled. When you compile PROG3, however, the
creation of a task 1image file 1is specified. This overrides the
/OBJECT default and creates a compiled program with the .TSK
extension. The /NOLINE and /NOCHAIN switches are left enabled.
Finally, the LOCK command with no arguments disables all defaults and
PROG4 is compiled as a MACRO file with no switches in force. The
result of these four compilations is as follows:

PROG1.0BJ (NOLINE and NOCHAIN enabled)

PROG2.0BJ (NOLINE and NOCHAIN enabled)

PROG3.TSK (NOLINE and NOCHAIN enabled)

PROG4.MAC (no switches enabled)

Note that if you specify COM /TSK to a program that cannot compile
into a task image file, a fatal error is generated:

?TSK output not possible

BASIC-PLUS-2 ON RSTS/E

1.2.1.4 DELETE Command - The DELETE (DEL) command removes a specified
line or lines from the program currently in memory.

To delete a program line, type the command followed by the desired
line number. To delete a series of lines, specify the line numbers,
separated by commas. To delete a consecutive group of lines, type the
first and last line number of the group, separated by a hyphen.

For example:
DEL 50
removes line 50 from the program.
DEL 50, 80
removes lines 50 and 80 from the program.
DEL 50-80
removes lines 50 through 80 from the program.
DEL 50, 60, 90-110
removes lines 50, 60, and 90 through 110 from the program.

If you do not specify a line in the DELETE command, no lines are
removed and an error message (Illegal Delete command) is returned. If
you specify a range of lines and one of the specified lines does not
exist, all of the lines within that range are removed. That is, if
you type DELETE 50-80, all of the lines equal to, or greater than, 50
and equal to, or less than, 80 are erased. If you type an illegal
line specification such as DELETE 80-50, the command is ignored and an
error message (Bad line number pair) is returned.

1.2.1.5 EXIT Command - The EXIT (EXI) command terminates access to
BASIC-PLUS-2 and returns you to the default run-time system. This
command is the only means of leaving BASIC-PLUS-2 that ensures the
immediate return of control to the default run-time system.

1.2.1.6 HISEG Command - BASIC-PLUS-2 is supplied with two separate
run-time systems and libraries called BASIC2 and BP2COM, respectively.
BASIC2 is installed as the default (see Section 1.2) and contains all
of the run-time support routines that are required to generate an
executable task image file. BP2COM is a minimum run-time system and
uses its 1library to store most of the run-time system support
routines.

The HISEG command is used to switch run-time systems and allows you to
include BP2COM in the command file that is generated by the BUILD
command (see Section 1.2.1.2). The decision to use BP2COM rather than
the BASIC2 default is based on time and space considerations.

The BASIC2 run-time system is 16K words long and the associated
library is minimal. Because all of the routines required by a BASIC
program are present in the run-time system (with the exception of RMS
I/0), BASIC2 is used to generate an executable task image file (i.e.,
COM /TSK). BASIC2 also minimizes task image size and program linkage
time.

BASIC-PLUS-2 ON RSTS/E

The BP2COM run-time system is 4K words long and the library is used to
contain the BASIC routines. BP2COM cannot be wused to directly
generate an executable file; it must be included in the command file
that is generated by the BUILD command. This command file is
specified as input to the Task Builder, which selects the BASIC
routines required by the program. The selected routines are then
linked to the program to produce an executable file.

With the BP2COM run-time system and library included in the Task
Builder input, you can produce a program with a maximum size of 28K
words. However, because the required BASIC routines are included,
they cannot be shared with other users.

To use the HISEG command, type:
HISEG RET

In response to the command, BASIC prompts for the name of the desired
run-time system and the account number under which it is stored. For
example:

HISEG
Name-- BP2COM
Account- (1,1)

This example causes BP2COM to be wused in all succeeding BUILD
commands. If the command is successful, READY is printed at the
terminal. 1If you follow this procedure with a BUILD command, the
generated command file contains the BP2COM run-time system and library
as well as the specified object modules (see Section 1.2.1.2).

BP2COM remains the BUILD command default run-time system until you

replace it by means of another HISEG command or exit from
BASIC-PLUS~-2.

1.2.1.7 IDENTIFY Command - The IDENTIFY (IDE) command prints a
BASIC-PLUS-2 header on the terminal. The header consists of the
BASIC~-PLUS-2 name and version number. IDE eliminates confusion as to
what BASIC is currently in effect. That is, an identifying header is
printed in response to this command only when the current run-time
system is BASIC-PLUS-2.
Consider the following example:

TN

BASIC-FLUS-2 Vo100

READY

EXTT

READY

T I

PTWHAT?
In this example, the current availability of BASIC-PLUS-2 is confirmed
by the result of typing the IDE command. After you type EXIT (see

Section 1.2.1.5), BASIC-PLUS-2 is replaced by the default run-time
system. An IDE command on the default system (assuming that it is not

1-18

BASIC-PLUS-2 ON RSTS/E

BASIC-PLUS-2) produces an error because the command is not part of
that system's command set. Note that the same identification header
is also printed when you first access BASIC-PLUS-2 (i.e., type RUN
$BASIC2).

1.2.1.8 LIST Command - The LIST (LIS) command prints a copy of the
program currently in memory. This copy is printed on the terminal.
It shows the program as it appears in memory with 1line numbers
properly sequenced.

If you type:
LIS (rer)
the entire program is printed, along with header material containing
the program name, the current time and date, and system information.
To suppress this header material and print a copy of the program
alone, type:
LISNH
where NH specifies no header.
You can also specify the printing of specific program lines|, instead
of the whole program, by means of the line number specification shown
in the DELETE command (see Section 1.2.1.4). For example:
LIS 30, 70

prints a copy of lines 30 and 70 on the terminal, with a header.

LISNH 30-70

prints a copy of lines 30 through 70 on the terminal, without the
header.

1.2.1.9 NEW Command - The NEW command reserves space for building
programs by creating a temporary file. When you type NEW on the
terminal, any name and source code currently in the compiler's buffer
or in a temporary file are deleted. After you type the command, the
system prompts for the new program's name, as follows:

NEW RET
NEW FILE NAME--

In response to this prompt, type any 1l- to 6-character alphanumeric
name.

You can also answer the NEW FILE NAME-- prompt with a carriage return,
in which case the system supplies the name NONAME by default.

You may avoid the prompt altogether by typing the desired name after
typing NEW. For example, if you type:

NEW PROG1

the system assigns the name PROGl to the program you create.

BASIC-PLUS-2 ON RSTS/E

In all cases, NEW creates space for source files, so the default
extension is .B2S. If you specify any other extension in the NEW
command, it is ignored.

1.2.1.10 OLD Command -~ The OLD command allows you to bring into
memory a previously created and saved source program. When you type:

OLD
the system replies:
OLD FILE NAME--

In answer to the prompt for a name, type the name of the program you
wish to access. This command causes the specified program, with a
.B2S extension, to be read into memory and become the current program.
The program 1is now ready for processing (i.e., editing, execution,
compiling, etc.).

If you type only a carriage return in response to the prompt, the
system searches for a source program called NONAME.B2S. You can also
avoid the OLD FILE NAME prompt by specifying the desired program with
the OLD command, as follows:

OLD filespec

where filespec is the program name. If you specify a program name
that does not exist, or if NONAME.B2S cannot be found, the system
returns an error message:

?Can't find file or account

When you type the OLD command, any source code currently in memory 1is
lost. Also, when the system reads in the specified program, it
performs no syntax check on the contents.

1.2.1.11 RENAME Command - The RENAME (REN) command changes the name
of a program currently in memory. For example, if you have a program
in memory named FILEl and you type:

REN FILE2
the name FILEl is erased and replaced with the name FILE2. If you

type SAVE (see Section 1.2.1.14), the program is stored on the public
structure with the name FILE2.

If you bring a saved program named FILEl into memory with an OLD
command and type:

REN FILE2

the program is named FILE2 on the temporary file but retains the name
FILEl on the public structure.

BASIC-PLUS-2 ON RSTS/E

1.2.1.12 REPLACE Command - The REPLACE (REP) command replaces a
program on the public structure or a specified device with one in
memory. For example, if a program named FILE needs modification,
bring it into memory with an OLD command, make the desired changes,
then type:

REP RET

This procedure replaces the contents of the original program named
FILE with the contents of the newly edited program.

You can also specify a new name for the edited program in the REPLACE
command. For example:

REP FILEl

where FILEl is the name of the program currently in memory, retains
the o0ld version of FILE but also saves the edited version under the
name FILEl.

The REPLACE command stores the program even if there is no program of
the same name on the public structure. That is, if the program named
FILE is currently in memory and there are no other programs with that
name, REPLACE still writes the program onto the public structure.

1.2.1.13 RUN Command - The RUN command causes the execution of a
program. If a program is currently in memory and you type:

RUN RET

the program is compiled and executed. If the program is saved on the
public structure, you must specify the name of the program in the RUN
command. For example:

RUN PROG1
causes the specified program, PROGl, to be executed.

When you type only the name of a specific program (i.e., no extension)
with the RUN command, the system searches for and executes a compiled
program of that name. This program need not be a BASIC-PLUS-2
executable file. If such a program cannot be found, the system
attempts to OLD the specified source program (extension .B2S), compile
it, and then execute the program. However, the compiled image of an
executed source program is not saved. Obviously, it takes more time
to run a source program because it must be compiled first. It saves
time if you compile your completed program before execution (see
Section 1.2.1.3). Note that if you execute a non-BASIC-PLUS-2
program, completion of the program returns you to the default run-time
system.

When you issue the RUN command, the executed program includes a header
as part of the output. This situation parallels that found with the
LIST command (see Section 1.2.1.8). To run the program without a
header, you type RUNNH.

BASIC-PLUS-2 ON RSTS/E

1.2.1.14 SAVE Command - The SAVE (SAV) command preserves a completed
source program by transferring it from memory into a file on a
specified device or the default public structure. For example, if you
have a program in memory and type:

SAV RET

the line numbers of the program are sequenced, and the program is
stored on the public structure as source code under the current name
with a .B2S extension. If you wish to specify a particular storage
device, extension, or program name, type:

SAV filespec

where filespec is a RSTS/E file specification that contains the
desired name or device (see Section 1.1.1). If you have built an
unnamed program, a SAVE command with no specification stores the
program as NONAME.B2S.

If you attempt to save a program that has the same name as one already
saved, the system ignores the command and prints an error message:

?File exists - RENAME/REPLACE

This error prevents an inadvertent deletion of an existing program.
For an explanation of RENAME and REPLACE see Sections 1.2.1.11 and
1.2.1.12.

1.2.1.15 SCALE Command ~ The SCALE command (SCA) implements and
controls the scaled arithmetic features of BASIC-PLUS-2. You use
SCALE to overcome accumulated round-off and truncation errors in
fractional computations performed when floating-point format 1is
enabled. SCALE enables you to maintain the decimal accuracy of
fractional computations to a given number of places determined by the
scale factor.

To specify a scale factor, type:
SCALE int

where int is a decimal integer in the range of 0 to 6. The command
causes the specified scale factor to be wused for succeeding
compilations. The scale factor remains in effect until you exit from
BASIC-PLUS-2 or specify a SCALE command factor of 0. Note that a
SCALE command with no factor specification causes the system to print
the current scale factor. Refer to the RSTS/E System User's Guide for
a detailed explanation of the SCALE command.

1.2.1.16 UNSAVE Command - The UNSAVE (UNS) command deletes a file
from the public structure. For example, if you type:

UNS RET

the file associated with the source program currently in memory is
deleted from your account in the public structure. If you type:

UNS filespec
the specified file, filespec, is deleted from the public structure or

specified device whether or not it is currently in memory. This

1-22

BASIC~PLUS-2 ON RSTS/E

command is useful for erasing unwanted files from the public structure
or other specified devices or accounts.

The UNSAVE command causes the system to search for and delete a
specified source program. If the program is not found, the system
prints an error message:

?Can't find file or account

To delete a compiled or non-source program, Yyou must type the
program's name and extension. For example:

UNS FILE.TSK

1.2.2 Editing

There are a number of ways you can correct BASIC-PLUS-2 source
programs. These editing methods include deleting incorrect characters
and retyping entire program lines. However, programs must be in
memory before edits can be made. That is, you edit a new program as
it is built, or a saved program after it is brought into memory by
means of an OLD command. You cannot edit a compiled program or an
object module.

As you create new programs, you can erase misspelled or incorrect
characters with the RUBOUT key and type corrections at the terminal.
Note that RUBOUT is labeled the DELETE key on some terminals. This
must be done before you enter the line into memory with a carriage
return. For example, to correct a misspelled PRINT statement:

10 PRAND

erase the incorrect characters with the RUBOUT key and retype as
follows:

10 PRAND\DNA\INT

Press the RUBOUT key once for each character you wish to delete (these
characters wusually print inside slashes on the terminal); then type
the correct character (s) on the same line. Note that the RUBOUT key
erases characters one at a time from right to left beginning with the
last character typed. You can then type a carriage return to enter
the corrected line into memory.

To delete an entire line that has not been entered into memory (i.e.,
you have not yet typed a carriage return), use CTRL/U. That is, you
press the CONTROL key and the U key simultaneously.

As you enter source lines into memory, the BASIC Compiler performs a
syntax check. If BASIC detects an incorrect line, it prints the
appropriate error message following input (see Appendix C). However,
BASIC saves source program lines even with errors. To edit an
incorrect line that has been entered into the program currently in
memory, retype a corrected version of the line. By typing the same
line number followed by corrected text, you delete the old, incorrect
line from memory and automatically replace it with the new one.
Consider the following example:

10 LAD A=7\B=9\C=SRQ(144) RET
?Syntax error

BASIC-PLUS-2 ON RSTS/E

This incorrect line was entered into memory by the carriage return and
an error message was printed. 1If you type:

10 LET A=7\B=9\C=SQR(144) RET

the previous line 10 is erased from memory and replaced with the
corrected version.

You can also delete a line currently in memory by typing the 1line
number with no text. For example:

10 LET D=A+B**C

can be deleted from the source program by typing:

10

Also, you can use the DELETE command to perform the same function (see
Section 1.2.1.4).

1.2.3 Debugging

To help you locate any errors that may exist in your program, BASIC
provides a set of interactive debugging commands. These commands
allow you to check program operation and make corrections. The
commands are BREAK, UNBREAK, STEP, TRACE, UNTRACE, PRINT, LET and
CONTINUE and their use is permitted only on programs or subroutines
that are compiled with the /DEBUG switch (see Section 1.2.1.3). After
you have debugged the program and edited the source file to execute
correctly, you can recompile the program without the /DEBUG switch to
disable these commands. Note that the /DEBUG switch causes an
increase in program memory requirements, therefore, recompiling the
program acts to conserve memory.

Note that when a program is composed of several subroutines, you do
not have to compile each subroutine with the /DEBUG switch. To debug
a single subroutine, the switch need only be enabled with that
routine.

Wwhen you run a program, execution stops the first time a module is
entered that has the /DEBUG switch enabled. After execution halts,
the debugging aid prints an identifying message on the terminal:

DEBUG: prog name

where prog name is the name of the program or subroutine that was
compiled with the /DEBUG switch. The debugging aid also prints a
prompt (#) after the message as follows:

DEBUG: prog name
#

The prompt allows you to enter debugging aid commands. The debugging
commands allow you varying degrees of control over program execution
as explained in the following sections. To reinitiate program
execution and cause the specified command action, type the CONTINUE
(CON) command as follows:

DEBUG: prog name
#BREAK 10
#CON

BASIC-PLUS-2 ON RSTS/E

In this instance, the CON command reinitiates program execution as
specified by the BREAK command, i.e., program 1line number 10 is
executed. Note that the STEP command causes immediate execution of
the first encountered statement and does not require the CONTINUE
command .

Following the successful execution of a debugging command, a message
is printed that identifies your current position in the program or
subroutine., This message has the form:

command AT LINE n [,name]
where:

command is the last executed debugging command, 1i.e., BREAK,
STEP, TRACE, etc.

n is your current line number position in the program or
subroutine.

name is the name of the currently executing subroutine.
Note that this name does not appear if you are
currently executing the main program.

After this message is printed, the # prompt is reissued.

To terminate the debugging process, type EXIT (see Section 1.2.1.5).
This command terminates the debugger and returns you to the default
run-time system.

1.2.3.1 BREAK and UNBREAK Commands - You type the BREAK command in
response to a debugging aid prompt. The command is typed at the
terminal as follows:

BREAK [arg]

where arg is a command argument that causes a halt at a specified
point in a program or subroutine compiled with the /DEBUG switch. The
halts that are set by a BREAK command argument are called breakpoints
and their specification takes one of the following forms:

BREAK a command with no argument sets a breakpoint at
each program line number. Execution halts at each
line number and the # prompt is reissued.

BREAK n where n is a line number. Execution halts and the
debugging prompt 1is issued whenever that line
number is encountered.

BREAK n; where n is a line number. The semicolon specifies
that 1line number n 1is a breakpoint only in the
currently executing program or subroutine.

BREAK nj;name where n is a line number. The semicolon followed
by a routine name (name) specifies that line
number n is a breakpoint only in the named program
or subroutine.

BASIC-PLUS-2 ON RSTS/E

You can specify a maximum of 10 breakpoints as arguments in the BREAK
command. When more than one argument is specified, they must be
separated by a semicolon or comma. For example:

#BREAK 10, 300; 310;PROC, 60

"This example causes execution to halt at the following points:

1. Line 10 whenever it 1is encountered in a /DEBUG enabled
routine, regardless of whether it is the main program or a
subroutine.

2. Line 300 in the currently executing routine.

3. Line 310 in the routine named PROC.

4. Line 60 whenever it is encountered.

If you specify more than 10 breakpoints, the excess are ignored and an
error message is printed:

$No room

To disable the breakpoints, use the UNBREAK command. This command has
the same general format as BREAK, that is:

UNBREAK a command with no arguments disables all
breakpoints.

UNBREAK n disables the breakpoint set at line number n.

UNBREAK nj; disables the breakpoint set at line number n in

the current program or subroutine.

UNBREAK n;name disables the breakpoint set at line number n in
the named routine.

Note that, as in the BREAK command, you can specify a maximum of 10
breakpoints separated by commas or semicolons in the UNBREAK command.

In addition to line number breakpoints, the BREAK command also allows
you to specify a halt on CALL statements, user-defined functions, and
loops. The BREAK arguments for these halts are CALL, DEF, and LOOP
respectively and they set breakpoints as follows:

BREAK ON (CALL
DEF
LOOP

where:

CALL causes a halt in execution each time a CALL statement
is executed to a subroutine that is compiled with the
/DEBUG switch. The halt occurs immediately before the
execution of the subroutine's first statement.

DEF causes a halt in execution each time a user-defined
function is entered. The halt occurs immediately
before the execution of the function.

LOOP causes a halt in execution each time a FOR, WHILE, or
UNTIL statement or modifier is encountered. Halts
occur after the loop is initialized, immediately before
execution of the 1loop body, and after exit from the
loop.

1-26

BASIC-PLUS-2 ON RSTS/E

Note that the BREAK ON command allows you to specify only one argument
and this command can be combined with other breaks. For example:

BREAK 45, ON CALL, 330;
This example causes execution to halt at the following points:

1. Line 45 whenever it 1is encountered in a /DEBUG -enabled
routine, regardless of whether it is the main program or a
subroutine.

2. After a CALL to any subroutine compiled with the /DEBUG
switch and immediately before the execution of the
subroutine's first statement.

3. Line 330 in the currently executing routine.

1.2.3.2 STEP Command - The STEP command causes execution to proceed
on a statement-by-statement basis. You type the command in response
to the debugger prompt as follows:

STEP [n]
where:
STEP a command with no arguments causes execution of the
next statement in the current program or subroutine.
n specifies the number of statements to be executed.

As with other debugging commands, the STEP command has effect only on
programs or subroutines that are compiled with the /DEBUG switch.
Therefore, the statement executed by the STEP command is the first
statement encountered in a /DEBUG enabled routine.

The optional argument, n, must be a positive integer in the range of 1
to 32767.

1.2.3.3 PRINT and LET Commands - The PRINT and LET commands allow you
to examine and change the <contents of variables in programs and
routines that are compiled with the /DEBUG switch.

The PRINT command has the form:

PRINT var
where var is the name of the variable whose <content you wish to
examine. When this command is executed, the current content of the
variable is printed. Note that you can specify only one variable as
an argument in the PRINT and LET commands.
The LET command has the form:

LET var=value
where var is the name of the wvariable whose content you wish to

change. The PRINT and LET debugging commands allow constants or
variables as arguments, but they do not allow expressions.

BASIC-PLUS-2 ON RSTS/E

1.2.3.4 TRACE and UNTRACE Commands - The TRACE command allows you to
track the execution of a program or subroutine that is compiled with
the /DEBUG switch. You can examine the path of execution by means of
line numbers. You type the command in response to the debugger prompt
as follows:

$# TRACE
where:

TRACE the command with no argument prints the number of
each line as it is executed.

To disable the TRACE command, type UNTRACE in response to the #
prompt.

1.3 BASIC-PLUS-2 PROGRAMS

A BASIC-PLUS-2 source program is composed of numbered 1lines that
contain BASIC language elements as follows:

line-number text

where the symbol represents a carriage return line terminator. In
addition to carriage return, BASIC-PLUS-2 accepts a line feed, form
feed, vertical tab, or escape as a line terminator.

A BASIC-PLUS-2 line number must be a positive number in the range of 1
to 32767. 1If you type a line number that is outside the legal range,
the number is ignored and BASIC prints an error message:

?Syntax error
A line number with no text is considered to be a 1line deletion (see
Section 1.2.2). Text with no line number (except for legal commands

and continuation lines) is ignored and the system prints an error
message:

?What?
The BASIC Compiler checks each source program line for correct syntax,
returns a message for errors, and saves the line even if errors are
found. The lines are saved in ascending numeric order and are
executed in the same order.

BASIC-PLUS-2 programs do not require an END statement.

1.3.1 Source Lines

BASIC source lines can contain multiple statements on a single line.
However, you must separate multiple statements with a backslash (\).
For example:

10 LET A=5\B=7\C=9

BASIC source lines can also be continued over more than one line. You
signify continuation by typing the character & (ampersand) and a line
terminator.

BASIC-PLUS-2 ON RSTS/E

The following is a valid continued line:

10 LET A=5\B=7 &
\ C=A+B

Because the ampersand signifies a continued line to the compiler, you
cannot use this character as the 1last non-blank character of a
non-continued line.

You can place comments in BASIC source 1lines by means of an
exclamation point separator (!). Comments in a line are printed when
the program is listed, but are ignored when the program executes. You
can place a comment at any point on the 1line as long as it is
separated from any other element of the line by the exclamation point
separator (!).

Consider the following:
ITHIS IS A LEGAL COMMENT
10 LET A=10 !SO IS THIS! \LET B=5
20 LET A=10\B=5 !AND THIS

Note that a comment separator cannot take the place of a statement

separator. That is, backslashes are always required on
multi-statement lines. Also, comments cannot be continued with an
amper sand; each program line must begin comments with an exclamation

point. You can, however, include the comment in a REM statement
which, as with any statement, can be continued.

BASIC accepts any character in text as long as it is part of the ASCII
character set. A table of the ASCII characters appears in Appendix D.
Null characters are ignored as meaningless; however, non-printing
characters (space, tab, etc.) are accepted in 1literal string
constants. A warning message is issued for non-printing characters
that appear outside of string literals. Also, the compiler treats
lower-case alphabetics in line text as upper case, but lower-case
alphabetics in literal strings remain lower case.

BASIC accepts integers in the range of =-32767 to +32767. The value of
subscript variables is in the range of 0 to +32767. Single-precision
(2-word) floating-point values are rounded down to seven digits of
accuracy and lie in the range of .29 x 10°%® to .17 x 10%.
Double-precision (4-word) floating-point values are rounded down to 17
digits of accuracy and 1lie 1in the range of .29 x 10-® to .17 x
10%, For more information on data representation, see Appendix D.

1.3.2 BASIC-PLUS-2 RSTS/E Sample Program

The following example summarizes the building of BASIC source programs
on the RSTS/E system.

BASIC-PLUS-2 ON

RUN $BASIC2

RSTS/E

! MAX NUMERER OF ELEMENTS
! GET NUMERER OF ELEMENTS
! CHECK CORRECT NUMERER

I WRONG ~ INFORM USER

REAY
NEW
NEW FILE NAME--S0RTO2
READY
10 DiM SORT(100)
20 INFUT "NUMEBRER OF ENTRIES": CNTZ
\ IF CONTXZ < 2% OR CNTZ = 100%
THEN FRINT ‘LIMITS - 2 TO 1007
N\ GO TO 20 ' TRY AGAIN
ELSE INFUT SORT(IZ) FOR IZ=1Z TO CNTXZ
30 REM
FEURBREBELE SORT
CHECK EACH FAIR OF ELEMENTS
IF IN WRONG ORDERy SWITCH THEM
SORT.FLG IS SET TO FALSE (0) WHEN A SWITCH IS MADE
FASS OVER THE ENTIRE LIST UNTIL NO SWITCH IS MADE
3 SORT FLGK=1%

L

\ WHILE SORT.FLGX:0X%

\ SORT JFIL.GA=0%

\ FOR IZ=1% TO CNTX-1%Z

\ IF SORT(IZ)==SORT(IZ+LX)
THEN SORT.FLGZ=1%

\ T=80RT (LX)
AN SORT(IZ)=80RT(IZ+1%)
N SORTCIA+LA) =T
40 NEXT 1%
G0 NEXT
60 FRINT SORTC(IXZ)s FOR IZ=1X TO CONTZ
32767 ENI
SAVE
REALY

COMFILE

REALY

RUNNH SORTOZ2

NUMEBER OF ENTRIES? 6

w»

10 0 ~Ge5

READY
RYE
CONFIRM? Y

PSET TO TRUE INITIALLY

LOOF UNTIL SORT JFLG I8 FALSE

i

I SET TO FALSE RBEFORE FPASS
POLOOF THROUGH ENTIRE LIST

I CHECK A FAIR

tIF WRONG-FORCE ANOTHER FAGS
I SWAF ELLEMENTS

PPRINT ELEMENTS IN ORIER

=G ~100

SAVED ALL DISK FILESS 120 RLOCKS IN USEs 4880 FREE

JOR 9 USER 26»11 LOGGED OFF KR&6O AT 23-AFR-77
SYSBTEM RSTS VO6R-02 TIMESHARING RJE

RUN TIME WAS 1 SECOND

ELAFSED TIME WAS 11 MINUTES, 29 SECONDS

GOOD MORNING

09154 AM

RO ROG PG RO

R G AC G ¢ [0 RO

RC RO ¢ W RC ¢ A 2

BASIC-PLUS-2 ON RSTS/E

The program shown above accepts up to 100 numbers as input, sorts them

by size, and prints

them in descending order on the terminal. The

procedure used to enter and execute the program is detailed below.
The explanations are keyed to the commands.

Command

RUN $BASIC2

NEW
NEW FILE NAME--SORTO02

READY

SAVE

COMFILE

RUNNH

BYE

Explanation

The RUN $BASIC2 command (see Section 1.2)
invokes the BASIC-PLUS-2 compiler and run-time
system.

The NEW command (see Section 1.2.1.9) clears a
space in the temporary buffer for creation of
the source program. When you type NEW, any
source code in the buffer is lost. When you
type SORT02 in reply to the system's prompt
(NEW FILE NAME--), you assign the name SORT02
to your program.

READY is printed by the run-time system to
indicate that the compiler 1is prepared to
accept input. It also indicates that the
previous command - (NEW) has been successfully
executed.

SAVE (see Section 1.2.1.14) copies and
preserves the program on the system device.
The program now resides on the system as a
source program (extension .B2S) named SORTO02.

The COMPILE command (see Section 1.2.1.3)
translates the program into executable code.
The default extension, .TSK, is appended to the
program name.

The RUNNH command (see Section 1.2.1.13) causes
the execution of the program.

The BYE command ends the session and causes you
to exit from the system. You are asked to
confirm that you wish to leave. If the answer
is yes (Y), the system prints additional
information and then logs you off (see Section
1.1).

CHAPTER 2

TASK BUILDER

The Task Builder is a system program that is used to link one or more
object modules into a single, executable file in task image format.

An object module is a user program that has been compiled with the
COMPILE /OBJ command (see Section 1.2.1.3). Programs created as
object modules have the .0OBJ extension appended to the filename. They
can be executed only after being processed by the Task Builder.

The Task Builder accepts object code as input, resolves any switches
or options you have specified in the command 1line, and outputs
executable code. You must use the Task Builder if the program:

1. Contains a CALL statement that references an external
subroutine.

2. 1Is to be linked to library modules.
3. 1Is to use a Task Builder option.

4. 1Is to create or access an RMS file.

2.1 INVOKING THE TASK BUILDER

The Task Builder is a system-library program. You invoke it by typing
on the terminal:

RUN S$TKB

The Task Builder indicates that it has been successfully invoked and
is ready to accept input by printing the following prompt on the
terminal:

TKB>

Note that when you invoke a system program such as the Task Builder,
you exit from the current run-time system. An exit from the system
program clears memory and returns you to the default run-time system.

The system manager has the option of installing the Task Builder as a
CCL command (see Section 1.1.2). If this is the case, you can type
TKB to invoke the Task Builder. You should refer to the system
manager for this capability.

TASK BUILDER

2.1.1 Task Build Command Line

In response to the TKB> prompt, you can specify a command line that
contains from zero to two output files and any number of input files,
switches, and Task Builder options. The command line has the form:

TKB>task ,map=input/sw

TKB>/
where:

task is the first, optional output file specification
and represents the task image file with a .TSK
default extension.

map is the second, optional output file specification,
separated from the task by a comma. This
specification represents the memory allocation map
with a .MAP default extension.

input is one or more object modules with a filename
specification as shown in Section 1.1.1. Input is
separated from output by an equal sign and each
specified object module is separated by commas.

/sw is one or more optional switches as described in
Section 2.2.1.

/ is a slash that causes the Task Builder to solicit

one or more options. (See Section 2.2.2.)

The Task Builder continues to prompt for input until you type a double
slash (//). Note that the single slash to solicit options must be
typed on a separate command line. When you type the double slash, the
Task Builder builds the task image, outputs a task image file and a
map (if these files are requested), and resolves any specified
switches and options.

Consider the following example:
RUN S$TKB

TKB>PROG, PROG=0BJ1,0BJ2,0BJ3, LIB/LB/sw
TKB>/

ENTER OPTIONS:

TKB> optl=option

TKB> opt2=option

TKB> //

READY

In this example, the first output specification calls for the building
of a task image file named PROG.TSK that contains the modules and
options specified as input. The second output specification,
PROG.MAP, calls for the building of a task memory allocation map that
is stored in the specified file. Note that if no output specification
is made, the Task Builder only performs an error check on the ‘input
specifications and issues appropriate diagnostic messages.

The input specification contains three object modules built by the
compiler (COMPILE /OBJ). The modules are followed by library and
optional switch specifications and a carriage return. The carriage
return causes a continuation of the TKB> prompt. A single slash
causes the Task Builder to prompt for system options by printing ENTER

2-2

TASK BUILDER

OPTIONS: on the terminal followed by the TKB> prompt. In response,
you type the desired option. Note that only one option can be entered
on a line. Task build input is terminated by a double slash. This

causes the creation of the specified output files and an exit from the
system program.

The BUILD command (see Section 1.2.1.2) offers you an alternative
procedure for specifying TKB input. The BUILD command accepts object
module names in the command line and produces a command file. This
file contains all of the required Task Builder command input. For
example:

BUILD MODPl, MOD2, MOD3

generates a command file named MOD1.CMD. When this file is typed in
response to the TKB prompt:

TKB> @MODl1

the Task Builder generates a task image file (MOD1l.TSK) and a map
(MOD1.MAP) . Note that you cannot use the unmodified output of the
BUILD command when you desire Task Builder options. In these cases,
you must specify the complete Task Builder command line or build your
own command file with an editor.

For more information on the Task Builder specifications, refer to the
RSTS/E Task Builder Reference Manual.

2.1.1.1 Task File Extensions - The files that are processed by the
Task Builder are assigned file type extensions by default. Table 2-1
lists these extensions and the applicable file.

Table 2-1
Default File Types
Extension File
.TSK Task image file
.MAP Memory allocation map
.OBJ Input object module
.OLB Library file
.ODL Overlay description file
.CMD Command file

2.2 TASK BUILDER INPUT

Input to the Task Builder program consists of one or more object
modules, any required libraries, optional switches, and program
options. Note that the HISEG option is required in order to associate
the task with the BASIC-PLUS-2 run—-time system (see Section 2.2.2.6).

TASK BUILDER

The object modules can be input as RSTS/E filename specifications
(without RSTS/E switch specifications or wild card characters) or the
filenames alone. When you type the complete filename specification,
the Task Builder transfers any project-programmer number, device,
protection code, and extension to the task image. If you specify the
filename alone, the system defaults are used.

The switches and options also have default settings. In most cases
you can change these by specifying the desired setting in the command
line. The switches and options, their defaults, and functions are
discussed in the following sections. For additional information on
these specifications, refer to the RSTS/E Task Builder Reference
Manual.

2.2.1 Switches

Switch action is specified by a slash followed by a 2-letter mnemonic
that indicates the switch name. No specification is needed when
switch action is the default; however, you can negate switch action
by specifying the switch, preceded by a minus sign or NO. For
example:

/ SW specifies switch action
/~SW negates switch action
/NOSW negates switch action

Table 2-2 lists the switches that you can specify to the Task Builder.
The table also shows the action caused by the switch, the file it
applies to, and its default.

Table 2-2
Task Builder Switches

Mnemonic Meaning File Default
/DA Task contains debugging aid T,I /-DA
/LB Input file is a library file I /-LB
/MA Includes a file in the map M, T /MA
/MP Input file contains overlay I /-MP

description
/SH Short memory allocation map M /SH
is output
/WI Causes a wide listing M /WI
/XT:n Task Builder exits after - T /=XT

n diagnostics

T-task image file M-memory allocation map

S-symbol definition file I-input file

TASK BUILDER

When you specify a switch in the command line, it must be associated
with the appropriate file. That is, a switch that applies to a task,
map, or input file must appear with that file in the Task Builder
command line. A switch that is associated with an inappropriate file
causes an error (i.e., Illegal switch).

The /DA switch indicates that the task includes a debugging aid. If
you specify this switch to an input file, a user-built program that
controls execution is input to the task. If you apply this switch to
the task image file, the Task Builder automatically includes the
system debugging aid SY:[1,1]ODT.OBJ in the task image. The default
does not include a debugging aid.

The /LB switch has two forms: without arguments (/LB) and with
arguments (/LB:module-1l:module-2:...module-8). If you do not specify
arguments with this switch, the input file is assumed to be a library
file containing modules that resolve undefined global references. The
Task Builder searches the file and includes the global defining
modules in the task image file. If you specify arguments with this
switch, the input file is assumed to be a library file from which the
named modules are taken and included 1in the task image. You can
specify from one to eight modules as arguments to this switch. The
default identifies input as an object module and not as a library
file.

The /MA switch causes a module to be included in the memory allocation
map. When you apply this switch to the input specification, the input
file is included in the memory allocation map. The default includes
the input file in the map. When you specify this switch in the output
map file, any resident library symbol definitions are included in the
map. For output files, the default negates this switch and excludes
symbol definitions from the map.

The /MP switch indicates that the input file contains a description of
the task's overlay structure. The Task Builder allocates memory as
directed by the overlay description file (with a default extension
.ODL) . The default does not include an overlay description.

The /SH switch produces a short version of the memory allocation map
file. That 1is, the "File Contents" portion of the file is not
produced. The default produces the short version of the map file.

The /WI switch causes a wide 132-column 1listing of the memory
allocation map. When you negate this switch, a narrow 80-column
listing is produced. The default produces a wide listing.

The /XT:n switch causes the Task Builder to exit (cease execution)
after n error diagnostics are produced. The specified number (n) can
be decimal, octal, or default to 1. If decimal, n must be followed by
a decimal point; if octal, n must be preceded by a number sign (#).
The default (/-XT) is not to exit.

2.2.2 Options

The options are specified on input to the Task Builder and define the
characteristics of the task image. The options take the form of a
keyword followed by an equal sign and a name or number. The name or
number assigned to the option 1is dependent on the desired
characteristic. The following sections describe each option and its
use.

TASK BUILDER

Options can be divided into five éategories:

1. Control - affects the execution of the Task Builder.

2. Identification - specifies task characteristics.

3. Allocation - modifies the task's memory allocation.

4., Alter - adapts file contents to global symbol usage.

5. Device - specifies task device requirements, -
Table 2-3 1lists the option keywords, their meanings, and the

categories to which they apply.

Table 2-3
Task Builder Options

Keyword Meaning Category .
ABORT Directs the Task Builder to Control
terminate execution
ABSPAT Declares absolute patch values Alter
ASG Declares device assignments Device
to logical units
EXTTSK Extends the amount of memory Allocation .
allocated to a task
GBLDEF Declares a global symbol definition| Alter
HISEG Associates task with a run-time Allocation
system
STACK Declares stack size Allocation
TASK Declares task name Identification
UNITS Declares the maximum number of Device
units
The following sections describe the format and use of the options you
can specify to the Task Builder. For more information on these
options, refer to the RSTS/E Task Builder Reference Manual.
2.2.2.1 ABORT Option - The ABORT option causes the Task Builder to
cease building the task image. After you type the option and a
carriage return, the Task Builder stops accepting input and returns to N
input level for a new task build. Any previous input is ignored.
The ABORT option has the form:
ABORT=n

where n is any integer value. This value is used solely to satisfy
the option format and has no other significance.

2-6

TASK BUILDER

ABORT causes termination of task input and a new TKB> prompt; the
terminated task is not built. To end input and build the task, type a
double slash (//) as shown in Section 2.1.1.

2.2.2.2 ABSPAT Option - The ABSPAT option declares a series of
patches, which start at a specified base address, and allows you to
introduce corrective code into the task image. You can specify up to
eight patch values with this option.

The ABSPAT option has the form:

ABSPAT=seg-name :address:val-l:val-2:...val-8

where:

seg-name is the 1- to 6-character Radix-50 name of the program
segment.

address is the octal address of the first patch. The address
can be on a byte boundary; however, two bytes are
always modified for each patch.

val-1 is an octal number in the range of 0 to 177777
assigned to the address.

val-2 is an octal number in the range of 0 to 177777
assigned to the address +2.

val-8 is an octal number in the range of 0 to 177777

assigned to the address +20.

All patches must be within task and segment memory limits or a fatal
error is generated.

2.2.2.3 ASG Option - The ASG option assigns a specified physical
device to one or more logical units. You can specify a maximum of 12
logical units in this option.
The ASG option has the form:

ASG=device name:unit 1l:...unit 12

where:
device name is a 2-character alphabetic device name.
unit is a decimal integer that indicates the 1logical

unit number.
The default is ASG=SY:1:2:3:4,TI:5,CL:6

If your program requires the use of units five and six, you must
override the ASG default with an explicit ASG specification. Also,
when the UNITS option (see Section 2.2.2.9) and ASG are part of the
same input specification, UNITS must precede ASG.

2.2.2.4 EXTTSK Option - The EXTTSK option extends the amount of
memory that is initially allocated to a task. The option causes
additional memory allocation when the task is loaded.

2-7

-

TASK BUILDER

ABORT causes termination of task input and a new TKB> prompt; the
terminated task is not built. To end input and build the task, type a
double slash (//) as shown in Section 2.1.1.

2.2.2.2 ABSPAT Option - The ABSPAT option declares a series of
patches, which start at a specified base address, and allows you to
introduce corrective code into the task image. You can specify up to
eight patch values with this option.

The ABSPAT option has the form:

ABSPAT=seg-name :address:val-l:val-2:...val-8

where:

seg-name is the 1- to 6-character Radix-50 name of the program
segment.

address is the octal address of the first patch. The address
can be on a byte boundary; however, two bytes are
always modified for each patch.

val=-1l is an octal number in the range of 0 to 177777
assigned to the address.

val-2 is an octal number in the range of 0 to 177777
assigned to the address +2.

val-8 is an octal number in the range of 0 to 177777

assigned to the address +20.

All patches must be within task and segment memory limits or a fatal
error is generated.

2.2.2.,3 ASG Option -~ The ASG option assigns a specified physical
device to one or more logical units. You can specify a maximum of 12
logical units in this option. .

The ASG option has the form:

ASG=device name:unit l:...unit 12

where:
device name is a 2-character alphabetic device name.
unit is a decimal integer that 1indicates the 1logical

unit number.
The default is ASG=SY:1:2:3:4,TI:5,CL:6

If your program requires the use of wunits five and six, you must
override the ASG default with an explicit ASG specification. Also,
when the UNITS option (see Section 2.2.2.9) and ASG are part of the
same input specification, UNITS must precede ASG.

2.2.2.4 EXTTSK Option - The EXTTSK option extends the amount of
memory that is initially allocated to a task. The option causes
additional memory allocation when the task is loaded.

2-7

TASK BUILDER

The amount of memory available to the task is 32K words minus the size
of the run-time system. If the 16K BASIC2 run-time system is used,
the amount of memory available is 16K. If the 4K BP2COM run-time
system is used, the amount of available memory is 28K.

The EXTTSK option has the form:
EXTTSK=length

where length is a decimal number that specifies in words the increase
in task memory allocation. Note that the task itself attempts to
expand as required. If you attempt to extend memory allocation beyond
the private maximum task size, the system maximum swap size, or the
run—-time system maximum allocation (i.e., 16K or 28K), a fatal error
is returned at run time (Not enough available memory).

The EXTTSK option can be wused to pre-allocate space for string
manipulation and I/O buffers. BASIC-PLUS-2 normally uses the minimum
required space. Therefore, the use of EXTTSK can provide additional
space and cause some increase in the speed of program execution.

2.2.2.5 GBLDEF Option - The GBLDEF option defines a global symbol.
Once specified, the symbol definition is considered permanent for the
task.

The GBLDEF option has the form:

GBLDEF=symbol name:symbol value

where:
symbol name is the 1- to 6-character Radix-50 symbol name.
symbol value is an octal number in the range of 0 to 177777

assigned to the symbol.

2.2.2.6 HISEG Option - The HISEG option associates the task with a
specific high segment in memory (i.e., run-time system). BASIC-PLUS-2
programs require the BASIC2 or BP2COM run-time systems, therefore, you
must specify HISEG=BASIC2 or HISEG=BP2COM in the task build command
line. The Task Builder automatically includes the symbol definition
file of +the high segment in the input file. That is, specifying
BASIC2 in the HISEG option associates the task 1image with the
BASIC-PLUS-2 run~time system and includes BASIC2.STB (located in
account [1,1]) in the input file. Note that the BUILD command
automatically includes HISEG=BASIC2 as part of the generated command
file.

The HISEG option has the form:
HISEG=run-time system

where run-time system is a specified high segment. The Task Builder
default high segment is RSX.

2.2.2.7 STACK Option - The STACK option declares the maximum stack
size required by the task. The default is 256 decimal words.

TASK BUILDER

The STACK option has the form:
STACK=stack size

where stack size is a decimal integer specifying the stack size in
words.

-

2.2.2.8 TASK Option - The TASK option specifies the name of the task.
The default name is the first six characters of the task image file.

The TASK option has the form:
TASK=task name

where task name is a 1- to 6-character Radix-50 name. The use of this
option has no effect on the name of the executable task image file.

2.2.2.9 UNITS Option - The UNITS option specifies the number of
logical wunits used by the task and reserves sufficient space for the
number of specified units. The number of logical units assigned by
default is 4 and the maximum number that you can specify in the option
is 12.

The UNITS option has the form:
UNITS=max-units

where max-units is a decimal integer in the range of 0 to 12.

2.3 TASK BUILDER OUTPUT

The Task Builder can output two types of files: a task image file and
a memory allocation map.

If you specify the task image file as output, an executable file is
constructed. If you do not specify the task image, the Task Builder
does not construct an executable task image file. The Task Builder
does, however, check the input for errors and print an appropriate
message.

If you specify a memory allocation map, the Task Builder produces an
ASCII file that contains information on the allocation of task memory.
If no map is specified, memory is allocated for the task but no memory
content file is produced.

Because you type output files in a specific order, a space must be
assigned in the output command line when a preceding file is omitted.
For example, to specify output of a map file but no task, the task
specification position is left blank but is followed by a comma:

TKB> ,map=input

2-9

TASK BUILDER

2.3.1 Listings

The following example illustrates the command format used to produce a
task image and memory allocation map. The input file is a command
file (generated with the BUILD command) that contains the SORTO02
program shown in Section 1.3.2. The command format is as follows:

RUN $TKR
TRKE: @SORTOR2
READY

These command lines produce an executable task image file named
SORT02.TSK and a map named SORT02.MAP. These files are stored in your
account. Figure 2-1 shows a listing of the map file that the Task
Builder produces from the SORT(02 program.

2.4 PROGRAM SEGMENTATION

Programs can be logically broken into sections (subprograms) that are
compiled and input to the Task Builder as object modules. These
sections can then be overlaid, which allows you to create programs
that would otherwise exceed the maximum in-core program limits.

A program requires overlays when in-core program needs exceed the
system default maximum job size. Because sections of code may share
the same memory space, the Task Builder prevents these sections from
calling (overlaying) each other. This constraint must be taken into
consideration when you design program overlays.

2.4.1 Overlays

When you use the Task Builder overlay facility, you can specify only
one input file in the command line. This input file describes the
overlay structure, the location of program sections, and the loading
procedures.

Overlay structure is defined by means of the Overlay Description
Language (ODL). This structure is analogous to a tree, with the main
program being the root and the program sections representing the
branches. The ODL directives are contained in a user-created file
that is specified in the command string. The /MP switch (see Section
2.2.1) must be appended to the file specification to identify the file
as an ODL file.

Note that you can use the output produced by the BUILD command (see
Section 1.2.1.2) to create overlaid program segments. That is, the
BUILD command produces a command file that contains all of the input
required by the Task Builder and an ODL file with an appended /MP
switch. You can examine the ODL file and use an editor to modify its
content before the command file is input to the Task Builder.

Overlay loading must be performed automatically (autoload). A
complete description of the ODL directives and loading procedures is
given in the RSTS/E Task Builder Reference Manual.

2-10

PARTITION NAME ¢
IDENTIFICATION ¢
TASK UIC :
STACK LIMITSS
FRG XFR ADDKESS?

TASK BUILDER

GEN
Vo1Xoo
L269117
001000
014732

001777 001000 00812,

Py

TOTAL ADINDRESS WINDOWS:
TASK IMAGE SIZE 1 4128. WORDS
TASK ADDRESS LIMITS! 000000 020003

X¥X RODT SEGMENT! SORTO2

R/7W MEM LIMITS! 000000 020003 020004 08196,
DISK EBLK LIMITS: 000002 000022 000021 00017,
MEMORY ALLOCATION SYNOFSIS?
SECTION
+ BLK. ¢ (RWyIyLCLYRELyCON) 002000 012732 05594.
002000 000126 00086, $GEFLT RASIC2,0LE
002126 000116 00078, $TOEND RASIC2.0LE
002244 001044 00548, $EL2 R OLR
003310 0014662 00946, $I0ORED RAE +OLE
005172 001124 003596, $I0WRT RASIC2.OLE
006316 001446 00806, SINIT RASIC2.0LE
007764 000722 00466, $IORLK KRASIC2.,0LE
010706 003012 01546, $IOFRG RASIC2.0LE
013720 000610 00392, $100FN BAGT
014530 000102 00066, $FENTR RAST
014432 000100 00064, $ICONL BASIC2.O0LE
$SARRAY ! (RW, Oy LCLYRELYCONY 014732 000000 00000,
014732 000000 00000, SORTO2 VO1X00 HORTOZ,ORJ
$COME $(RWsIsLCLYRELyCON) 014732 000650 00424.
014732 000650 00424, SORTO2 VO1IX00 SORTOR.ORJ
$FILAGR S (RWs Ly GEL s REL s CON) 015602 000000 00000.
015602 000000 00000, SORTOZ VOLX00 SORTO2.OR.
$FLAGS ! (RWy Iy GEL s RELsCON) 015602 000002 00002
0154602 000002 00002, SORTOZ VOIX00 SORTOZ2.0KJ
$FLAGT (RWs Iy GELyREL»CON) 015604 000000 00000,
015604 000000 00000, HORTO2 VOIX00 SORTOR.OEJ
$IDATAL(RWsDO/LCLYRELYCONY 015604 002074 01084,
015604 002074 01084, SORTOZ VO1X00 SORTOZ.ORJ
$FOATAS(RW Iy LCLsRELSCON) 017700 000102 00066,
017700 000102 000646, SORTO2 VOIX00 SORTOZ.0RJ
$SAVSF$ (RWs I LCLyRELYyCON) 020002 000002 00002,
020002 000002 00002, SORTOZ VOLIX00 SORTO2.0K.J
$STRNF $ (RW s Ly GELyRELyCON) 020004 000000 00000,
020004 000000 00000, SORTO2 VOLIX00 SORTOR.0ORJ
$STRNGS (RWs Iy GELyREL yCONY 020004 000000 00000,
020004 000000 00000, SORTO2 VO1X00 SORTOR.ORJ
$STRNH (RWy Ty GELyREL s CON) 020004 000000 00000,
020004 000000 00000, SORTOR VO1IX00 SORTOZ2,0RJ
$TOATAI(RWs Iy LECLsREL s CONY 020004 000000 00000 .
020004 000000 00000, SORTO2 VO1LX00 SORTO2.0R.
GLORAL SYMBOLS:
ALF$M QO02000-R ERSTOF 002510-R V18.M 002002-R
ALF.M 002002-R FLN$% ? R 000200 V2F$M 002064-R
ALSHEM 002000-R FLUSH 004104-R FUFLG 000006 VIF M
ALS.M 002002-R FLUSHN 006116k FUFMT 010732-R M
A2F$M 002012-R FMTIO 005716-R FUFMTIL 010706~R 28.M
ARF M 002014-R FTIM 000100 FUN$SI 009172-R $DOIT
ARG$M 002012-R GTVERD 010152-K FUF$SI 005312-R $LLEND 0145%56-R
A25.M 002014-K GTUBWR 010140-R FVI$SI 005630~-R $F.END 014374-R
RCL 4% 007764~R [MF$ 002340-R FUS$AT 005452~R $F . ENT 014530-R
BLG$ 007774~ IVn$a 003310-R ROTS 002412-R $1C
BLF$ 010026~ IVF$A 003310-R REAID 0104 R $ID
ROF$ 013720-R IVI$A 0Q03450-R RGM$ 002436~R $INITM
BFCH 010070-R IV8$A 0034634-R RSU$ 002446-K $INITS 007424-R
CAlL$ 007500~R LINSW Q02244-R SEE$ 007702~K $IR 0144646-R
Chis 014632-R LIN$ ¢ SETUF 0060%54-K $0TGVA 015644-R
CFI¢$ 014646~R LYN$ 6TES 002424~ $FOFR3 0144624-R
CLOSE 014260-R NGI$MS SWF$ 002346-R s 014612~R
END$ 002126~R NGI$FS VREAD 010524-R i 014612-R
ERL.$ 002346 ¢ NGI$SS VIF$M 002050-R
ERRTRF 002356~k NUMFLG ViF.M 002062-R
ERR$ 002400-R OEAS V1GEM 002000~K
¥xk TASK RUILDER STATISTICS:
REFERENCES: 51409,

TOTAL
WORK

OF C FOOL. ¢
. OF WORK FILE?

ELAFSED TIME!OQIO0I32

Figure 2-1 Memory Allocation Map

TASK BUILDER

At a minimum, the overlay description must contain a .ROOT and an .END
directive. The .ROOT directive declares the overlay tree structure
and the .END directive signifies the end of input. Note that an
overlay description can contain only one .ROOT directive, which limits
the tree structure declaration to a single line of input. The Task
Builder truncates an input line that exceeds 80 characters, but this
limitation should not effect the majority of tree structure
declarations. However, you can use the .FCTR directive to build large
trees and extend the description beyond a single line. For a
description of the .FCTR directive, refer to the RSTS/E Task Builder
Reference Manual.

Suppose, for example, you have a program consisting of a main program
and calls to three external subprograms. One subprogram does
pre-processing of data. The second does primary processing. The
third subprogram does post-processing. The main program and three
subprograms are compiled as object modules named MAIN.OBJ, PRE.OBJ,
PROC.OBJ, and POST.OBJ, respectively.

You can build an overlay structure that causes the main program to be
resident 1in memory and the three subprograms to share the same memory
location. The ODL directive that creates this structure has the form:

.ROOT MAIN-* (PRE,PROC,POST)
.END

In this example:

.ROOT MAIN defines the root of the overlay structure as
the object module named MAIN.OBJ.

- the hyphen indicates that the following
modules are concatenated to the preceding

module.

* the asterisk indicates that modules are
loaded automatically (autoload) . The
asterisk must precede every such module. If

all modules within parentheses are to be
autoload, a single asterisk preceding the
parentheses is used.

() parentheses group the descriptions of overlay
sections.
PRE, PROC, POST commas separating object modules contained in

parentheses indicate that the named modules
occupy the same storage area.

Figure 2-2 is a graphic illustration of the overlay structure
specified above as it would appear in memory.

PRE PROC POST

MAIN

Figure 2-2 Overlay Structure

2-12

TASK BUILDER

To create an overlaid program by means of the BUILD command, you edit
the ODL file that is generated. That is, a BUILD command produces a
command file (extension .CMD) and an overlay description language file
(extension .ODL). The ODL file must be edited to reflect the desired
overlay structure prior to input to the Task Builder.

For example, if the object modules described in Figure 2-2 (i.e.,
MAIN, PRE, PROC, and POST) are used as arguments in the BUILD command:

BUILD MAIN, PRE, PROC,POST
the result is a command file (MAIN.CMD) that appears as follows:
SYIMAINySY IMATN=8Y I MATN/MF
HISEG=RASICR
ABGH = 8YIH16

/7

The BUILD command also generates an overlay description file
(MAIN.ODL) that appears as follows:

+ROOT USER

USER HOTR MATIN-FRE-FROC-FOST L TRR
LIRR? JFCTR S D1y LIRASICR/LLE
«END

You can edit this ODL file to create an overlay as follows:

SROOT USER

USER? JOTR MAIN-LIBR-X(FRE-LIBRy PFROC-LIRBRy FOST~L ITRRD
LIBR? FUTR DLy LIRASIC2/LERE
+END

The overlay structure used in this example duplicates that shown in
Figure 2-2. Note that each branch of the structure must be associated
with the library. This procedure ensures that the correct routines
are linked at run time.

The path of an overlay structure is from the root of the structure,
along a series of branches, to the outermost section. The root
section can call any overlay section. However, a subprogram in an
overlay section can call another overlay section only if they share a
common path. Therefore, in the previous example, MAIN can call PRE,
PROC, and POST, but the three subprograms cannot call each other.

The concept of paths is better illustrated with a tree diagram. For
example:

.ROOT A-B-*(C,D-(E,F,G))
.END

where A and B are two object modules representing root sections. C
and D are the branches of A and B. E,F, and G are branches of D. A
tree diagram of this structure appears in Figure 2-3.

TASK BUILDER

Figure 2-3 Overlay Path

The paths of this structure are: A-B-C, A-B-D-E, A-B-D-F, and
A-B-D-G. Within this structure:

1. A and B can call all of the sections.

2. D can call E, F, and G.

3. C and D cannot directly call each other.

4. C cannot call E, F, and G.

5. E, F, and G cannot call each other.
Note that if A calls C, C in turn can <call B. However, if B
simultaneously calls D and then attempts to return to C, an error

occurs. The error is due to B returning to an overlaid segment, i.e.,
D overlays C.

2.5 EXECUTING THE TASK

The Task Builder outputs executable code that can be invoked by means
of the RUN command. The sequence of events leading up to task
execution are:

1. Creating one or more object modules by means of the COMPILE
/OBJ command.

2. Specifying the object modules, along with any desired
switches and options, as input to the Task Builder program,
or using BUILD to create a command file that contains Task
Builder input.

3. Obtaining Task Builder output of executable code (task image)
and a map file if desired.

4. 1Issuing the RUN command to execute the created task.

2-14

TASK BUILDER

As examples of the procedures you might use to build an executable
task, consider the following series of commands:

RUN $TKR

TKE> MYFROGyMYFPROG=MYFROGL yMYFROG2» L1 3TULIR/LRy L1y LIRAGIC2/1E
TRKR> /

ENTER OFTIONS?

TKR> HISEG=RASIC2

TRR: 7/

READY

These commands cause the output of a task image (MYPROG.TSK) and a
memory allocation map (MYPROG.MAP). Input consists of two object
modules (MYPROG1 and MYPROG2), a user—generated 1library, and a
BASIC-PLUS-2 1library. The library specifications contain the account
number under which the library 1is stored, the library file
specification, and the /LB switch. The HISEG option is used to
associate the task with the BASIC-PLUS-2 run-time system.

OLX1 NONAME

READY

coM /0R.J

READRY

RUTLI NONAME/IND
READY

RUN $TKR
TRR:ENONAME

REALY

In this command series, BUILD is used to create a command file
(NONAME.CMD) composed of a previously compiled object module. The
command file contains all of the libraries and options required as
input to the Task Builder as well as the switch (/IND) required to
enable the use of RMS indexed I/0. The command file is used as input
to the TKB prompt and the result is a map file and an executable task.
Note that no additional switches or options can be associated with the
command file input specification. For example, TKB>@NONAME/-WI is
illegal. The use of an RMS switch (/SEQ, /REL, or /IND) causes the
BUILD command to change the generated .ODL file as required for RMS
Record I/0. These changes are made automatically when the appropriate
switch 1is appended to the BUILD command. Consider the following
example of NONAME.ODL:

LROOT RIROTA-USER » RMS
USER FOTR NONAME -1 TER
LIRBR: SFOTR DL 1IRAGIC2/LE
KM ¢ HFOCTR RBRIOOAT
eSYLILLy 1l RASTCA

« ENT

CHAPTER 3

RUN-TIME SYSTEMS AND LIBRARIES

BASIC~PLUS-2 on RSTS/E is distributed in the form of two separate
run-time system and library combinations called BASIC2 and BP2COM,
respectively. The BASIC2 run-time system is designed to be used with
the BASIC2 library. The BP2COM run-time system is used with the
BP2COM 1library. You can select the run-time system/library
combination that is best suited to the needs of your program. This
selection process is accomplished with the HISEG command (see Section
1.2.1.6).

The BASIC2 and BP2COM run-time system/library combinations both
contain the same run-time support routines. These routines include:

1. Math routines, which include library functions and arithmetic
routines.

2. Routines to handle dynamic allocation of string storage and
I/0 buffers.

3. Routines to handle input/output operations.

4. Error handling routines to process errors in arithmetic, I/0,
and system operations.

Note that BASIC2 contains all of these routines in the run-time system
while BP2COM uses its associated library to contain most of the
routines. This distinction is discussed in Section 3.2.

3.1 BASIC-PLUS-2 RUN-TIME SYSTEMS

A run-time system (RTS) is a common area of code that can be shared by
two or more user tasks. The code contained in the BASIC-PLUS-2 RTS
serve the following purposes:

1. Provide an interface between your executable code and the
monitor.

2. Control task execution when the monitor allows the task to
run.

3. Contain the run-time support routines required by the
executing task.

Because the RTS can be shared by multiple tasks, its use increases the
efficiency of the task and the system. That is, each task need not
contain its own copy of the common code.

RUN-TIME SYSTEMS AND LIBRARIES

3.1.1 BASIC2 RTS

The BASIC2 run-time system is 16K words long. All of the shareable
code required for BASIC-PLUS-2 run-time support routines is contained
in the RTS. Because the maximum allowable memory for any task is 32K
words, the use of BASIC2 RTS limits your program size to 16K words.
Note that the BASIC2 RTS must be wused 1if you specify the direct
compilation of a task image file (i.e., COM/TSK).

The code required for RMS-structured I/0 is not included in the RTS.
To use RMS, you must append an /SEQ, /REL, or /IND switch in the BUILD
command (see Section 1.2.1.2).

3.1.2 BP2COM RTS

The BP2COM run-time system is 4K words long. It contains some of the
BASIC-PLUS-2 run-time support routines and uses the BP2COM library to
contain the remaining routines. Because the BP2COM RTS uses 4K of the
32K allowable memory, your program's maximum size is 28K words.

When you create a task that uses BP2COM, the run-time support routines
are selectively 1linked to your program from the BP2COM library. The
Task Builder is used to perform the selection and 1linking process.
Therefore, to use the BP2COM RTS and library, you must specify BP2COM
in the HISEG command and then use the BUILD command to generate a
command file for Task Builder input. For example:

HISEG
NAME--RF20C0M
ACCOUNT -~ (27D
READY
BUTL NONAME
REATIY
This procedure results in a command file as follows:

NONAME y NONAME =NONAME /MF
HISEG=RF2COM

UNITS = 12
ABE = 8YISI6I7:8I19110811212
/7

This command file is specified as input to the Task Builder. When the
Task Builder processes the file, it selects and links the required
run-time support routines to your task from the BP2COM library. The
use of the BUILD and HISEG commands, which make the BP2COM RTS and
library available to the Task Builder, are described in Sections
1.2.1.2 (BUILD) and 1.2.1.6 (HISEG).

3.2 BASIC-PLUS-2 LIBRARIES

A library is a collection of modules that can be selectively linked to
your program by the Task Builder. The Task Builder links only those
modules required for program execution and omits unnecessary routines
from the task image. This process conserves memory space.

™

RUN-TIME SYSTEMS AND LIBRARIES

BASIC-PLUS-2 allows you to write your own subroutines and add them as
modules to the BASIC2, BP2COM, or user libraries. These subroutines
can be written in the BASIC-PLUS-2 language or in RSX-11 MACRO
assembly language. The following sections describe the BASIC2 and
BP2COM libraries and the use of the Librarian Utility Program (LBR) to
add subroutines (modules) to the 1libraries. For information on
writing BASIC-PLUS-2 subroutines, refer to the BASIC-PLUS-2 Language
Manual.

As distributed, the BASIC2 library contains a minimal amount of code.
However, when the Task Builder is used with the BASIC2 RTS, this
library must be used to fulfill format requirements.

The BP2COM library is distributed with all of the run-time support
routines not contained in the BP2COM RTS.

3.2.1 Librarian Utility Program

The Librarian Utility Program (LBR) allows you to create, update,
list, and maintain BASIC-PLUS-2 object code library files.

To invoke the Librarian, type:
RUN SLBR

If the invocation is successful, the Librarian issues an input prompt
as follows:

LBR>
In response to the prompt, you type a command string as follows:
LBRyoutfile=infile
where outfile and infile are RSTS/E file specifications. These
specifications represent the user-written subroutines (infile) and the
library file generated by LBR (outfile). The Librarian places the

following restrictions on file specifications:

1. The specification can contain only physical device names;
logical device names are not allowed.

2. A project, programmer number, if specified, must follow the
filename and extension and must be enclosed in brackets.

3. The filename must be explicit.

4., No RSTS/E switches can be appended to the filename
specification.

To terminate the Librarian program, type CTRL/Z 1in response to the
prompt:

LBR>" Z
READY

The library files that you create with LBR consist of a header, an
entry point table (EPT), a module name table (MNT), the library
modules, and free space.

The library header describes the current status of the library. When
the file 1is modified, LBR automatically updates the header. This

3-3

RUN-TIME SYSTEMS AND LIBRARIES

allows ILBR to use the header to access the information it needs to
perform its functions.

The entry point table consists of elements, each of which contain an
entry point name and a pointer to the module header that defines the
entry point. The EPT is alphabetically ordered and is searched by LBR
when a library module is referenced by one of its entry points.

The module name table also consists of elements, each of which contain
a module name and a pointer to the module header. The MNT is
alphabetically ordered and is searched by LBR when a library module is
referenced by its module name, rather than by entry point.

LBR uses switches to perform various functions on the library. These
switches and their use are described in the following sections. The
switches described here are a summary of the LBR function set
contained in the RSX-11 Utilities Procedures Manual. The switches
contained in the following sections are used to create a library file
(/CR), 1list the modules in the file (/LI, /LE, and /FU), modify a
module (/EX and /RP), insert a module (/IN), and edit the file (/DE
and /CO).

3.2.1.1 Create Switch (/CR) - The create switch is used to allocate a
library file on a direct access device such as a disk. It initializes
the library file header, entry point table, and module name table.
You can append this switch only to the output file, as follows:

LBR>outfile/CR:size:ept:mnt
where:
outfile is the file specification of the 1library file being
created. The default file extension is .OLB if you are
creating an object library (BASIC-PLUS-2).

/CR is the create switch.

:size is the size of the library file in 256-word blocks.
The default size is 100 decimal blocks.

tept is the number of entry point tables to allocate. The
default for object modules is 512 decimal. The maximum
number of entries is 4096.

tmnt is the number of module name table entries to allocate.
The default value is 256 decimal and the maximum is
4096.

The values that you specify in the command line must be multiples of
64. If the specifications are not a multiple of 64, the EPT or MNT
expands to the next block boundary.
Consider the following example:

LBR>ACTLIB/CR: :128.:64.:0BJ

In this example, you create a library file named ACTLIB.OLB 1in the
default directory on SY0:. ACTLIB has the following attributes:

size 100 decimal blocks (default)

EPT 128 decimal entry points

3-4

RUN-TIME SYSTEMS AND LIBRARIES

MNT 64 decimal module names

type .OBJ

3.2.1.2 1Insert Switch (/IN) - The insert switch is used to insert
object code or MACRO modules into a library file. You can specify any
number of input files and these can contain any number of concatenated
input modules. This switch is the default library file option and can
only be appended to the library file specification (outfile).

If you attempt to insert a module that already exists in the library,
the operation terminates and the following error message prints on the
terminal:

LBR--*FATAL*--DUPLICATE MODULE NAME "name" IN filename

Also, if you attempt to insert a module whose entry point duplicates
one that is in the EPT, the operation terminates and the following
error message prints on the terminal:

LBR--*FATAL*~-DUPLICATE ENTRY POINT "name" IN filename
The insert switch has the following format:
LBR>outfile/IN=infile 1,...,infile n
where:

outfile is the file specification of the 1library that is to
contain the inserted input modules. The file extension
is .OLB if the default is an object library.

/IN is the insert switch.

infile is the file specification of the input file that
contains the modules to be inserted in the library file
(outfile). 1If outfile is an object library, the input
file default extension is .OBJ.

Consider the following example:

LBR>ACTLIB/IN=DEBIT, INV, TOTAL

In this example, the modules contained in the input files (DEBIT, INV,
and TOTAL) are inserted into the library file named ACTLIB. All of
these files reside in the default directory on SY:. The input files
have an .0OBJ extension.

3.2.1.3 Extract (/EX) and Replace (/RP) Switches -~ The extract and
replace switches each perform unique functions, but you can combine
these functions to modify and update existing library file modules.
The extract switch is wused to read one or more modules from the
library file and write them into an output file. Once in the output
file, you can modify or patch the modules to reflect any desired
changes.

The replace switch is used to replace existing modules in the library
file with modified modules from the output file.

The extract switch has the following format:

LBR>outfile=infile/EX[:module name...:module name]

3-5

RUN-TIME SYSTEMS AND LIBRARIES

where:

outfile is the file specification of the file that 1is to
contain the extracted modules. The file extension
defaults to the extension of the modules. The
modules are automatically concatenated when they
are extracted. :

infile specifies the library file from which you desire
to extract modules. The default extension depends
on the current library file extension.

/EX is the extract switch.

:module name is the name(s) of the module(s) you wish to
extract. Up to eight modules can be specified.
If no module names are specified, all modules in
the library file are extracted.

The extract operation has no physical effect on the 1library file.
That is, the modules are copied into the output file; the library
file remains intact.

The replace switch replaces modules in a library file with input
modules of the same name. When a match occurs on a module name during
a replace, the operation deletes the existing module and inserts the
input module. As each module is replaced, the following message
prints on the terminal:

MODULE "name" REPLACED

If a match is not made, LBR assumes that the input module is new and
inserts it in the library. In this case, no message is printed.

The replace switch can be specified in one of two formats:
LBR>outfile/RP=infile 1[,infile 2...,infile n]

This format is global and specifies that all of the input files
(infile) contain replacement modules.

LBRY>outfile=infile 1[/RP][,infile n[/RP]]

This format is local and specifies that only those input files to
which an /RP switch is appended contain replacement modules.

In both the global and local formats:
outfile is the library file specification.

/RP is the replace switch. When appended to the library
file (outfile), the switch is global. When appended to
a specific input file (infile), the switch is local for
that file.

infile is the input file specification that contains the
modules to be inserted or replaced.

Note that the global replace switch can be used even when one or more
of the input files does not contain replacement modules. If you
append a /-RP or /NORP switch to the non-replacement module file, LBR
overrides the global /RP switch for that particular file.

3-6

RUN-TIME SYSTEMS AND LIBRARIES

Consider the following examples of the extract and replace switches:
LBR>ACT.OBJ=DEBIT/EX:COM

This example extracts the object module COM from the file DEBIT.OBJ
and places it in the file ACT.OBJ. Note that COM is only copied into
ACT.OBJ; the object module still exists in DEBIT.OBJ. After you have
modified COM, you can use the replace switch to update the file
DEBIT.OBJ:

LBR>DEBIT/RP=ACT

This example replaces the module in DEBIT with the module of the same
name contained in ACT, i.e., COM.

3.2.1.4 List Switch (/LI, /LE, and /FU) - The list switch is used to
produce a printed listing of a library file's content. The switch can
be appended only to the output file specification or to a list file if
one 1is specified. If the list file is not specified, the contents of
the library file are printed to the initiating terminal.

There are three types of listings you can obtain, depending on the
switch that you use:

/LI lists the names of all modules in the library file.

/LE lists the names of all modules in the library file and
the module entry points.

/FU lists the module names and a description of the size,
insertion date, and module dependent information for
each module.

Note that these switches can be combined, for example:
LBR>DK1:[200,200]ACT,TT:/LE/FU

This example causes a list of module names, their entry points, and a
description of each module to print on the current terminal. The
modules listed reside in the file ACT on DKl: in account directory
[200,200] .

The following example is a listing obtained with the /FU switch. The
library filename is ACTLIB.OLB and it contains a module named
DEBIT.OBJ.

RUN $LRR
LER>ACTLIR/FU

DIRECTORY OF FILE ACTLIR.OLR

ORJECT MODULE LIBRARY CREATED RY: LRR UX04.02
LAST INSERT QCCURRED 4-MAY-77 AT 10102129

MNT ENTRIES aALLOCATED! 443 AVATLABLE?! 63

EFT ENTRIES ALLOCATED: 1283 AVATLARLE! 127
FILE SFACE AVATLARLED 24165 WORDS

DERLT BIZEIQO0411 INSERTED?4-MAY-77 INENTIVOLXO2

LER>™Z

RE ALY

RUN-TIME SYSTEMS AND LIBRARIES

3.2.1.5 Delete (/DE) and Compress (/CO) Switches - The delete switch
is used to delete modules and their associated entry points from a
library file. A maximum of 15 modules can be specified in a single
delete switch command line.
When LBR begins to process the deletions, it prints:

MODULES DELETED:
As the modules are deleted, their names are printed on the terminal.

If a specified module is not found in the library file, the deletion
process terminates and the following message is printed:

LBR--*FATAL*--NO MODULE NAMED "name"
Note that the delete switch makes the specified module inaccessible to
you, but it does not physically remove it from the file. To reclaim
the space caused by the deletion of the module(s) from the file, you
must use the compress switch.
The delete switch has the form:
LBR>outfile/DE:module 1l[:module 2...:module n]
where:
outfile is the library file specification.
/DE is the delete switch.
:module is the name of the module(s) to be deleted.
The compress switch physically removes all logically deleted modules
from the file, puts all free space at the end of the file, and makes
space available for the insertion of new modules.
A compress operation does not delete the 0ld library file; rather, it
creates a compressed copy of the file. For this reason, you must
specify a unique output file name. The format of the /CO switch is
similar to the create switch. The format is as follows:
LBR>outfile/CO:size:ept:mnt=infile
where:
outfile is the file specification of the file that is to be the
new, compressed version of the input file. The name of
the new file must differ from the name of the input
file. The default extension is .OLB if the input file
is an object library.

/CO is the compress switch and can be appended only to the
output file.

tsize is the size of the new library file in 256-word blocks.
If the size is omitted, the default is the size of the
0ld library file (infile).

RUN-TIME SYSTEMS AND LIBRARIES

tept is the number of entry point tables to allocate. If
the specified value 1is not a multiple of 64 decimal,
the next highest multiple of 64 is used. The maximum
number of entries is 4096 decimal. The default is the
number of EPT's in the o0ld library file.

smnt is the number of module name table entries to allocate.
If the specified value is not a multiple of 64 decimal,
the next highest multiple of 64 is used. The maximum

number of entries is 4096 decimal. The default is the
number of MNT's in the o0ld library file.

infile is the file specification of the 1library file to be
compressed. The default file extension is .OLB for
object libraries.

Consider the following example:

RUN $Il.RR
LBR=ACTLIR/FU

DIRECTORY OF FILE ACTLIE.OLR

OBJECT MODULE LIBRARY CREATED RY: LER UX04,.02
LAST INSERT OCCURRED 4-MAY-77 AT 16132:0%

MNT ENTRIES ALLOCATEDN! 645 AVATLARLED 61

EFT ENTRIES oALLOCATED? 1285 AVATLARLES? 125
FILE SFACE AVATLARLE? 23601 WORDS

DERIT SIZEI0041L1L INSERTEDI4-MAY-77 IDENTIVOLIXO02

SR SIZEI00282 INSERTED!4-MAY-77 ITHENTIVOL1X02
HR SIZEO0282 INBERTED:4-MAY-77 JTHENTIVOLIXO0O2

LEBRENEWACT/C0350, 3192, 3128 =ACTLIR
LBRENEWADTAFU

DIRECTORY OF FILE NEWACT.OLR

QRJECT MODULE LIBRRARY CREATED RY? LRERR UX04,02
LAST INSERT QCCURRED 4-MAY-77 AT 16132155

MNT ENTRIES ALLOCATED? 1287 AVATLARLES 129
EFT ENTRIES ALLOCATEN? 1925 AVAILARLE! 189
FTLE SFACE AVATLARLES 1028% WORDS

DERTIT SIZEIOQO4LL INSERTED?A-MAY--77 ITHENTIVOLXOR

SR BIZEL00282 INSERTED!4-MAY-77 TIENTIVOLIX02
SR SIZE:OOR82 INSERTENIA-MAY-77 IHENTIVOLX02

LBRR=™Z

In this example, a full listing of the file ACTLIB is shown. This
file 1is then compressed and renamed to NEWACT. The compress switch
command line is also used to change the size, EPT, and MNT values.
These changes are reflected in the full listing shown for the new file
NEWACT. Note that the old file, ACTLIB, still exists.

RUN-TIME SYSTEMS AND LIBRARIES

3.3 MACRO SUBROUTINES

BASIC-PLUS-2 allows you to write subroutines and insert them into the
RTS libraries. These subroutines can be written in BASIC-PLUS-2 or in
RSX-11 MACRO assembly language. This section describes the subroutine
calling conventions and linkage. It also describes the creation of an
assembly language subroutine; for information on writing BASIC-PLUS-2
subroutines, refer to the BASIC-PLUS-2 Language Manual.

MACRO subroutines on a BASIC-PLUS-2 system are subject to the
following restrictions:

1. MACRO subroutines cannot call BASIC-PLUS-2 subroutines,
perform input/output operations, or execute monitor
operations.

2. Virtual arrays cannot be passed to MACRO subroutines.

3. MACRO subroutines cannot create strings.

Note that if the MACRO subroutine requires a string, you must use
BASIC-PLUS-2 to create the string and define its size before the MACRO

subroutine uses it.

BASIC-PLUS-2 subroutine calls are subject to the following
restrictions:

1. BASIC-PLUS-2 can call a BASIC-PLUS-2 subroutine with a CALL
statement. BASIC-PLUS-2 can call a MACRO subroutine with a
CALL or CALL BY REF statement.

2. BASIC-PLUS-2 can call a MACRO subroutine that 1is also
callable from FORTRAN with a CALL BY REF statement.

3. BASIC-PLUS-2 cannot call a FORTRAN subroutine.

4. BASIC-PLUS-2 cannot be called by a MACRO or FORTRAN
subroutine.

3.3.1 Subroutine Linkage

BASIC-PLUS-2 programs call MACRO subroutines with the following
instruction:

JSR PC,routine

where JSR is a Jump to Subroutine instruction and PC 1is the Program
Counter.

The instruction used to return control from the subroutine to the
calling program is:

RTS PC
Where RTS is the Return from Subroutine instruction.
Arguments are passed from BASIC-PLUS-2 programs to MACRO subroutines
in the form of an argument list. When the MACRO subroutine starts,

register 5 (R5) contains the address of an argument list as shown in
Figure 3-1.

RUN-TIME SYSTEMS AND LIBRARIES

RS

!

NUMBER OF
ARGUMENTS

UNDEFINED

ADDRESS OF
ARGUMENT 1

ADDRESS OF
ARGUMENT 2

ADDRESS OF
ARGUMENT n

Figure 3-1 Argument List Format

3.3.2 Subroutine Register Usage

A MACRO subroutine that is called by a BASIC-PLUS-2 program does not
need to preserve any registers. However, register 6 (SP) must point
to the same location on entry to, and exit from, the subroutine. That
is, each "push" onto the stack must be matched by a "pop" from the
stack before the subroutine returns control to the BASIC-PLUS-2
program.

3.3.3 Subroutine Calls

Arguments are passed to a MACRO subroutine by means of a CALL or CALL
BY REF statement. These statements are used to pass integer, real
(single-precision), and double (double-~precision) values, strings and
arrays. The methods wused to pass integer, real, and double value
arguments are the same for CALL and CALL BY REF. However, these two
statements differ in their method for passing string and array
arguments. Refer to Appendix D for a description of data formats.

In terms of the content of the argument 1list in RS5, the passing
mechanism is as follows:

Integer The R5 argument 1list contains the address of the
integer value.

Real The R5 argument 1list contains the address of the
high-order word for the single-precision value.

Double The R5 argument 1list contains the address of the
high-order word for the double-precision value.

String When CALL is used, the R5 argument 1list contains the
address of a 2-word string header. The first word is
the address of the first byte 1in the string. The
second word is the length of the string in bytes.

RUN-TIME SYSTEMS AND LIBRARIES

When CALL BY REF is used, the R5 argument list contains
the address of the £first byte in the string; the
string length is not available.

Array When CALL is used, the R5 argument 1list contains the
address of the second word in the array header. The
array header contains subscript information and the
address of the first byte of the array.

When CALL BY REF is used, the R5 argument list contains
the address of the first element in the array; the
array header is not available.

Consider Figures 3-2 and 3-3. These figures are examples of two MACRO
subroutines and illustrate the methods wused to pass arguments to
subroutines. Figure 3-2 is an example of the wuse of the CALL
statement. Figure 3-3 1is an example of the use of the CALL BY REF
statement.

«TITLE INSRT
CALL INSRT(A$»R$CX)
INFUTS S ARGL = ADDRESS OF A% STRING HEADER

ARG2 = ADDR " RBE STRING HEADER
ARG = ANDRESS OF C7%

QUTFUTS: C% = 0 IF OFERATION WAS SUCCESSFUL
= -1 IF OFPERATION FAILED
EFFECTS? THIS SURROUTINE OVERWRITES THE SURSTRING B4 INTO THE

STRING A% REGINNING AT CHARACTER FOSITION CX.
RETURNS O IN CZ% IF THE OPERATION WAS SUCCESSFUL .
RETURNS 1 IN C% IF THE OFERATION FATLED.

W M r W P G W S WR W» W W M W3 e

INSRT?!
MOV 2CRG) yRO 3 RO = ADNDRESS OF A% STRING HEADER
MOV 4(RS) s R § ORI = ANDRESS OF R$ STRING HEADE
MOV R6HRE) yR2 3 OR2 = O
RILE ERREX § RR TO ERROR IF CX <= 0O
A 2(R1Y¥R2 3 RE = CX PLUS LENGTH OF R4
CMF Ry 2(R0O) # WILL RB$ FIT INTO A% 7
BRGT ERREX # BR TO ERROR IF B$ WON'T FIT INTO A%
MOV CROYRO i RO = ANDRESS OF A%
Moy BHRE) s R2 y R2 = CX
NEC R2 FOR2 = CX MINUS ONE
AT R2y RO i RO = ANDRESS OF A% PLUS CX
MoV 2CR1LY9R2 poR2 = LENGTH OF B$
REQ ERREX # BROTO ERROR TF LENGTH OF B$ = 0
MOV @RLyR1 #oRL = ANDRESS OF R4

1463 MOVE (RLY+y (RO + OINSERT A CHARACTER INTO A% FROM R$
SOR R2s 14
CLR @& CRE) s SET CZ TO O (OPERATION SUCCESSFUL)
RETURN

ERREX? MOV F1y@OCRE) #OBET CZ TO -1 (OFERATION FAILEID
RETURN
«END

Figure 3~2 CALL Statement

i €Y W w3 wr Tr M Er > WP P e MR P > e e

ERREX?

RUN-TIME SYSTEMS AND LIBRARIES

«TITLE INSRT

INFUTS?

DUTPUTS

EFFECTSS

MOW
RILE
AN
CM-
BRGT
MOV
MOV
nEc
ADD
MOV
REQ
MOV
MOVE
G0R
CLR
RETURN

MOV
RETURN
+END

CALL INSRT RY REF(A%$sLEN(AS) sBEyLEN(RS) yCX)

ARGL = ADNDRESS OF A%
ARG2 = ANDRESS OF LENGTH OF A4
ARG3 OF Ré
ARG4 5 0F LENGTH OF R4$
ARGS ANDRESS OF CX

H

Hon o

CZ = O IF OFERATION WAS SUCCESSFUL

= -1 IF OFERATION FALLED
THIS SUBROUTINE OVERWRITES THE SURSTRING EB$ INTO THE
STRING A% BEGINNING AT CHARACTER FOSITION CZ%.
RETURNSG O IN C% IF THE OFERATION WAS SUCCESSFUL.
RETURNS ~1 IN CX IF THE OFERATION FAILED.

R2 = X

BR TO ERROR IF C%Z <= 0

R2 = C¥ FLUS LENGTH OF B$

WILL B4 FIT INTO A% 7

BR TO ERROR IF B$% WON‘T FIT INTO A%
RO = ALDRESS OF Ad

R2 = G4

R2 = G4 MINUS ONE

RO = ADDRESS OF a¢ FLUS CX%

R2 = LENGTH OF R4

BER TO ERROR IF LENGTH OF RB$ = 0

R1 = ARDRESS OF B¢

INSERT A CHARACTER INTO A% FROM R$

B1L2RE) yR2
ERREX
@LOCRT) P R2
R2y@4(RE)
ERREX
2CRE) yRO
@L2C(RE) v R2
R2

R2y RO
CLOCRE) »R2
ERREX
HCRG) s 1L
(R1J4s (RO
R2y1%
@L2CRED

W> > M Gr € > 0> S Er WE O WE e

SET CZ TO O (OFERATION SUCCESSFUL)

ar

#-1 @12 (RE) SET CX TO -1 (OFERATION FATLLEIDD

s

Figure 3-3 CALL BY REF Statement

CHAPTER 4

FILES

You can perform efficient input/output operations on large amounts of
related data by collecting that data into files. BASIC-PLUS-2 Record
Management Services (RMS) can increase this efficiency by allowing you
to organize the file into manageable units of data called records.
For example, a company may wish to document an inventory of its
capital equipment. A file that contains data on all equipment is
created for this purpose. This data is organized into individually
accessible records, each of which describes a particular item.

BASIC-PLUS-2 allows you to create block I/O or record I/O files. RMS
is the vehicle for creating and accessing files and their records on
BASIC-PLUS-2. This chapter describes RSTS/E block 1I/0, the wuse of
RMS, the file organizations available under RMS, and the operations
allowed on each type of organization. The chapter also contains a
summary of the RMS utilities.

For additional information on the BASIC-PLUS-2 syntax used to create
and manipulate f°les, refer to the BASIC-PLUS-2 Language Manual. For
information on the RMS utilities, refer to the RSTS/E RMS-11 Utilities
Manual.

4.1 FILE CREATION

The manner in which data are stored in a file 1is determined by the
organization that you specify in the OPEN statement. The
organization, in turn, determines the operations and access methods
that you can use on the file.

BASIC allows you to choose one of four types of organization;
virtual, sequential, relative, or indexed. When you create a file,
the organization must be the first file attribute specified in the
OPEN statement as follows:

OPEN filename [FOR OUTPUT] AS FILE #num-exp
SEQUENTIAL
, [ORGANIZATION] RELATIVE
INDEXED
VIRTUAL
[,attributes]
where:
filename is a RSTS/E filename specification as
shown in Section 1.1.1. Note that
RSTS/E switch options are not allowed.
FOR OUTPUT indicates the creation of a new file.

4-1

FILES

AS FILE #num-exp associates the file with a channel
number in the range of 1 to 12.

+ORGANIZATION is an optional keyword preceded by a
comma and followed by a required keyword
that represents one of the four types of
organization.

,attributes are file characteristics that you define
in the OPEN statement. Attributes
differ for each file organization and
their specification is described in the
appropriate section.

The organization you specify when the file is created is permanently
assigned to the file. When any existing file is opened for
processing, you must respecify the organization. An organization
specification that does not match the initial file assignment results
in an error (i.e., File attributes not matched).

The organization you choose depends on the access methods and
operations that you wish to perform on the file. A comparison of
these organizations may be helpful in making this choice.

Virtual files contain one or more virtual arrays. This file
organization permits RSTS/E file handling and block I/0O operations,
but it does not allow RMS record operations.

Sequential files contain records that are stored in series. You
cannot access one record without successfully accessing all preceding
records. Sequential files are allowed on disk, ANSI-formatted
magtape, or wunit record devices (e.g., line printers, terminals,
etc.).

Relative files contain records that are stored in numbered 1locations
of a fixed size. You can access a record sequentially or by number.
Relative files are allowed only on disk media.

Indexed files contain records that are associated with individual key
values. You can access a record sequentially or by reference to a
key. Indexed files are allowed only on disk media.

Note that BASIC also allows you to create a terminal-format file. A
terminal-format file 1is a collection of ASCII characters stored in
lines of varying length. The length of the line is determined by the
presence of a line terminator. Information in a terminal-format file
is accessed sequentially. To create a terminal-format file, use the
OPEN statement with no ORGANIZATION specification. For information on
terminal-format files, refer to Section 4.4.3 and to the BASIC-PLUS-2
Language Manual.

4.1.1 Virtual Files

The virtual file organization specifies a file that is compatible with
RSTS/E BASIC-PLUS. Virtual files contain binary data that is stored
and accessed in the manner of elements in a virtual array. With the
virtual organization, you can create and use a block I/0 structured
file that supports RSTS/E file handling statements such as FIELD,
LSET, RSET, and CVT functions.

Virtual file organization is the default on RSTS/E and, because it is
similar to an array in its method of storing data, it must be

4-2

FILES

dimensioned with a DIM # statement. This statement is described
the BASIC-PLUS-2 Language Manual.

in

The OPEN statement used to specify a virtual file allows you to assign

the following attributes:

[/ORGANIZATION] VIRTUAL

MODIFY

[,ACCESS {READ }'
WRITE) |

[,ALLOW (NONE
READ

MODIFY

L WRITE

[MAP< (map-name) >}

[/RECORDSIZE<num-exp>]
where:

+ORGANIZATION VIRTUAL

specifies the creation or access of a virtual file
allows the wuse of RSTS/E block I/0. Virtual is

and
the

RSTS/E default file organization. The ORGANIZATION

keyword is optional.

+ACCESS specifies the operations that the current user

will

perform on the file. MODIFY is the default. Refer to

Section 4.2.4.

+ALLOW specifies the operations that the current user

will

permit other programs to perform on the file. READ is

the default. Refer to Section 4.2.4.

, MAP references a MAP statement and can be used to define

record size (see Section 4.6). Note that MAP must
be used with a file that contains arrays.

yRECORDSIZE

not

defines the maximum size of data blocks in the file.
The default size is 512 bytes. Refer to Section 4.5.

When you specify a RECORDSIZE that exceeds the default minimum of
bytes, the specification must be a multiple of 518. During
operations on a virtual file, blocks are read in by the program
required. If sufficient record size is not available to contain
accessed blocks, space is obtained by writing the first block that
read.

512
I/0

as
the
was

The virtual organization allows block I/0 file operations such as CVT,

LSET, RSET, and FIELD, but it disallows RMS record operations.

You can specify file attributes in the OPEN statement in any order.

Consider the following example:

130 OFEN "VATST4.TMF" FOR QUTFUT AS FILE #2y &
ORGANIZATION VIRTUALACCESS MODIFYy &
ALLOW NONE

FILES

This OPEN statement creates a new file named VATST4.TMP. The file is
assigned to channel 2 and is defined as a virtual file. The OPEN
statement also sets the ACCESS attribute to MODIFY and the ALLOW
attribute to NONE. Note that ALLOW NONE is the equivalent of ALLOW
READ (see Section 4.2.4).

4.2 INTRODUCTION TO RMS

Record Management Services (RMS) is a set of system library routines.
These routines effect the transmission of data between files and BASIC
programs. Files are composed of records that act as storage and
transmission media for a related collection of data.

RMS ensures that every record written into a file can be subsequently
retrieved and passed to a program. You determine the size and content
of data in the record, the organization of records in the file, and
the method used to access the records. You make these determinations
by means of statements written in the BASIC language, either through
the attributes you specify for new files in the OPEN statement or
through the operations you perform on existing files.

To maintain an efficient relationship between RMS and the programs you
write, you must have a general understanding of RMS files. This
chapter describes the components of RMS files. The chapter is divided
into five parts, as follows:

1. File organization - RMS files contain records that are
organized in one of three fashions; sequential, relative, or
indexed. You select one of these organizations and assign it
to a file by means of the ORGANIZATION clause in the OPEN
statement.

2. Record access - Record access represents the methods you can
use to store and retrieve records. RMS provides two access
methods: sequential and random. The organization of the
file and the syntax of the individual record operation
determine which of these is used.

3. Record format - RMS files can contain fixed-length,
variable-length, or stream-format records.

4. Data structure - Data is maintained in records that are
contained on storage structures called blocks and buckets.
RMS provides you with a means of controlling the size of
these structures.

5. Record mapping - Mapping provides you with a means of
directing the assignment of data in the record. It also
allows you to identify certain data elements as access keys
for records in indexed files.

Table 4-1 illustrates the record access methods and operation types
allowed on each file organization.

FILES

Table 4-1
Comparison of File Organizations

File Organizations

Access and Operations Sequential Relative Indexed
Sequential access Y Y Y
Random access N Y Y
(by rec no.) (by key)
Record replacement Y Y Y
Record addition (at end
of file) Y Y Y
Record insertion N Y Y
Record deletion N Y Y

The following subsections describe each file organization in detail.

4.2.1 Sequential Files

The sequential file organization specifies a file that can contain
records of varying lengths and can be stored on disk, ANSI-formatted
magtape, or unit record device.

The OPEN statement format used to create and access a sequential file
allows you to specify the following attributes:

[,ORGANIZATION] SEQUENTIAL [(FIXED
VARIABLE
STREAM
", ACCESS (READ
MODIFY
WRITE
SCRATCH
i APPEND
",ALLOW (NONE
READ
MODIFY
L WRITE

[,MAP< (map-name) >]

[,RECORDSIZE<num-exp>]
[,NOSPAN]

[,SPAN]

[,CLUSTERSIZE<num-exp>]
[,BLOCKSIZE<num—-exp>]

[,CONTIGUOUS]

[/NOREWIND]

FILES

where:
+ORGANIZATION SEQUENTIAL

specifies the creation or access of a sequential file.
The ORGANIZATION keyword is optional.

FIXED »
VARIABLE
STREAM

one of these three attributes is used to specify the
format of records within the file. FIXED indicates
fixed-length records. VARIABLE 1is the default and
indicates variable-length records. STREAM indicates
ASCII-stream records and 1is only permitted on disk
files. Refer to Section 4.4.

+ACCESS
specifies the operations that the current user will "Fk
perform on the file. MODIFY is the default. Refer to
Section 4.2.4.
yALLOW
specifies the operations that the current wuser will
permit other programs to perform on the file. READ is
the default. Note that you cannot specify an ALLOW
attribute if the ACCESS designation is SCRATCH. Refer
to Section 4.2.4.
» MAP
references a MAP statement that can be used to define
record size. Refer to Section 4.6.
+RECORDSIZE
defines the maximum size of records within the file.
Note that you must specify record size with either a
MAP or RECORDSIZE specification in the OPEN statement.
Refer to Section 4.5. A
,NOSPAN
+ SPAN
SPAN is the default and allows records to cross block
boundaries. Refer to Section 4.5.1.
,CLUSTERSIZE
specifies a contiguous unit of blocks on disk devices. N
Refer to Section 4.5.1 and to the RSTS/E System User's
Guide.
,BLOCKSIZE)
specifies the number of records contained in a block on
magnetic tape. Refer to Section 4.5.1.
,CONTIGUOUS N

specifies that the contents of the file are contiguous
on disk devices.

4-6

FILES

+NOREWIND

overrides the default rewind action on magnetic tape.
The default 1is to rewind to the beginning of the tape
on OPEN or CLOSE operations; NOREWIND causes the
pointer to remain at the end of the last accessed tape
position.

Note that you can specify file attributes in any order. Consider the
following example:

10 OFEN “"RMSEQL.FIX" FOR QUTFUT AS FILE #3» &
ORGANIZATION SEQUENTIAL VARIABRLE, ACCESS &
MODOIFYy MAF MAF1ly RECORDSIZE 38%y NOSFAN

This OPEN statement creates a new file named RMSEQl.FIX and assigns it
to channel 3. The organization is sequential, the record format is
defined as variable, and the ACCESS attribute is set to MODIFY (the
ALLOW attribute defaults to READ). The OPEN statement also contains a
map attribute that references a MAP statement named MAPl. The MAP
statement, which must appear in the same program, defines the content
of records in the file (see Section 4.6). The RECORDSIZE attribute
defines the maximum record size for this file as 58 bytes. The NOSPAN
attribute overrides the SPAN default and prohibits records from
crossing block boundaries (see Section 4.5).

A sequentially organized file maintains a strict relationship among
the records on the file. The file is structured such that each record
you write to the file physically follows the record that precedes it.
Therefore, the 1location of any particular record is fixed in
relationship to the preceding and succeeding records. The serial
arrangement of the records is determined by the order in which they
are written and is permanent.

Because of this serial order, access to any record in the file begins
with the first record and continues with each succeeding one until the
desired record is reached. For example, to read the 12th record in
the file, the BASIC program first must open the file, then
successfully read records 1 through 11, and finally read 12. After
reading record 12, the program can read all succeeding records (in
serial order) but it cannot read a preceding record without returning
to the beginning of the file.

Sequential files allow the following operations:

GET (read)
PUT (write)
UPDATE
FIND
SCRATCH
RESTORE

Sequential organization imposes the following restrictions on these
file operations:

1. GET and FIND operations can be performed only in sequential
order.

2. PUT operations can be performed only at the end of the file.
3. VUPDATE operations are only allowed on sequential files that
reside on disk media. Also, UPDATE requires that the target

and updated records be the same length and that the target
record be located by a GET or FIND before the UPDATE is made.

4-7

FILES

4. SCRATCH operations erase the contents of the file beginning
at the program's current file position up to the end of the
file. The current file position is established as the end of
the file. Exclusive file access 1s required for SCRATCH
operations. If an erasure of the entire file is desired, you
must precede the SCRATCH operation with a RESTORE operation
followed by a GET or FIND operation.

5. RESTORE operations set the program at the beginning of the
file but do not erase the file's content.

4.2.2 Relative Files

When you specify relative file organization, RMS builds a file in
which records are assigned to numbered positions. Access to these
records is based on the numbered position that they occupy in the
file.

The OPEN statement used to create or access a relative file allows you
to specify the following attributes:

[,ORGANIZATION] RELATIVE[{FIXED E

VARIABLE
' ,ACCESS (READ
MODIFY

L WRITE

", ALLOW (NONE
READ
MODIFY

L WRITE

[,MAP< (map-name) >]

[,RECORDSIZE<num-exp>]

[,CLUSTERSIZE<num-exp>]

[,BUCKETSIZE<num-exp>]
where:

;ORGANIZATION RELATIVE

specifies the creation or access of a relative file.
The ORGANIZATION keyword is optional.

FIXED

VARIABLE
specifies the format of records within the file. FIXED
indicates fixed-length records. VARIABLE 1is the
default and indicates variable-length records. Refer
to Section 4.4.

+ACCESS

specifies the operations that the current wuser will
perform on the file. MODIFY is the default. Refer to
Section 4.2.4.

FILES

+ALLOW
specifies the operations that the current user will
permit other programs to perform on the file. READ is
the default. Refer to Section 4.2.4.

s MAP
references a MAP statement and can be used to define
record size. Refer to Section 4.6.

+RECORDSIZE
defines the maximum size of records in the file. Note
that you must specify a record size with either the MAP
or RECORDSIZE attribute in the OPEN statement. Refer
to Section 4.5.

,CLUSTERSIZE
specifies a contiguous unit of blocks on disk devices.

,BUCKETSIZE

specifies the size of a bucket in terms of the number
of records. Refer to Section 4.5.2.

Consider the following example:

10 OFEN "RMSIVX,.FIX" FOR OUTPUT AS FILE 43, &
ORGANIZATION RELATIVE FIXEDy ACCESS &
MODTIFYy ALLOW NONE»s MAF MAF1y 2

RECORDSTZE H8%

This OPEN statement creates a new file named RMSIVX.FIX and assigns it
to channel 3. The organization is relative, the record format is
fixed, the ACCESS attribute is set to MODIFY, and ALLOW is NONE. Note
that a NONE specification in the ALLOW attribute is equivalent to READ
(see Section 4.2.4). The OPEN statement also contains a map attribute
that references a MAP statement named MAPl. The MAP statement, which
must appear in the same program, defines the content of records in the
file (see Section 4.6). Because the file contains fixed-length
records, the RECORDSIZE attribute defines the size of each record in
the file as 58 bytes.

RMS structures a relative file into a series of record positions. All
positions are the same size and each can contain a single record. RMS
considers the first record position in the file to be number one and
sequentially numbers each succeeding position. When you write or read
records on the file, you can designate a number for the desired
record. This number represents the record's position relative to the
beginning of the file. The record/position number is unique in the
file and can therefore be used to specify location (in a PUT
operation) or a record (in a GET operation). For example, record #l
occupies file position #1, record #2 occupies position #2, etc. A
record number is not required for sequential GET, FIND, and PUT
operations.

Unlike sequential files, relative files are allowed only on disk
devices. However, relative files do have two advantages over
sequential files.

First, though both organizations arrange records in serial order,
BASIC programs can access relative file records by means of a known

4-9

FILES

position number. This allows you to access records randomly (i.e.,
GET #2, RECORD 5%; GET #2, RECORD 20%; GET #2, RECORD 13%, etc.) in
addition to proceeding in strict serial order.

Second, each relative file record position does not have to contain a
record. Each position contains the same amount of space but this
space can be empty. Also, empty record positions can appear anywhere
in the file. Note that sequential GET and FIND operations that do not
specify a record number locate the next occupied position and bypass
empty positions.

BASIC allows the following operations on relative files:

GET (read)
PUT (write)
UPDATE
DELETE
FIND
RESTORE

The relative file organization imposes the following restrictions on
record operations:

1. GET or PUT operations can use a specified number to select a
record or position in the file. This selection method is
similar to BASIC's use of a subscript to select an item from
an array. Record/position numbers allow you to perform GET
and PUT operations in random order. 1In addition, new records
can be inserted into the empty positions of existing files.
Note that a PUT operation can be performed only on an empty
position or at the end of the file.

2. FIND operations can also use a specified number to 1locate a
record or position in the file. UPDATE and DELETE operations
require a previously successful GET or FIND.

3. DELETE and UPDATE operations do not allow a record number
specification. Because a GET or FIND must be done before a
record is erased (DELETE) or replaced (UPDATE), the record
number 1is already known. Note that this also restricts
DELETE and UPDATE operations to existing records.

4. RESTORE operations set the program at the beginning of the

file without disturbing the data. Note that a SCRATCH
operation is not allowed on relative files.

4.2.3 1Indexed Files

The OPEN statement used to create or access an indexed file allows you
to specify the following attributes:

FILES
[,ORGANIZATION] INDEXED[{FIXED }]

VARIABLE
[, ACCESS(READ
WRITE

i MODIFY
", ALLOW (NONE
READ
WRITE

L MODIFY

[,MAP< (map-name) >]

[,RECORDSIZE<num-exp>]
[,CLUSTERSIZE]

[,BUCKETSIZE<num-exp>]
,PRIMARY [KEY] <name>

[,ALTERNATE [KEY] name]

[NODUPLICATES NOCHANGES]
[DUPLICATES CHANGES]
where:

;ORGANIZATION INDEXED

specifies the creation or access of an
The ORGANIZATION keyword is optional.

FIXED
VARIABLE
one of these two attributes. is used to
format of records within the file. FIXED indicates
fixed-length records. VARIABLE 1is the
indicates variable-length records. Refer to Section
4.4,
yACCESS
specifies the operations that the current
perform on the file. MODIFY is the default.
Section 4.2.4.
+ALLOW
specifies the operations that the current
permit other programs to perform on the file.
the default. Refer to Section 4.2.4.
+MAP

references a MAP statement and can be used

record size. Refer to Section 4.6.

FILES

+RECORDSIZE

defines the maximum size of records in the file. Note
that you must specify a record size with either a MAP
or RECORDSIZE specification in the OPEN statement.
Refer to Section 4.5.

yCLUSTERSIZE .

specifies a contiguous unit of blocks on disk devices.

+BUCKETSIZE

specifies the size of a bucket in terms of the number
of records. Refer to Section 4.5.2.

r PRIMARY
defines the primary key for a particular record. This
attribute is required. Refer to Section 4.2.3.1.
yALTERNATE
allows you to define up to 254 alternate keys. This
attribute is optional. Refer to Section 4.2.3.1.
NODUPLICATES
DUPLICATES
specifies the use of a duplicate key in the file.
NODUPLICATES is the default. Refer to Section 4.2.3.1.
NOCHANGES Sl
CHANGES
specifies the use of a key field change in the file.
NOCHANGES is the default. Refer to Section 4.2.3.1.
Consider the following example:
10 OFEN "RMSIXV.VAR" FOR QUTFUT A8 FILE #3 &
ORGANIZATION INDEXEDR VARIABLEY ACCESS &
MODIFYy ALLOW NONEs MAF MAFLy & 545h

RECORDSIZE 58%» FRIMARY NAMES$
20 MAF (MAFL)Y NAMES$=30%y TDX y HRWAGE y FTLL y FILL%Z s FIL L%

This OPEN statement (line 10) creates a new file named RMSIXV.VAR and
assigns it to channel 3. The organization is indexed, the record
format is variable, the ACCESS attribute is set to MODIFY, and ALLOW
is NONE. Note that a NONE specification in the ALLOW attribute is
equivalent to READ (see Section 4.2.4). The OPEN statement also
contains a map attribute that references a MAP statement named MAP1.
The MAP statement (line 20) defines the content of records in the file
(see Section 4.6). Because this is an indexed file, the MAP statement
is also used to define the size and location of key fields 1in the
record. The RECORDSIZE attribute in the OPEN statement defines the *
size of the file's largest record as 58 bytes. The PRIMARY attribute
associates the primary index key with NAMES, which is defined in the
MAP statement on line 20.

The location of records in an indexed file, unlike the record location -
in sequential or relative files, is completely under the control of o
RMS. You control sequential and relative record location at input by

4-12

FILES

performing an end-of-file PUT operation (for sequential) or by
specifying a position number (for relative). The placement of indexed
file records, however, 1is governed by the presence of keys in the
record. M5 uses these keys to determine record location, a process
that is transparent to you.

A key is a data field that exists in every record. A data field is
one of the many discrete pieces of information that compose records.
For example, an individual employee record in a company personnel file
is wusually composed of data fields such as the employee's name,
address, social security number, and department. You can designate
one or more of these data fields as a key for accessing the record as
a whole.

The position and length of each key data field in a record is
identical for each record in the file; only the content can differ.
For example, all employee records in a personnel file reserve the same
amount of space at the same position for the employee name data field;
only the name itself will differ for each record. When you create an
indexed file, you designate the length and position of the data fields
RMS will use as keys. Once a specific data field has been selected as
an RMS key, your BASIC program can use the key to access the record.

Indexed files require that at least one key, called the primary key,
be associated with every record. When you create the file, you use a
MAP statement to define the primary key in terms of its position and
length in the record. RMS stores the defined key in a primary index
table along with a pointer to the location of the record. To access
the record, you provide the BASIC program with a key number and key
value that reference the index and key, respectively. RMS searches
the index for that key, finds the value, and uses the pointer to
locate the record.

In addition to a primary key specification for each record in an
indexed file, you can optionally define up to 254 alternate keys for a
record. Alternate keys represent secondary data fields and are
defined in the same manner as a primary key. Your program can also
use these alternate keys to identify and retrieve records. Alternate
keys are numbered (first alternate, second alternate, etc.) according
to their order of appearance in the OPEN statement.

Like relative files, indexed files are allowed only on disk devices.
The operations allowed on indexed files are:

GET (read)
PUT (write)
UPDATE
DELETE
FIND
RESTORE

GET, FIND, and RESTORE operations can require a key of reference
specification. That is, when records contain alternate or primary
keys, you must indicate to RMS which key index table to search.
UPDATE, PUT, and DELETE operations do not require a key of reference
specification.

Every index table contains a series of entries composed of key data
fields copied from records. The table also contains pointers
associated with each key that indicate the records' 1location in the
file. When a new record is written in the file (PUT operation), its
key values are placed in the appropriate indices. When a random GET
operation 1is specified, a key number is included in the statement.
The number causes RMS to search a specified index table and locate the

4-13

FILES

record pointer. Because the index table is maintained in sequential
order (understood by RMS), GET operations can be performed randomly or
sequentially. When you perform a series of sequential GET, FIND, or
RESTORE operations, a key number specification 1is required for the
initial operation and it remains in effect until changed by another
explicit specification,

4,2.3.1 Primary and Alternate Key Record Access - Access to records
in an indexed file is based on key specifications that appear in your
program. That is, each record in the file contains one or more data
fields that RMS recognizes as keys.

RMS arranges primary key values in index tables by ASCII collating
sequence. Alternate Kkeys are also arranged in individual tables by
ASCII sequence except where duplicate keys are present. Duplicate
keys are arranged in tables according to the order that the records
were input to the file.

RMS allows you to duplicate primary and alternate keys if you specify
DUPLICATES in the OPEN statement. That is, more than one record is
allowed to contain the same value in the data field that composes the
key. Such records are said to have the same record identifier. For
example, a personnel file may contain many records that have the same
value in the field defined as "Department". If you do not specify
DUPLICATES in the OPEN statement, RMS rejects any attempt to write a
record that contains key data field values already present in another
record of the same file.

RMS also allows you to change alternate Kkey values if vyou specify
CHANGES in the OPEN statement. That is, you are allowed to read a
record from the file, modify a particular alternate key data field
within the record, then write the record back to the file. When a key
changes, RMS automatically updates the appropriate index by replacing
the o0ld value with the modified version. If you do not specify
CHANGES in the OPEN statement, RMS rejects any attempt to write a
record containing a modified key value. Note that primary keys are
not allowed to change.

Note that you cannot specify CHANGES without also specifying
DUPLICATES..

To randomly access records in an indexed file, you must specify the
key of reference. That is, you must specify the desired key name that
refers to defined values in a MAP statement. A record operation key
specification has the following format:

GET #channel no. ,KEY #num-exp rel str-exp

where #num-exp is a number that specifies the key of reference (0 is
the primary key, 1 is the first alternate, etc.). The str—exp is a
quoted character string or string variable that represents the content
of the data field.

GET and FIND operations allow you to specify an exact key, approximate
key, or generic key. To specify an exact or approximate key, you
define rel as EQ for exact key, GT for an approximate key that is
greater than the string expression, or GE for an approximate key that
is the same or greater than the string expression,

An exact key specification requires that you specify the complete key
field identifier in the program statement as follows:

GET #channel no. +KEY #num-exp EQ str-exp

4-14

FILES

An approximate key specification allows you to access a record based
on a specified relationship. That is, you can specify a search for a
record that is equal to (EQ), or greater than or equal to (GE), or
greater than (GT) the record key. For example, the format:

FIND #channel no. ,KEY #num-exp GE str-exp

causes RMS to search for a record whose key value is equal to that
specified by the string expression. If RMS determines that the
specified record key does not exist in the table, it searches for the
next highest value in that key index table.

A generic search accesses a record based on an initial portion of the
record's key field. This search is automatically initiated when you
specify a key data field (str-exp) that contains fewer characters than
are defined for that key in the file. A generic search causes RMS to
return the first record whose key value begins with the specified
characters.

To illustrate generic key access, assume that you have a personnel
file. Each record in this file contains a data field composed of a
9-character social security number. These numbers have been defined
in terms of record position and length in a MAP statement and have
been assigned to the wvariable SSNS. This definition takes place
before any record operation. Also, in the OPEN statement, you have
defined SSN$ as the primary key.

If you specify:
GET #1%, KEY #0% EQ "013"
where:
#1% is a channel number that identifies the file.

$#0% is the key of reference. Because 0% is the primary
key, the key index SSN$ is searched.

"013" is a string expression that represents the first three
characters of the data field associated with SSNS.

This GET statement causes RMS to search the key index represented by
SSN$. RMS returns the first record in that index with a data field of
013 at the defined position and length.

4.2.4 File Sharing

With the exception of sequential files on non-disk devices, all files
are capable of being shared by any number of programs. Sequential
files on non-disk devices can be read or written only by a single
program. Sequential files on disk devices can be shared by multiple
readers, but allow only a single writer. Relative and indexed files
can be shared by multiple readers and multiple writers.

While the organization of the file determines the sharing capability,
the type of sharing that actually occurs at run time is determined by
the specifications you make in the OPEN statement.

The ALLOW attribute in the OPEN statement is used to specify the types
of operations that you will permit other programs to perform on the
file while you have it open. With the ALLOW attribute, you can
control the sharing of the file. The specifications you can make in

4-15

FILES

the ALLOW attribute, and the operations they permit other wusers to
perform, are as follows:

READ allows GET and FIND operations on the records in
the file.

WRITE allows PUT operations on the records in the file.

MODIFY allows GET, FIND, PUT, and UPDATE operations on
records in sequential, relative, and indexed

files; additionally, it allows DELETE operations
on records in relative and indexed files.

NONE is the equivalent of READ.

The ACCESS attribute in the OPEN statement is wused to specify the
record operations that you will perform on the file. The
specifications you can make 1in the ACCESS attribute, and the
operations they refer to, are as follows:

READ specifies GET and FIND operations on the records
in the file.

WRITE specifies PUT operations on the records in the
file.

MODIFY specifies GET, FIND, PUT, and UPDATE operations on
records in sequential, relative, and indexed

files; it specifies DELETE operations on records
in relative and indexed files.

SCRATCH specifies GET, FIND, PUT, UPDATE, and SCRATCH
operations on records in sequential files that
reside on disk.

APPEND specifies PUT operations at the end of a
sequential file that resides on disk.

Operations on the virtual file organization should not be shared. If
another program attempts to modify a block that is already open, the
block is changed in the second program's buffer but not on the disk.
When the second program closes the file or attempts another block
operation, the data from the first program is overwritten and lost.

Note that FIND and GET operations on relative and indexed files cause
the bucket that contains the accessed record to be inaccessible to
other programs. This process is called locking and it ensures that
the modifications that you make to a record are not interfered with by
another program. The lock remains in effect until you specify a PUT,
DELETE, UPDATE, or another GET or FIND operation. Note that if the
second GET or FIND operation accesses the same bucket, the 1lock is
reenabled. (For information on buckets, refer to Section 4.5.)

You can explicitly disable the 1locking mechanism by specifying an
UNLOCK statement. For example:

70 UNLOCK #1%

causes the records in the specified file to remain accessible to other
programs.

If another program attempts an operation on a locked bucket, the
operation fails and an error message is printed:

?Record/bucket locked

FILES

Note that a lock is made on a bucket and not on the individual record.
Therefore, more than one record can be locked at the same time.

If your program creates a relative or indexed file that 1is to be
extended during the 1life of that program, READ must be specified in
the ALLOW attribute. Because shared files cannot be extended, an
error is generated when a PUT operation attempts to extend a file that
contains a WRITE or MODIFY specification in the ALLOW attribute. The
error is a protection violation. Note that if you specify FOR OUTPUT
in the OPEN statement, the file is created with the ALLOW READ default
specification.

4.2.5 RMS Memory Allocation

The use of RMS-structured files in a BASIC-PLUS-2 program causes the
compiler to allocate space in memory to the needs of that program.
Space is initially allocated when a file organization is specified and
additional space is allocated at run time for each channel that the
program opens.

The space that is initially allocated is as follows:

Sequential files - 3.9K words
Relative files - 4.0K words
Indexed files - 5.4K words

All file organizations - 6.0K words

Note that this space.is allocated when the organization first appears
in the program and not for each open file. .

In addition, each open file in the program is allocated space as
determined by the following algorithms:

Sequential files - 736 bytes
+ the record length

Relative files - 224 bytes
+ the bucket size (in bytes)
+ the record length

Indexed files - 264 bytes

2% the bucket size (in bytes)
the number of keys *104

2* the maximum key size

++ +

4.3 RECORD ACCESS METHODS

The methods that you use to store or retrieve records in a file are
determined by the file's organization. The organization of a file is
fixed at the time you create it but, depending on the access allowed,
a specified access method can change each time the file is opened for
program execution. In some cases, you can vary the access to records
dur ing program execution.

FILES

RMS allows you to specify two types of record access; sequential and
random. If you specify sequential access, records are accessed in
serial order as established by the file organization. If you specify
random access, record operations can take place at any point in the
file.

Table 4-2 shows the relationship between file organization and record
access.

Table 4-2
Access Methods

Access Methods

File Organization Sequential Random

Sequential yes no
Relative yes yes
Indexed yes yes

The following subsections discuss each type of record access.

4.3.1 Sequential Access

All RMS file organizations allow you to access records sequentially.
Sequential record access is employed when you issue a series of
requests for the next record. RMS interprets these sequential
operations within the context of the file organization. That is,
record operations are performed in terms of a predecessor-successor
record relationship. RMS assumes that for each successfully accessed
record (except the last) there is a succeeding record somewhere in the
file.

Sequentially organized files allow only sequential access. In these
files, the predecessor-successor relationship is physical (i.e., each
record, except the last, is physically adjacent to the next record).
A record in a sequential file can be processed only after each

preceding record has been successfully accessed. Similarly, once a
record is processed, the program must be repositioned to the beginning
of the file before preceding records can be accessed. A RESTORE

operation, or reopening the file, positions the program at the
beginning of the file.

In terms of operations, a PUT requires that the program be positioned
at the end of the file (i.e., immediately following the last record).
A FIND operation moves the program to the next sequential record
position. Therefore, a series of FIND operations can be used to
locate the end of the file (i.e., an unsuccessful FIND indicates
end-of-file).

UPDATE operations on sequential files require a successful GET or FIND
operation to move the program to the desired record before the UPDATE
is specified. A GET causes the program to locate the next record and
perform the GET operation. A succeeding GET or FIND operation moves
the program to the next record.

FILES

Relative file organization allows sequential access as established by
the contents of record positions. Relative files allow empty record
positions that can be caused by a record deletion or by a program that
purposely leaves the positions empty. RMS maintains the
predecessor-successor relationship through its ability to recognize
empty or occupied record positions.

Sequential PUT operations on relative files are used when you are
creating a new file or appending to an existing file because RMS
requires that new records be written in empty positions. That is, a
sequential PUT operation causes RMS to place a record in a location
whose position number is one higher than the previous operation. If
the position is occupied, the operation fails. A GET or FIND
operation causes the program to locate the next existing record in
position number order. In addition, the GET operation reads the
located record. The program remains at this 1location until another
operation is specified. DELETE and UPDATE operations require that a
FIND operation position the program at the desired location.

Indexed file organization also supports sequential access. In indexed
files, the predecessor-successor relationship exists among the entries
in the index. RMS sequentially accesses records on behalf of the
program by moving through a specified index table in serial fashion.
The records are retrieved in the same order that key values appear in
the table.

PUT operations on indexed files write the record and place its key
value in the appropriate index. On GET operations, the pointer for
the specified key of reference locates the first record associated
with that index and makes it available to the program. The next GET
updates the pointer to the record whose key appears next in that index
and accesses the record. FIND operations perform in the same manner
but without reading the record. UPDATE and DELETE operations require
a prior, successful GET or FIND.

4.3.2 Random Access

Random access allows the BASIC program, rather than file organization,
to control the order of record access. The predecessor-successor
relationship has no effect on random access. The program identifies
each record of interest in each operation requested of RMS. This
procedure allows you to access records in any order at any point in
the file.

Random access is not permitted on sequential files because of the
strict physical relationship maintained among records. Relative and
indexed files do allow random access.

Programs employ random access on relative files through the
specification of a particular record number. RMS interprets the
number as representing a record position in the file. If the
operation is a GET or FIND and no record exists in the specified
location, RMS returns an error. If the operation is a PUT and a
record already exists in the specified location, RMS also returns an
error.

Note that DELETE and UPDATE operations do not allow record identity
specifications. A prior GET or FIND is required. Also, random access
imposes no restriction on the order of operations. For example, you
can specify a series of GET operations on a relative file in any order
(record number 3, record number 9, record number 5, etc.).

FILES

Programs initiate random access on indexed files by means of a key
specification. You specify a number and key value in a manner
determined by the desired operation. But for all operations, the
specified key value indicates the contents of a record data field and
the number identifies the index that RMS uses to locate that record.

On GET or FIND operations, a specification that indicates the content
of the desired key field 1is required. RMS searches the key index
table indicated by the specification, finds the desired key value (if
present), reads the record pointed to by the index, and passes the
record to the program.

PUT operations do not allow an explicit key specification because RMS
uses the record's data to interpret the new record in terms of
content, position, and length of key data fields.

Indexed files allow you to specify key values in three ways; exact
key, approximate key, and generic key. You specify an exact key by
including the entire content of the desired field in the operation.
You specify an approximate key in your program by indicating that the
desired record's key field can be equal to, or greater than, the
specified key. You specify generic key in the program by indicating
an initial portion of a key field. These three methods are described
in Section 4.2.3.1.

Consider the following example:

ON ERROR GO TO 200

)
10 MAF (FOATA) NAME$=30%Zy IN$=6Xy JORDESS=20
20 OFEN "FFILE.DAT® FOR OUTFUT AS FILE #1% &
yORGANIZATION INDEXED FIXED,ACCESS MODIFY &
yALLOW NONEsMAF FIATAYyRECORDSIZE H6X %
y FRIMARY NAMES$yALTERNATE TD%
30 INFUT "NAME *sNAMES$
40 IF NAMES$="" THEN 30 ELSE &
\ INFUT "ID "SID% &
N\ INFUT "JORDES "¢ JOBDESY &
AN FUT #17% &
\ GO TO 30
50 CLOSE #1%
60 OFEN "FFILE.DAT" FOR INFUT AS FILE #1% &
s ORGANIZATION INDEXED FIXED,ACCESS MODIFY &
s ALLOW NONEsMAF FOATAyRECORDSIZE $6% &
y FRIMARY NAME$yALTERNATE TD$
70 GET #1 &
N FRINT NAME$S IDS5 JORUESS
80 INFUT "ID "5TIDENTS
%0 IF IDENT$="" THEN 210 ELSE &
GET #1yKEY #1 EQ IDENT% &
\ FRINT ID$iNAMES s JORDESS &
AN GO TO 8O
200 FRINT "ERROR "FERR»" AT LINE "3jERL
210 CLOSE #1 NEND

This program creates an indexed file, accepts record data from the
terminal, and closes the file. The file is then reopened and its
records are accessed with sequential and random GET operations. The
program is composed of the following lines:

Lines 5 and 200 are an error handling routine.
Line 10 is a MAP statement that defines a primary and

two alternate keys in terms of their size and
location in the record.

4-20

FILES

Line 20 is an OPEN statement that creates an indexed
file, 1identifies the primary and alternate
keys, and references the MAP statement that
defines those keys.

Lines 30 and 40 accept record data from you at the terminal
by means of an INPUT statement. The PUT
statement writes the data to the file and the
MAP statement variables format the data in
the record.

Line 50 closes the file.

Line 60 reopens the file. Note that the file
attributes are respecified in the OPEN
statement.

Line 70 is a GET statement that accesses the first
record (sequential access) and prints it to

the terminal.

Line 80 is an INPUT statement that requests an
alternate key.

Line 90 is a GET statement that accesses a record
based on the alternate key you specify in
response to line 80. This 1is a random
operation. Line 90 also prints the record.

Line 210 closes the file.

The capability to shift from random to sequential access (or vice
versa) 1is only allowed on relative and indexed file organizations.
Sequential file organization does not support random access. There is
no restriction on the number of shifts that can be made while
processing a file.

As an example, consider a program that randomly accesses a file and
then dynamically shifts to sequential access. RMS considers the
currently accessed record (by the random operation) as the predecessor
record when the shift is made to sequential access.

Relative and indexed file organizations impose their own restrictions
on the sequence of operations. For example, a GET operation always
shifts the program to the target record. If you follow a series of
sequential GET operations with a random PUT, the program remains at
the location of the last GET. A sequential GET after the random PUT
will resume at the point of the previous GET operation.

4.4 RECORD FORMAT

S is indifferent to the logical content of records, but it does
require that you specify the record format. Record format determines
the manner in which RMS stores records in the file. The format is
specified when the file is created and is permanently assigned to each
record read into that file.

BASIC allows you to specify one of three formats. These are:

Fixed the file contains records of equal and fixed
length.
Variable the file may contain records of different lengths.

4-21

FILES

Stream the file contains a contiguous series of ASCII
characters. A record is defined as a set of _H5
characters delimited by a form feed, vertical tab, s
line feed, escape, or carriage return/line feed
combination.

The file organization determines which of the formats you can select.
Table 4-3 shows the relationship between file organization and record '
format.

Table 4-3
Record Formats
Format
File Organization Fixed - Variable Stream
Sequential yes yes yes ,‘!Q
Relative yes yes no :
Indexed yes yes no

The record format must be specified when the file 1is created. You
specify record format in the BASIC program as part of the organization
clause, as follows:

OPEN filename [FOR OUTPUT] AS FILE #num-exp

, [ORGANIZATION] (SEQUENTIAL) (FIXED
{RELATIVE }{VARIABLE} N,
INDEXED STREAM
Stream format is supported only for sequential files on disk. A
stream specification is used for BASIC-PLUS compatibility and creates
a file containing ASCII stream data. If you attempt to create a

stream ASCII file on a non-disk device, an error is returned (i.e.,
Illegal record format). Variable format 1is the default for
sequential, indexed, and relative organizations and record length is
indicated by a count field appended to each record.

The following subsections discuss each record format in detail. i

4.4.1 Fixed-Length Records

Fixed length describes a file condition in which records are of equal
and nonvarying length. Under fixed-length format, each record in a
file occupies an identical amount of space.

You specify the length of records in the BASIC program when the file
is c¢reated. The 1length, in bytes, can be explicitly stated in the
RECORDSIZE clause or implicitly defined by a map reference in the MAP
clause. RMS stores and maintains the record length specification in
the file description header. When a program requests a record from
the file, the desired record is passed to the program within the
length restrictions defined for that file.

Fixed-length format is optional for sequential, relative, and indexed
files. Relative files, however, store records in fixed-length o~

positions, regardless of the format specification. That is, RMS
stores relative file records in locations that are each equal to the

4-22

FILES

maximum record size specified when the file was created. This
condition is true whether the format is fixed or variable. For
example, when you create a relative file, a record position space is
allocated that is equal to the largest record described for that file.
RMS stores the size in the file header. A program request for a
relative file record is performed within the specified amount of
space. :

4.4.2 Variable-Length Records

Variable-length format describes a file condition in which the length
of each record is allowed to differ. Variable format is the default
for sequential, relative, and indexed file organizations.

When variable-length format is used, you must specify the 1length of
the file's longest record in the RECORDSIZE clause or with a map
reference in the MAP clause.

Because record retrieval operations require a record size, RMS
prefixes a count field to each record as it is written to the file.
The count field identifies individual record size in bytes to RMS but
is transparent to the BASIC program.

There are two types of count fields, depending on the device you use
to contain the file. Records in files residing on disk devices
contain a l-word (2-byte) binary count field that precedes the data
portion of the record. This count field 1is aligned on a word
boundary. The length indicated by the count field does not include
the count field itself.

Records in files residing on ANSI magnetic tape (sequential files
only) contain a 4-character decimal count field that precedes the data
portion of the record. The size indicated by the field includes the
field itself. In the context of ANSI tapes, this record format is
known as D format.

When you create sequential files with variable-length format, RMS
appends a count field 1in front of each record written to the file.
The count field indicates the number of character positions present in
the record. When the record is requested by a program, RMS releases a
record whose length is that specified by the count field.

Relative files are an exception in that variable format is allowed but
record position length is fixed. The length of each record position
is defined by the size of the largest record. A count field prefixes
each record, but these records need not fill an entire record
position.

When you create relative or indexed files with variable format, you
must define RECORDSIZE as a non-zero specification that represents the
size of the largest record. Note that a record is never allowed to
exceed the RMS maximum of 16,383 bytes.

4.4.3 Stream-Format Records

Stream format describes a file that contains a group of contiguous
ASCII characters. RMS considers a record in such a file to be a set
of characters delimited by one of the following:

FILES

1. Line feed (LF)

2. Form feed (FF)

3. Vertical tab (VT)

4. Carriage return/line feed combination (CR/LF)
5. Escape (ESC)

Stream format is allowed only on files with sequential organization
that reside on disk. The stream attribute is provided on RSTS/E to
allow BASIC-PLUS file compatibility and to permit the use of the OPEN
statement to create terminal I/0 files. That is, stream-format files
contain only ASCII data as opposed to the binary record data that
appears in other formats.

To create a stream-format file, you can open a sequential file with no
organization specification (i.e., terminal format) or you can specify
the STREAM attribute in the SEQUENTIAL clause, as follows:

OPEN filename [FOR OUTPUT] AS FILE #num-exp
, [ORGANIZATION] SEQUENTIAL STREAM

Stream-format records can be of fixed or variable length and no count
field precedes the record. For output operations (PUT), RMS examines
the last character of the record that your BASIC program constructed.
If the 1last character is a LF, VT, ESC, or FF, RMS writes the record
to the file. If the last character is not a LF, VT, ESC, or FF, RMS
appends a CR followed by a LF to the end of the record and then writes
it to the file.

For input operations (GET), RMS scans the file for the first
occurrence of a LF, VT, FF, ESC, or CR/LF. If the scan is terminated
by a LF, VI, ESC, or FF, RMS passes the entire string (including the
terminator) to the program. If the scan encounters a CR/LF, RMS
removes these two characters and passes the preceding string to the
program. Each successive input operation causes the scan to resume at
the character following the last LF, VT, FF, ESC, or CR/LF
encountered.

4.5 DATA STRUCTURE

Data structure is a term that describes the storage of a file on a
particular medium. When you create a file, RMS uses certain data
storage structures to allocate and maintain the records that compose
that file. These structures are blocks and buckets.

A block is a physical storage structure that can contain a partial
record, one full record, or more than one record. The size of a block
on disk devices is fixed at 512 bytes. The size of a block on
magnetic tape can be defined in your program. Because sequential is
the only file organization allowed on magnetic tape, the size of a
block is a consideration only when creating sequential files on
magnetic tape. This consideration is discussed in Section 4.5.1.

A bucket is a logical data structure that is composed of blocks.
Buckets are used for files on disk devices and RMS allows you to
establish the size of a bucket in terms of an integral number of
blocks. Buckets are described in Section 4.5.2.

FILES

4.5.1 Blocks

The records that your program writes to a file are contained on
blocks. The size of these records determines whether a block contains
a partial record, one full record, or more than one record. RMS
considers each block within a file as a contiguous array of data.
When you write a record that is larger than one block, RMS allocates
successive blocks sufficient to contain the entire record. The
procedure whereby records cross block boundaries is called spanning.

The length of a block on disk devices is fixed at 512 bytes. This
size 1is set by the hardware and cannot be altered. The length of a
block on magnetic tape is defined as the 1length of data that the
program writes between two inter-record gaps. With ANSI-labelled
tapes, you can specify this size in the BLOCKSIZE clause as a positive
integer. The range of this integer is from a minimum of 18 bytes to a
maximum determined by program buffer requirements.

The BLOCKSIZE clause appears in the OPEN statement that 1is used to
create sequential files on magnetic tape. The BLOCKSIZE specification
defines block length in terms of the number of records and permanently
assigns it to the file. Consider the following:

OPEN filename [FOR OUTPUT] AS FILE #num-exp
; [ORGANIZATION] SEQUENTIAL

+ RECORDSIZE num-exp

+ BLOCKSIZE num-exp

where:
RECORDSIZE defines the size of the 1largest record in the
file.
BLOCKSIZE defines the size of a block in number of records.

The default for disk devices is 512 bytes.

4.5.2 Buckets

A bucket is a logical storage structure that RMS uses to build and
maintain files on disk devices. A bucket is composed of an integral
number of blocks in the range of 1 to 15. Bucket size is defined in
terms of the number of records it contains and this number can be
defaulted to one record or specified in your program.

Because relative and indexed files are allowed only on disk media, the
length of a block for these files is set at 512 bytes. This size
cannot be altered in your program. A bucket, however, is a logical
structure and its size can be tailored to program requirements.

Unlike blocks, a bucket cannot contain a partial record. That is, RMS
does not allow records to span bucket boundaries. Therefore, when you
specify bucket size in your program, you must consider the size of the
largest record in the file. If a default bucket size is used, BASIC
makes this consideration automatically.

In addition to your file's records, buckets contain internal
information that is maintained and understood only by RMS.

FILES

There are two methods you can use to establish the number of blocks in
a bucket. The first is to use the BASIC default. The second method
involves a specification of the number of records you desire 1in each
bucket. BASIC calculates a default based on the number of records you
specify. These two variations on default sizes are discussed 1in
Section 4.5.2.1.

4.5.2.1 Bucket Size - The default bucket size assigned to relative
and indexed files 1is designed to make the bucket size as small as
possible. The default size minimizes memory buffer space requirements
but also decreases the speed of I/O operations.

A default bucket size is selected by BASIC on the basis of information
that you provide when the file is created. If you do not define the
BUCKETSIZE clause in the OPEN statement, BASIC assumes that there is
only one record in the bucket, calculates a size, and assigns the
required number of blocks. If you define BUCKETSIZE and specify the
number of records (when more than one is desired in each bucket),
BASIC uses a different formula to arrive at the necessary number of
blocks. BASIC also considers file organization and record format when
determining default bucket size. These considerations are shown in
the following formulas and tables. Note that record size can
alternately be defined by a map reference.

The BASIC syntax used to create a file in which BASIC completely
controls bucket size is as follows:

OPEN filename [FOR OUTPUT] AS FILE #num-exp
,[ORGANIZATION]{RELATIVE}{FIXED }

INDEXED VARIABLE
,RECORDSIZE num—-exp

The BASIC syntax used to create a file in which you state the number
of records desired in the bucket is as follows:

OPEN filename [FOR OUTPUT} AS FILE #num-exp

,[ORGANIZATION]{RELATIVE}{FIXED }
INDEXED VARIABLE

(RECORDSIZE num-exp

,BUCKETSIZE num-exp

where the BUCKETSIZE specification is the number of records expressed
as a positive integer.

The default bucket size for relative files is derived from the
following formulas:

Fixed-length records with no BUCKETSIZE specification,
Bnum=(1+Rlen) /512

Fixed-length records with BUCKETSIZE specified,
Bnum=((1+Rlen) *Rnum) /512

Variable-length records with no BUCKETSIZE specification,
Bnum=(3+Rmax) /512

Variable-length records with BUCKETSIZE specified,

Bnum=((3+Rmax) *Rnum) /512

where:

Bnum

Rlen

Rmax

Rnum

Table 4-4 shows the default bucket sizes selected by
number of

record) .

The

default

records is

FILES

is the number of blocks per bucket in a range
of 1 to 15 blocks. The bucket size is
rounded up to the next highest integer, where
required.

is the 1length in bytes of the file's
fixed-length records as defined in the
RECORDSIZE clause.

is the 1length in bytes of the largest

variable-length record in the file as defined
in the RECORDSIZE clause.

is the number of records that you desire in
each bucket as defined in the BUCKETSIZE
clause.

RMS uses
absence of

represents the
to determine
records in the

existence byte that
the presence or
file.

represents the existence byte plus two
that indicate the count field.

bytes

BASIC when the

undefined (i.e., the bucket contains only one

Table 4-4
Relative File Default Bucket Size
Bnum Rlen Rmax
1 1-511 1-509
2 512-1023 510-1021
3 1024-1535 1022-1533
4 1536-2047 1534-2045
5 2048-2559 2046-2557
6 2560-3071 2558-3069
7 3072~-3583 3070-3581
8 3584-4095 3582-4093
9 4096-4607 4094-4605
10 4608-5119 4606-5117
11 5120-5631 5118-5629
12 5632-6143 5630-6141
13 6144-6655 6142-6653
14 6656-7167 6654-7165
15 7168-7679 7166-7677
bucket size for indexed files is derived from the

following formulas:

Fixed-length records with no BUCKETSIZE specification,

Bnum=(22+Rlen) /512

Fixed-length records with BUCKETSIZE specified,

Bnum=((7+Rlen) *Rnum) +15/512

FILES

Variable-length records with no BUCKETSIZE specification,

-~

Bnum=(24+Rmax) /512 '

Variable-length records with BUCKETSIZE specified,

Bnum=((9+Rmax) *Rnum) +15/512

where:

Bnum is the number of blocks per bucket in a range .
of 1 to 15 Dblocks. The bucket size is
rounded up to the next highest integer, where
required.

Rlen is the 1length in bytes of the file's
fixed-length records as defined in the
RECORDSIZE clause.

Rmax is the 1length in bytes of the largest
variable-length record in the file as defined ",
in the RECORDSIZE clause. ‘

Rnum is the number of records you desire in each
bucket as defined in the BUCKETSIZE clause.

22 is a 15-byte RMS bucket overhead plus 7 bytes
for the fixed-format record header length.

(Note that when BUCKETSIZE is defined, 7
bytes are allotted to each record in the
bucket and 15 bytes to the bucket as a
whole.) PN

24 is a 15-byte RMS bucket overhead plus 9 bytes
for the variable-format record header length.
(Note that when BUCKETSIZE 1is defined, 9
bytes are allotted to each record in the
bucket and 15 bytes to the bucket as a
whole.)

Table 4-5 shows the default bucket sizes selected by BASIC when the
number of records 1s undefined (i.e., the bucket contains only one
record) . dgq
Table 4-5
Indexed File Default Bucket Size
Bnum Rlen Rmax
1 1-490 1-488
2 491-1002 489-1000
3 1003-1514 1001~1512
4 1515-2026 1513-2024
5 2027-2538 2025-2536
6 2539-3050 2537-3048
7 3051-3562 3049-3560
8 3563-4074 3561-4072
9 4075-4586 4073-4584
10 4587-5098 4585-5096
11 5099-5610 5097-5608
12 5611-6122 5609-6120
13 6123-6634 6121-6632
14 6635-7146 6633-7144
15 7147-7658 7145-7656
4-28

FILES

When you specify a bucket size for files in your program, you should
keep in mind the space versus speed trade-offs involved. That is, a
large bucket size increases the speed of file processing but also
increases the memory space required for buffer allocation. Likewise,
a small bucket size minimizes buffer requirements and also decreases
the speed of operations. For example, a large bucket size contains a
greater amount of the file in each bucket. When an I/0 operation
accesses a bucket, this greater amount of file is made available for
processing. However, a like amount of buffer space is required to
contain the file.

4.6 RECORD MAPPING

When you initiate a record operation, such as a PUT or UPDATE, the
record appears to move directly to your program from the file or to
the file from your program. RMS transports these records from or to
blocks or ‘buckets, depending on the organization of the file (see
Section 4.5).

RMS, however, does not directly transfer records between programs and
files. Transparent to you, RMS reads or writes records into internal
memory areas called buffers. Buffers, therefore, are an intermediate
step between files and programs. The unit of transfer between the
file and the buffer 1is the storage structure (i.e., a block or
bucket). The unit of transfer between the program and the buffer is a
record.

During record operations, RMS controls the content of buffers.
However, the allocation of buffer space and the content of the records
in those buffers is determined by the program through record mapping.

The buffer is a data storage location whose size and content can be
described 1in an optional MAP statement. The MAP statement acts as a
template for the placement of data in a record. The MAP clause in the
OPEN statement references the MAP statement and associates it with a
particular file.

The MAP statement appears in your program as follows:
MAP (map-~name) element-list

The MAP name is enclosed by parentheses and represents the buffer
name . It provides RMS and the program with a vehicle for associating
record operations with a buffer in the OPEN statement. The element
list 1is composed of variables that represent the data. The list also
defines how that data is to be placed in the record.

Because the MAP statement defines the data content of the record, it
also acts to define the position and length of indexed file keys.
Both the primary and alternate KEY clauses in an indexed file OPEN
statement refer to elements in a MAP statement when key values are
specified. Note that once a key field has been defined, by means of a
KEY specification and a map reference, it is not allowed to change.

The MAP clause that associates a defining MAP statement with a
particular file appears in the OPEN statement as follows:

OPEN filename [FOR OUTPUT] AS FILE #num-exp
 [ORGANIZATION] (SEQUENTIAL FIXED
RELATIVE VARIABLE
INDEXED STREAM
,MAP map—-name
yRECORDSIZE num-exp

FILES

The map-name in the MAP clause is associated with the file while the
file is open.

Consider the following example:

10 FRINT "SEQUENTIAL MAF TEST WITH FIXED LENGTH RECORDS"
20 OFEN ‘RMSSEQ.FIX‘ FOR OQUTFUT AS FILE #1%Z» &
ORGANIZATION SEQUENTIAL FIXEDR-ACCESS &
MODIFYsMAF MAFLsRECORDSIZE 41%
30 MAF (MAF1) NAME$=30Z» IDNUMZs JORCLASS$=9%
40 INFUT “NAME s NAME$ &
N\ IF NAME$= ‘END’‘ THEN 100
S0 INFUT “ID NUMBRER’§ IDNUMZ %
\ INFUT “JOR CLASS’ 3 JORCLASSS
60 FUT #1Z \GO TO 40
100 CIL.OSE #1%Z \END

This program creates a sequential file with fixed-length records. The
maximum record size is 41 bytes and the length of the record's content
is defined in a map reference. The RECORDSIZE specification and MAP
reference are contained in line 20. Line 30 contains the defining map
statement referred to in line 20.

Because the MAP statement defines the length of data in the record, it
can also be wused in the OPEN statement to define RECORDSIZE. In
addition, a map reference and a RECORDSIZE specification can both
appear in the same OPEN statement. This enables you to specify a
smaller record (buffer) for a particular operation when the record
length format is variable. Note that when both a map reference and a
RECORDSIZE specification are used, the RECORDSIZE specification takes
precedence.

NOTE

Because a RECORDSIZE specification
overrides a MAP, it 1is possible to
define a record size and cause a record
operation to overwrite mapped areas.
You should exercise caution when
specifying a RECORDSIZE that is larger
than previously defined MAP statements
for the same file.

4.7 RMS UTILITIES

RMS provides a collection of utility programs that can be used to
initialize, manipulate, and maintain RMS files at the system command
level.

For the most part, the utility programs operate on existing RMS files;
however, these programs are not designed to substitute for the
creation and use of RMS files with BASIC-PLUS-2. The rest of this
section contains an introductory explanation of the RMS utilities.
For a detailed description of their format and use, refer to the
RSTS/E RMS-11 Utilities User's Guide.

FILES

The utility programs are composed of five separate operations, as
follows:

1. RMSBCK - creates copies of RMS files.
2. RMSRST - returns copied files to their original state.
3. RMSCNV - moves data from one file to another.

4. RMSDFN - creates RMS files.
5. RMSDSP - lists attributes of RMS files.

The RMSBCK utility allows you to create copies of one or more RMS
files and store the copies on a specified medium (disk or magtape).
This process ensures that data in a file will not be lost because of a
software or hardware problem. The copies created by RMSBCK are
specially formatted such that user programs cannot access them. Also,
the attributes, header information, and protection code associated
with the original file are preserved on the copy.

The RMSRST utility reverses the process initiated by RMSBCK. The
RMSRST utility accepts RMSBCK files ‘as input and outputs standard
files, i.e., the file as it was in its original state. The structure,
content, and attributes of a file can thus be protected against loss
with these two utilities. :

The RMSCNV utility reads records from a specified input file and
writes them onto a specified output file. The method used to transfer
records depends on the organization of the specified files and on the
desired utility options.

The RMSDFN utility creates an RMS file with a user-specified filename
and attribute assignment. The utility does not allocate file space
nor does it write records to the file. These operations must be done
by means of a user program or the RMSCNV utility.

The RMSDSP utility allows you to list the attributes of one or more
specified files. This utility 1is especially useful to RSTS/E
BASIC-PLUS-2 programmers who wish to examine the attributes of
existing files. The utility lists the filename, extension, creation
date, file organization, protection codes, space allocation, revision
dates, record format, record size, primary and alternate key
definitions (if applicable), and bucket size (for relative and indexed
files).

4-31

CHAPTER 5

TRANSLATOR UTILITY

The Translator utility is a system program that converts a BASIC-PLUS
user program to BASIC-PLUS-2 and thus preserves existing RSTS/E
BASIC-PLUS applications. The Translator accepts a BASIC-PLUS source
program as input, converts it to BASIC-PLUS-2 while maintaining the
intent of the program, and outputs the converted program. In
addition, the Translator prints an appropriate warning for any
potential trouble spots that it detects in vyour BASIC-PLUS program.
The Translator also allows you to convert BASIC~PLUS programs written
in EXTEND and NOEXTEND mode. The Translator does not, however, alter
the format of your program (indentation, blanks, tabs, etc.) except
for those items listed in Section 5.1 that are actually converted.

5.1 ITEMS FOR TRANSLATION

The following are the BASIC-PLUS syntax items that are converted to
BASIC-PLUS-2 syntax by the Translator. Most of these items are
automatically converted but some are changed at your discretion. A
complete description of these language functions and compatibility
issues is given in Appendix A.

Continuation Lines

BASIC-PLUS program lines are continued with a 1line feed or an
ampersand (&) followed by a 1line terminator. BASIC-PLUS-2
continuations can only be made with an ampersand (&) followed by
a line terminator. This change 1is made automatically by the
Translator. The Translator adds a period on the end of
BASIC-PLUS lines that contain an ampersand as the last character,
thus avoiding any ambiguity.

DEF Statements

BASIC~-PLUS and BASIC~PLUS-2 user-defined functions differ in the
method wused for passing arguments. To ensure compatibility,
BASIC-PLUS-2 on RSTS/E also supports the BASIC-PLUS method. The
Translator adds an asterisk to BASIC-PLUS DEF statements (i.e.,
DEF*) to mark them as using the BASIC-PLUS argument passing
method.

PRINT Synonym

BASIC-PLUS accepts an ampersand as a synonym for PRINT. This
conflicts with the BASIC-PLUS~-2 continuation character. The
Translator automatically changes all BASIC-PLUS ampersands to
PRINT statements (except for ampersands contained in string
literals and comments or those used for continuation in EXTEND
mode) .

TRANSLATOR UTILITY

CHAIN Statements

BASIC-PLUS-2 requires that the keyword LINE precede a specified
line number in CHAIN statements. The Translator automatically
inserts the keyword LINE before 1line numbers when they are
specified in BASIC-PLUS CHAIN statements.

Statement Separators

BASIC-PLUS allows multiple statements to be separated by a colon
or a backslash. BASIC-PLUS-2 only allows a backslash as the
separator. The Translator automatically converts all statement
separators to backslashes in BASIC-PLUS programs.

PRINT USING

DATA

BASIC-PLUS syntax for specifying the output format of a character
string 1is an exclamation point for one character and n-2 spaces
enclosed by backslashes for more than one character (where n is
the desired number of characters). BASIC-PLUS-2 syntax is a
single quote or an exclamation point for one character and a
single quote plus an L for more than one (where the number of Ls
plus 1 is the desired number of characters). The letter L
represents left-justified output and can be replaced by R for
right-justified, C for centered, and E for extended. To ensure
compatibility, BASIC-PLUS-2 on RSTS/E supports both forms of
string format. The Translator automatically converts BASIC-PLUS
syntax to BASIC-PLUS-2 where possible, and issues a warning where
not possible.

Statements

BASIC~PLUS ignores embedded spaces and tabs in unquoted string
literals. BASIC-PLUS-2 considers them significant. The
Translator resolves this conflict by automatically removing
embedded spaces and tabs.

Position Function

BASIC-PLUS-2 supports the BASIC-PLUS POS function but changes the
function name to CCPOS by means of the Translator. The name is
converted because BASIC-PLUS-2 supports a function that locates
the position of a substring within a string. This function is
named POS and is compatible with Dartmouth BASIC.

Long Variable Names
BASIC-PLUS-2 allows variable names of up to 30 characters (not
including the optional characters FN, $, and %). The first
character must be alphabetic and can be followed by up to 29
letters, numbers, or periods. You can use the Translator to
change specified BASIC-PLUS variable names to the 1long format.
You can also create a command file containing BASIC-PLUS and
BASIC-PLUS-2 names and make the name changes from the file.

Spaces

Because BASIC-PLUS-2 allows long variable names, spaces or tabs
are required between Kkeywords, symbols, and literals to avoid
ambiguity. The Translator automatically inserts spaces between
BASIC-PLUS lexical elements.

TRANSLATOR UTILITY

Comment Separators

BASIC-PLUS requires that comments begin with an exclamation point
and end with a line terminator. BASIC-PLUS-2 allows comments to
begin and end with an exclamation point, which permits you to
write comments at any point on a program line. The Translator
automatically removes all but the first exclamation point from
BASIC-PLUS 1lines and replaces them with asterisks to preserve
spacing. This does not apply to string literals. BASIC-PLUS-2
comments cannot be continued; the Translator inserts exclamation
" points to convert BASIC-PLUS continued comments.

Unterminated String Literals

BASIC-PLUS allows string literals to be delimited by a line
terminator. BASIC-PLUS-2 requires matching single or double

quotation marks on both sides of the string. The Translator
automatically adds the proper terminators to BASIC-PLUS string
literals.

SYS Functions

BASIC-PLUS supports SYS functions and the PEEK function. To
ensure compatibility, BASIC-PLUS-2 supports these functions on
RSTS/E only. The Translator flags SYS and PEEK functions as
errors on all systems but RSTS/E.

Multiple Assignment Statements

BASIC-PLUS evaluates multiple assignment statements in
right-to-left order. BASIC-PLUS-2 evaluates them from left to
right and makes assignments from right to left. The Translator
resolves this conflict by internally restructuring the statements
such that each assignment is evaluated as a separate statement
and issues a warning for potential evaluation errors.

Ambiguous Constants

When an ambiguous constant (i.e., 100 as opposed to 100% or 100.)
is wused 1in a BASIC-PLUS arithmetic expression, it is treated as
an integer if an integer value appears to the 1left of the
constant in the expression. If such an integer is not present,
BASIC-PLUS treats the ambiguous constant as a floating-point
number .

BASIC-PLUS-2 always treats an ambiguous constant as a
floating-point number.

The Translator simulates the BASIC-PLUS treatment. It adds a per
cent sign to an ambiguous constant if an integer value appears to
the constant's left in the expression.

Semicolons

In certain cases, BASIC~PLUS allows an implied semicolon in PRINT
and INPUT statements. BASIC-PLUS-2 requires a comma or semicolon
between items in a PRINT statement list and assumes a comma by
default in INPUT statements. For example:

10 PRINT "SN" X

is legal in BASIC-PLUS, but returns a syntax error in
BASIC-PLUS-2.

The Translator automatically inserts semicolons in BASIC-PLUS
PRINT and INPUT statements, as required.
5-3

TRANSLATOR UTILITY

Line numbers

Per cent signs on line numbers are superfluous. The Translator
automatically removes them from the BASIC-PLUS program. For
example:

100% PRINT
is converted to:
100 PRINT
Numeric Constants

BASIC~PLUS allows blanks and tabs to appear within a numeric
constant; BASIC-PLUS-2 does not. For example:

100 PRINT 5 32

in a BASIC-PLUS program outputs the constant 532. The same 1line
in a BASIC-PLUS-2 program returns a syntax error. The Translator
automatically compresses all blanks and tabs that appear within a
numeric constant. Therefore, when line 100 (above) is
translated, it appears in the program as follows:

100 PRINT 532
Null Arguments in Functions
BASIC-PLUS allows a null argument in a user-defined function;
BASIC-PLUS-2 does not. The Translator resolves this issue by
automatically removing null arguments in functions. For example:
10 Y=FNA()
in the BASIC-PLUS program is converted to:

10 Y=FNA

5.2 USING THE TRANSLATOR

The Translator utility program is stored in the system library
account. To access it, type:

RUN STRANS

The Translator signifies successful access by printing an
identification header on the terminal. Because the Translator utility
can be present on a number of operating systems, it follows the
identification header with the following prompt:

TARGET SYSTEM?
To answer, type a name that represents the system you are using. In
the case of RSTS/E PDP-11, you type RSTS. Note that RSTS is also the
Translator utility default. The Translator then prints:

INPUT FILE?
This is a prompt for the name and extension of the BASIC-PLUS program
you wish to convert. The Translator requires the name of an existing
BASIC-PLUS program; however, 1if no extension is specified, it
searches for a source program (.BAS) by default. In addition, the

5-4

TRANSLATOR UTILITY

specified input program must be error free. If the program contains
immediate mode statements, the Translator removes them and issues a
message to that effect.

Note that only one program can be input in reponse to the INPUT FILE
prompt. Following this prompt, the Translator prints:

OUTPUT FILE?

This prompt allows you to assign a different name and extension to the

converted program. If you do not type a new name and extension, the
Translator assigns the input filename with a .B2S extension to the
output. If you specify the input name and its extension for the

converted BASIC-PLUS-2 program, the old BASIC-PLUS program is deleted
following the conversion.

NOTE

It is recommended that you take the
necessary steps to save the o1ld
BASIC-PLUS program. In the event of an
incorrect translation, a filename change
protects against permanent program loss.

After a conversion is complete, the Translator again prompts for
input. When you have made all of the desired conversions, type CTRL/Z
("2) in response to the INPUT FILE? prompt. This causes an exit from
the Translator.

Following the OUTPUT FILE? prompt, the Translator prints:
EXTEND MODE?

If the BASIC-PLUS program is written in EXTEND mode (a RSTS/E version
6B feature), you respond to this prompt with YES. This ensures that
any syntactic differences between BASIC-PLUS EXTEND and BASIC-PLUS-2
are converted to BASIC-PLUS-2. 1If you respond with a carriage return,
or any answer but YES, the program is assumed to be NOEXTEND. The
Translator automatically shifts to the proper mode if it encounters an
EXTEND or NOEXTEND statement in the input program.

5.2.1 Variable Name Specification

After you type the name of the BASIC-PLUS program and indicate
NOEXTEND mode, the Translator requests the BASIC-PLUS variable name (s)
that you wish to change.

For example:

EXTEND MODE? NO

OLD NAME?
In response to this prompt, type the existing BASIC-PLUS variable
name . The Translator then asks you to enter the new name, which can
be a BASIC-PLUS-2 name of up to 30 characters. Note that you do not
include function, string, or integer designations in the new name
(i.e., FN, $, or %). For example:

OLD NAME? AS
NEW NAME? ACCOUNTS

TRANSLATOR UTILITY

This dialogue continues until you have specified all the variable
names you wish to convert. When you have typed all the names, or if
you do not wish to change any, type the RETURN key.

when the Translator executes, the specified variable name changes are
made but the variable type and any subscripts are unchanged. For
example:

OLD NAME? Tl%
NEW NAME? TEMP1

changes all occurrences of Tl% in the BASIC-PLUS program to TEMPl% in
the BASIC-PLUS-2 program.

vYou can also build a command file containing the BASIC-PLUS and
BASIC-PLUS-2 variable names you wish to convert. If you specify:

OLD NAME? @filspc

where @filspc is an at sign (@) followed by a specified file
containing the variable names, all conversions are made from the file.
You can prepare this file by means of an editor. The file should be
formatted so that the old variable name is followed on the next line
by the new name. For example:

Al%(
NEW.ARRAY
FNWS$
NEW.FUNCTION

Note that the OLD NAME prompt will not appear if you have specified an
EXTEND mode BASIC-PLUS program.

5.2.2 Translator Sample Run

The following is a BASIC-PLUS program named FUNC:

10 DEF FNF (X)=X"2~2%XX~3

100 & "FROGRAM TO FLOT FUNCTION FNF(X)
110 & "TYFE VALUES FOR THE FOLLOWING
120 INFUT "MIN VALUE OF X"X1

130 INFUT "MAX VaLUE OF X*XZ

140 INFUT "SURINTERVALS ON X-AXIS"S
150 INFUT "MIN VALUE OF Y®*Yl

160 INFUT "MAX VaALUE OF Y'"Y2

200 LETL=(X2-X1)/40

*e 24

LETA=Y1~L/2
LETR=Y2-L/2

300 & "Y-AXIS (" Y1 *TO" Y2 "IN INTERVALS OF" L :
& TAB(15Z); B oo et etee eee uus e rn 4rns e 41me S22 a4 <51 sen sk S300 ek 2505 S0 S4RS s Shsn s 2108 S0 ek S simt Saen mun a5 S wes8 som bt 3008 s wvme s0an v Y
400 FOR X=X1 TO X2 STEFS :
Y=FNF (X) H
IF Y<A OR Y&==R THEN
& X§ TAR(L4%)s5 "¢ H
GOTO 420
410 & X3 TABCLAZ) "1 TARBC(Y-YL)/L+15.30% "3°
420 NEXTX
500 STOF
510 & X3 TARCL14%)3 ":i*
520 GOTO 420

32767 END

TRANSLATOR UTILITY

The following dialogue converts this program to BASIC-PLUS-2. The
option to change variable names is also used.

READY
RUN $TRANS
. TRANS YO1-~01

TARGET SYSTEM? RSTS
INFUT FILE?® FUNC.RAS
OUTPUT FILE? FUNC.R2S
EXTENI MODE? NO

OLD NAMET A

NEW NAMET MIN

OLI NAME? R

NEW NAME? MAX
- OLIN NAME? Crer)

INFUT FILE? ~Z
REALY

If you list the converted program (FUNC.B2S), it appears as:

10 DEF XFNF (X)=X"2-2%X~3
100 FRINT "PROGRAM TO FLOT FUNCTION FNE(X)"
110 FRINT "TYFE VALUES FOR THE FOLLOWING®
- 120 INFUT "MIN VaLUE OF X®"3X1
130 INFUT "MAX VALUE OF X "ixX2
140 INFUT "SUBINTERVALS ON X-AXIS";S
150 INFUT "MIN VALUE OF Y"3Yl
160 INFUT "MAX VALUE OF Y"5Y2
200 LET L=(X2~-X1)/40 N &
LET MIN=Y1-L/2 \ &
LET MAX=Y2-./2
300 FRINT "Y-AXIS " 5Y1L $“TO® $Y2 $"IN INTERVALS OF" $LL \ &
FII F\- I N T r 'q B (L :—‘5 x) ; BB et run 4514 100 ant ane et 10 e 4410 S 4RRD 430 AN B 0 Anat S om0 e a0 S0 SH4S 210 SREY S0 s 2nes 4008 20 semn PR p——
400 FOR X=X1 TO X2 STEFS N &
. Y=FNF (X)) N &
- IF Y<MIN OR Yir=MAX THEN %
FRINT X7 TaR(L4%)3 o= N &
GOTO 420
410 FRINT X3 TARCLAZY $°8" STARCIY-YI)/L415,5)5 *3v
420 NEXT X
500 STOR
510 FRINT X3 TARC14%Z)s =g
G20 GOTO 42
. 32767 NI
Note that the Translator adds an asterisk to the DEF statement (line
‘ 10) to mark it as BASIC-PLUS compatible. Also, the variable names
have been changed as requested and the colon statement separators have
been replaced by backslashes.
g

TRANSLATOR UTILITY

5.2.3 Translator Warning Messages

The Translator prints a warning message when it detects an error in
the conversion process or to notify you of potential trouble spots in
the converted program. Errors that occur during the conversion
process generate an immediate message. Warning messages that indicate
potential trouble spots are printed at the end of the conversion.

The messages and their meanings are as follows:

? TRANS - Unexpected error x at line y

This message is generated because of an error in the BASIC-PLUS
input program. In this message, x represents an error code as
described in Section C.3 and y represents the input program 1line
that contains the error. The conversion is aborted. You must
ensure that the BASIC-PLUS input program is error free.

$ TRANS - System dependent function at line y

This message occurs when you attempt to convert a BASIC-PLUS
program that contains SYS or PEEK functions. Because RSTS/E
supports these functions, this message does not appear if RSTS/E
is the target system. In all cases the conversion is made, but
for non-RSTS/E systems, you are advised that the function is not
supported.

$ TRANS - Expression sequence check at line y

This message is issued when a multiple assignment statement is
encountered. It advises you that program evaluation of multiple
assignment statements may be out of sequence. The conversion is
made, but you should examine the evaluation made at line number

Y.

% TRANS - OPEN for terminal I/O at line y

This message is generated by a program that attempts to create a
virtual array file on a non-RSTS/E system. The conversion is
made, but if the target system is not RSTS/E, you are advised
that the desired file capability may not be supported.

$ TRANS - PRINT USING format variable at line y

This message indicates a potential PRINT USING format error in
the converted program at line number y. A possible cause can be
a PRINT USING string literal that contains an apostrophe. In
certain cases, the Translator interprets the apostrophe as a
space. The conversion is made, but you should examine the
program.

$ TRANS ~ No variable substitutions

This message is generated when a variable name change error is
detected. The Translator does not convert any BASIC-PLUS
variable names.

TRANSLATOR UTILITY

% TRANS - Immediate mode statements removed

Because BASIC-PLUS-2 does not support immediate mode, the
Translator removes immediate mode statements from the BASIC-PLUS
conversion. When the conversion 1is completed, the Translator
prints this message followed by a list of the removed statements.

$ TRANS - Entry already exists

This message results from an attempt to enter duplicate variable
names in response to the variable name change dialogue. The
Translator prints the message and reinitiates the dialogue.

$ TRANS - Invalid variable name

This message results from an attempt to enter an illegal variable
name in response to the wvariable name change dialogue. The
Translator prints the message and reinitiates the dialogue.

APPENDIX A

COMPATIBILITY

BASIC-PLUS-2 is a new language containing many improvements over the
BASIC-PLUS 1language while continuing .to support BASIC-PLUS usage.
There are, however, some syntactic and semantic differences between
BASIC-PLUS-2 and BASIC-PLUS. The majority of these differences are
resolved by the Translator utility described in Chapter 5. Thus, most
BASIC-PLUS user applications are transportable to BASIC-PLUS-2.

The following sections detail the compatibility issues existing
between the +two languages. Those issues resolved by the Translator
prcgram are included in Section A.l. You can resolve the remaining
issues by redesigning your current BASIC-PLUS program to conform with
BASIC-PLUS-2 (see Section A.2).

A.1 TRANSLATABLE ISSUES

The following subsections describe the BASIC-PLUS-2/BASIC-PLUS
compatibility items that are acceptable input to the Translator
program. Most of these items are automatically converted when you
translate a BASIC-PLUS program. Variable names (see Section A.1.12),
however, are converted at your option. The description associated
with each item explains the compatibility issue involved and the
method used by the Translator for resolving it.

A.l1.1 PRINT USING String Format

The format specifications for string fields in the BASIC-PLUS-2 PRINT
USING statement differ syntactically from the BASIC-PLUS
specifications. These differences are tabulated below. You can
resolve these differences with the Translator utility. The Translator
either converts the BASIC-PLUS syntax to BASIC-PLUS-2 or issues a
warning message. There 1is no difference between BASIC-PLUS-2 and
BASIC~PLUS numeric field format specifications, so no conversion is
necessary for them.

COMPATIBILITY

NOTE

It is possible to create a string field
format specification in a BASIC-PLUS
PRINT USING statement at run time. In
this case, the Translator cannot make
the conversion. Therefore, to ensure
compatibility, BASIC-PLUS-2 on RSTS/E
supports both types of string format.
Conversion is recommended, however,
because this support is offered only on
RSTS/E and programs with the BASIC-PLUS
format will not be transportable to
other systems.

BASIC-PLUS PRINT USING string format specifications consist of the
following symbols:

! Exclamation point. This symbol identifies a 1l-character
field and causes the output of the first character in a
string.

\\ Spaces enclosed by backslashes. The number of enclosed
spaces (plus two for the backslashes) indicates the number
of characters in the string to be printed.

The BASIC-PLUS-2 string format specifications consist of the following

symbols:
1 ! Apostrophe or exclamation point. When the apostrophe or Rk
exclamation point is used alone, it indicates the output of
the first character in a string. The apostrophe must appear
when any of the following symbols are used.
C An upper-case C indicates that string output 1is to be
centered. The number of string characters printed equals
the number of Cs plus one (for the apostrophe) in the
specification.
L An upper-case L indicates left-justified output. The number -~
of string characters printed equals the number of Ls plus il
one (for the apostrophe) in the specification.
R An upper-case R .indicates right-justified output. The
number of string characters printed equals the number of Rs
plus one (for the apostrophe) in the specification.
E An upper-case E indicates left-justified output and extends
the field so that all string characters are printed.
The following example illustrates the use and format of BASIC-PLUS-2
PRINT USING string format specifications:

COMPATIBILITY

20 FRINT USING " /LLLLLLLLL"s"THIS TEXT®"

30 FRINT USING "“LLLLLLLLLLLLLL "y “SHOULD FRINT ¢

40 FRINT USING "/LLLLLLELLLLLLLYy "AT LEFT MARGIN®

G50 FRINT USING "‘RRRR"y*"1y2y354"

60 FRINT USING "‘RRRR"y"1s2s3"

70 FRINT USING "‘RRRR"y*1y2"

80 FRINT USING "/RRRR®"s"1"

?0 FRINT USING "/CCCCCCCCC y A"

100 FRINT USING */CCOCCCCCC®y "AREC

110 FRINT USING "/CCCCCOCCC®y "ARCDE®

120 FRINT USING " CCOCCOCCC"y "ARCIEFRG"

130 FRINT USING " CCCCCCLCC"y "ARCHEFGHT

140 FRINT USING " LLLLLLLLLLLLLLLLLY» *YOU ONLY SEE HALF OF THE LINE®
150 FRINT USING “‘E"s*YOU CAN SEE ALL OF THE LINE WHEN EXTENDED®
160 END

READY

RUNNH

THIS TEXT
SHOULD PRINT
AT LEFT MARGIN
1243
19293
12
1
A
ARC
ARCIE
ABCIEFG
ABCIEFGHI
YOU ONLY $SEE
YOU CAN SEE

HALF
ALl OF THE LINE WHEN EXTENDED

READY

A.1.2 Quoted String Literals
BASIC-PLUS-2 requires that string literals be enclosed by double or
single quotation marks on the beginning and end of the string. Thus,
a string enclosed by double quotation marks can contain single
quotation marks within the string. The converse is also true.
BASIC-PLUS-2 considers spaces in delimited strings significant. The
following are legally delimited BASIC-PLUS-2 strings:

"A STRING"

'"A STRING", HE SAID'
BASIC-PLUS allows string literals to begin with a single or double
quotation mark and to end with a line terminator. Such a string in
BASIC-PLUS-2 generates an error at compile time:

?Unterminated string

The Translator utility converts unterminated strings in BASIC-PLUS
programs by adding the proper delimiter.

A.l1.3 Multiple Assignment Statement

BASIC-PLUS-2 evaluates a multiple assignment statement in
left-to-right order. That 1is, as BASIC-PLUS-2 scans the line from

A-3

COMPATIBILITY

left to right, all expressions on the left side of an assignment are
evaluated. This order differs from the BASIC-PLUS order of
evaluation, which is from right to left. BASIC-PLUS-2, however, makes
assignments in right-to-left order.

The Translator utility resolves this issue by internally restructuring
the assignments into separate statements.

For example, the lines:

LET I=5
LET A(I), I=10

are interpreted by the Translator as follows:

LET I=5

TEMP=10
I=TEMP

A(I)=TEMP

A.l.4 Ambiguous Constants

BASIC-PLUS-2 treats ambiguous constants (i.e., 100 as opposed to 100%
or 100.) as floating-point numbers.

BASIC-PLUS treats ambiguous constants as floating-point wunless an
integer appears to the constant's left in a statement. For example,
in the expression A%=B%/100, BASIC-PLUS treats 100 as an integer while
BASIC-PLUS-2 treats it as a floating-point number. The Translator
inserts per cent signs in converted BASIC-PLUS programs where required
to maintain the context of expressions.

A.l1.5 DEF Statements

BASIC-PLUS-2 handles user-defined functions differently than
BASIC-PLUS. In BASIC-PLUS-2 programs, DEF function parameters are
maintained within the function routine as local variables. When these
variables are referenced in the routine, they are referenced locally.
When a reference is made to a function parameter from outside the
function (such as in an ON ERROR GOTO statement), the local variable
value is not accessible.

BASIC-PLUS makes all references to variables, both inside and outside
the routine, as globals.

This difference may cause the values printed by identical BASIC-PLUS-2
and BASIC-PLUS user-defined functions to vary. Consider the following
example:

10 NEF FNX(A)

20 IF A<3 GOTO 40
30 LET A=46\GOTO 100
40 FNENID

50 LET A=3

60 LLET C=FNX(4)
70 LET D=FNX(2)
80 FRINT A

?0 STOF

100 FRINT A

110 GOTO 40

120 END

COMPATIBILITY

When this program is run on BASIC-PLUS-2, the printed values are 3 and.
3. However, when the same program is run on BASIC-PLUS, the printed
values are 6 and 3.

To ensure compatibility, BASIC-PLUS-2 supports both methods of
handling user-defined functions. However, this support is provided
only for RSTS/E and the DECsystem-20. Therefore, programs that
reference parameters outside the function and use the BASIC-PLUS
method of handling user-defined functions are not transportable to
other systems.

The Translator utility marks all DEF statements in BASIC-PLUS programs
with an asterisk (*). This identifies that they are written with the
BASIC-PLUS method.

A.l1.6 POS Function

The BASIC-PLUS position (POS) function returns a numeric value that
indicates the pointer's current column position on a specified I/0
channel. The function has the form:

POS (x)

where x is an I/0 channel number. (A specification of 0 always
represents the user terminal.) For example:

10 PRINT "X";TAB(10) ;POS(0)
prints on the terminal:
X 10

This indicates that the pointer is currently at the tenth column on
the terminal output line.

The BASIC-—-PLUS-2 POS function locates substrings within BASIC-PLUS-2
strings. The use of this function parallels the use of the BASIC-PLUS
INSTR function and ensures compatibility with Dartmouth BASIC. For
example:

POS (AS,BS,X%)

locates the position of the first occurrence of a specified substring
(B$) within a string (A$), beginning at a specified position (X%).

Because the use of the POS function differs on BASIC-PLUS-2 and
BASIC~PLUS, the name of the BASIC-PLUS POS function has been changed
to CCPOS. The Translator utility makes this change automatically by
changing all POS keywords in BASIC-PLUS programs to CCPOS.

A.1.7 DATA Statement String Literals

BASIC-PLUS-2 does not require that DATA statement string 1literals be
enclosed by quotation marks and treats embedded spaces and tabs in
unquoted strings as significant. This method differs from BASIC-PLUS
usage, which disregards embedded spaces and tabs in unquoted string
literals. However, both BASIC-PLUS-2 and BASIC-PLUS require quotation
marks if commas or leading and trailing spaces are to be considered
significant.

COMPATIBILITY

The Translator wutility removes embedded spaces and tabs from
BASIC-PLUS program DATA strings and thus avoids any conflict between 4”%
BASIC-PLUS-2 and BASIC-PLUS. :

A.1.8 Multi-Statement Lines

BASIC-PLUS-2 allows more than one statement on a program line as long

as you separate all the statements (except the last) with backslashes.
BASIC-PLUS, however, allows either a <colon or a backslash as a -
statement separator.

The Translator converts all statement separators to backslashes in
BASIC-PLUS programs, with the exception of colons in string literals.

A.1.9 Comment Separator

BASIC-PLUS-2 allows comments to begin and end with an exclamation ‘-!5
point (!). This permits you to insert comments at any point on a
program line. For example:

10 LET A=1!COMMENT!\B=3
20 !COMMENT! PRINT A+B!COMMENT

This method differs from the BASIC-PLUS method, which requires that
comments begin with an exclamation point and end with a 1line
terminator.

The Translator utility resolves this issue by removing all but the g!!g
first exclamation point from BASIC-PLUS program comments. The removed
exclamation points are replaced by asterisks to maintain the spacing

of the line.

A.1.10 Continuations

BASIC-PLUS-2 program lines are continued when you type an ampersand

(&) followed by a line terminator (a carriage return, line feed, form

feed, vertical tab, or escape) at the end of the line to be continued. -~
The printed ampersand on a listed program identifies the line as a
continuation. The BASIC-PLUS method of continuing lines (a line feed)

leaves no indication that the line is a continuation.

The Translator utility changes all BASIC-PLUS continued lines to the
BASIC-PLUS-2 format. If an existing BASIC-PLUS line has an ampersand
as the 1last character, the Translator adds a period after the
ampersand. This prevents any ambiguity over whether or not the line
is a continuation.

Comments with the exclamation point delimiter cannot be continued to

another line. To continue a 1long comment line, write it as a REM
statement.

A.1.11 PRINT Synonym

BASIC-PLUS allows an ampersand (&) to be used as a synonym for the 4!!&
PRINT statement. Because this conflicts with BASIC-PLUS-2's use of o
ampersand as a continuation character, BASIC-PLUS-2 does not support

the BASIC-PLUS usage.

A-6

' W.-ﬂ"ﬂll-I'ﬂll-I'-IHIIlllII-IIlI-lIllIﬂllHl-H-HlIlH_'HH-!nulIl-u---r-uqrnun.-'-l--nn

COMPATIBILITY

The Translator wutility resolves this conflict by converting all
ampersands to PRINT statements in BASIC-PLUS programs, with the
exception of ampersands in string literals or those used to represent
continuations in EXTEND mode.

A.l1.12 Long Variable Names

BASIC-PLUS-2 allows variable and function names of up to 30
characters. The size restriction of 30 characters does not include
FN, %, or $. That is, a user-defined integer function can begin with
FN, contain 30 characters, and end with a percent (%), for a total of
33 characters. The 30 characters can include alphanumerics and
periods. However, you must avoid using a BASIC keyword as a variable
name (see Section B.4). Because 1long variable names could be
ambiguous, spaces or tabs are required between keywords, symbols, and
literals. For example:

10 LETHAL=29

assigns the value 29 to the variable LETHAL. 1If you intend to name
the variable HAL, the correct BASIC-PLUS-2 line is written as:

10 LET HAL=29

BASIC-PLUS (in NOEXTEND mode) does not support variable names of more
than two characters and so does not require spaces between language
elements. For example:

10 FOR I=STOP

is understandable input for BASIC-PLUS, which compiles the above line
as:

10 FOR I=S TO P

The Translator utility inserts spaces between language elements in
BASIC-PLUS programs. Thus, any ambiguity in converting programs from
BASIC~PLUS to BASIC-PLUS-2 is resolved. You also have the option of
using the Translator to change one or more specified BASIC-~PLUS
variable names to the long form.

A.1.13 CHAIN Statement

The BASIC-PLUS-2 CHAIN statement syntax differs from that of
BASIC-PLUS. BASIC-PLUS-2 requires the keyword LINE between the
filename specified in the CHAIN statement and the 1line number where
the chaining is to begin. A BASIC-PLUS-2 CHAIN statement has the
following format:

100 CHAIN file-expression [LINE num-exp]
The BASIC-PLUS CHAIN statement is written as:

100 CHAIN file-expression [num-exp]
The Translator utility makes these syntactic changes to BASIC-PLUS
programs. The Translator inserts the required keyword LINE in all

BASIC-PLUS program CHAIN statements that contain line number
specifications.

COMPATIBILITY

Note that BASIC-PLUS-2 completes the output of any pending buffers
before the files are closed by a CHAIN statement. This differs from
BASIC-PLUS CHAIN statements, which close the files without necessarily
completing buffer output.

A.1.14 S8YS Functions

The BASIC-PLUS RSTS/E SYS and PEEK functions are supported by
BASIC-PLUS-2 on the RSTS/E system only. Their use on other systems is
flagged as an error and they are marked as such by the Translator.
The use of these functions in a RSTS/E BASIC-PLUS~2 program can cause
the program to be non-transportable to other systems.

A.1.15 INPUT and PRINT Statement Punctuation
The BASIC-PLUS-2 INPUT and PRINT statements require a comma or
semicolon between a quoted string and a variable. For example, the
BASIC-PLUS-2 INPUT line:

10 INPUT "YOUR NAME";AS
outputs on the terminal as:

YOUR NAME ?

BASIC-PLUS-2 does not assume a semicolon between the quoted string and
the wvariable. The default for INPUT statements without a comma or
semicolon is to insert a carriage return/line feed combination
following the string and output the INPUT prompt on the next terminal
line. A PRINT statement without a comma or semicolon between the
string and variable causes an error during compilation. The
Translator automatically inserts semicolons in BASIC-PLUS PRINT and
INPUT statements, as required. :

Also, BASIC-PLUS-2 assumes commas when spaces separate elements of the
INPUT list. For example:

10 INPUT A B
reserves space for the assignment of two values.
10 INPUT AB

reserves space for one value.

A.2 NONTRANSLATABLE ISSUES

The following subsections describe the BASIC-PLUS-2/BASIC-PLUS issues
that are not resolved by the Translator program. Where conflicts
exist, you must redesign your BASIC-PLUS program to conform with
BASIC-PLUS-2 . The description associated with each item explains the
issue involved and the BASIC-PLUS-2 usage.

COMPATIBILITY

A.2.1 Transfer Into FOR NEXT Loops

BASIC-PLUS-2 requires that the FOR statement in a FOR NEXT 1loop be
executed before the program transfers into that loop by a GOTO or
other such statement. The BASIC-PLUS-2 Compiler does not return an
error message when an illegal transfer is made but the result of the
transfer is undefined.

BASIC-PLUS also considers a transfer into the middle of a FOR NEXT
loop 1illegal. But the outcome of such a loop in BASIC-PLUS may be
different from that encountered under BASIC-PLUS-2.

A.2.2 Debugging

BASIC-PLUS~2 provides several commands that are useful for debugging
programs. These commands include BREAK, PRINT, CONTINUE, TRACE, LET,
and STEP. Section 1.2.3 describes these BASIC-PLUS-2 features.

A.2.3 CALL Statements

BASIC-PLUS-2 provides CALL and CALL BY REF statements that allow a
program to access an external subroutine. Note that the subroutine
must be compiled separately. Refer to Section 3.3 for information on
these statements.

The CALL statement also indicates that the program is an object module
and 1is 1linked by the Task Builder for execution. See Chapter 2 for
information on the Task Builder.

A.2.4 Compile-Time Errors

Because BASIC-PLUS is an interpreter, a program can contain certain
errors that are not detected until you attempt execution. These
errors include undefined 1line numbers, undefined functions, and
illegal 1loop nesting. BASIC-PLUS-2, however, is a compiler and
detects these errors at program compilation. A complete list of these
errors and their causes is given in Section C.2.

A.2.5 Array Subscripts

In a two-dimensional array, BASIC-PLUS checks the sum of both
subscripts and returns an error 1if the range 1is exceeded.
BASIC-PLUS-2 checks the subscripts individually and returns an error
if either is out of range. For example:

100 DIM A%(20,20)
130 PRINT A%(1,21)

generates an error in BASIC-PLUS-2, but does not return an error 1in
BASIC-PLUS.

COMPATIBILITY

A.2.6 Record 1/0

BASIC-PLUS-2 Record I/O operations are controlled through the RMS
(Record Management Service) file structure. This method of Record I/0
supports sequential, relative, and indexed file organizations. RMS
features also include primary and alternate keys, £fixed- and
variable-length records, and record mapping. A full explanation of
Record I/0 is given in Chapter 4.

RMS operations differ from the block I/O operations available under
BASIC-PLUS RSTS/E. The BASIC-PLUS file system allows you to perform
many types of operations at varying times on the same file. RMS, on
the other hand, evaluates a requested operation against file
attributes declared at the file's creation. Thus, many operations
that would be legal under BASIC-PLUS on RSTS/E may be disallowed under
BASIC-PLUS~-2 RMS.

To ensure compatibility between BASIC-PLUS and BASIC-PLUS-2 I/0,
RSTS/E supports block I/0 operations by means of the virtual file
organization. These operations include CVT (convert), LSET, RSET, and
FIELD statements.

For example, on the BASIC-PLUS file structure, only string quantities
are stored in 1I/0 buffers. The CVT function is used to map binary
data into string data for buffer storage. On the RMS file structure,
integers and real numbers are directly stored and accessed as
variables. Logical and physical Record I/O buffers are defined at
compile time by the MAP statement, which also allows direct access of
the numbers.

To create a RSTS/E block I/0 structured file, you specify ORGANIZATION
VIRTUAL in the OPEN statement (see Section 4.1.1). This file
structure permits the use of BASIC-PLUS block I/O in the program and
allows you to do any type of I/O mode mixing.

APPENDIX B

BASIC-PLUS-2 LANGUAGE ELEMENTS

This appendix summarizes the BASIC-PLUS-2 commands and functions that
are supported on RSTS/E. If you desire more information on the
language elements, refer to the BASIC-PLUS-2 Language Manual.

The documentation conventions used in examples of usage are as
follows:

KEYWORD Words in upper case indicate BASIC-PLUS-2
vocabulary that you type as shown.

data Words in lower case indicate variable information
that you supply.

[1] Square brackets indicate optional information.

B.1l LINE AND DATA FORMAT
BASIC-PLUS~2 program lines are composed of the following elements:
1. Line numbers

Program lines require line numbers except where the line is a
continuation. BASIC-PLUS-2 line numbers are positive numbers
in the range of 1 to 32767. A number outside of this range
generates an error. A fractional 1line number or a line
number with a per cent sign appended to it generates an error
during compilation. Leading zeroes have no effect; leading
spaces are allowed.

2. Comments

Comments begin with an exclamation point (!) and end with
another exclamation point or a line terminator. You can
insert comments before or between statements and, in these
cases, the comments are delimited on both sides by
exclamation points. Comments are listed with the program but
have no effect on execution speed or size.

3. Statement Separator

You must separate each statement on a multi-statement line
with a backslash statement separator (\).

4. Continuation

Program lines are continued to the next line when you type an
ampersand (&) followed by a line terminator. Note that this

BASIC-PLUS-2 LANGUAGE ELEMENTS

usage disallows the appearance of a non-continuation
ampersand as the last character of a line (except for those f'!%
in string literals). S

5. Line length

BASIC-PLUS-2 places no restriction on the length of a logical
program line. A physical line is limited to 255 characters, -
but you can use continuations to logically extend the line.

6. Line terminator .

You can terminate program lines with a carriage return, line
feed, form feed, vertical tab, or escape (ESC key) .

BASIC-PLUS-2 program lines can contain the following elements:
1. Character set

BASIC-PLUS-2 accepts the full ASCII character set as

described in Appendix D. Null characters are ignored; "‘%
non-printing characters are accepted in string literals but i
are ignored outside of strings and generate warnings. The

computer converts all lower-case alphabetics to wupper case

(except for those in string literals).

2. Operators
BASIC-PLUS-2 accepts arithmetic, relational, and logical

operators. The following tables illustrate these operators
and their use.

Table B-1
Arithmetic Operators
Operator Use Meaning
" or ** A"B or A**B Exponentiation
* A*B Multiplication
/ A/B Division -,
+ A+B Addition, unary +
- A-B Subtraction, unary -
+ AS+BS string concatenation
Table B-2
Logical Operators
Operator Use Meaning ,
NOT NOT A Logical opposite of A .
AND A AND B Logical product of A and
B
OR A OR B Logical sum of A and B
XOR A XOR B Logical exclusive OR of A
and B
EQV A EQV B Logical equivalence of A Y
and B v
IMP A IMP B Logical implication of A
and B
B-2

BASIC-PLUS-2 LANGUAGE ELEMENTS

Table B-3
Relational Operators
Operator Use Meaning
= A=B A is equal to B
< A<B A is less than B
> A>B A is greater than B
<= or =< A<=B A is less than or equal
to B
>= or => A>=B A 1is greater than or
equal to B
<> or >< A<>B A is not equal to B
== A== A is approximately
A$==BS$ equal to B; AS is
exactly equal to BS
NOTE
A is approximately equal to B (A==B) if
A and B are the same when rounded to six
characters (i.e., printed). If A$ and
B§ are strings, the relation (==) is
true if the contents of AS and B$ are
the same in length and composition.
3. Constants
BASIC-PLUS-2 accepts three types of constants: numeric,
string, and integer. Numeric constants are decimal digits in
the range of 10-% <n<l10+38 (where n is the constant), which
includes E notation. Integer constants are also decimal
digits in the range of -32767 to +32767 but are terminated
with a percent sign. String constants are alphanumeric
characters delimited by single or double quotation marks.
The quotation marks must be a matched set and must appear on
both sides of the constant. Quoted strings can contain from
0 to 255 characters.
4. Variables

BASIC-PLUS-2 accepts three types of variables: numeric,
string, and integer. Numeric variables consist of a single
letter followed by up to 29 optional 1letters, digits, and
periods. Integer variables also consist of a single letter
optionally followed by up to 29 letters, digits, and periods
and terminated by a per cent sign. If a per cent sign is not
specified, the variable is considered floating-point. String
variables consist of a single letter optionally followed by
up to 29 letters, digits, and periods and terminated by a
dollar sign.

You can use any alphanumeric combination for a variable name
with the exception of keywords. Keywords are reserved and
their use as variable names will produce an error during
compilation (see Section B.4).

You designate an array by specifying a numeric, integer, or

string variable followed by subscripts in parentheses.
Subscripts are in the range of 0 to 32767 and a maximum of

B-3

BASIC-PLUS-2 LANGUAGE ELEMENTS

two can be specified. One subscript indicates a
l-dimensional array; two subscripts separated by commas
indicate a 2-dimensional array. Subscripts can be integers
or expressions, but non-integer subscripts are truncated to
an integer value.

Variables are initialized to 0 or a null string at the start
of program execution. However, it is recommended that you
explicitly initialize all program variables as desired. Note
that variables in COMMON, MAP statements, and virtual arrays
are not zeroed.

5. Expressions

An expression can consist of constants, variables, or
functions separated by an operator.

6. Functions

Functions are listed in Section B.3. The general format of a
function is a multi-character name followed by optional
parentheses. The parentheses contain one to eight function
arguments separated by commas. A null argument 1is not
allowed. User-defined functions follow this general format
except that the function name begins with FN followed by 1 to
30 letters, digits, or periods. A per cent sign or dollar
sign terminator is also allowed for integer and string
functions, respectively.

B.2 COMMANDS

Commands allow you to perform certain operations on the system outside
the context of a program. That is, commands do not require a line
number. You type them directly to the system along with any legal
arguments.

The following is a brief description of the commands, their format,
and use. For a more detailed explanation, refer to the RSTS/E System
User's Guide or specified sections of this manual.

Command Format Use Section

APPEND filespec Merges a previously saved 1.2.1.1
source program (filespec)
with one in memory

BREAK line number (s) Debugging aid used to halt 1.2.3.1
execution at specified
program lines.

BUILD Produces a command file from 1.2.1.2
specified object modules.
This file contains all of
the Task Builder input
required to create a task
image and memory allocation
map.

BYE Terminates session, closes 1.1
and stores all saved files.

BASIC-PLUS-2 LANGUAGE ELEMENTS

Command Format

COMPILE filespec

COMPILE/sw

CONTINUE

DELETE line number (s)

EXIT

HELLO

HISEG

IDENTIFY

LET var=exp

LIST[NH]line number (s)

LOCK

LOGIN

NEW filename

OLD filename

PRINT var

RENAME filename

Use

Stores the current program
(filespec) as a task image
file. This command can be
combined with certain
switches. 1If a filename 1is
specified, the program is
compiled under that name.

Resumes execution of the
program after a halt caused
by a debugging aid.

Erases specified 1lines from
the current program.

Replaces the current BASIC-
PLUS-2 run-time system with
the default run-time system.

Initiates system access.

Switches from a 16K
BASIC-PLUS-2 run—-time system
to one of 4K.

Prints a header identifying
the BASIC-PLUS-2 run-time
system.

Debugging aid used to change
the contents of variables.

Prints a copy of the current
program. If you specify
LISTNH, header material is
deleted from the copy. If
you specify 1line numbers,
only those program lines are
printed.

Sets the COMPILE switch
specifications as defaults.

Same as HELLO.

Clears your area for the
creation of a program. If
you specify a filename, the
new program is assigned that
name.

Recalls a saved program to
command level.

Debugging aid used to print
the current contents of
variables.

Changes the name of the
current program to the
specified name.

Section

1.2.1.3

1.2.1.4

1.2.1.5

1.1

1.2.1.6

1.2.1.7

1.2.3.3

1.2.1.8

1.2.1.3

1.2.1.9

1.2.1.10

1.2.3.3

1.2.1.11

BASIC-PLUS-2 LANGUAGE ELEMENTS

Command Format Use Section

REPLACE Saves the current program 1.2.1.12
and substitutes it for one
of the same name in memory.

RUN[NH] filename Executes the current 1.2.1.13

program. If you specify
RUNNH, header material is
not included in the
execution. If you specify
the name of a saved program,
that program is compiled and
executed.

SAVE filespec Stores the <current program 1.2.1.14
as source code. The program
is saved under the current

name unless another is
specified.
SCALE val Sets the scale factor to a 1.2.1.15

designated value or prints
the current value if none is
specified. The range of val
is 0 to 6.

STEP Debugging aid used to cause 1.2.3.2
statement-by-statement
execution of the program.

TRACE Debugging aid used to track 1.2.3.4
program execution on a
line-by-line basis.

UNBREAK line number (s) Debugging aid used to 1.2.3.1
disable the BREAK command.
1f line numbers are

specified, only those breaks
are disabled.

UNSAVE filespec Deletes a specified file 1.2.1.16
from your area.

UNTRACE Debugging aid used to 1.2.3.4
disable the TRACE command.

B.2.1 Control Characters

The following list describes the effect of using certain terminal key
combinations. The most common combination is to simultaneously press
the control key and a letter key such as C. This type of combination
is designated as CTRL/x where x is a specified letter. Control keys
of this type appear on the terminal output as an uparrow or circumflex
followed by the letter. For example, CTRL/C is the same as "C. For
additional information on control characters, refer to the RSTS/E
System User's Guide.

Key

CTRL/C

ESC or ALT MODE

CTRL/L

CTRL/O

CTRL/Q

RETURN

RUBOUT

CTRL/S

TAB

CTRL/U

B.3 FUNCTIONS
MATH FUNCTIONS
Keyword

ABS (x)

ATN (x)

COS (x)

EXP (X)

FIX (x)

INT (x)

LOG (x)

BASIC-PLUS-2 LANGUAGE ELEMENTS

Meaning

Causes the system to halt the current operation
and return to command level. If the operation
is the execution of a debugging aid, CTRL/C
returns to the debugging prompt. CTRL/C is
useful as an exit from an infinite loop.

Enters a typed line to the system and prints a
dollar sign ($) character.

Causes a form feed and 'generates four 1line
feeds at the terminal.

Causes a temporary halt of terminal output, but
not of execution. If you type another CTRL/O
following the first, output continues.

Causes output, which was halted by CTRL/S, to
resume on a device. Output continues from the
point of interruption.

Enters a typed line to the system and generates
a carriage return/line feed combination.

Deletes the last character on the current line.
One character 1is deleted each time the key is
pressed. On some terminals, this key is
labeled DELETE. See Section 1.2.2.

Causes a temporary halt of device output.
Output resumes if you type any character. Note
that the typed character, with the exception of
CTRL/Q, is also printed.

Causes a tabulation of eight spaces (also
CTRL/I) .

Deletes the current 1line and performs a
carriage return/line feed combination.

Usage
Returns absolute value of x.
Returns arctangent of x in radians.
Returns cosine of x in radians.
Returns value of e"x where e=2.71828.
Returns truncated value of x.

Returns greatest integer that is 1less than, or
equal to, x.

Returns natural logarithm of x.

Keyword

LOG10 (x)
PI

RND

SGN (x)

SIN(X)
SQR (x)

TAN (X)

PRINT FUNCTIONS
Keyword

POS (x$,Y$,2%)

CCPOS% (x)

TAB (X%)

STRING FUNCTIONS

Keyword

ASCITI(x$)

CHRS (x%)

COMP%(x$,Y$)

DIFS$ (x$,Y$)

INSTR(x%,YS$,2$)

LEFT(x$,Y$%)

LEN (x$)

MID(xS,Y%,2%)

BASIC-PLUS-2 LANGUAGE ELEMENTS

Usage
Returns common logarithm of x.
Is a constant value, 3.14159.

Returns random number between 0 and 1. An
argument is optional.

Returns 1 if x is positive, 0 if x is zero, -1 if
X is negative.

Returns sine of x in radians.
Returns square root of x.

Returns tangent of x in radians.

Usage

Returns position of substring y$ in main string
x$ beginning at position z%.

Returns current column position for channel x (0
is the user device).

Moves print head to position x%.

Usage

Returns decimal ASCII value for a specified code
or the first character of a specified string.

Returns string equivalent of the ASCII value x%.

Compares two numeric strings; returns -1 if x$
is less than y$, 0 if x$ and y$ are equal, +1 if
x$ is greater than ysS.

Returns difference between two numeric strings

(x$-y8) .

Searches for substring z$ in main string y$
beginning at position x%; returns 0 or the
position of the first character if 2z$ 1is not
found.

Returns a substring of x$ beginning at the
leftmost position for a total 1length of y%
characters (also LEFTS(x$,Y%) .

Returns number of characters in x$.

Returns a substring of x$ beginning at position
y% with a length of z%, also MIDS$ (x$,Y%,2%).

Keyword

NUM

NUM2

NUMS (x)

NUM1S$ (x)

PLACES (X$,Y%)

PRODS (x$,Y5,2%)

QUOS (xS ,yY$,2%)

RADS (x%)

RIGHT (x$,V%)

SEGS (x$,Y%,2%)

SPACES (x%)

STRS (x)

STRINGS (X ,Y)

SUMS (x$,YS)

TRMS (x$)

VAL (x$)

XLATE (x$,Y$8)

BASIC-PLUS-2 LANGUAGE ELEMENTS

Usage

After input of a matrix, NUM contains the number
of rows for 2-dimensional arrays or the number of
elements for l-dimensional arrays.

After input of a matrix, NUM2 contains the number
of elements entered for the last row.

Indicates a string of numeric characters

representing the value of x.

Same as NUM$ except that E format and spaces are
not returned.

Returns a numeric string equal to x$ but rounded
to y% places. Positive y rounds to y significant
digits on the right of the decimal, negative y
rounds to y significant places on the left of the
decimal. For example, where B$="10364.79306",
PLACES returns:

PLACES (BS$,2%)=10364.79

PLACES (B$,1%)=10364.8

PLACES (BS,-1%)=1037

Returns a numeric string that is the product of
x$*y$ rounded by z% as shown in PLACES.

Returns a numeric string that is the gquotient of
x$/y$ rounded by z% as shown in PLACES.

Converts the integer expression x% from Radix-50
to a string of three ASCII characters.

Returns a substring of x$ that ranges from the
character y% to the end of the string, also
RIGHTS (x$,Y%) .

Returns a substring of x$ that ranges from
character y% to character z%.

Produces a string of x% spaces.

Returns a string representing the numeric value
of x, also NUMS(x).

Creates a string of x length whose characters
represent the ASCII value of y.

Creates a string that is the sum of numeric
strings x$+y$.

Returns x$ with trailing blanks deleted.

Computes the numeric value of the numeric string
x$; x$ must be acceptable numeric input.

Translates x$ by means of the table string y$.

BASIC-PLUS-2 LANGUAGE ELEMENTS

SYSTEM FUNCTIONS

Keyword Usage

DATES (0%) Returns the current date in the form dd-mmm-yy.

DATES (x%) Returns date according to the following formula:
x=day of the year+(years since 1970*1000).

ERR Returns value associated with the last error
trapped.

ERNS Returns routine name where last error occurred.

ERL Returns line number of the last error trapped.

MAGTAPE (I1,12,13) Allows program control over magtape operations.

RECOUNT Returns number of characters provided for a

preceding input operation.

TIMES (0%) Returns current time.

TIMES (x%) Returns time at x minutes before midnight.

TIME (0) Returns clock time in seconds since midnight.

TIME (1%) Returns used Central Processing Unit (CPU) time
in tenths of seconds.

TIME (2%) Returns connect time in minutes.

TIME (3%) Returns kilo-core ticks used by current job.

TIME (4%) Returns used device time in minutes.

B.4 RESERVED KEYWORDS

BASIC-PLUS~-2 statements, function names, and record attribute
specifications are reserved. That is, the language keywords cannot be
used for variable names. Table B-4 1lists all of the BASIC-PLUS-2
language elements that are reserved. If you attempt to use one of the
listed words as the name of a variable, external subroutine, MAP, or
COMMON area, an error is returned. You can, however, use a variation
on the reserved keyword. For example, 1IF$, AND%, and DIMS$ are
allowed.

BASIC-PLUS-2 LANGUAGE ELEMENTS

Table B-4
Reserved Keywords

ABS
ACCESS
ALLOW
ALTERNATE
AND
APPEND
AS

ASCII
ATN

ATN2

BEL
BLOCKSIZE
BS
BUCKETSIZE
BUFSIZ
CALL
CCPOS
CHAIN
CHANGE
CHANGES
CHRS$

CLK

CLOSE

CLUSTERSIZE

COM
COMMON
COMP%

CON
CONTIGUOUS
Ccos

COUNT

CR

CVT$

CVTSS
CVTSF
CVT%$
CVTF$

DAT

DATA

DATES

DEF

DELETE
DENSITY
DET

DIFS

DIM
DIMENSION
DUPLICATES
EDITS

ELSE

END

EQ MAGTAPE
EQV MAP

ERL MAT

ERNS MID

ERR MOD
ERROR MODE

ESC MODIFY
EXP MOVE
EXTEND NAME

FF NEXT
FIELD NOCHANGES
FILE NODUPLICATES
FILESIZE NONE
FILL NOREWIND
FILL% NOSPAN
FILLS NOT

FIND NULL

FIX NUM
FIXED NUMS
FNEND NUM1$
FOR NUM2
FROM ON

GE ONERROR
GET OPEN

GO OR

GOSUB ORGANIZATION
GOTO OUTPUT
GT PEEK

HT PI

IND PLACES
IF POS

IMP PRIMARY
INDEXED PRINT
INPUT PRODS
INSTR PUT

INT QUOS

INV RADS

KEY RANDOM
KILL RANDOMIZE
LEFT READ

LEN RECORD
LET RECORDSIZE
LF RECOUNT
LINE REF
LINPUT RELATIVE
LOC REM
LOCKED RESTORE
LOF RESUME
LOG RETURN
LOG10 RIGHT
LSET

RND
RSET
SCRATCH
SEGS
SEQUENTIAL
SGN

SI

SIN
SLEEP
(o]

SP
SPACES
SQR
STATUS
STEP
STOP
STR$
STREAM
STRINGS
SUB
SUBEND
SUMS
SWAP%
SYS

TAB

TAN
THEN
TIME
TIMES
TO

TRMS
TRN

TYP
TYPE
UNLESS
UNLOCK
UNTIL
UPDATE
USAGE
USING
USR
VAL
VARIABLE
VIRTUAL
VT

WAILT
WHILE
WRITE
XLATE
XOR

ZER

BASIC-PLUS-2 LANGUAGE ELEMENTS

Table B-5 contains a list of the BASIC-PLUS-2 keywords that are used
on other systems (i.e., DECsystem-20). To ensure transportability, 4‘!5
these language elements are also reserved. f

Table B-5
System Reserved Keywords

ABORT DATS MAR QUOTE

ACCESS% DEL MAR% RCTRLC ,

ALIGNED DELIMIT MARGIN RCTRLO

ALL DOUBLEBUF MID$ RESET

BACK ECHO MOD% RIGHTS

BINS FNEXIT NODATA SPAN

BINARY FORCEIN NOECHO SQRT

BIT HANGUP NOPAGE SUBEXIT

BROADCAST IFEND NOQUOTE TAPE

BUFFER IFMORE NOTAPE TERMINAL

BUFFERSIZE IMAGE NUL$ TIM

BY INIMAGE OCTS$ TYPES A,

CLKS$ INVALID ONECHR UNALIGNED ;

COT LEFT$ ONENDFILE USAGES$

CTRLC LINO PAGE USRS

CVT$% LOCK POS% VPS$%

LSA PPS% WITH

-~
-,
-~

APPENDIX C

ERROR MESSAGES

BASIC-PLUS-2 prints a diagnostic message on the terminal when it
detects an error. These messages contain information on the type of
error and, where possible, the program line that generated the error.
The message indicates error location by including the phrase:

AT LINE xxx

following the error type. The value of xxx is the program line number
where the error is located. Note that error location will not appear
in the message if the program is compiled with the /NOLINE switch.

The BASIC-PLUS-2 compile-time error messages (see Section C.2) contain
additional 1location information. That is, the error type is followed
by a phrase that indicates the erroneous statement as well as the
line. These messages have the form:

message AT LINE xxx IN STATEMENT y

where y is a number that identifies a particular statement on 1line
XXX, Note that the statement number appears during the initial error
detection.

The error messages printed at the terminal are preceded, in most
cases, by either a question mark (?) or a per cent sign (%). A
question mark indicates a fatal error; compilation continues, but no
output 1is produced. A percent sign indicates a warning message;
execution can continue, but the result is unpredictable. If neither
symbol is present, the message is for information only.

There are two exceptions to this general format.

If the error occurs during the execution of an INPUT statement,
BASIC-PLUS-2 prints a message and automatically reinitiates execution.
That is, the INPUT prompt reappears on the terminal.

The other exception is error trapping. Associated with each error is
an error variable called ERR (see Section C.3). If error trapping is
enabled (i.e., an ONERROR GOTO routine is in effect), an ERR value
specification can be wused to transfer control to the line number
specified by the routine. For information on error handling routines,
refer to the BASIC-PLUS-2 Language Manual.

Section C.2 contains the BASIC-PLUS-2 error messages printed at the
terminal during compilation. Section C.4 contains the error messages
printed at the terminal at run time. 1Included with each error message
is an explanation and a general recovery procedure. The explanation
indicates the general reason for the error's occurrence and also shows
the error's severity (i.e., fatal, warning, or information).

ERROR MESSAGES

C.1 TRACEBACK

BASIC-PLUS-2 provides a traceback mechanism that traces the path of
program execution when an error occurs in a function or subroutine.
Traceback takes effect only if error trapping is not enabled. When a
fatal error occurs in a function or subroutine, the error message is
printed. The message is followed by text that describes the execution
path of the program beginning at the point of the error back to the
initial call in the main routine. Note that Traceback does not
describe a path across chained routines. The Traceback text describes
the routine name that was called and the line number and routine name
that initiated the «call. If a routine is compiled with the /NOLINE
switch, line number 0 is used in the text.

Consider the following example that lists three routines. When the
routines are run and an error detected, the Traceback text is printed:

MAIN,B2S
100 FRINT "LINE 100"
200 GOSUR 1000
300 FRINT “LINE 300"
400 GO TO 32767 R
1000 AZ=FNGZ(3X)
1100 RETURN

1200 DEF FNSZEXL)
1210 Call. SURRCEZ)

1220 FNSZ=EX+17%
1230 FNEND
32767 END
SUBR.B2S
1000 SUR SURR(DZ)
1100 FRINT “"LLINE 1100 IN SURR"
1200 GOGUER 2000
1300 FRINT "LINE 1300 IN GUBR"

1400 GO TO 32767
2000 A=FNZZ

2200 RETURN

3000 DEF FNZZ

3100 Call. SURBR2(33%)
3200 FNEND

32767 SURENI

SUBR2.B2S
10 SUR SURR2CIZ)
110 FRINT "LINE 110 IN SURR2®
123 GOSUER 666
200 GO TO 32767
666 E=FNE
667 RETURN
668 GO TO 32767
2000 DEF FNE
2100 FNE=1/0
2200 FNEND

32767 SUREND

ERROR MESSAGES

RUNNH MAIN

LINE 100

LINE 1100 IN SURR
LINE 110 IN SUBRZ

"SURR * called at line 1210 din "MAIN
FUNCTION called at line 1000 in "MAIN
GOSUR called at line 200 i "MAIN

“hivision bw 0 at linme 2100 inm "SURRZ *®

FUNCTION called at line 6h6 din "SURR2
GOSUR called at line 123 dim "SURR2 °
*SURR2 " called at line O dim "SURBR "
FUNCTION called at line O in "SURR "
GOSUR called at line O dim “SURR "

Ready

Note that the routine SUBR is compiled with the /NOLINE switch
enabled.

C.2 BASIC-PLUS-2 COMPILE-TIME ERROR MESSAGES

The following alphabetized list describes the error messages that
BASIC-PLUS-2 returns during compilation. The description includes the
general cause of the error and the steps that you can take to recover
from it. The severity of the error is also noted.

? Arguments don't match

FATAL -~ The function call arguments differ in quantity or type
from those defined for the function. Check the function
definition. Change the arguments or definition to conform.

? Arguments don't match in x() at line n

FATAL - The argument that you supplied in a user-defined function
call does not match the dummy argument defined in the DEF
statement. In this message, x is the user-defined function name
and n is the line number of the call. The argument inconsistency
can be in terms of type (i.e., string and numeric) or number of
arguments. Examine the program and ensure that function
arguments agree with those defined in the DEF statement.

$ CALL/SUB forces OBJ output

WARNING ~ An attempt is made to compile a program that contains a
CALL or SUB statement into a task image file. Programs that
contain these statements must be compiled as object modules and
linked by the Task Builder. The compiler automatically generates
an object module when it encounters a CALL or SUB statement in
the program.

$ ERL overrides /NOLINE

WARNING - An error routine that requires an ERL variable is
contained in a program that is compiled with the /NOLINE switch.
The /NOLINE switch is nullified. The program continues and the
routine processes the error.

ERROR MESSAGES

?? Error n at line m in x, compiling line p

FATAL - In this message, n represents the value of the ERR
variable, m 1is the line number where the error originated, x is
the name of the module that contains the error, and p 1is the
currently compiling program line. This error causes the loss of
your program and a return to command 1level (this degree of
severity 1is indicated by the double question mark). It is a .
compiler error and should not occur. 1In the event that it does,
use a Software Performance Report to report the error to DIGITAL
and include all pertinent output.

? Expression too complex at line n
FATAL - The compiler encounters an expression that is too complex
to compile. 1In this message, n is the line number that contains
the expression. Rewrite the expression as two or more assignment
statements and retry the compilation.

? FNEND without DEF

FATAL - The compiler encounters an FNEND statement without first o
encountering a DEF statement. Ensure that the desired function
is defined before inserting an FNEND statement in the program.

? Illegal character
FATAL - An attempt 1is made to compile a program 1line that
contains 1illegal or incorrect characters. Examine the program
line for correct usage of the BASIC-PLUS-2 character set. '

? 1Illegal COM/MAP/SUB name -,
FATAL - A MAP, COMMON, or subroutine name exceeds six characters '
or contains a percent sign. Correct the program line.

$ Illegal DELETE command
WARNING - An attempt is made to use the DELETE command with no
line number argument. The DELETE command requires a specified
line number. No lines are deleted from the program.

? 1Illegal FILL specification -
FATAL - An attempt is made to define an integer or floating-point
length 1in a FILL or FILL% specification. That is, a MAP or MOVE
statement that contains a FILL or FILL% specification allocates a
specific amount of space. If you attempt to specify a length in
the program (e.g., FILL%=10%), an error results. To allocate
additional space, you must specify a FILL specification argument
in the MAP or MOVE statement; for example, FILL%(5%). Note that
the FILLS specification does allow you to define a length in
number of characters.

? Illegal FN redefinition
FATAL - An attempt is made to redefine a function. A function ’
can be defined only once in a program. Use a different function
name for each function definition.

? TIllegal loop nesting

FATAL - The program contains nested 1loops that overlap each
other. Examine the program 1logic and ensure that all nested
loops are properly initialized and terminated.

C-4

ERROR MESSAGES

Illegal MAP redefinition

FATAL - An attempt is made to redefine a map. A defined map can
pe referred to only by its assigned name. Use a different map
name for each map definition.

Illegal MAP statement

FATAL - The compiler encounters a MAP statement that does not
contain a 1legal map name. Ensure that a 1- to 6-character name
enclosed in parentheses is used to label the map.

Illegal mode mixing

FATAL - An attempt is made to mix string and numeric operations.
Ensure that the program does not contain incompatible data
operations.

Illegal number

WARNING - This error is caused by integer overflow or underflow
or by floating-point overflow. Ensure that the specified numbers
are within the legal range of +32767 to -32767 for integers and
1E38 to 1E-38 for floating-point.

Illegal relative operator

FATAL - This message indicates a compiler error and should not
occur . In the event that it does, use a Software Performance
Report to report the error to DIGITAL and include all pertinent
output.

Illegal string operator

FATAL - An incorrect string operator is detected in the program.
For example, A$=B$-C$ for concatenation can cause this error.
Examine the program for correct string operations.

Illegal subscript

FATAL - A DIM statement or array reference contains a subscript
in illegal format (e.g., DIM A(AS$)). Use a subscript of the
correct data type.

Inconsistent function usage in x() at line n

WARNING - A user-defined function that contains an integer dummy
argument is supplied with a floating-point argument in the
function call. 1In this message, x is the user-defined function
name and n is the line number of the call. The floating~point
argument is truncated to an integer value and the compilation
continues.

Inconsistent subscript usage

FATAL - This error occurs when a subscripted variable utilizes
dimensions that differ from those originally defined for it.
Ensure that subscripted variables retain the same dimensions
throughout the program.

~J

ERROR MESSAGES

Logical operation on non-integer quantity

FATAL - The program contains an incorrect data type in a logical
operation (e.g., A%=B AND C%, where B must be an integer). Use
consistent data types in logical operations.

Missing FNEND

FATAL - The compiler encounters a multi-line DEF statement
without a corresponding FNEND. Ensure that multi-line functlon
definitions are terminated with an FNEND statement.

Missing SUBEND

FATAL - The compiler encounters a subprogram that does not
contain a corresponding SUBEND statement. Ensure that the
subprogram is properly terminated.

Multiply allocated variable

FATAL - A program variable is assigned conflicting values or is
inconsistently used in a statement. For example, COM A;B,A,
where the variable A is assigned to COMMON twice, can cause this
error.

Multiply defined SUB or recursive CALL

FATAL - An attempt is made to compile a program that contains an
illegal transfer into a subprogram. Ensure that subprograms are
not nested and do not contain recursive calls.

NEXT without FOR

FATAL - The compiler encounters a NEXT statement without Ffirst
encountering a corresponding FOR statement. A loop must be
initialized with a FOR statement.

NEXT without WHILE/UNTIL

FATAL - The program encounters an uninitialized conditional loop.
Examine the program and ensure that each conditional loop NEXT
statement corresponds to a prior WHILE or UNTIL statement. :

Program overflows

FATAL - An attempt is made to compile a program that exceeds the
allowable memory space. Recompile the program as separate object
modules.

RESUME overrides /NOLINE

WARNING - A program, compiled with the /NOLINE switch, encounters
a RESUME statement without a line number argument. The /NOLINE
switch is nullified. The program continues at the line that
contains the initial error.

RMS I/0 forces OBJ output

WARNING - An attempt is made to compile a program that contains
an RMS—-structured OPEN statement into a task image file.
Programs that handle sequential, relative, or indexed files must
be compiled as object modules and linked by the Task Builer. The
compiler automatically generates an object module when it
encounters an RMS-structured OPEN statement.

C-6

ERROR MESSAGES

?? Stack error in x, compiling line n

FATAL - In this message, x is the name of the compiler module in
which the error occurred and n is the currently compiling line
number. This error causes a return to command level and no code
is output (this degree of severity is indicated by the double
question marks). It is a compiler error and should not occur.
In the event that it does, use a Software Performance Report to
report the error to DIGITAL and include all pertinent output.

? String array in CALL BY REF
FATAL - An attempt is made to use a string array argument in a
CALL BY REF statement. CALL BY REF does not accept a string
array argument. Use the CALL statement.

? SUBEND without SUB

FATAL - The compiler encounters a SUBEND statement without first

encountering a SUB statement. Examine the program logic and
ensure that each SUBEND statement corresponds to a prior SUB
statement.

? Syntax error

FATAL - A program line contains illegal syntax or illegal format.
Correct the program line to conform with BASIC-PLUS-2 syntax.

? Thread x not in run-time system at line n

FATAL - The compiler encounters a reference to an object-time
system module (thread) that 1is not present in the current
run-time system. 1In this message, x is the thread name and n is
the program line that originated the call. This error should not
occur with the run-time system supplied by DIGITAL. In the event
that it does, use a Software Performance Report to report the
error to DIGITAL and include all pertinent output.

? Too few arguments

FATAL - An attempt is made to call a function with fewer
arguments than are defined for that function. Ensure that the
number of arguments given in the function call agree with the
function requirements.

? Too many arguments

FATAL - This error occurs when a function call contains too many
arguments. Ensure that the function arguments agree with the
function limits.

? TSK output not possible

FATAL - An attempt is made to specify the compilation of a task
image file (COM /TSK) where the target file contains a CALL, SUB,
or RMS-structured OPEN statement. Recompile the program as an
object module.

ERROR MESSAGES

% Unaligned COM or MAP variable x in (y)

WARNING - The compiler encounters a numeric variable definition
in a COMMON or MAP statement where the variable falls on an odd
address. In this message, x is the variable name and y is the
MAP or COMMON name. A string, composed of an odd number of
characters, that precedes the numeric variable can cause the
variable to fall on an odd address. The compiler aligns the
variable to the next highest word boundary and continues with the
compilation.

? Undefined function x() called at line n

FATAL - The compiler encounters a user-defined function that is
not defined with a corresponding DEF statement. In this message,
X is the user-defined function name and n is the line number of
the call. Examine the program and ensure that all user-defined
functions are defined with an associated DEF statement.

$ Undefined line number n

WARNING - The compiler encounters a control statement that
directs the program to a nonexistent line (represented by n).
The program statement is compiled. The next highest line number
to the one specified is assumed to be the control destination.

$ Undefined MAP (x) in OPEN at line n

WARNING - The compiler encounters a MAP clause in the OPEN
statement that references a nonexistent map name. In this
message, X is the name of the undefined map in the MAP clause and
n 1is the OPEN statement line number. Each map reference in an
OPEN statement must be associated with a defined MAP statement.
The compiler ignores the MAP clause in the OPEN statement and
continues the compilation.

? Unmapped variable x in key clause at line n

FATAL - The compiler encounters an indexed file key definition
clause containing a reference to a variable that is not defined
in a MAP statement. That is, a key must be defined in terms of
its position and length in the record before it can be referenced
in an OPEN statement KEY clause. The mechanism used to define a
record key is the MAP statement. 1In this message, x is the name
of the unmapped variable and n is the program line that contains
the OPEN statement.

? Unterminated string

FATAL - A string that 1is not enclosed by single or double
quotation marks or is inconsistently terminated <causes this
error. That is, "ABC and "ABC' are both 1illegal; a properly
terminated string would be as follows, "ABC" or 'ABC'.

? Variable or function name too long

FATAL - A variable name exceeds 30 characters (excluding a
percent or dollar sign). A function name exceeds 30 characters
(excluding FN and a percent or dollar sign). Either of these two
occurrences can cause this error.

ERROR MESSAGES

C.3 ERROR CODES

Table C-1 contains a list of errors that are recoverable by means of
an error handling routine. 1Included in the table is the value of the
ERR variable that is associated with each error. A program can use
these error values to differentiate errors. The table also describes
the severity of the error and the message that 1is printed on the
terminal. Refer to the alphabetized 1list in Section C.4 for a
description of the error cause and recovery procedures.

Note that four of the errors listed in Table C-1 (34, 36, 37, and 38)
cannot be trapped by a program. These errors involve special
conditions, which the run-time system cannot control. If these errors
occur , you should notify the system manager.

Table C-1
Recoverable Error Codes
ERR # Error Class Message

1 FATAL ?Bad directory for device
2 FATAL ?Illegal file name
3 FATAL ?Account or device in use
4 FATAL ?No room for user on device
5 FATAL ?2Can't find file or account
6 FATAL ?Not a valid device
7 FATAL ?I/0 channel already open
8 FATAL ?Device not available
9 FATAL ?2I/0 channel not open
10 FATAL ?Protection violation
11 FATAL ?End of file on device
12 FATAL ?Fatal system I/O failure
13 FATAL ?User data error on device
14 FATAL ?Device hung or write locked
15 FATAL ?Keyboard wait exhausted
16 FATAL ?Name or account now exists
17 FATAL ?Too many open files on unit
18 FATAL ?Illegal SYS() usage
19 FATAL ?Disk block is interlocked
20 FATAL ?Pack ID's don't match
21 FATAL ?Disk pack is not mounted
22 FATAL ?Disk pack is locked out
23 FATAL ?Illegal cluster size
24 FATAL ?Disk pack is private
25 FATAL ?Disk pack needs 'CLEANING'
26 FATAL ?Fatal disk pack mount error
27 FATAL ?21/0 to detached keyboard
28 FATAL ?Programmable “C trap
29 FATAL ?Corrupted file structure
30 FATAL ?Device not file structured
31 FATAL ?Illegal byte count for I/0
32 FATAL ?No buffer space available
33 ~ FATAL ?UNIBUS timeout fatal trap
34 FATAL ?Reserved instruction trap
35 FATAL ?Memory management violation
36 FATAL ?SP (R6) stack overflow
37 FATAL ?Disk error during swap
38 FATAL ?Memory parity failure

(Continued on next page)

ERROR MESSAGES

Table C-1 (Cont.)

Recoverable Error Codes -,

ERR # Error Class Message

39 FATAL ?Magtape select error -

40 FATAL ?Magtape record length error

41 FATAL ?Non-res run—-time system

42 RESERVED s

43 FATAL ?Virtual array not on disk

44 FATAL ?Matrix or array too big

45 FATAL ?Virtual array not yet open

46 FATAL ?Illegal I/0 channel

47 FATAL ?Line too long

48 WARNING $Floating point error

49 WARNING $Argument too large in EXP

50 WARNING ¢Data format error

51 WARNING $Integer error

52 WARNING $Illegal number ”~h,

53 WARNING $Illegal argument in LOG '

54 WARNING $Imaginary square roots

55 FATAL ?Subscript out of range

56 FATAL ?Can't invert matrix

57 FATAL ?0ut of data

58 FATAL ?0N statement out of range

59 FATAL ?Not enough data in record

60 FATAL ?Integer overflow, FOR loop

61 WARNING $Division by O

62 FATAL ?No run-time system

63 FATAL ?FIELD overflows buffer ‘”’!

64 FATAL ?Not a random access device :

65 FATAL ?Illegal MAGTAPE() usage

66 FATAL ?Missing special feature

67 FATAL ?Illegal switch usage

71 FATAL ?Statement not found

72 FATAL ?RETURN without GOSUB

73 FATAL ?FNEND without function call

74 FATAL ?2Undefined function called

75 FATAL ?2Illegal symbol

76 FATAL ?Illegal verb

77 FATAL ?Illegal expression AURQ

79 FATAL ?Illegal IF statement ?

80 FATAL ?Il1legal conditional clause

81 FATAL ?Illegal function name

82 FATAL ?Illegal dummy variable

83 FATAL ?Illegal FN redefinition

84 FATAL ?Illegal line number (s)

85 FATAL ?Modifier error

86 FATAL ?Can't compile statement

87 FATAL ?Expression too complicated

88 FATAL ?Arguments don't match

89 FATAL ?Too many arguments v

90 WARNING $Inconsistent function usage

91 FATAL ?Illegal DEF nesting

92 FATAL ?FOR without NEXT i

94 FATAL ?DEF without FNEND

96 FATAL ?Literal string needed

97 FATAL ?Too few arguments

98 FATAL ?S8yntax error

(Continued on next page)

ERROR MESSAGES

Table C-1 (Cont.)
Recoverable Error Codes

ERR # Error Class Message
99 FATAL ?String is needed
100 FATAL ?Number is needed
101 FATAL ?Data type error
102 FATAL ?1 or 2 dimensions only
103 FATAL ?Program lost-Sorry
104 FATAL ?RESUME and no error
105 FATAL ?Redimensioned array
106 FATAL ?Inconsistent subscript usage
107 FATAL ?0N statement needs GOTO
108 FATAL ?End of statement not seen
109 FATAL ?What?
110 FATAL ?Bad line number pair
111 FATAL ?Not enough available memory
112 FATAL ?Execute only file
113 FATAL ?Please use the RUN command
114 FATAL ?Can't CONTinue
115 FATAL ?File exists-RENAME/REPLACE
116 FATAL ?PRINT-USING format error
117 FATAL ?Matrix or array without DIM
118 FATAL ?Bad number in PRINT-USING
119 FATAL ?Illegal in immediate mode
120 FATAL ?PRINT-USING buffer overflow
121 FATAL ?Illegal statement
122 FATAL ?Illegal FIELD variable
123 MESSAGE Stop
124 FATAL ?Matrix dimension error
125 FATAL ?Wrong math package
126 FATAL ?Maximum memory exceeded
127 WARNING $SCALE factor interlock
128 FATAL ?Tape records not ANSI
129 RESERVED
130 WARNING $Key not changeable
131 WARNING g§No current record
132 RESERVED
133 FATAL ?Illegal usage for device
134 WARNING %Duplicate key detected
135 FATAL ?Illegal usage
136 FATAL ?Illegal or illogical access
137 FATAL ?Illegal key attributes
138 WARNING $File is locked
139 RESERVED
140 FATAL ?Index not initialized
141 FATAL ?Illegal operation
142 FATAL ?Illegal record on file
143 WARNING $Bad record identifier
144 WARNING $Invalid key of reference
145 WARNING $Key size is too large
146 FATAL ?Tape not ANSI labeled
147 WARNING $RECORD number exceeds maximum
148 FATAL ?Bad RECORDSIZE value on OPEN
149 FATAL ?Not at end of file
150 FATAL ?No primary key specified
151 FATAL ?Key field beyond end of record
152 RESERVED

(Continued on next page)

ERROR MESSAGES

Table C-1 (Cont.)
Recoverable Error Codes

ERR # Error Class Message
153 WARNING $Record already exists
154 WARNING $Record/bucket locked
155 WARNING %Record not found
156 WARNING $Size of record invalid
157 FATAL ?Record on file too big
158 WARNING $Primary key out of sequence
159 FATAL ?Key larger than record
160 FATAL ?File attributes not matched
lel FATAL ?Move overflows buffer
162 FATAL ?Cannot open file
163 RESERVED
164 WARNING $Terminal format file required
165 FATAL ?Cannot position to EOF
166 WARNING $Negative fill or string length
230 RESERVED
231 RESERVED
232 RESERVED
233 RESERVED
234 RESERVED
235 RESERVED
236 RESERVED
237 WARNING $lst arg to SEGS > 2nd
238 FATAL ?Arrays must be same dimension
239 FATAL ?Arrays must be square
240 RESERVED
241 WARNING $Floating overflow
242 WARNING $Floating underflow
243 FATAL ?CHAIN to nonexistent line no.
244 WARNING $Exponentiation error
248 FATAL ?Illegal return from subroutine
249 RESERVED
250 FATAL ?Not implemented
251 FATAL ?Recursive subroutine call

C.4 RUN-TIME ERROR MESSAGES

The following alphabetized list describes the error
The description includes the general
cause of the error and steps you can take to recover from

at the

terminal

at run time.

severity of the error is also noted.

? Account or device in use

FATAL - An operation (such as zeroing or deleting) on a specified
or account cannot be performed because one or more users
Check the current status of the

device
have current access.

account.

% Argument too large in EXP

WARNING - The argument values for the EXP function

range of -89 to +88.

The value returned is 0.

messages

ERROR MESSAGES

? Arguments don't match

FATAL - The function call arguments differ in quantity or type
from those defined for the function. Check the function
definition. Change the arguments or definition to conform.

? Arrays must be same dimension

FATAL - A matrix addition or subtraction operation is attempted
on two or more arrays. The arrays are of different dimensions
where the operation requires that they be the same. Redimension
the arrays and try the operation again. "

? Arrays must be square

FATAL - A matrix multiplication operation is attempted on two or
more arrays that are not square. The operation requires square
arrays. Redimension the arrays and try the operation again.

? Bad directory for device

FATAL - A device is referenced that contains a directory in
unreadable format. This error can be caused by a magtape label
format that differs from the system default or from the format
specified 1in an OPEN statement. Change the format specification
in the MODE clause of the OPEN statement or access a different
device.

? Bad line number pair

FATAL - This error occurs when incorrectly formatted line numbers
are specified in a LIST or DELETE command. Correct the desired
line number specification.

? Bad number in PRINT-USING

FATAL - The format specification in the PRINT-USING string 1is
incorrect. The printing of desired values is disallowed. The
correct PRINT-USING string format is described in Section A.1l.1l.

$ Bad record identifier

WARNING - A random access operation that specifies an illegal
record identifier generates this error. The two occurrences that
can cause this error are:

1. A random access operation on a relative file contains a
zero or negative record number specification. Ensure
that a non-zero positive number is used.

2. An indexed file FIND or GET operation contains a null
string as a key value specification.

? Bad RECORDSIZE value on OPEN
FATAL - The program attempts to open a file with a maximum
RECORDSIZE specification of zero. All RMS files require a
non-zero RECORDSIZE specification.

? Cannot open file
FATAL - This message indicates an operating system error during
the open. This error should not occur, but in the event that it
does, use a Software Performance Report to report the error to
DIGITAL and include all pertinent output.

C-13

ERROR MESSAGES

Cannot position to EOF

FATAL - This error occurs when a sequential file 1is opened for
APPEND access and the operating system is unable to locate the
end of the file. One possible cause of this error is a corrupted
target file.

Can't compile statement

FATAL - An attempt is made to compile a program containing an
excessively complex statement. This may occur, for example, when
a statement has too many nesting levels. Examine the program
logic and use multi-statement lines to resolve the complexity.

Can't CONTinue

FATAL - The program halts or ends at a point from which the CONT
command is wunable to resume execution. Examine the program
logic. Reposition the STOP statement(s), where necessary.

Can't find file or account

FATAL ~ The specified file or account number is not found on the
specified device. Ensure that the file and device specifications
are correct.

Can't invert matrix

FATAL - This error occurs when an invert operation is attempted
on a singular matrix. Examine the program logic for matrix
construction type.

CHAIN to nonexistent line no.

FATAL - A chain operation references a line number that does not
exist. One possible cause of this error is an attempted chain
operation to a program that is compiled with the /NOLINE switch
enabled.

Corrupted file structure

FATAL - An error occurs while a CLEAN operation is being
performed on a disk. Check the condition of the specified disk
pack and replace it, if necessary.

Data format error

WARNING - The data specification in a READ or INPUT statement 1is
incorrectly formatted. For example, 1..3 is illegal
floating-point number format, 1.2 is illegal integer format, and
X" is illegal string format. Examine the data specified in the
program.

Data type error

FATAL - The program contains inconsistent or ambiguous data
types, i.e., constant or variable data types (floating-point,
integer, or character string) that are incorrect for a particular
use. Check the program logic. Resolve inconsistent data type
usage.

ERROR MESSAGES

DEF without FNEND

FATAL - The program contains a DEF statement without a
corresponding FNEND. Ensure that all multi-line user-defined
functions in the program are properly terminated with an FNEND
statement.

Device hung or write locked

FATAL - A specified device is unavailable for a requested
operation. Possible causes include a line printer out of paper,
or a high-speed reader off line. Check the hardware condition of
the requested device.

Device not available

FATAL - A requested device currently is reserved by another user
or is privileged. Check device assignment status or use another
device.

Device not file structured

FATAL - File-structured access is attempted on a non-file
structured device (i.e., a device other than disk, DECtape, or
magtape). This error occurs, for example, when a directory
listing is requested from a non-directory device. Use another
device or reformat the program request.

Disk block is interlocked

FATAL -~ A request for access is made to a 1locked disk block
segment. The segment is locked because it is assigned to another
user. Check the status of the desired disk.

Disk error during swap

FATAL -~ A non-trappable hardware error on the disk occurs while a
job is being swapped into, or out of, memory. The content of the
job area is lost. However, the job remains 1logged into the
system and is re-initialized to run the NONAME program. Notify
the system manager to check the error logging report.

Disk pack is locked out

FATAL - A specified disk pack 1is 1loaded in a drive but is
temporarily disabled. Check the status of the disk pack or use
another drive.

Disk pack is not mounted

FATAL - A disk drive is specified that does not contain a disk or
contains a disk that is not logically mounted. Mount a disk pack
in the desired drive or use a loaded drive.

Disk pack is private

FATAL - You do not have access privileges to the specified disk.
You cannot create a file on the disk without obtaining privileged
access. If protection codes permit, you can read files on the
disk.

ERROR MESSAGES

Disk pack needs 'CLEANING'

FATAL - This error indicates that the CLEAN operation in UTILTY
must be wused on the specified disk after mounting. The disk is
mounted, but you should not attempt access until a CLEAN
operation resolves any problems in the directory structure.

Division by 0

WARNING - This error occurs when the program attempts to divide a
quantity by 0. If an error handling routine is present, control
is transferred to the specified line number. Otherwise, 0 1is
returned as the result.

Duplicate key detected

WARNING - A PUT operation on an indexed file attempts to write a
record that contains one or more key fields that duplicate other
record key fields in the file. Because duplicate values were not
allowed for one or more of these keys at file creation, the
operation fails and this message is generated.

End of file on device
FATAL - An attempt is made to input beyond the end of a data
file. Check the length of the data file.

End of statement not seen

FATAL - A program statement contains too many elements and does
not process correctly. Simplify the statement by rearranging the
elements or using more than one statement line.

Execute only file

FATAL - An attempt is made to add, delete, or list a statement in
a compiled file. Compiled files can only be executed. Use a
source file for additions, deletions, or listing.

Exponentiation error

WARNING - An attempt is made to perform an illegal exponentiation
operation. For example, an attempt to raise a number to a power
that is outside the legal range (-89 to +88) generates this
error. The result of the operation 1is set to zero and the
program continues.

Expression too complicated
FATAL - An expression contains excessive levels of nested
parentheses. The allowable depth is dependent on the individual
expression. Break up the expression into fewer nested levels.
Fatal disk pack mount error
FATAL - There is a problem with the disk pack such that it cannot

be mounted. The disk may have been created on an operating
system whose on-disk structure is incompatible with RSTS/E.

ERROR MESSAGES

Fatal system I/0 failure

FATAL -~ An I/0 error that occurs at the system level generates
this message. You have no guarantee that the last requested
operation was performed. This error should not happen. In the
event that it does, use a Software Performance Report to report
the error to DIGITAL and enclose all pertinent output.

FIELD overflows buffer

FATAL - An attempt is made to allocate more space with the FIELD
statement than exists in the specified buffer. Examine the
program and adapt the FIELD specification to available buffer
space.

File attributes not matched

FATAL - The file attributes that you specified in the OPEN
statement do not match those of the existing target file. This
error applies to an inconsistency in one of the following
specifications: ORGANIZATION, BUCKETSIZE, BLOCKSIZE, RECORDSIZE,
record format, or the number, position, and 1length of indexed
file keys.

File exists—~RENAME/REPLACE

FATAL - This error occurs when a SAVE command is given on a file
and signifies that the specified filename already exists on the
storage medium. Rename the specified file and reinitiate the
SAVE or use the REPLACE command.

File is locked

WARNING - This error occurs when you attempt to access a file
that is 1locked by another user or by the system. Your program
cannot open the file for operations because it is already opened
by a program that does not permit shared access.

lst arg to SEGS$>2nd

WARNING - The SEG$ function contains a beginning string position
in the first argument that is greater that the ending string
position in the second argument. Reformat the SEG$ function
arguments.

Floating overflow

WARNING - During an arithmetic operation, a real value exceeds
the largest representable real number (1E38). The result of the
operation is set to zero.

Floating point error

WARNING - A floating-point underflow has occurred. This happens
when the computed floating-point number exceeds the range of
1E-38 to 1E38. If an error handling routine is present, control
is transferred to the specified line number. Otherwise, 0 is
returned as the value.

Floating underflow
WARNING - During an arithmetic operation, a real value becomes

less than the smallest representable real number (1E-38) . The
result of the operation is set to zero.

C-17

ERROR MESSAGES

FNEND without function call

FATAL - The program encounters an FNEND statement without first
entering a function. Check that the function is not included
among executable statements and ensure that there 1is a DEF
statement for each FNEND in the program.

FOR without NEXT

FATAL - The program encounters a FOR statement without a
corresponding NEXT. Ensure that all program FOR 1loops are
terminated by a NEXT statement.

I/0 channel already open

FATAL - An attempt is made to open an I/O channel that is already
open. Check the specified I/O channel number and the ordering of
program statements.

I/0 channel not open

FATAL - An attempt is made to perform an input/output operation
on a channel that 1is not open. Examine program statement
ordering and include an OPEN statement before the desired 1I/0
request.

I/0 to detached keyboard

FATAL - An I/0 operation is attempted to a detached keyboard or
data set. Check for a hung, or off-line, condition on the
hardware.

Illegal argument in LOG

WARNING - This error occurs when a negative number or 0 is used
as -an argument in the LOG function. The argument specified to
the function is returned as a value.

Illegal byte count for I/0

FATAL - The specified buffer size is not compatible with the
attempted operation. This error occurs when the buffer size
specified in the OPEN statement's RECORDSIZE clause (or the PUT
statement's COUNT clause) is not a multiple of the accessed I/0
device's block size. Examine the specified size and adapt it to
the device requirements.

Illegal cluster size

FATAL - The specified cluster size is unacceptable. The cluster
size must be a power of 2. For a file cluster, the size must be
equal to or greater than the pack cluster size and must not
exceed 256. For a pack cluster, the size must be equal to or
greater than the device cluster size and must not exceed 16. The
device cluster size is fixed by type.

Illegal conditional clause

FATAL - The program encounters an incorrectly formatted
conditional <clause. Examine the program and ensure that all
statements are correct.

ERROR MESSAGES

Illegal DEF nesting

FATAL - This error occurs when the range of one function
definition crosses the range of another. Examine the program and
ensure that all DEF ranges are self-contained.

Illegal dummy variable

FATAL - A dummy variable in the DEF statement variable 1list is
not a 1legal variable name. Examine the program and ensure that
" all variable names are correct.

Illegal expression

FATAL - The program encounters an expression with illegal
characters or format. For example, expressions containing double
operators, missing operators, or mismatched parentheses can cause
this error. Examine the program and ensure that all expressions
are correct.

Illegal FIELD variable

FATAL - The FIELD statement requires a string variable in the
argument specification. This error occurs when an unacceptable
variable is specified. Examine the program and ensure that the
correct variable type is specified.

Illegal file name

FATAL - The filename specification contains illegal characters,
embedded blanks, or violates system conventions. Examine the
specification for syntax errors and ensure that the specified
file exists.

Illegal FN redefinition

FATAL - An attempt is made to redefine a wuser function. A
user-defined function can be defined only once in a program. Use
a different function name for each function definition.

Illegal function name

FATAL - The program encounters an illegal function name when
attempting to define the function. Check the function definition
and ensure that the name is correctly formatted. All
user-defined function names must begin with the letters FN.

Illegal IF statement
FATAL - This error occurs when the program encounters an
incorrectly formatted IF statement. Check the program and ensure
that all IF statements are correct.

Illegal in immediate mode
FATAL - An attempt is made to issue a statement for execution in
immediate mode. The issued statement requires a line number
(i.e., be part of a program) before it can be executed. Reformat
the desired operation to conform with the language requirements.

Illegal I/0 channel
FATAL - An attempt is made to open a file on a channel that 1is
outside the legal range. A legal channel number is an integer in
the range of 1 to 12.

C-19

ERROR MESSAGES

? Illegal key attribute

FATAL - This error occurs when you specify an illegal combination
of key characteristics. That 1is, a NODUPLICATES and CHANGES
specification causes this error. You cannot specify CHANGES
without also specifying DUPLICATES.

? 1Illegal line number (s)

FATAL - This error occurs when the specified line number is not
in the legal range. The legal line numbers are positive numbers
in the range of 1 to 32767.

? Illegal MAGTAPE() usage

FATAL - The MAGTAPE function is used improperly. For example,
the function cannot be used to perform a file structured
operation on a non-file structured device. Ensure that the
desired operation and function arguments are compatible.

$ Illegal number
WARNING - This error is caused by integer overflow or underflow
or by floating-point overflow. Ensure that the specified numbers
are within the legal range of +32767 to -32767 for integer and
1E38 to 1E-38 for floating-point.

? Illegal operation

FATAL - There are a number of occurrences that can generate this
error. These occurrences include:

1. The program attempts a DELETE operation on a sequential
file.

2. The program attempts an UPDATE operation on a
magnetic-tape file.

3. The program attempts a RSTS/E block I/O operation on an
RMS—-structured file. Block 1I/0O operations require a
VIRTUAL organization file.

4. The program attempts an RMS operation on a RSTS/E block
I/0 structured file. For RMS operations, the file must
be sequential, relative, or indexed.

? 1Illegal or illogical access
FATAL - This error can be caused by one of three occurrences:

1. The attempted record operation is not compatible with the
ACCESS clause in the OPEN statement.

2. The ACCESS clause specification is incorrect for the file
organization.

3. The READ or APPEND attribute is specified in the ACCESS
clause when file creation is attempted.

? 1Illegal record on file
FATAL - The program encounters an illegal record in a sequential

file. This error occurs because of an invalid count field in the
record.

ERROR MESSAGES

?2 Illegal return from subroutine

FATAL - The program encounters an external subroutine RETURN
statement without previously executing a CALL statement. Examine
the program logic and ensure that entrance and exit from routines
are correct.

? 1Illegal statement

FATAL - This message occurs when you attempt to execute an
incorrect statement. Statements must compile without errors
before they can be executed.

? 1Illegal switch usage

FATAL - An attempt is made to specify a switch operation that is
illegal or the specification is in illegal format. Possible
causes include an error in a CCL command that contains an
otherwise wvalid CCL switch, a file specification switch that is
not the last element in the specification, or a missing colon or
argument in a file specification.

? Illegal symbol

FATAL - The program encounters a 1line containing an invalid
character. For example, a program line containing a commercial
at character as an operator (A$=B$@C$) generates this error.
Examine the program and ensure that lines contain correct syntax.

? Illegal SYS() usage
FATAL - An attempt is made to use a SYS system function in an
illegal manner. For example, a nonprivileged user attempting a
SYS function call for which privilege is required can cause this
error. Check the privilege status of the function call.

? Illegal usage
FATAL - This error is caused by an inconsistent file attribute
specification. The two occurrences that can generate this error
are:

1. An attempt is made to open a file whose organization was
never declared.

2. A record operation is specified that was never stated in
the ACCESS clause.

? Illegal usage for device
FATAL - This error can be caused by one of three occurrences:

1. The operation's device specification 1is in illegal
syntax.

2. The specified device does not exist.
3. The specified device is inappropriate for the current

operation. For example, an attempt to create an indexed
file on magnetic tape generates this error.

ERROR MESSAGES

Illegal verb

FATAL - A line of input does not contain a valid BASIC verb. Use
the correct language element in the line.

Imaginary square roots

WARNING - This error occurs when a number 1less than 0 1is the
specified SQR function argument. The returned value is the
square root of the argument's absolute value.

Inconsistent function usage

FATAL - This error occurs when a function is redefined. The
specified argument number or type 1is inconsistent with the
existing calls to that function. Ensure that the redefined
function argument is consistent with those that already exist in
the program.

Inconsistent subscript usage

FATAL - This error occurs when a subscripted variable utilizes
dimensions that differ from those originally defined for it.
Ensure that subscripted variables retain the same dimensions
throughout the program.

Index not initialized

FATAL - This error occurs on indexed file GET or FIND operations
that contain key specifications. The error 1is caused by an
attempted operation on an empty indexed file.

Integer error

WARNING - A computed integer exceeds the range of -32767 to
+32767. If an error handling routine is present, control is
transferred to the specified 1line number. Otherwise, 0 |is
returned as the integer value.

Integer overflow, FOR loop
FATAL - The FOR loop integer index exceeds the range of -32767 to
+32766. Check the program logic and ensure that the index is
within allowable limits.

Invalid key of reference
WARNING - This error occurs when the program specifies an indexed
file record operation that references an invalid key field. The
operations that can generate this error are GET, FIND, and
RESTORE.

Key field beyond end of record
FATAL - This error occurs when the program defines a key field
record position that exceeds the maximum size of the record. The
entire record key must be locatable within the record.

Key larger than record

FATAL - An attempt is made to create an indexed file with a key
specification that exceeds the maximum record size.

ERROR MESSAGES

$ Key not changeable

WARNING - An UPDATE operation is attempted on an indexed file
where the replacement record contains one or more key fields that
duplicate other record key fields in the file. Because duplicate
values were not allowed for one or more of these replacement keys
at file «creation, the operation fails and this error is
generated. To change a key field on UPDATE, you must specify
CHANGES for that key in the OPEN statement.

% Key size too large
WARNING - This error occurs during FIND and GET operations when
you specify a key length that equals zero or is larger than the
key length defined for the target record.

? Keyboard wait exhausted

FATAL - The time specified in a WAIT statement is exhausted with
no input received from the specified keyboard.

? Line too long

FATAL - This error occurs when a 1line of input exceeds 255
characters (including line terminators). A line greater than 255
characters causes the buffer to overflow. Shorten or continue
the line to conform with buffer limits.

? Literal string needed
FATAL - Input of a variable where a numeric or character string
is required generates this error. Ensure that string and
variable data are used correctly.

? Magtape record length error
FATAL - This error occurs when input is performed from magtape.
The record on magtape is larger than the buffer designated to
receive it. Adapt the buffer size to the length of the desired
record.

? Magtape select error

FATAL - Access to a magtape drive is denied because the specified
unit is off-line. Bring the unit on-line or use another drive.

? Matrix dimension error
FATAL - An attempt is made to specify more than two dimensions in
a matrix. A matrix requires two dimensions. A syntax error in
the DIM statement can also cause this message. Ensure that the
matrix dimension is correct in syntax and quantity.

? Matrix or array too big
FATAL - This error occurs when an array in memory exceeds the
allowed size. Redimension the array to conform with memory size
restrictions.

? Matrix or array without DIM
FATAL - A reference is made to an array or matrix element outside

the range of an implicitly dimensioned matrix. Ensure that
element references conform to array or matrix dimensions.

C-23

ERROR MESSAGES

Maximum memory exceeded

FATAL -~ This error occurs when your program grows too 1large to
run or compile in the memory space assigned to you. You can try
to obtain more space from the system manager, build your program
as linkable object modules, or reduce program memory
requirements.

Memory management violation

FATAL - This is a hardware error and should not occur. In the
event that it does, use a Software Performance Report to report
the error to DIGITAL and enclose all pertinent output.

Memory parity failure

FATAL - A non-trappable hardware parity error is detected in the
program's memory area. Notify the system manager to check the
error logging report.

Missing special feature

FATAL - An attempt is made to specify a feature that 1is not
installed on the system. See the system manager for the status
of the desired feature.

Modifier error

FATAL - This error occurs when a statement modifier (FOR, WHILE,
UNTIL, IF, or UNLESS) is used incorrectly. Check the syntax of
these modifiers in your program.

Move overflows buffer

FATAL - The combined 1length of the MOVE statement 1I/O 1list
elements exceeds the RECORDSIZE defined for the file. The error
occurs when the MOVE statement attempts to place elements in the
buffer.

Name or account now exists

FATAL - An attempt is made to rename a file with the name of an
existing file. This error also occurs when the system manager
attempts to insert an account number that already exists in the
system. You should select a different filename and the system
manager should use a different account number.

Negative fill or string length

WARNING ~ A MOVE statement I/O list FILL element that 1is 1less
than zero generates this error. Reformat the MOVE statement I/O
list.

No buffer space available

FATAL - File access under RSTS/E file control requires one small
buffer for completion of the request. This error occurs when a
buffer is not available. If the program is sending messages, two
conditions are possible. First, a message 1is sent, but the
receiving program has exceeded the pending message limit.
Second, a sending program attempts to send a message, but a small
buffer is not available for the operation.

ERROR MESSAGES

$ No current record

WARNING - This error occurs when a PUT or UPDATE operation is not
immediately preceded by a successful GET or FIND operation.

No logins

This message can be printed on the terminal by the system when it
is full, or by the system manager when further logins are
disabled. It signifies that no additional users are allowed on
the system.

? No primary key specified

FATAL - An attempt is made to create an indexed file that does
not contain a defined primary key. An indexed file requires the
definition of a primary key and allows the definition of up to
254 alternate keys.

? No room for user on device

FATAL - A specified device is too full to accept further data, or
the device storage space allotted to you is exhausted. Delete
unnecessary files from the device.

? No run-time system

FATAL - A run~time or object-time system is requested that is not
present on the system. Check with the system manager for the
availability of the desired RTS or OTS.

? Non-res run-time system

FATAL - The specified run-time system is not 1loaded in memory.
Allow the system time to load the run-time system and retry the
operation.

? Not a random access device

FATAL - This error occurs when random access I/0 is attempted on
a non-random access device. Use another device, if possible.

? Not a valid device

FATAL - The device specification references an illegal or
nonexistent device. Check the device specification.

? Not at end of file

FATAL - This error occurs when you attempt a sequential file PUT
operation without first positioning to the end of the file. An
end-of-file position is required prior to a sequential file PUT
operation, Note that this error can occur when an existing file
is opened for WRITE access.

? Not enough available memory

FATAL - This error is caused by the attempted execution of a
compiled program that is too large for the memory space assigned
to you. You can try to obtain more space from the system
manager, recompile the program as linkable object modules, or
reduce program memory requirements.

ERROR MESSAGES

? Not enough data in record
g PN

FATAL - An INPUT statement is unable to find enough data in one
line to satisfy all specified variables. Check the program logic
to ensure that there 1is enough data or delete unnecessary
variables.

? Not implemented

FATAL - The desired feature is not implemented in the current
version of BASIC-PLUS-2 or 1is not implemented on the current
operating system.

? Number is needed

FATAL - An attempt is made to use a character string or variable
data where a number is required. Check your program for the
correct data type usage.

? ON statement needs GOTO

FATAL - The program encounters a statement beginning with ON that
does not contain a corresponding GOTO or GOSUB clause. Correct
the program line.

? ON statement out of range

FATAL - An ON GOTO or ON GOSUB index value is 1less than 1 or
greater than the number of listed lines. Examine the program
logic. Add lines to the list or adapt the index value to the
number of listed lines.

2 1 or 2 dimensions only

FATAL - This error results from specifying more than two
dimensions to a matrix or more than one to a list. Ensure that
the correct subscript is used for the desired array type.

? Out of data
FATAL - A READ statement requested more data than is present in
the DATA 1list. Check the program logic. Add more data to the
list or use a RESTORE statement. -
? Pack ID's don't match
FATAL - The specified identification code for a requested disk
pack does not match the code stored on the pack. Check the
desired disk pack's identification code.
Please say HELLO
FATAL - This message 1is printed when you attempt to type .
anything, other than a legal logged-out command, on the terminal
without first logging on the system. Follow the procedures for
logging on the system before attempting input. .

? Please use the RUN command

FATAL - This error occurs when you attempt a transfer of control

(as in a GOTO, GOSUB, etc.) in immediate mode that cannot be

performed. Incorporate the statement into a program and use the -~
RUN command for execution.

ERROR MESSAGES

Primary key out of sequence

WARNING - This error occurs during a sequential access PUT
operation on an indexed file, An attempt is made to write a
record that contains a key value less than the previous record's
key value.

PRINT-USING buffer overflow

FATAL - An attempt is made to specify a PRINT-USING field format
that is too large for the statement. Redesign the field
specification to conform with statement limits.

PRINT-USING format error

FATAL - This error results from the use of an incorrect string
construction to supply PRINT-USING output format. Examine the
program and correct the output format specification.

Program lost-Sorry

FATAL - A fatal system error has occurred that causes the current
program to be lost. If you are in EXTEND mode, this error shifts
you to NOEXTEND. A hardware problem or the use of an improperly
compiled program can cause this error. See the system manager
for the status of the system.

Programmable “C trap

FATAL - A CTRL/C combination is typed while an ON ERROR GOTO
statement is in effect and programmable CTRL/C trapping is
enabled. The program uses this error to perform special
processing. Refer to the RSTS/E Programming Manual for
information on CTRL/C trapping.

Protection violation

FATAL - The requested operation can not be performed by the
current user. This can be caused by an illegal operation (such
as an input request from a line printer) or a privilege violation
(such as an attempted deletion of a protected file).

Record already exists

WARNING - During a random access PUT operation on a relative
file, the program encounters an existing record in the specified
position. Relative files allow you to insert records only in
unoccupied positions.

Record/bucket locked

WARNING - This error occurs when the program attempts an
operation on a locked bucket. The target of the operation is
locked by another program.

Record not found

WARNING - The record specified in a random access GET or FIND
operation does not exist. This error applies only to relative
and indexed files. Possible causes include a target record that
was never written or a previously deleted target record.

ERROR MESSAGES

% Record number exceeds maximum

WARNING - There are two conditions that can cause this error:

l. The program attempts to create a relative file where the
maximum record number is a negative value.

2. A random access operation on a relative file specifies a
record number that exceeds the maximum number of records
defined for that file.

Record on file too big

WARNING - This error occurs when an accessed record 1is larger
than the buffer area reserved for that record. That is, a GET
operation is performed on a record that is larger than the MAP
area. Note that RMS considers the operation a success and allows
a succeeding UPDATE or DELETE operation.

Recursive subroutine call

FATAL - A subroutine that attempts to call itself generates this
error. The recursive call can be direct or through a series of
other subroutine calls.

Redimensioned array

FATAL - The array or matrix usage 1in your program causes an
implicit array redimension. Examine the program and restructure
the array or matrix usage.

Reserved instruction trap

FATAL - This non-trappable hardware error occurs when you attempt
to execute an illegal or reserved instruction. An attempt to
execute a Floating Point Processor (FPP) instruction, when
floating-point hardware is not available, also causes this error.
Check the hardware options available to you.

RESUME and no error

FATAL - This message occurs when the program encounters an error
handling routine RESUME statement without first encountering an
error. Examine the program to determine the cause of transfer
into the routine.

RETURN without GOSUB

FATAL - The program encounters a subprogram RETURN statement
without previously executing a GOSUB statement. Examine the main
program and ensure a legal entry to the subprogram.

SCALE factor interlock

WARNING - An attempt is made to execute a program or source
statement with the current SCALE factor. The program executes,
but the system uses the SCALE factor of the program in memory.
Use the REPLACE and OLD commands, or recompile the program, to
execute with the current SCALE factor.

ERROR MESSAGES

$ Size of record invalid

WARNING - A PUT or UPDATE operation contains an invalid COUNT
specification. The specification 1is invalid for one of the
following reasons:

1. The COUNT specification equals zero.

2. The COUNT specification exceeds the maximum size defined
for that file at its creation.

3. The COUNT specification conflicts with the actual size of
the current record during a sequential file UPDATE
operation on disk.

4. The COUNT specification does not equal the maximum size
for fixed-format records.

? SP (R6) stack overflow
FATAL - The system attempts to extend the hardware stack beyond
the legal size. This is a non-trappable hardware error. Notify
the system manager.

? Statement not found
FATAL - Reference is made to a program line that does not exist
in the program. Examine the program and ensure that all
statement references to line numbers are correct.

Stop
This message appears on the terminal when a STOP statement is
executed. Program execution temporarily halts but can be resumed
with a CONT (continue) command.

? String is needed
FATAL - A variable name or number is wused where a character
string is required. Examine the program to determine the proper
response to statement requirements.

? Subscript out of range
FATAL - A reference is made to an array element that is greater
than the number of elements dimensioned for the array. Check the
program logic and redimension the array, if necessary.

? Syntax error
FATAL - A statement is input to the system that is illegal, or

incorrectly formatted. Use the proper statement format in
program lines.

? Tape not ANSI labeled
FATAL - An OPEN statement is attempted on a magnetic tape file
that is not ANSI labeled. BASIC-PLUS-2 supports only
ANSI-labeled magnetic tape.

? Tape records not ANSI
FATAL - This error occurs when you attempt a GET operation on
variable-length records from a file that resides on magnetic
tape. The records must be in ANSI D format.

C-29

ERROR MESSAGES

Terminal format file required

FATAL - A PRINT or INPUT operation on a non-terminal format file
generates this error. PRINT and INPUT operations require a
terminal format file.

Too few arguments

FATAL - - An attempt is made to <call a function with fewer
arguments than are assigned in the DEF statement. Ensure that
the number of arguments given in the function call agree with the
number specified in the DEF statement.

Too many arguments

FATAL - This error occurs when a user-defined function contains
too many arguments. User-defined functions can have a maximum of
eight arguments.

Too many open files on unit

FATAL - The number of open files exceeds the number allowed for a
particular device unit. On both DECtape and magtape drives, only
one open file is allowed. Close the current file and reissue the
OPEN statement.

Undefined function called

FATAL - A statement is interpreted as a function call for which
there is no defined function. The interpreted call may be
attempted to either a system or user-defined function. Examine
the program for an illegal statement or missing DEF statement.

UNIBUS timeout fatal trap

FATAL - This is a hardware error and occurs when you attempt to
address nonexistent memory or an odd address with the PEEK
function. Should there be any other cause, use a Software
Performance Report to report the error to DIGITAL and enclose all
pertinent output.

User data error on device
FATAL - One or more characters of data are incorrectly
transmitted. Possible causes of this message are a parity error,
bad punch combination on a card, or similar occurrence.

Virtual array not on disk
FATAL - A virtual array is referenced on a channel containing an
open, non-disk device. Virtual arrays are allowed only on disk

devices.

Virtual array not yet open

FATAL - An attempt is made to use a virtual array before opening
the corresponding disk file. Check the program logic. Ensure
that the associated file is open before accessing the array.

ERROR MESSAGES

? What ?

This message appears on the terminal when an illegal or improper
command 1is typed. The command cannot be processed in immediate
mode, usually because of a format error. Check the format of the
attempted command.

? Wrong math package

FATAL - This error occurs when you attempt to compile a program
requiring RSTS/E processing that is incompatible with the current
system status. An attempt to use a 4-word math package system to
execute a program compiled on a system with a 2-word math package
can cause this error. Check with the system manager for the
availability of the required processing. The program must be
recompiled.

APPENDIX D

ASCII CODES AND DATA REPRESENTATION

D.1 ASCII CHARACTER CODES

7-Bit
Decimal Octal
Code Code Character Remarks »
0 000 NUL Null, tape feed, shift, "P
1 001 SOH Start of heading, start of
message, A
2 002 STX start of text, end of address, "B
3 003 ETX End of text, end of message, “C
4 004 EOT End of transmission, shuts
off TWX machine, "D
5 005 ENQ Enquiry, WRU, "E
6 006 ACK Acknowledge, RU, "F
7 007 BEL Bell, "G
8 010 BS Backspace, format effector, "H
9 011 HT Horizontal tab, "I
10 012 LF Line feed, ~J
11 013 VT Vertical tab, K
12 014 FF Form feed, page, "L
13 015 CR Carriage return, "M
14 016 SO Shift out, "N
15 017 SI shift in, ~O
16 020 DLE Data link escape, P
17 021 DC1 Device control 1, "Q
18 022 DC2 Device control 2, "R
19 023 DC3 Device control 3, S
20 024 DC4 Device control 4, T
21 025 NAK Negative acknowledge, ERR, "U
22 026 SYN Synchronous idle, "V
23 027 ETB End-of-transmission block,
logical end of medium, "W
24 030 CAN Cancel, "X
25 031 EM End of medium, Y
26 032 SUB Substitute, "2
27 033 ESC Escape, prefix, shift, "K
28 034 FS File separator, shift, "L
29 035 GS Group separator, shift, "M
30 036 RS Record separator, shift, "N
31 037 Us Unit separator, shift, "0
32 040 SP Space
33 041 ! Exclamation point

(Continued on next page)

ASCII CODES AND DATA REPRESENTATION

ISO Recommendation R646 and CCITT
Recommendation V.3 (International
Alphabet No. 5) 1is identical to
ASCII except that number sign (043)
is represented as £ instead of #
and certain characters are reserved
for national use.

D.2 RADIX-50 CHARACTER SET

Many items in RSTS/E, such as filenames and extensions, are stored in
Radix-50 format. This format allows 3 characters of data to be stored
as a 2-byte integer (one 16-bit word). The RADS$() function converts a
Radix-50 word to its 3-character representation. Also, the filename
string scan SYS calls convert 3-character strings to Radix-50 format.

The complete set of characters capable of being represented in
Radix-50 format, their ASCII octal equivalents, and the Radix-50 value
by which each character is represented are as follows:

Character ASCII Octal Equivalent Radix~50 Equivalent (octal)
space 40 0
A-7Z 101-132 1-32
$ 44 33
. 56 34
unused 35
0-9 60-71 36-47

The value of a character in its 2-byte Radix-50 representation depends
on 1its position. To obtain the octal value of the character in the
Radix-50 representation, you must multiply its Radix~50 octal
equivalent by the appropriate power of 50(octal). To gain the full
value of the Radix-50 representation of a 3-character string, the
values of the 3 characters must be summed. For example, the maximum
Radix-50 value (representing the character string 999) is as follows:

47*%5072+47*%50"1+47%5070=174777

Table D=1 provides a convenient means of translating between the ASCII
character set and its Radix-50 equivalents based on position within a
string.

A 3-character string is stored left to right in the Radix-50 word.
For example, given the ASCII string X2B, the Radix-50 representation
is computed as follows.

X = 113000 (octal)
2 = 002400(octal)
B = 000002(octal)
X2B = 115402 (octal)

Note that addition is done in octal.

ASCII CODES AND DATA REPRESENTATION

To represent a 3-character string in Radix-50 format, the first
character of a string (or . a single character) is placed in the
leftmost position of the Radix-50 word. Thus, for the character X,
its representation 30(octal) is multiplied by 5072 to give
113000(octal), the value shown in Table D-1 for X when it is the first
character. The second character in a string is stored in the next
position to the right. For the character 2 (in the second position),
its representation 40(octal) is multiplied by 501 to give 002400, the
value shown in Table D-1 for 2 when it is the second character. The
third character in a 3-character string is stored in the rightmost
position. For the character B (in the third position), its
representation is multiplied by 5070 (which is 1) to give 000002, the
value shown in Table D-1 for B when it is the third character. The
full octal value of the Radix-50 word is finally gained by adding the
value of each character by its position in the string.

Table D-1
ASCII/Radix-50 Equivalents
First N
or Single Second Third
Character Character Character
space 000000 space 000000 space 000000
A 003100 A 000050 A 000001
B 006200 B 000120 B 000002
C 011300 C 000170 C 000003
D 014400 D 000240 D 000004
E 017500 E 000310 E 000005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 H 000500 H 000010
I 034100 I 000550 I 000011
J 037200 J 000620 J 000012
K 042300 K 000670 K 000013
L 045400 L 000740 L 000014
M 050500 M 001010 M 000015
N 053600 N 001060 N 000016
O 056700 O 001130 0 000017
P 062000 P 001200 P 000020
Q 065100 Q 001250 Q 000021
R 070200 R 001320 R 000022
S 073300 S 001370 S 000023
T 076400 T 001440 T 000024
U 101500 U 001510 U 000025
V 104600 V 001560 V 000026
W 107700 W 001630 W 000027
X 113000 X 001700 X 000030
Y 116100 Y 001750 Y 000031
Z2 121200 Z 002020 Z 000032
$ 124300 $ 002070 $ 000033
. 127400 . 002140 . 000034
unused 132500 unused 002210 unused 000035
0 135600 0 002260 0 000036
1 140700 1 002330 - 1 000037
2 144000 2 002400 2 000040
3 147100 3 002450 3 000041
4 152200 4 002520 4 000042
5 155300 5 002570 5 000043
6 160400 6 002640 6 000044
7 163500 7 002710 7 000045
8 166600 8 002760 8 000046
9 171700 9 003030 9 000047

D-5

ASCII CODES AND DATA REPRESENTATION

D.3 INTEGER FORMAT

Sign
0=+ .
1=— Binary number
15 14 0
Integers are stored in a 2's complement representation. Integer

constants must lie in the range -32767 to +32767. For example:

+22
=7

000026 (octal)
177771 (octal)

D.4 FLOATING-POINT FORMATS

The exponent for both 2-word and 4-word floating-point formats is
stored in excess 128 (200(octal)) notation. Binary exponents from
-128 to +127 are represented by the binary equivalents of 0 through
255 (0 through 377 (octal)) . Fractions are represented in
sign-magnitude notation with the binary radix point to the 1left.
Numbers are assumed to be normalized and, because of redundancy, the
most significant bit is not stored (this 1is called hidden bit
normalization). This bit is assumed to be a 1 unless the exponent is
0 (corresponding to 2~'®) in which case it is assumed to be 0. The
value 0 is represented by two or four words of 0's. For example, +1.0
would be represented by:

40200
0

in the 2-word format, or:

40200
0
0
0

in the 4-word format. =5 would be:

140640
0

in the 2-word format, or:
140640
0
0
0

in the 4-word format.

ASCII CODES AND DATA REPRESENTATION

D.4.1 REAL Format (2-Word Floating-point)

'
Sign
word 1: 0=+ Binary excess High-qrder
1=- 128 exponent mantissa
« 15 14 76 0
word 2: Low-order mantissa 1
. 15 (0]
Because the high-order bit of the mantissa is always 1, it is
discarded, giving an effective precision of 24 bits (or approximately
7 digits of accuracy). The magnitude range lies between approximately
.29 X 10~%* and .17 X 10%,
- D.4.2 DOUBLE-PRECISION Format (4-Word Floating-point)
Sign
11. o=t Binary excess High-order
word 11 - 128 exponent mantissa
15 14 76 0
word 2: l Low-order mantissa :l
15 0
; word 3: Lower-order mantissa
-
15 0]
word 4: l Lowest-order mantissa]
15 0
The effective precision is 56 bits (or approximately 17 decimal digits
ofB?ccuraey). The magnitude range lies between .29 X 10~% and .17 X
10%,
'

D.5 STRING AND ARRAY FORMAT

D.5.1 Dynamic String Format

code —— FPTR

LEN

STRING HEADER

STRING

The code for dynamic strings contains a 2-word string header. The
first word 1is a forward pointer (FPTR) that points to the first byte

Q- of the string. The second word represents the length (LEN) of the
string in bytes.

ASCII CODES AND DATA REPRESENTATION

D.5.2 Array Format

Arrays in Memory:

ADW ADW
code ————— =] subscript 1(lim+1) A code —»| subscript 2(lim+1) A
TR R subscript 1(lim+1) n
A PTR A
Y Y

max. no. of elements max. no. of elements

One-Dimensional Two-Dimensional
Array Descriptor Array Descriptor

Virtual Arrays:

ADW ADW
code ————— subscript 1(lim+1) code ————— subscript 2{lim+1)
bscript 1(lim+1
block offset subscript 1()

block number block offset

block number

max. no. of elements
max. no. of elements

One-Dimensional Two-Dimensional
Array Descriptor Array Descriptor

ADW is the Array Descriptor Word and is explained in Section D.5.3.
Subscript is a word that represents the limits defined by the array
subscripts plus 1.

The offset into the block and the block number specify the starting
position of the array in the file. Block number represents the block
that contains the first element of the array (block 1 is the first
block of the file, block 2 is the second, etc.). The offset is the
offset of the first element of the array in bytes from the beginning
of the block that is referenced in block number (byte 0 is the first
byte in the block). For example, the first array in a file is
represented as block number 1 and the offset is into block 0 in the
array descriptor.

The maximum number of elements is only present in the array descriptor
when the array is redimensioned or when the array is used as a
subroutine argument. The number of elements is stored as a
double-precision integer.

With the exception of dynamic string arrays, the pointer (PTR) points
to the array elements. For dynamic string arrays, PTR points to a
list of string headers as follows:

ASCII CODES AND DATA REPRESENTATION

FPTR element O

/ LEN element O Free Space
PTR

FPTR element 1
LEN element 1 ELEMENT 1
7

FPTR element 2
LEN element 2 Free Space

NAAAAAAANANV VN
ELEMENT O
7
Free Space
ELEMENT 2
Free Space
D.5.3 Array Descriptor Word
Table D-2

Array Descriptor Word

Bits
Array Type 15§14113{12|11|10({ 9|8} 7|6 |54 |32
Numeric Memory oOlL [0S ? olojo0j0|0(0fj0O10|0]0
Numeric Virtual |0 {0 |1 | S T ofo Channel Number
String Memory 1Jj0f(o0o|s|{fojojojo}lojo|jojojojojol}o
String Common 1{1(|0]|s E}eqent Lepgtp ip bytgs
String Virtual 1(0f1}s Loéz kLeé) éhaénei NLmb;r ' L

T - Data Type

S - Number of subscripts minus 1 (0 is one-dimensional, 1 is two-dimensional)
L - Location (memory or common)

The array descriptor word (ADW) is a 16-bit word as represented in
Table D-2. Each type of array causes the bits to be set in an
individual manner as follows:

Numeric memory - Bits 0 through 9 are set to 0. Bits 10 and 11 set
the data type (i.e., 00 for integer, 01 for floating
point, 10 for double precision). Bit 12 sets the
number of subscripts minus 1. Bit 13 is set to 0.
Bit 14 is set to 0 if the array is in memory; 1 if
the array is in common. Bit 15 is set to 0.

ASCII CODES AND DATA REPRESENTATION

Numeric virtual - Bits 0 through 7 represent the channel number. Bits
8 and 9 -are set to 0. Bits 10 and 11 set the data 4!!§
type. Bit 12 sets the number of subscripts minus 1. ‘
Bit 13 is set to 1. Bits 14 and 15 are set to 0.

String memory - Bits 0 through 11 are set to 0. Bit 12 sets the

number of subscripts minus 1. Bits 13 and 14 are

set to 0. Bit 15 is set to 1. ‘ »
String common - Bits 0 through 11 represent the element 1length in

bytes. Bit 12 sets the number of subscripts minus
1. Bit 13 is set to 0. Bits 14 and 15 are set to

1.

String virtual - Bits 0 through 7 represent the channel number. Bits
8 through 11 represent LOG2 (i.e., the string
length). Bit 12 sets the number of subscripts minus

1. Bit 13 is set to 1. Bit 14 is set to 0. Bit 15
is set to 1.

INDEX

Note that an underlined page number points to an entry's primary or

definitive reference.

Abbreviated BASIC-PLUS-2
commands, 1-11
NH, 1-11
ABORT option, 2-6
format, 2-6
see also Task Builder options
ABS function, B-7
ABSPAT option, 2-7
format, 2-7
see also Task Builder options
ACCESS file attribute, 4-6,
4-8, 4-11
Access,
example of generic key, 4-15
example of record, 4-20
indexed file record, 4-14
random, 4-5
random record, 4-18, 4-19
record, 4-4
sequential, 4-5
sequential record, 4-18
shifting record, 4-21
virtual file data, 4-2
ACCESS APPEND, 4-16
ACCESS MODIFY, 4-16
ACCESS READ, 4-16
ACCESS SCRATCH, 4-16
ACCESS WRITE, 4-1l6
ALLOW file attribute, 4-3, 4-5,
4-8, 4-11
ALLOW MODIFY, 4-16
ALLOW NONE, 4-16
ALLOW READ, 4-16
ALLOW WRITE, 4-16
ALT mode, B-7
see also ESC key
ALTERNATE file attribute,
4-11, 4-12
Alternate key,
definition, 4-13
duplicate key, 4-14
modification of, 4-14
numbering of, 4-13
record access by, 4-14
values, 4-14
Ambiguous constant, 5-3, A-4
BASIC-PLUS, 5-3, A-4

BASIC-PLUS-2, 5-3, A-4
translation of, 5-3
Ampersand continuation charac-
ter, 1-28
ANSI magnetic tape, 4-23
Apostrophe,
PRINT USING, A-2
APPEND file attribute, 4-16

ACCESS, 4-16

APPEND (APP) command, 1-9, 1-11,
B-4

example of, 1-11

use of, 1-11
APPEND FILE NAME prompt, 1-11
Approximate key, 4-14, 4-20

GE for, 4-14

GT for, 4-14

specification, 4-14, 4-15
Argument list format, 3-11
Argument passing,

array, 3-12

double, 3-11

integer, 3-11

real, 3-11

string, 3-11

subroutine, 3-10
Argument range,

STEP command, 1-27
Argument specification,

BREAK command, 1-26
Arguments,
BREAK command maximum, 1-26
/LB switch, 2-5
STEP command, 1-27
Arguments in functions,
null, 5-4
Arithmetic operators, B-2
table of, B-2
Array argument passing, 3-12
Array descriptor word, D-8, D-9
Array format, D-7, D-8
Array subscripts, A-9
evaluation of, A-9
Arrays,
format of virtual, D-8
format in memory, D-8
virtual, 4-2
ASCII character codes, D-1
to D-3
ASCII character set, B-2
ASCII collating sequence, 4-14
ASCII file,
stream, 4-22
stream data, 4-22
ASCII function, B-8
ASCII/Radix~50 equivalents,
table of, D-5
ASG option, 2-7
format, 2-7
see also Task Builder options
Assignment statement,
multiple, 5-3, A-3
ATN function, B-7
Attributes,
virtual file, 4-3

Index-1

INDEX (Cont.)

Note that an underlined page number points to an entry's primary or

definitive reference.

Backslash statement separator,
B-1

Backslashes,
PRINT USING, A-2

BASIC-PLUS,
ambiguous constant, 5-3, A-4
CCPOS function, A-5
CHAIN statement, 5-2, A-7
comment, 5-3
continued line, 5-1,
DATA statement, 5-2,
DEF statement, 5-1, A-
file compatibility, 4~
POS function, 5-2, A-5

A-6
A-5

N

4

preserving programs, 5-1
PRINT USING format, 5-2

statement separator, 5-2
string literal, 5-3, A-3

syntax items, 5-1
SsYS functions, 5-3
user-defined function, A-5
variable name, 5-2, A-=7
BASIC-PLUS-2,
ambiguous constant, 5-3, A-4
CHAIN statement, 5-2, A-7
command file, 1-9
comments, 5-3
continued line, 5-1, A-6
DATA statement, 5-2, A-5
DEF statement, 5-1, A-4
line number, 1-28
line terminator, 1-28
POS function, 5-2, A-5
PRINT USING format, 5-2, A-1
source program, 1-28, B-1
statement separator, 5-2
string literal, 5-3, A-3
syntax, 5-1
user-defined function, A-5,
B-1
variable name, 5-2, A-7
BASIC-PLUS-2 commands, 1-8
abbreviated, 1-11
table of, 1-9, 1-10, B-7
BASIC-PLUS~2 compiler, 1-8
header, 1-18
invocation of, 1-8
leaving, 1-17
syntax check, 1-23
use of, 1-8
BASIC-PLUS-2 debugging aid,
1-14
BASIC~-PLUS-2 editing methods,
1-23
BASIC-PLUS-2 extensions,
table of, 1-5
BASIC-PLUS-2 function names,
A-7

>

BASIC-PLUS-2 library, 3-1, 3-2
BASIC-PLUS-2 run-time system
(RTS), 1-17, 3-1
purpose of, 3-1
BASIC-PLUS-2 subroutines, 3-3
restrictions, 3-10
BASIC-PLUS-2 Record I/0
operations, A-10
BASIC2 run-time system, 1-17,
2-8, 3-1, 3-2
content of, 1-17, 3-1
library, 3-1
program size limit, 3-2
size of, 1-17
use of RMS with, 3-2
Block,
length of, 4-25
Block boundaries, 4-25
crossing, 4-25
Block 1/0,
file, 4-1
operations, 4-2, A-10
Block length definition, 4-25
Block modification, 4-16
Block size,
on disk, 4-24
on magnetic tape, 4-24
Blocks,
contiguous unit of, 4-6
records on, 4-25
BLOCKSIZE file attribute, 4-5,
4-6, 4-25
specification, 4-25
BP2COM run-time system, 1-17,
2-8, 3-1, 3-2
access to, 3-2
contents of, 1-18, 3-1
library, 3-1, 3-2
program size limit, 3-2
size of, 1-18
use of, 3-2
BREAK debugging command, 1-25,
B-4
argument, 1-25
argument specification, 1-26
error message, l1l-26
halt on CALL, 1-26
halt on DEF, 1-26
halt on LOOP, 1-26
maximum arguments, 1-26
BREAK ON command, 1-27
Breakpoints, 1-25
Bucket, 4-16, 4-24, 4-25
composition of, 4-25
locked, 4-16
size of, 4-24
Bucket overhead,
RMS, 4-28

Index-2

INDEX (Cont.)

Note that an underlined page number points to an entry's primary or

definitive reference.

Bucket size, 4-25
default, 4-25 to 4-28
definition, 4-25
establishing, 4-26
for indexed files, 4-27
for relative files, 4-26
formula, 4-26 to 4-28
indexed file default, 4-28
large, 4-29 '
relative file default, 4-27
small, 4-29

BUCKETSIZE file attribute,

ﬂl 4-11

specification, 4-26

Buffer name, 4-29

Buffer space,
allocation of, 4-29
requirements, 4-26

Buffers, 4-29
content of, 4-29

BUILD (BUI) command, 1-9,

1-12, 2-3, 2-8, B-4

contents of file, 1-12
default run~time system, 1-18
format, 1-13
overlay creation, 2-10, 2-13
RMS switches, 1-13

CALL BY REF statement, 3-11, A-9
example, 3-13

Call instructions,
subroutine, 3-10, 3-11

CALL statement, 3-11, A-9
BREAK command halt on, 1-26
example, 3-12

Calling conventions,
subroutine, 3-10

Calls to overlay sections, 2-13

CCL command, 1-8
Task Builder, 2-1
use of, 1-8

ccros function, 5-2, B-8
BASIC-PLUS, A-5

CHAIN statement, 5-2, A-7
BASIC-PLUS, 5-2, A-7
BASIC-PLUS-2, 5-2, A-7
translation of, 5-2

CHANGES file attribute, 4-11,

4-12, 4-14

key, 4-14

Channel number range, 4-2

Character codes,
ASCII, D-1 to D-3

Character set, B-2
ASCII, B-2
RADIX-50, D-4

CHRS$ function, B-8
Circumflex, viii
Cluster size,

file, 1-=7
negative, 1-7

CLUSTERSIZE file attribute, 4-5,

4-6, 4-8, 4-9, 4-12

/CLUSTERSIZE switch option, 1-7
Codes,

ASCII character, D-1 to D-3

combination of protection, 1-6

default protection, 1-6

device, 1=-3

protection, 1-5

specification of protection,
1-6

table of protection, 1-5, 1-6

table of recoverable error,
C=9 to C-12

Collating sequence,

ASCII, 4-14

Command,

APPEND, 1-9, 1-11, B-4

BREAK debugging, 1-25, B-4

BREAK ON, 1-27

BUILD, 1-9, l1-12, 2-3, 2-8,
B-4

BYE, 1-2, B-4

COMPILE, 1-9, 1-14, B-5

COMPILE /DEBUG, 1l-14

COMPILE /DOUBLE, 1l-14

COMPILE /MACRO, 1l-14

COMPILE /NOCHAIN, 1-14

COMPILE /NOLINE, 1-14

COMPILE /OBJECT, 1-12, 1-15

COMPILE /TSK, 1l-14

CONTINUE, 1-24, B-5

DELETE, 1-10, 1-17, 1-24, B-5

EXIT, 1-10, 1-17, B-5

HELLO, 1l-1, B-5

HISEG, 1-10, 1-17, 3~1, 3-2,
B-5

IDENTIFY, 1-10, 1-18, B-=5

LET debugging, 1-27, B-5

ist, 1-10, 1-19, B-5

L.OCK, 1-10, 1-15, B-5

LOGIN, B-=5

NEW, 1-10, 1-19, B-5

oLD, 1-10, 1-20, B-5

PRINT debugging, 1-27, B-5

RENAME, 1-10, 1-20, B-5

REPLACE, 1-10, 1-21

RUN, 1-10, 1-21, B

SAVE, 1-10, 1-22, B-6

SCALE, 1-10, 1-22, B-6

STEP debugging, 1=27, B-=6

TRACE debugging, 1-28, B-6

I
[e) 0}

Index-3

INDEX (Cont.)

Note that an underlined page number points to an entry's primary or

definitive reference.

Command (Cont.),
UNBREAK debugging, 1-25, 1l=26,
B-6
UNSAVE, 1-10, 1=-22, B=-6
UNTRACE debugging, 1-28, B-6
Command file,
BASIC-PLUS-2, 1-9
contents of BUILD, 1-12
translator, 5-6
Command file extension, 2-3
Command set,
support of system, 1-9
Command summary, B-4 to B=6
Commands, B-4
abbreviated BASIC-PLUS-2,
1-11
BASIC-PLUS-2, 1-8, B-1
ccL, 1-8
debugging, 1-24
debugging aid, 1-24
summary of, B-1
table of BASIC-PLUS-2, 1-9,
1-10
use of CCL, 1-8
Comment delimiter, B-1
Comment separator, 1-29, A-6
translation of, 5-3
Comments, 1-29, B-1
BASIC-PLUS, 5~3
BASIC-PLUS~2, 5-3
CoMP% function, B-8
Compatibility,
BASIC, A-1
BASIC~PLUS file, 4-24
nontranslatable issues, A-8
Compilation,
program, 1l1l-14
COMPILE /DEBUG command, 1l-14
COMPILE /DOUBLE command, l-14
COMPILE /MACRO command, 1-14
COMPILE /NOCHAIN command, 1-14
COMPILE /NOLINE command, 1-14
COMPILE /OBJECT command, 1-12,
1-15
COMPILE /TSK command, 1-14
COMPILE command, 1-9, 1l-14, B-5
switches, 1-9, 1-14
switches combined, 1-15
- warning message, 1-14
Compile-time error messages, C-1,
c-3
Compile~time errors, A-9
summary of, C=3 to C-8
Compiler,
BASIC-PLUS-2, 1-8
syntax check, 1-23
use of, 1-8

Compress switch (/C0), 3-8
example of, 3-9
format of, 3-8
see also Librarian
specification, 3-8
Concise Command Language (CCL),
1-8
Constant,
ambiguous, 5-3, A-4
BASIC-PLUS, A-4
BASIC-PLUS-2, A-4
integer, B-3
numeric, 5-4, B-3
range of integer, B-=3
range of numeric, B-~3
spaces in numeric, 5-4
string, B-3
tabs in numeric, 5-4
translation of ambiguous, 5-3
translation of numeric, 5-4
CONTIGUOUS file attribute, 4-5,
4-6
Continuation character,
ampersand, 1-28
Continuation lines, 1-28, 5-1,
B-1
BASIC-PLUS, 5=1, A=6
BASIC-PLUS-2, 5-1, A-6
translation of, 5-1
CONTINUE (CON) command, 1-24,
B-5
Control characters, B-6
summary of, B=7
Ccos function, B=7
Count field, 4-23, 4-27
on disk, 4-23
on magnetic tape, 4-23
word alignment, 4-23
Create switch (/CR), 3-4
example of, 3-4
format, 3-4
see also Librarian
CTRL/C, B-7
CTRL/L, B-7
CTRL/O, B-7
CTRL/Q, B-7
B-7
1-2

CTRL/S,
CTRL/U, 3, B=7
CVT file operation, 4-3

D format, 4-23
/DA switch, 2-5

see also Task Builder switches
Data,

ASCII stream, 4-22

assignment of, 4-4

Index-4

INDEX (Cont.)

Note that an underlined page number points to an entry's primary or

definitive reference.

Data (Cont.),
stream-format file, 4-~24
transmission of file, 4-4
virtual file, 4-2
Data access,
virtual file, 4-2
Data field, 4-13
as key, 4-13
secondary, 4-13
Data format, B-1
DATA statement, 5-2, A-5.
BASIC-PLUS, 5-2, A-~5
BASIC-PLUS=-2, 5-~2, A=~5
translation of, 5-2
Data storage,
virtual file, 4-2
Data structure, 4-4, 4-24
DATES$ function, B-~10
/DEBUG switch, 1-14, 1-24
memory requirements, 1-24
Debugging aid,
BASIC-PLUS-2, 1-14
commands, 1-24
execution halts, 1-26
message, l=-24
prompt, 1-24
termination, 1-25
variable change, 1-27
variable examination, 1-27
Debugging command,
BREAK, 1-25
LET, 1=27
PRINT, 1-27
STEP, 1-27
TRACE, 1-28
UNBREAK, 1-25
UNTRACE, 1-28
Debugging subroutines, 1-24
DEF statement, 5-~1, A-4
BASIC-PLUS, 5-1, A-4
BASIC-PLUS-2, 5-1, A-4
BREAK command halt on, 1-26
function references, A-4
translation of, 5-1
Default bucket size, 4-25 to 4-28
indexed file, 4-28
relative file, 4-27
Default device,
public structure, 1-3
Default extension, 1-3
object module, 2-1
Default high segment, 2-8
Default protection codes, 1-6
Default record format, 4-6, 4-22,
4-23
Default run-time system, 1-17
BUILD command, 1-18

Default switches,
Task Builder, 2-5
DELETE (DEL) command, 1-10,
1-24, B=5
use of, 1=-17
DELETE key, 1-23
DELETE file operation, 4-19
indexed file, 4-13
relative file, 4-10
Delete switch /DE, 3-8
format, 3-8
‘message, 3-8
see also Librarian
termination, 3-8
Delimiter,
(CR/LF) record, 4-24
(ESC) record, 4-24
(FF) record, 4-24
(LF) record, 4-24
(VT) record, 4-24
comment, B-1l
exclamation point, A-6

1-17,

stream-format record, 4-24

string, 5=3
Device,
not allowed for RMS, 1l-4
public structure default,
use of, 1-3
Device assignment,
Task Builder, 2-7
Device codes, 1-3
Device names,
logical, 1-3
physical, 1-3
Device specifications,
table of, 1-4
DIF$ function, B-8
DIM # statement, 4-3
Directive,
.END, 2-12
.FCTR, 2-12
+ROOT, 2-12
Directive format,
opL, 2-10, 2-12
Disk,
block size on, 4-24
count field on, 4-23
Documentation conventions,
Double precision,
format, 1-14, D=7
range of, 1-29
/DOUBLE switch, 1-14
Duplicate keys, 4-14
alternate, 4-14
primary, 4-14
DUPLICATES file attribute,
4-12, 4-14
Dynamic string format, D=7

Index-5

1-3

vii

4-11,

INDEX (Cont.)

Note that an underlined page number points to an entry's primary or

definitive reference.

Editing,
OoDL file, 2-~13
BASIC-PLUS-2 program, 1-23
.END directive, 2-12
END statement, 1-28
ENTER OPTIONS: prompt, 2-3
Entry point table (EPT), 3-3,
3-4
EQ for exact key, 4-14
Erasing unwanted files, 1-23
Erasures,
RUBOUT key, 1-23
ERL function, B-10
ERN$ function, B-10
ERR function, B-10, C-1
value specification, C-1
variable, C-9
Error,
fatal, C-1
Error codes,
table of recoverable, C-9
to C-12
Error handling routines, C-1
Error message,
BREAK command, 1-26
Insert switch, 3-5
/NOLINE diagnostic, 1-15
Error message format, C-1
Error messages, C-1
compile~time, C-1, C=3
run-time, C-12
Error trace in functions, C-2
Error trace in subroutines,
c-2
Error trapping, C-1
Errors,
compile-time, A-9
summary of compile-time, C-3
to C-8
summary of run-time, C-12
to C-31
ESC key, B-7
Exact key, 4-14, 4-20
EQ for, 4-14
specification, 4-14
Exclamation point,
PRINT USING, A-2
Exclamation point separator,
1-29, A-6
Executable task,
creation of, 1-14
production of, 1-8
Execution,
examine the path of, 1-28
program, 1-21
task, 2-14
Execution halts,
debugging commands, 1-26

Existence byte RMS, 4-27
EXIT (EXI) command, 1-10, 1-17,
B~5
Exit from system program, 1-8
EXP function, B-7
EXTEND mode, 5-5
conversion of, 5-1
prompt, 5-5
Extending indexed files, 4-17
Extending relative files, 4-17
Extension,
command file, 2-3
default, 1-3
filename, 1-4
input object module, 2-3
library file, 2-3
memory allocation map, 2-3
object library, 3-4
object module default, 2-1
overlay description file, 2-3
task image file, 2-3
Extensions,
table of BASIC-PLUS-2, 1-5
Extract switch (/EX), 3-5, 3-
example of, 3-7
format, 3-5
see also Librarian
EXTTSK option, 2-7
format, 2-8
see also Task Builder options

6

Fatal error, C-1
.FCTR directive, 2-12

Field,
count, 4-23, 4-27
data, 4-13

secondary data, 4-13
FIELD file operation, 4-3
File,

BASIC~-PLUS-2 command, 1-9

contents of BUILD command,
1-12

creation of indexed, 4-10

creation of relative, 4-8

creation of sequential, 4-5

creation of stream-format,
4-24

creation of terminal-format,
4-2

creation of virtual, 4-2

editing ODL, 2-13

example of indexed, 4-12

example of relative, 4-9

example of sequential, 4-7

example of virtual, 4-3

indexed, 4-2, 4-10

inserting modules in library, 3-5

Index-6

.mq'!F"“"““'n'q!-q-1m-----n-gq-m-n--u-u..n'u'-u'q--q---u--—-Tu--Tuuunm-nu-—mw

Note that an underlined page
definitive reference.

File (Cont.),
listing of library,
listing of map, 2-10
MACRO source, 1-14
OoDL, 2-10
organization, 4-2
overlay description, 2-5

3=-7

overlay description language,

1-12

record I/0, 4-1
relative, 4-2, 4-8
sequential, 4-2, 4-5
storage of, 4-24
stream ASCII, 4-22
task image, 2-9
terminal~format, 4-2
translator command,
virtual, 4-2

File attribute,
ACCESS, 4-3,
ALLOW, 4-3,
ALTERNATE, 4-11
BLOCKSIZE, 4-5
BUCKETSIZE, 4-8,
CHANGES, 4-11
CLUSTERSIZE,
CONTIGUOUS, 4-5
DUPLICATES, 4-11
MAP, 4-3, 4-5, 4-8,
NOCHANGES, 4-11
NODUPLICATES, 4-11
NOREWIND, 4-5
NOSPAN, 4-5
PRIMARY, 4-11
RECORDSIZE, 4-3,

4-11

SPAN, 4-5

File cluster sizes,

File compatibility,
BASIC-PLUS, 4-24, A-10

File compression,
library, 3-8

File description header,

File extension,
command, 2-3
library, 2-3
overlay description,

5-6

4-1
4-5,
4-5,

4-11
4-11

4-8,
4-8,

4-11

4-5, 4-8, 4-11

4-11

4-5, 4-8,

1-7

4-22

2-3

task image, 2-3
File format,
indexed, 4-10
relative, 4-8
sequential, 4-5
virtual, 4-3
File keys,
definition of, 4-29
length of, 4-29

position of, 4-29

INDEX (Cont.)

File media restriction,
indexed, 4-2
relative, 4-2
sequential, 4-2

File modification,
library, 3-5
oDT, 2-10

File operation,
cvr, 4-3
FIELD, 4-3
LSET, 4-3
RSET, 4-3

File organization
assignment of,
comparison of,
default, 4-2
indexed, 4-10
relative, 4-8
sequential, 4-5
space in memory,
specification of,
types of, 4-1
virtual, 4-2, A-10

File restrictions,
sequential, 4-7

File sharing, 4-15
control of, 4-15
sequential, 4-15

Filename, 1-3
extension,

14_
4-2
4-5

4-17
4-2

1-4

number points to an entry's primary or

1, 4-4

specification format, 1-3,

4-1
Files, 4-1
bucket size for indexed,
bucket size for relative
4-26
erasing unwanted,
extending indexed,
extending relative,

1-23
4-17
4-17

4-27

14

FIND operations on indexed,

4-20

GET operation on indexed, 4-20

library, 3-3

operations on
random access
random access

relative,
on indexed

4-10

, 4-20
on relative,

4-19

record access on sequential,
4-18

RMS memory allocation for,
4-17

sequential PUT on relative,
4-19

sharing virtual, 4-16

terminal I/0, 4-24

Files on magnetic tape,
sequential, 4-25

Index-7

INDEX (Cont.)

Note that an underlined page number points to an entry's primary or

definitive reference.

Files with variable format,

indexed, 4-23

relative, 4-23
/FILESIZE switch option, 1-6,

1-7

FIND operation, 4-18, 4-19

indexed file, 4-13, 4-20

relative file, 4-10

sequential file, 4-7
First record position, 4-9
FIX function, B-7
Fixed-length format, 4-22
Fixed-length records, 4-21, 4-22
Floating-point formats, D-6
Floating-point operations, 1-14
FOR NEXT loops,

transfer into, A-9
Formula,

bucket size, 4-26 to 4-28

RMS memory allocation, 4-17
Function,

ABS, B-7

ASCII, B-8

ATN, B-7

BASIC-PLUS CCPOS, A-5

BASIC-PLUS POS, 5~2, A-5

BASIC-PLUS-2 POS, 5-2, A-5

BASIC-PLUS-2 CCPOS, 5-2, B-8

CHRS$, B-8

COMP%, B-8

cos, B-7

DATES, B-10

ERL, B-10

ERNS$, B-10

ERR, B-10

EXP, B-7

FIX, B-=7

INSTR, B-8

INT, B=7

LEFT, B-8

LEN, B-8

LOG, B-7

L0OG1l0, B-8

MAGTAPE, B-10

MID, B-8

NUM, B-9

NUMS$, B-9

NUM1l$, B-9

NUM2, B-9

PEEK, 5-3

PI, B-8

PLACES$, B-9

POS, A-5, B-8

PRODs, B—'g

QUOS; B_9

RADS$, B-9

RECOUNT, B-10

Function (Cont.),
RIGHT, B-9
RND, B-8
SEGS$, B-9
SGN, B-8
SIN, B-8
SPACES, B-9
SQR, B-8
STRS$, B-9
STRINGS, B-9
SUMS$, B-9
TAB, B-8
TAN, B-8
TIME, B-10
TIMES$, B-10
TRMS$, B-9
VAL, B-9
XLATE, B-9
Functions,
BASIC-PLUS SYS, 5-3
BASIC-PLUS user-defined, A-5
BASIC-PLUS-2 user-defined,
A-5
error trace in, C-2
format of, B-4
format of user-defined, B-4
math, B-7
null arguments in, 5-4
summary of, B-7 to B-10
sys, 5-3, A-8
translation of, 5-3, 5-4
user-defined, B-4

GBLDEF option, 2-8
format, 2-8
see also Task Builder options
GE for approximate key, 4-14
Generic key, 4-14, 4-20
example of, 4~15
search, 4-15
GET operation, 4-18, 4-19
indexed files, 4-13, 4-20
relative files, 4-10
sequential files, 4-7
GT for approximate key, 4-14

Header,
BASIC-PLUS-2, 1-18
file description, 4-22
library, 3-3
RUN command, 1-21
translator identification,

5-4

Headers,
string, D-8

HELLO command, B-=5

Index-8

IN

Note that an underlined page number points to an entry's primary or

definitive reference.

High segment, 2-8

DEX (Cont.)

Indexed file with variable

default, 2-8 format, 4-23
Task Builder, 2-8, Initialization,
HISEG (HIS) command, 1-10, 1-17, variable, B-4
3-1, 3-2, B-5 INPUT FILE? prompt, 5-4
HISEG option, 2-3, 2-8 INPUT statement,
format, 2-8 punctuation, 5-3, A-8
see also Task Builder options translation of, 5-3

1/0,
block, 4-1
record, 4-1, A-10
terminal, 4-24

I/0 operations,
BASIC-PLUS-2 record,
block, 4-2, 4-3, A-10
speed of, 4-26

Identification header,
translator, 5-4

IDENTIFY (IDE) command,

1-18, B-5
example of, 1-18

Immediate mode statements,

/IND RMS switch, 1-13

Index,
content of, 4-13
reference to, 4-13

Index table,
key arrangement,
maintenance, 4-14
primary, 4-13

INDEXED, .
ORGANIZATION, 4-10

Indexed £ile, 4-2, 4-10
bucket size for, 4-27
creation of, 4-10
default bucket size, 4-28
DELETE operation, 4-13
example of, 4-12
extending, 4-17
FIND operation,
format of, 4-11
GET operation, 4-13,
PUT operation, 4-13
random access on, 4-20
record access, 4-14
record location, 4-12
RESTORE operation, 4-13
UPDATE operation, 4-13

Indexed file keys,
definition of, 4-29
length of, 4-29
position of, 4-29

Indexed file media restriction,

4-2
Indexed file memory space,

A-10

1-10,

5-5

4-14

4-13,

4-17

Insert switch (/IN),
error message, 3-5
example of, 3-5
format of, 3-5
see also Librarian

INSTR function, B-8

INT function, B-7

Integer argument passing,

Integer constants, B-3
range of, B-3

Integer format, D-6

Integer variables,

Integers, 1-29
range of, 1-29

Intended audience,

3-5

B-3

vii

Key, 4-13
approximate, 4-14, 4-20
content of, 4-13
data fields as, 4-13
EQ for exact, 4-14
exact, 4-14, 4-20
GE for approximate,
generic, 4-14, 4-20
GT for approximate,
length of, 4-13

4-14

4-14

numbering of alternate, 4-13

pointer to, 4-13

position of, 4-13

primary, 4-13

record access by alternate,
4-14

record access by primary,
4-14

Key access,
example of generic,

Key arrangement,
index table, 4-14

Key changes, 4-14

Key definition,
alternate, 4-13
primary, 4-13

Key modification,
alternate, 4-14

Key number, 4-13
specification of, 4-14

Key of reference, 4-13, 4-14

4-15

Index-9

3-11

INDEX (Cont.)

Note that an underlined page number points to an entry's primary or

definitive reference.

Key specification,
approximate, 4-14, 4-15
exact, 4-14
format of, 4-14
primary, 4-13

Key value, 4-13
alternate, 4-14

Keys,
alternate, 4-13
duplicate, 4-14
duplicate alternate, 4-14
duplicate primary, 4-14

Keywords, B-3
reserved, B-10
table of reserved, B-1ll
table of system reserved,

B-12

Language elements,
BASIC-PLUS-2, B-1
Language processor,
BASIC-PLUS-2, 1-8
/LB switch, 2-5
arguments, 2-5
see also Task Builder switches
Leading spaces, B-1
Leading zeroes, B-1

Leaving BASIC-PLUS-2, 1-17

LEFT function, B-8

LEN function, B-8

LET debugging command, 1-27, B-5

Lexical elements,
spaces in, 5-2
Librarian, 3-3
command string, 3-3
file specifications, 3-3
input prompt, 3-3
invocation of, 3-3
switches, 3-4
termination of, 3-3
use of, 3-3
Librarian utility program
(LBR), 3-3
Libraries,
BASIC-PLUS-2, 3-2
Library,
adding subroutines to, 3-3
BASIC-PLUS-2, 3-1
BASIC2, 3-1, 3-2
BP2COM, 3-1, 3-2
Library extension, 2-3
object, 3-4
Library file, -
compression of, 3-8
creation of, 3-4
listing of, 3-7

Library file (Cont.),
modification of, 3-5
module deletion, 3-8
module insertion, 3-5
size of, 3-4
update of, 3-5

Library header, 3-3

Library modules, 3-3

LINE,
keyword, 5-2

Line,
logical program, B-2
multi-statement, A-6, B-1
physical program, B-2

Line and data format, B-1l

Line deletion,
program, 1-17, 1-23

Line length, B-2

Line number,
BASIC-PLUS-2, 1-28
per cent on, 5-4
range of, 1-28, B-1
translation of, 5-4

Line replacement,
program, 1-23

Line terminator, B-2
BASIC-PLUS-2, 1-28

Lines,

BASIC-PLUS continued,
A-6

BASIC-PLUS-2 continued, 5-1,
A-6

comments in source, 1-29

continued source, 1-28

translation of continuation,
5-1

Linkage,
subroutine, 3-10

LIST (LIS) command, 1-10, 1-19,

B-5
use of, 1-19

List switch, 3-7
combination of, 3-7
example of, 3-7
format of, 3-11
/FU, 3-7
/LE, 3-7
/LI, 3=7
see also Librarian

Literals,

BASIC-PLUS string, 5-3
BASIC-PLUS-2 string, 5-3
quoted string, A-3
translation of string, 5-3
unterminated string, 5-3

LOCK command, 1-10, 1-15, B-5
example of, 1-16

5-1,

Index-10

*ﬂ-T.l.---l-H-'-Hlﬂ.IHHl-Il..'l-I'.--l'll-IllIIIIllllIIl’-llﬂ-H'-'ll-l--'ITI-IF-T---HIHHHHH-Fﬂ

INDEX (Cont.)

Note that an underlined page number points to an entry's primary or

definitive reference.

Locked bucket, 4-16
Locking,
disabling, 4-16
record, 4-16
LOG function, B-7
LOG1l0 function, B-8
Logical device names, 1-3
Logical operators, B-2
table of, B-2
Logical program line, B-2
Logical units,
number of, 2-9
LOGIN command, B-5
Login procedure, 1-1
LOGIN program, 1l-1
prompt, 1-1, 1-2
Logout procedure, 1-2
LOGOUT program, 1-2
options, 1-2
Long variable names, A-7
Loops,
debugging halt in, 1-26
transfer into FOR NEXT, A-9
LSET file operation, 4-3

/MAa switch, 2-5
see also Task Builder switches
MACRO modules,
inserting, 3-5
MACRO source file, 1-14
MACRO subroutines, 3-3, 3-10,
3-11
restrictions, 3-10
/MACRO switch, 1-14
Magnetic tape,
ANSTI, 4-23
block size on, 4-24
count field on, 4-23
sequential files on, 4-25
MAGTAPE function, B-10
Map,
memory allocation, 2-9
short memory allocation, 2-5
MAFP clause, 4-22, 4-23, 4-29
Map extension,
memory allocation, 2-3
MAP file attribute, 4-3, 4-5,
4-8, 4-10 T
MAF name, 4-29
MAFP statement, 4-13, 4-14, 4-20,
4-29
example of, 4-29, 4-30
Mapping,
record, 4-4, 4-29
Math functions, B-7

Media restriction,
indexed file, 4-2
relative file, 4-2
sequential file, 4-2
Memory allocation,
formulas, 4-~17
for open files, 4-17
RMS, 4-17
RMS initial, 4-17
Memory allocation map, 2-9
extension, 2-3
output, 2-9
production of, 1-12
see also Map
short, 2-5
Memory,
arrays in, D-8
Memory reductions,
/NOCHAIN, 1-15
/NOLINE, 1-15
Memory requirements,
/DEBUG switch, 1-24
Memory space,
file organizations, 4-17
indexed files, 4-17
relative files, 4-17
sequential files, 4-17
Merging source programs, 1l-11
see also APPEND command
MID function, B-8
MODE switch option, 1-7
MODIFY file attribute, 4-16
ACCESS, 4-16
ALLOW, 4-16
Module,
library, 3-=3
library file deletion, 3-8
library file insertion, 3-5
object, 1-14, 2-1, 2-4
Module name table (MNT), 3-3, 3-4
/MP switch, 2-5, 2-10
see also Task Builder switches
Multi-statement line, A-6, B-1
Multiple assignment statement,
5-3, A-3

translation of, 5-3

Name change,
program, 1-20
translator program, 5-=5
Names,
BASIC-PLUS variable, 5-2
BASIC-PLUS-2 function, A-7
BASIC-PLUS-2 variable, 5-2, A-7
logical device, 1-3

Index-11

INDEX (Cont.)

Note that an underlined page number points to an entry's primary or

definitive reference.

Names (Cont.),
long variable, A-7
physical device, 1-3
translation of variable, 5-2,
5=5
variable, 5-2
Negating Task Builder
switches, 2-4
Negation of replace switch, 3-6
Negative cluster size, 1-7
NEW command, 1-10, 1l-19, B=5
prompt, 1-19
NEW FILE NAME-- prompt, 1-19
No header,
command specification, 1-11
NH abbreviation, 1-11
/NOCHAIN switch, 1-14
memory reductions, 1-15
NOCHANGES file attribute, 4-=10,

4-12
NODUPLICATES file attribute,
4-10, 4-12

NOEXTEND mode, A-7

/NOLINE switch, 1~14, 1-15
COMPILE command, 1-14
diagnostic error, 1-15
memory reductions with, 1-15
reasons for override, 1-15

Non-printing characters, 1-29,

B-2

NONE file attribute, 4-16
ALLOW, 4-16

NOREWIND file attribute, 4-5,

4-7

NOSPAN file attribute, 4-5, 4-6

Null arguments in functions, 5-4

Null characters, 1-29, B-2

NUM function, B-9

NUM$ function, B-9

NUM1$ function, B-9

NuM2 function, B-9

Number of logical units, 2-9

Numeric constants, 5-4, B-3
range of, B-3
spaces in, 5-4
tabs in, 5-4
translation of, 5-4

Numeric variables, B-3

Object library extension, 3-4
Object module, 1-12, 2-1, 2-4
default extension, 2-~1
generation of, 1l-14
input to Task Builder, 2-3
programs compiled as, 1-15
reasons for, 1l-12

/OBJECT switch, 1-15
ODL directive format, 2-12
ODL directives, 2-10
opL file, 2-10
editing, 2-13
modification, 2-10
OLD command, 1-10, 1-20, B-=5
OLD FILE NAME-- prompt, 1-20
OLD NAME? prompt, 5-5
ON CALL,
BREAK command, 1-26
ON DEF,
BREAK command, 1l-26
ON LOOP,
BREAK command, 1-26
Open files,
RMS memory allocation for, 4-17
OPEN statement, 4-1, 4-7, 4-9,
4-10, 4-12, 4-21
OPEN statement format,
indexed file, 4-11
relative file, 4-8
sequential file, 4-=5
virtual file, 4-3
Operators,
arithmetic, B=2
logical, B-2
relational, B-2
table of arithmetic, B-2
table of logical, B-2
table of relational, B-3
Organization,
assignment of file, 4-2
comparison of file, 4-5
file, 4-1, 4-4
indexed file, 4-10
relative file, 4-8
sequential file, 4-5
specification of file, 4-2
types of file, 4-1
virtual file, 4-2, A-10
Organization default, 4-2
ORGANIZATION INDEXED, 4-10
ORGANIZATION keyword, 4-2, 4-3
ORGANIZATION RELATIVE, 4-8
ORGANIZATION SEQUENTIAL, 4-6
ORGANIZATION VIRTUAL, 4-3
OUTPUT FILE? prompt, 5-5
output specification,
Task Builder, 2-2, 2-9
Overhead,
RMS bucket, 4~28
Overlay,
common path, 2-~13
definition, 2-10
from BUILD output, 2-10
loading procedures, 2-10
reason for, 2-10

Index-12

B A e e e el

INDEX (Cont.)

Note that an underlined page number points to an entry's primary or

dlefinitive reference.

Overlay description file, 2-5
extension, 2-3
Overlay description language
(obn), 1-12, 2-10
Overlay sections,
calls to, 2-13
Overlay structure,
example of, 2-12
path of, 2=13
Override of tape rewind, 4-7

Passing arguments,
array, 3-12
double, 3-11
integer, 3-11
real, 3-11
string, 3-11
subroutine, 3-10
Password, 1-1
PASSWORD: prompt, 1=-2
Patches,
Task Builder, 2-7
Path of execution,
examine the, 1-28
Path of overlay structure, 2-13
PEEK function, 5-3, A-8
translation of, 5=3
Physical device names, 1-3
Physical program line, B=2
PI function, B-8
PLACES function, B-9
Pointer to key, 4-13
POS function, A-5, B-8
BASIC-PLUS, 5-2, A~5
BASIC=-PLUS=-2, 5-2, A-5
translation of, 5-2
Precision,
range of double, 1-29
range of single, 1-29
PRIMARY file attribute, 4-11,
4-12
Primary index table, 4-13
Primary key, 4-13
definition, 4-13
duplicate, 4-14
record access by, 4-14
‘see also Key
specification, 4-13
PRINT debugging command, 1-27,
B-5
PRINT statement,
synonym for, 5-1
translation of, 5-3
PRINT statement punctuation,
5-3, A-8

PRINT USING, 5-2
apostrophe, A-2
backslashes, A=2
BASIC compatibility, A-~1
example of, A-2
exclamation point, A-2

PRINT USING format,
BASIC-PLUS, 5-=2
BASIC-PLUS=-2, 5=2
translation of, 5-2

PRINT USING string format, A-1,

A=2

PROD$ function, B-9

Program,
access to source, 1-20
BASIC-PLUS-2 source, 1-28
deletion of compiled, 1~23
exit from system, 1-8
LOGIN, 1-1
LOGOUT, 1-2
print a copy of, 1-19
saving a, 1-22
translator input, 5-=5

Program compilation, 1-14

Program creation, 1-19

Program deletion, 1-~22

Program editing, 1-23

Program example,
source, 1-30

Program execution, 1-21

Program line,
deletion, 1-23
logical, B-2
physical, B-2
replacement, 1-23

Program name change, 1-20
translator, 5=5

Program replacement, 1-21

Program segmentation, 2-10

Program size limit,
BASIC2, 3=2
BP2COM, 3-2

Program storage, 1-22

Programmer number, 1-3
assignment of, 1-2

Programs,
merging source, 1-11
preserving BASIC-PLUS, 5-1

Project number, 1-3

Prompt,

APPEND FILE NAME, 1-11
continuation of TKB>, 2-2
debugging aid, 1-24
ENTER OPTIONS:, 2-3
EXTEND MODE?, 5~5

HISEG command, 1-18

INPUT FILE?, 5-4

Index-13

INDEX (Cont.)

Note that an underlined page number points to an entry's primary or

definitive reference.

Prompt (Cont.)
librarian input, 3-3
LOGIN, 1-1, 1-2
NEW command, 1-19
NEW FILE NAME--, 1-19
OLD FILE NAME--, 1-20
OLD NAME?, 5=5
OUTPUT FILE?, 5-5
PASSWORD:, 1-2
READY, 1-2, 1-8
TARGET SYSTEM?, 5-4
Task Builder, 2-1

Protection code, 1-3, 1l-5
combination of, 1-6
default, 1-6
specification of, 1-6
table of, 1-5, 1-6

Public structure default device,

1-3

PUT operation, 4-18, 4-19
indexed file, 4-13
relative file, 4-10, 4-19
sequential file, 4-7, 4-19

QuUO$ function, B-9
Quoted string literals, A-3

RADS function, B-9
Radix-50 character set, D-4
Radix-50 conversion, D-4
Radix=-50 format, D-4
Random access, 4-5
on indexed files, 4-20
on relative files, 4-19
record, 4-18, 4-19
Range,
channel number, 4-2
of double precision, 1-29
of integer constants, B-3
of integers, 1-29
of line numbers, 1-28, B-1
of numeric constants, B-3
of single precision, 1-29
of subscript variables, 1-29
of subscripts, B-3
READ file attribute, 4-16
ACCESS, 4-16
ALLOW, 4-16
Reading stream-format records,
4-24
READY prompt, 1-2, 1-8
Real argument passing, 3-11
Real format, D=7

Record,
accessing the, 4-13
location of, 4-13
Record access, 4-4
by alternate key, 4-14
by primary key, 4-14
example of, 4-20)
in sequential files, 4-18
indexed file, 4-14
random, 4-18, 4-19
sequential, 4-18
shifting, 4-21
Record access methods, 4-17
Record addition, 4-5
Record assignment,
relative file, 4-8
Record deletion, 4-5, 4-19
Record delimiter,
(CR/LF), 4-24
(ESC), 4-24
(FF), 4-24
(LF), 4-24
(vr), 4-24
stream-format, 4-24
Record format, 4-4, 4-21
default, 4-6, 4-22, 4-23
relative file, 4-23
specification, 4-22
table of, 4-22
Record I/0 file, 4-1
BASIC-PLUS-2, A-10
Record identifier, 4-14
Record insertion, 4-5
Record length specification,
4-22
Record location,
indexed file, 4-12
Record locking, 4-16
Record Management Services (RMS),
4-1
Record mapping, 4-4, 4-29
Record movement, 4-29
Record number, 4-19
Record operations, 4-18
RMS, 4-2
Record position, 4-19
arrangement of, 4-9
empty, 4-9
first, 4-9
relative file, 4-9
Record relationship,
sequential file, 4-7
Record replacement, 4-5
Record retrieval operations, 4-23
Record size,
maximum, 4-23
Record/position number, 4-9

Index-14

e

INDEX (Cont.)

Note that an underlined page number points to an entry's primary or
definitive reference.

Records, 4-1, 4-4 Reserved keywords, B-10
access to, 4-17 table of, B-1l1l
fixed-length, 4-21, 4-22 table of system, B-12
format of, 4-6 Resource sharing,
reading stream-~format, 4-24 RSTS/E, 1l-1
relative file, 4-22 RESTORE operation, 4-18
serial access of, 4-7 indexed file, 4-13
stream-format, 4-22, 4-23, relative file, 4-10

4-24 sequential file, 4-8
variable-length, 4-21, 4-23 Retrieval operations,
writing stream~format, 4-24 record, 4-23

Records on blocks, 4-25 RETURN key, viii, 5-6, B-7

RECORDSIZE clause, 4-6, 4-9, Rewind,

4-12, 4-22, 4-25 override of tape, 4-7

RECORDSIZE file attribute, 4-3, RIGHT function, B=~9

4-5, 4-8, 4-10 RMS, 4-1, 4-4, A-10

RECORDSIZE specification, 4-3 access to code, 1-12

RECOUNT function, B-10 bucket overhead, 4-28

Recoverable error codes, . devices not allowed for, 1l-4
table of, C-9 to C-12 existence byte, 4-27

Register usage, introduction to, 4-4
subroutine, 3-11 memory allocation, 4-17

/REL RMS switch, 1-13 operations, 4-2, 4-5, aA-10

Relational operators, B-2 _ RMS switch, -
table of, B-3 BUILD command, 1-13

RELATIVE, /IND, 1-13
ORGANIZATION, 4-8 /REL, 1-13

Relative file, 4-2 /SEQ, 1-13
bucket size for, 4-26 RMS utilities, 4-1, 4-30
creation of, 4-8 RMS with BASIC2,
default bucket size, 4-27 use of, 3-2
DELETE operation, 4-10 RMSBCK utility, 4-31
example of, 4-9 RMSCNV utility, 4-31
extending, 4-17 RMSDFN utility, 4-31
FIND operation, 4-10 RMSDSP utility, 4-31
format of, 4-8, 4-23 RMSRST utility, 4-31
GET operation, 4-10 RND function, B-8
media restrictions, 4-2 /RONLY switch option, 1-7
memory space, 4-17 .ROOT directive, 2-12
PUT operation, 4-10, 4-19 Routines,
random access on, 4-19 error handling, C-1
record assignment, 4-8 run-time support, 3-1
record position, 4-9 RSET file operation, 4-3
RESTORE operation, 4-10 RSTS/E switch options, 1-3, 1-6
UPDATE operation, 4-10 RSTS/E system,
with variable format, 4-23 accessing the, 1-1

RENAME (REN) command, 1-10, 1-20, RTS purpose of,

B-5 BASIC-PLUS-2, 3-1

REPLACE (REP) command, 1-10, see also Run-Time system

1-21, B-6 RUBOUT key, 1-23, B-7
Replace switch (/RP), 3-5 erasures, 1-23
example of, 3-7 RUN command, 1-10, 1-21, B-6
format, 3-6 RUN command header, 1-21
global, 3-6 Run~-time error messages, C-12
local, 3-6 Run-time errors,

negation of, 3-6 summary of, C-12 to C-31

see also Librarian Run-time support routines, 3-1

Index-15

INDEX (Cont.)

Note that an underlined page number points to an entry's primary or
definitive reference.

Run-time system
2-8, 3-1
BASIC-PLUS-2,
BASIC2, 1-17,
BP2COM, 1-17,
BUILD command
default, 1-17

(RTS) ,

1-17, 3-1

2-8, 3-1, 3~
2-8, 3-1, 3-
default, 1-18

[\V]

N

SAVE (SAV) command, 1-10, 1-22,

B-6

SCALE (SCA) command, 1-10, 1-22,

B-6
Scale factor,

specification of, 1-22
Scaled arithmetic, 1-22
" SCRATCH file attribute, 4-16

ACCESS, 4-16

sequential file, 4-8
Secondary data fields, 4-13
SEGS$ function, B-9

Segment,
default high,
high, 2-8
Task Builder,

Segmentation,
program, 2-10

Semicolons, 5-3

Separator,

2-8

2-8

backslash statement, B-1

comment, 1-29,

A-6

exclamation point, 1-29
statement, 1-29, B-1

Separators,

BASIC-PLUS statement, 5-2
BASIC-PLUS-2 statement, 5-2

comment, 5-3
statement, 5-2

, A-6

translation of comment, 5-3
translation of statement, 5-2

/SEQ RMS switch,
SEQUENTIAL,
ORGANIZATION,
Sequential acces
Sequential file,
creation of, 4
example of, 4-

4
-5

1-13

4-6
s, 4-5
-2

7

FIND operation, 4-7

format of, 4-5
GET operation,

4-7

media restrictions, 4-2

memory space,

4-17

on magnetic tape, 4-25
OPEN statement format, 4-5

organization,
PUT operation,

4-5
4-7

Sequential file (Cont.),
record access in, 4-18
record relationship, 4-
RESTORE operation, 4-8
restrictions, 4-7
SCRATCH operation, 4-8
sharing, 4-15
UPDATE operation, 4-7

Sequential PUT operation,
relative files, 4-19

Sequential record access,

4-18

Serial access of records, 4-7

Setting defaults,

COMPILE command, 1-15

SGN function, B-8

/SH switch, 2-5
see also Task Builder switches

Sharing,
control of file, 4-15
file, 4-15
sequential file, 4-15
virtual file, 4-16

Shifting record access, 4-21

Short memory allocation map,

2-5

SIN function, B-8

Single precision,
range of, 1-29

Single-precision format, 1-14

Small bucket size, 4-29

Source file,

MACRO, 1-14

Source lines, 1-28
comments in, 1-29
continued, 1-28

Source program,
access to, 1-20
BASIC-PLUS-~2, 1-28
example, 1-30
merging, 1-11

SPACES$ function, B-9

Spaces,
in lexical elements, 5-2
in numeric constants, 5-4
leading, B-1

SPAN file attribute, 4-5, 4-6

Spanning, 4-25

Specification format,
filename, 1-3

Speed of I/0 operations, 4-26

SOR function, B-8

STACK option, 2-8
format, 2-9
see also Task Builder options

Stack size declaration,

Task Builder, 2-8

7

Index-16

INDEX (Cont.)

Note that an underlined
definitive reference.

Statement,
BASIC-PLUS DATA, 5-2, A-5
BASIC-PLUS-2 DATA, 5-2, A-5
BASIC~-PLUS CHAIN, 5-2, A-7
BASIC-PLUS-2 CHAIN, 5-2, A-7
CALL, 3-11, 3-12, A-9
CALL BY REF, 3-11, 3-13, A-9
CHAIN, 5-2, A-7
DATA, 5-2, A-5
DEF, 5-1, A-4
DIM #, 4-3
END, 1-28
example of MAP, 4-30
immediate mode, 5-5
MAP, 4-13, 4-14, 4-20,
multiple, 1-28
multiple assignment, A-3
OPEN, 4-1, 4-3, 4-7 to 4-10,
4-12, 4-21
translation
translation
translation
translation
translation
UNLOCK, 4-16
Statement separator,
A-6, B-1
Statement separators,
BASIC-PLUS, 5-2
BASIC-PLUS~2, 5-2
translation of, 5-2
STEP debugging command, 1-27,
B-6
argument, 1-27
argument range,
STR$ function, B-9

4-29

of CHAIN, 5-2
of . DATA, 5-2
of DEF, 5-1

of INPUT, 5-3
of PRINT, 5-3

1-29, 5-2,

1-27

Stream ASCII file, 4-22
creation of, 4-24
data in, 4-24
record delimiter, 4-24

Stream-format records, 4-22 to
4-24
reading,
writing,
String,
BASIC-PLUS, A-3
BASIC-PLUS-2, A-3
String argument passing, 3-11
String constant, B-3
length of, B-3
String delimiter,
String format, D-7
dynamic, D-7
PRINT USING,
String header,
String literal,
BASIC-PLUS, 5-3
BASIC-PLUS-2, 5-3

4-24
4-24

5-3

A-1
D-8

page number points to an entry's primary or

String literal (Cont.),
quoted, A-3
translation of, 5-3
unterminated, 5-3

String manipulation,
space for, 2-8

String variable, B-3

STRINGS function, B-9

Structure,
data, 4-4, 4-24
logical data, 4-24
overlay tree, 2-12
path of overlay, 2-13
physical storage, 4-24

Subprograms, 2-10
execution of, 1-12

Subroutine,
adding to library, 3-3

argument passing, 3-10
BASIC-PLUS~-2, 3-=3
call instructions, 3-10

calling conventions, 3-10
calls, 3-11
debugging, 1-24
error trace in,
linkage, 3-10
MACRO, 3-3, 3-10, 3-11
passing mechanism, 3-11
register usage, 3-11
restrictions, 3-10
writing, 3-3

Subscript variable, 1-29
range of, 1-29

Subscripts, B-3
array, A-9
evaluation of array, A-9
range of, B-3

SUM$ function, B-9

Summary of commands, B-1

Summary of

C-3 to

Summary of

B-7
Summary
B-10
Summary of run-time errors,
C-12 to C-31

Support routines,
run-time, 3-1

Switch,

/CO compress, 3-8
combination of list,
/CR create, 3-4

/DA debugging, 2-5
/DE delete, 3-8
/DEBUG, 1-14, 1-24
/DOUBLE, 1-14
/EX extract,

Cc-2

Cc-8

of functions, B-7 to

3-7

3-6

Index~-17

compile-time errors,

control characters,

INDEX (Cont.)

Note that an underlined page number points to an entry's primary or

definitive reference.

Switch (Cont.),
example of compress, 3-9
example of insert, 3-5
example of create, 3-4
example of extract, 3-

example of replace, 3-

/FU list, 3-7

/IN insert, 3-5

/IND RMS, 1-13

/LB library, 2-5

/LE list, 3-7

/LI list, 3-7

/MA map, 2-5

/MACRO, 1-14

/MP overlay, 2-5, 2-10

negation of replace, 3-6

/NOCHAIN, 1-14

/NOLINE, 1-14, 1-15

/OBJECT, 1-15

/REL RMS, 1-13

/RP replace, 3-6

/SEQ RMS, 1-13

/SH short, 2-5

/TSK, 1-14

/W1 wide, 2-5

/XT exit, 2-5

7
7

Switch options, 1-7, 4-1
/CLUSTERSIZE, 1-7
JFILESIZE, 1-7
/MODE, 1-7

/RONLY, 1-7
RSTS/E, 1-3, 1-6
system, 1-3
Switch specification,
Task Builder, 2-5
Switches,
BUILD command RMS, 1-13
COMPILE command, 1-9, 1-14
librarian, 3-4
negating Task Builder, 2-
table of Task Builder, 2-
Task Builder, 2-4
Task Builder default, 2-5
Switches combined,
COMPILE command, 1-15
Symbol definition,
Task Builder, 2-8
Synonym for PRINT, 5-1
syntax,
BASIC-PLUS-2, 5-1
Syntax check,
BASIC Compiler, 1-23
SYS functions, 5-3, A-8
BASIC-PLUS, 5-3
translation of, 5-3
System,
accessing the RSTS/E, 1-1
BASIC-PLUS-2 run-time, 3-1

4
4

System (Cont.),
BASIC2 run-time, 1-17, 2-8,
3-1, 3-2
BP2COM run-time, 1-17, 2-8,
3-1, 3-2
BUILD command default run-
time, 1-18
default run-time, 1-17
run-time, 2-8
System command set,
support of, 1-9
System debugging aid, 2-5
System program,
exit from, 1-8
System reserved keywords,
table of, B-12
System switch options, 1-3

TAB key, B-7

TAB function, B-8

Table,
of access methods, 4-18
of arithmetic operators, B-2
of ASCII/Radix-50 equivalents,

D-5
of BASIC-PLUS-2 commands,
1-9, 1-10

of BASIC-PLUS-2 extensions, 1-5
of device specifications, 1-4
of logical operators, B-2
of protection codes, 1-5, 1-6
of record formats, 4-22
of recoverable error codes,
Cc-9 to C-12
of relational operators, B-3
of reserved keywords, B-1ll
of system reserved keywords,
B-12
of Task Builder options, 2-6
of Task Builder switches, 2-4
of task file types, 2-3
Tabs in numeric constants, 5-4
TAN function, B-8
Tape,
ANSI magnetic, 4-23
block size on magnetic, 4-24
count field on magnetic, 4-23
sequential files on magnetic,
4-25
Tape rewind,
override of, 4-7
TARGET SYSTEM? prompt, 5-4
Task,
creation of executable, 1-14
memory available, 2-8
production of executable, 1-8

Index-18

INDEX (Cont.)

Note that an underlined page number points to an entry's primary or

definitive reference.

Task Builder, 2-1, 2-2
aborting, 2-6
CCL command, 2-1
command input, 1-12
device assignment, 2-7
filename specification, 2-4
high segment association, 2-8
invocation, 2-1
logical unit number, 2-9
memory extension, 2-7
name specification, 2-9
overlay facility, 2-10
patches, 2-7
prompt, 2-1
reasons for using, 2-1
stack size declaration, 2-8
symbol definition, 2-8

Task Builder input,
specification, 2-2
termination of, 2-3

Task Builder options, 2-2, 2-5
table of, 2-6
use of, 2-6

Task Builder output specifica-

tion, 2-2, 2-9

Task Builder switches, 2-4
default, 2-5
negating, 2-4
specification, 2-5
table of, 2-4

Task creation,
examples of, 2-15
execution, 2-14

Task file extensions, 2-3
table of, 2-3

Task image,
corrective code into, 2-7
file, 2-9
file extension, 2-3
file output, 2-9

Task input,
termination of, 2-7

Task memory,
allocation of, 2-9

TASK option, 2-9
format, 2-9

Terminal 1/0 files, 4-24

Terminal-format file, 4-2
creation of, 4-2

Terminator,
BASIC-PLUS-2 line, 1-28
line, B-2

TIME function, B-10

Time sharing,
RSTS/E, 1-1

TIMES function, B-10

TKB> prompt,
continuation of, 2-2

TRACE debugging command, 1-28,
B-6
Traceback, C-2
errors in functions, C-2
errors in subroutines, C-2
example of, C-2
mechanism, C-2
text of, C-2
Translation,
of ambiguous constants, 5-3
of CHAIN statement, 5-2
of comment separator, 5-3
of continuation line, 5-1
of DATA statement, 5-2
of DEF statement, 5-1
of functions, 5-4
of INPUT statement, 5-3
of line numbers, 5-4
of numeric constants, 5-4
of PEEK function, 5-3
of POS function, 5-2
of PRINT statement, 5-3
of PRINT synonym, 5-1
of PRINT USING format, 5-2
of statement separators, 5-2
of string literals, 5-3
of SsYS functions, 5-3
of variable names, 5-2, 5-5
Translator utility, 5-
access to, 5-4
command file, 5-6
default, 5-4
dialogue, 5-4
input to, A-1
program input, 5-5
program name change, 5-5
sample run, 5-6
using the, 5-4
warning messages, 5-8
Tree structure,
overlay, 2-12
TRMS$ function, B-9
/TSK switch, 1-14

UNBREAK debugging command, 1-25,
1-26, B-6
Unit number,
Task Builder logical, 2-9
UNITS option, 2-9
format, 2-9
see also Task Builder options
UNLOCK statement, 4-16
UNSAVE (UNS) command, 1-10,
1-22, B-6
UNTRACE debugging command,
1-28, B-6

Index-19

INDEX (Cont.)

Note that an underlined page number points to an entry's primary or

definitive reference.

UPDATE operation, 4-18, 4-19
indexed file, 4-13
relative file, 4-10
sequential file, 4-7

User-defined functions, B-4
BASIC-PLUS, A-5
BASIC-~PLUS-2, A-5
debugging, 1-26
format of, B-4

Utilities,

RMS, 4-1, 4-30
RMSBCK, 4-31
RMSCNV, 4-31
RMSDFN, 4-31
RMSDSP, 4-31
RMSRST, 4-31
translator, 5-1

Utility program (LBR),
Librarian, 3-3

VAL function, B-9
Variable,
ERR, C-9
error, C-1
Variable format,
indexed files with, 4-23
relative files with, 4-23
Variable initialization, B-4
Variable names, 5-2, B-3
BASIC-PLUS, 5-2, A-7
BASIC-PLUS-2, 5-2, A-7
long, A-7
specification, 5-5
translation of, 5-2, 5-5
Variable-length format, 4-23
Variable-length records, 4-21,
4-23
Variables, B-3
integer, B-3
numeric, B-3
range of subscript, 1-29
string, B-3
subscript, 1-29

Variables change,
debugging commands, 1-27
Variables examine,
debugging commands, 1-27
VIRTUAL,
ORGANIZATION, 4-
Virtual arrays, 4-
format of, D-8
Virtual file, 4-2
attributes, 4-3
data, 4-2
data access, 4-
data storage, 4
example of, 4-3
format, 4-3
operations, 4-16
organization, 4-2, A-10
sharing, 4-16

3
2

2
-2

Warning message, C-1
COMPILE command, 1-14
translator, 5-8
/WI switch, 2-5
see also Task Builder switches
Word,
array descriptor, D-8, D-9
Word alignment,
count field, 4-23
WRITE file attribute, 4-16
ACCESS, 4-16
ALLOW, 4-16

XLATE function, B-9
/XT switch, 2-5
see also Task Builder switches

Zeroes,
leading, B-1

Index-20

-~ -

S

Please cut along this line.

BASIC~-PLUS-2
RSTS/E User's Guide
AA-0154A-TC

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience

Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date

Organization

Street

City State Zip Code
: or
Country

L

Fold Here
4!!5
Aﬁ!ﬁ
Do Not Tear - Fold Here and Staple
FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS. *
BUSINESS REPLY MAIL] p
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES S
L |
Postage will be paid by:

dlilglitall

Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

